Nothing Special   »   [go: up one dir, main page]

JP6385426B2 - Battery positive / negative electrode terminal connection member - Google Patents

Battery positive / negative electrode terminal connection member Download PDF

Info

Publication number
JP6385426B2
JP6385426B2 JP2016510383A JP2016510383A JP6385426B2 JP 6385426 B2 JP6385426 B2 JP 6385426B2 JP 2016510383 A JP2016510383 A JP 2016510383A JP 2016510383 A JP2016510383 A JP 2016510383A JP 6385426 B2 JP6385426 B2 JP 6385426B2
Authority
JP
Japan
Prior art keywords
electrode
layer
bonding
plate
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016510383A
Other languages
Japanese (ja)
Other versions
JPWO2015146976A1 (en
Inventor
彰宏 木村
彰宏 木村
誠彦 大塚
誠彦 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JPWO2015146976A1 publication Critical patent/JPWO2015146976A1/en
Application granted granted Critical
Publication of JP6385426B2 publication Critical patent/JP6385426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、複数の電池を直列に接続するための正負電極端子間に配置されるシート状接続部材に関する。より詳しくは、本発明は、異種金属が爆発圧着により接合された厚みの薄いシート状の接続部材に関する。   The present invention relates to a sheet-like connection member disposed between positive and negative electrode terminals for connecting a plurality of batteries in series. More specifically, the present invention relates to a thin sheet-like connection member in which different metals are joined by explosive pressure bonding.

従来、爆薬が爆発する際の瞬間的な高エネルギーを利用して、異種金属を冷間で冶金的に接合させることによる爆発圧着クラッド法により異種金属が接合されたクラッド材(以下、爆発圧着クラッド材ともいう。)が製造されている。
以下、かかる爆発圧着クラッド材の製造方法の概要を説明する。
まず、図1に示すように母材の上に合わせ材を、間隔をもたせて重ね、合わせ材の上に全面に粉末の爆薬をセットする。次に、図2に示すように、爆薬を一端から起爆させ、爆発の高エネルギーにより、合わせ材は、母材面に高速駆動され、衝撃面から液化された金属(メタルジェット)が発生し、メタルジェットが母材及び母材表面の酸化物、窒化物、吸着ガス等を除去する。そして、図3に示すように、活性化された面は高圧で押さえつけられ、両金属の原子間力によって引き寄せられるところまで近づけられ接合される。
爆発圧着は、瞬時(2500m/秒)に完了するので、爆発熱が金属材料に伝わる余裕がないため、純然たる冷間圧着といえ、また、図4に示すように、圧着界面が「さざ波状」を呈することを特徴とする。
Conventionally, a clad material in which dissimilar metals are joined by the explosive pressure-bonding clad method by joining metal dissimilarly in a metallurgical manner using the instantaneous high energy when explosives explode (hereinafter referred to as explosive pressure-bonded clad). It is also called a material.)
Hereinafter, an outline of a method for producing such an explosion-bonded clad material will be described.
First, as shown in FIG. 1, a laminated material is stacked on a base material with a gap, and a powder explosive is set on the entire surface of the laminated material. Next, as shown in FIG. 2, the explosive is detonated from one end, and due to the high energy of the explosion, the laminated material is driven at a high speed on the base material surface, and a liquefied metal (metal jet) is generated from the impact surface, The metal jet removes the base material and the oxide, nitride, adsorbed gas, etc. on the base material surface. Then, as shown in FIG. 3, the activated surface is pressed down at a high pressure, and brought close to the point where it is attracted by the interatomic force between the two metals and joined.
Explosive crimping is completed instantaneously (2500 m / sec), so there is no room for the explosion heat to be transmitted to the metal material, so it can be said to be pure cold crimping. As shown in FIG. ”.

かかる爆発圧着クラッド材は、例えば、以下の用途に使用されている。
以下の特許文献1には、所望厚さの大型のアルミニウム板の下面に、同じ大きさ位の銅薄板を、鑞付けに代えて爆発圧着(接)法にて接合し、前記接合板より端子羽子板部に相応する単片を切取り、前記切取り単片にアルミニウム線挿入孔を有するアルミニウム圧縮部の一端を溶接することを特徴とする銅板を接合したアルミウム端子の製造方法が開示されている。かかるアルミニウム端子は、発電所又は変電所の電気設備の接続部に用いられるものであり、電池用ではなく、厚み2mmを超え、大型であり、また、2層のシート状でない。
Such explosive pressure-bonding clad materials are used for the following applications, for example.
In Patent Document 1 below, a copper thin plate of the same size is joined to the lower surface of a large aluminum plate having a desired thickness by an explosive pressure bonding (contact) method instead of brazing, and a terminal is connected from the joint plate. A method of manufacturing an aluminum terminal in which a copper plate is joined is disclosed, in which a single piece corresponding to the battledore portion is cut and one end of an aluminum compression portion having an aluminum wire insertion hole is welded to the cut single piece. Such an aluminum terminal is used for a connection part of electric equipment of a power plant or a substation, is not for a battery, has a thickness exceeding 2 mm, is large, and is not a two-layer sheet.

また、以下の特許文献2には、アルミニウムブスバーに、爆発圧着法で製造され、圧延によって平面度の良好な銅−アルミニウムクラッド板のアルミニウム層を接合されてなるアルミニウムブスバーが開示されている。同書実施例には、爆発圧着法によって(2+18mm)×1000mm×1000mmの銅−アルミニウムクラッド板を製造し、約100mm/1000mmの歪があったので、シャーリングで500mm巾に切断し、1mm/1000mmの平面度を出し、5mmの板厚に仕上げるために3工程のロール圧延を行い15分で仕上げたことが記載されている。かかるブスバーは、発、変電所設備とアルミニウム送電線との接続部に使用されることを想定している。また、爆発圧着法によるクラッド板は変形が大きく、クラッド板の板厚が厚くなるにしたがって歪矯正作業が困難になると共に要求板厚が確保できなくなったり、銅表面に傷が生じるといった不具合を生じるため、満足できる端子が得られないという問題を解決するために、かかる欠点を改良した厚肉の銅−アルミニウムブスバーを圧延によって提供するものである。このように、特許文献2に記載されたブスバーも、電池用ではなく、厚み2mmを超え、大型であり、また、2層のシート状でもない。   Further, Patent Document 2 below discloses an aluminum bus bar that is manufactured by an explosive pressure bonding method on an aluminum bus bar and bonded with an aluminum layer of a copper-aluminum clad plate having good flatness by rolling. In the example of the same book, a copper-aluminum clad plate of (2 + 18 mm) × 1000 mm × 1000 mm was manufactured by the explosive pressure bonding method, and since there was a distortion of about 100 mm / 1000 mm, it was cut into a width of 500 mm by shearing and 1 mm / 1000 mm It describes that, in order to obtain flatness and finish to a plate thickness of 5 mm, roll rolling was performed in three steps and finished in 15 minutes. This bus bar is assumed to be used at the connection between the power generation and substation equipment and the aluminum transmission line. In addition, the clad plate produced by the explosive pressure bonding method is greatly deformed, and as the thickness of the clad plate increases, it becomes difficult to correct the distortion, and the required plate thickness cannot be secured, or the copper surface is damaged. Therefore, in order to solve the problem that a satisfactory terminal cannot be obtained, a thick-walled copper-aluminum bus bar with improved such defects is provided by rolling. As described above, the bus bar described in Patent Document 2 is not for a battery, has a thickness exceeding 2 mm, is large, and is not a sheet of two layers.

また、以下の特許文献3には、銅またはその合金からなる部材とアルミニウムまたはその合金からなる部材とが、チタニウム層を介して、圧延クラッド法、拡散接合クラッド法、爆発圧着クラッド法、及び摩擦接合クラッド法のいずれかにより接合されてなることを特徴とする銅−アルミニウム異種金属継手材が開示されている。引用文献3に記載された発明は、銅とアルミニウムの接合の際またはこれらの直接接合による異種継手を高温にさらした際に発生しやすい(約200℃の比較的低温で生成する)脆弱な金属間酸化物の生成を抑えるために、チタニウムを中間材として挿入することで、均一で良好な特性を有する異種継手を提供するものである。すなわち、引用文献3に記載された発明は、高温熱処理を行った後でも、継手の性能を維持し、十分に信頼できる機械的性能と接合強度と気密性を有する継手を提供するものであり、電池の電極端子接続材ではなく、2層のシート状ではなく、また、厚み2mmを超えることは明らかである。   Further, in Patent Document 3 below, a member made of copper or an alloy thereof and a member made of aluminum or an alloy thereof are subjected to a rolling cladding method, a diffusion bonding cladding method, an explosive pressure bonding cladding method, and a friction through a titanium layer. A copper-aluminum dissimilar metal joint material characterized by being joined by any one of the joining clad methods is disclosed. The invention described in the cited document 3 is a fragile metal that is likely to occur when copper and aluminum are bonded or when a dissimilar joint formed by direct bonding thereof is exposed to a high temperature (generated at a relatively low temperature of about 200 ° C.). In order to suppress the formation of inter-oxide, titanium is inserted as an intermediate material to provide a dissimilar joint having uniform and good characteristics. That is, the invention described in the cited document 3 is to provide a joint having mechanical performance, joint strength and airtightness that can maintain the performance of the joint even after the high-temperature heat treatment and can be sufficiently reliable. It is obvious that it is not a battery electrode terminal connecting material, not a two-layer sheet, and exceeds a thickness of 2 mm.

以下の特許文献4には、少なくとも、第一の金属で構成された板状部と、前記第一の金属より融点が高い第二の金属で構成された板状部が、互いに重ねられ、一方の表面に、第一の金属が露出した第一領域と、前記第二の金属が露出した第二領域とが形成されるとともに、他方の表面のうち前記第二領域に対向する領域で前記第二の金属が露出するように形成され、前記第一領域と前記第二領域との境界で、厚さ方法の段差が実質的に存在しないように形成されていることを特徴とする端子接続体が開示されている。また、第一の金属はアルミニウム又はその合金であり、第二の金属は銅、ニッケル、鉄又はそれらの合金であり、第一の金属で構成された板状部と、第二の金属で構成された板状部とが、互いに貼り合わされたクラッド材であること、また、該接続体が複数の電池を接続するためのものであることが記載されている。特許文献4に記載された発明は、端子接続導体を介して電池の端子間等を接続する場合に、端子接続導体を構成する金属と、正極端子又は負極端子を構成する金属の融点が異なることに起因する溶接の困難製性という問題を解決するためになされたものである。かかる接続体は、図5に示すように、電池外装ケースと電池外装ケースから上方向に突出するように設けられた正極端子と負極端子を備えた電池用の端子接続体であり、これを用いて、薄型の組電池の端子を接続固定するための溶接を容易かつコンパクトにすることができると記載されている。接続体の厚みは記載されていないが、組電池の厚みが5mm以下であることから2超〜3mm程度であると思われ、また、一方の表面内と他方の表面内の任意の位置において第一領域と第二領域の両者が接続体の厚み方向において存在するものではなく、第一領域と第二領域との境界が存在する。   In Patent Document 4 below, at least a plate-like portion made of a first metal and a plate-like portion made of a second metal having a melting point higher than that of the first metal are overlapped with each other, A first region where the first metal is exposed and a second region where the second metal is exposed are formed on the surface of the other surface, and the first surface is a region facing the second region on the other surface. A terminal connection body formed so that two metals are exposed and formed so that a step in a thickness method does not substantially exist at a boundary between the first region and the second region. Is disclosed. The first metal is aluminum or an alloy thereof, the second metal is copper, nickel, iron or an alloy thereof, and is composed of a plate-like portion made of the first metal and the second metal. It is described that the formed plate-like portion is a clad material bonded to each other, and that the connection body is for connecting a plurality of batteries. In the invention described in Patent Document 4, the melting point of the metal constituting the terminal connection conductor and the metal constituting the positive electrode terminal or the negative electrode terminal are different when the terminals of the battery are connected via the terminal connection conductor. It was made to solve the problem of difficult manufacturing due to welding. As shown in FIG. 5, the connection body is a battery terminal connection body including a battery outer case and a positive electrode terminal and a negative electrode terminal provided so as to protrude upward from the battery outer case. In addition, it is described that welding for connecting and fixing the terminals of a thin battery pack can be easily and compactly made. Although the thickness of the connection body is not described, it is considered that it is about 2 to 3 mm because the thickness of the assembled battery is 5 mm or less. Both the one region and the second region do not exist in the thickness direction of the connection body, but there is a boundary between the first region and the second region.

以下の特許文献5には、電動車両を駆動するモータの電源用の複数の電池セルを金属プレートで接続している組電池が開示され、図6に示すように、該組電池は、正負の電極端子2を異種金属とする複数の電池セル1を備えており、各々の電池セル1の正負の電極端子2は金属製の金属プレート3で接続され、金属プレート3は、電池セル1の一方の電極端子2に接続してなる第1の金属板3Aと他方の電極端子2に接続してなる第2の金属板3Bとを、正負の電極端子2の接続部の間で接合しなるクラッド材としたものが開示されている。かかるクラッド材は単に異種金属を積層したものでなく、その接合面において異種金属が互いに合金状態となって強く結合していると記載されている。電極端子と金属プレートは、レーザ溶接又はナットのより接合されている。金属プレートの厚みは記載されていない。また、記載された金属プレートは、異種金属がプレートの厚み方向ではなく、長さ方向に接合されたものであり、各電極端子の位置においてはいずれか1の金属のみが存在するため、一方の表面内と他方の表面内の任意の位置において2つの異種金属が金属プレートの厚み方向において存在するものではない。   Patent Document 5 below discloses an assembled battery in which a plurality of battery cells for power source of a motor that drives an electric vehicle are connected by a metal plate. As shown in FIG. A plurality of battery cells 1 whose electrode terminals 2 are different metals are provided, and the positive and negative electrode terminals 2 of each battery cell 1 are connected by a metal metal plate 3, and the metal plate 3 is one of the battery cells 1. A clad formed by joining a first metal plate 3A connected to one electrode terminal 2 and a second metal plate 3B connected to the other electrode terminal 2 between the connecting portions of the positive and negative electrode terminals 2 The material is disclosed. It is described that such a clad material is not simply a laminate of dissimilar metals, but dissimilar metals are in an alloy state and strongly bonded to each other at the joint surface. The electrode terminal and the metal plate are joined by laser welding or nuts. The thickness of the metal plate is not described. In addition, the metal plate described is such that dissimilar metals are joined in the length direction, not the thickness direction of the plate, and only one of the metals exists at the position of each electrode terminal. Two dissimilar metals do not exist in the thickness direction of the metal plate at arbitrary positions in the surface and the other surface.

以下の特許文献6には、隣接する2つの電池の一方の負極端子と他方の正極端子が、帯状、平板状のバスバーにより電気的に接続される態様が記載されているが、バスバーが爆発圧着クラッド材であることは一切記載されていない。   Patent Document 6 below describes a mode in which one negative electrode terminal and the other positive electrode terminal of two adjacent batteries are electrically connected by a strip-shaped or flat-shaped bus bar. There is no mention that it is a clad material.

以下の特許文献7には、電気コネクタ、導電体、熱伝導デバイスとして使用される、アルミニウム又はアルミニウム合金と、銅又は銅合金とが、固相接合されたクラッド材が記載されているが、アルミニウムと銅は突合せ又は一部重ね合わせて接合されており、全面接合ではない。また、特許文献7には、使用されるクラッド材の形状や接合形態については一切記載されていない。   Patent Document 7 below describes a clad material in which aluminum or an aluminum alloy and copper or a copper alloy are used as an electrical connector, a conductor, or a heat conduction device, and are solid-phase bonded. And copper are butt-joined or partly overlapped and are not joined together. Further, Patent Document 7 does not describe at all the shape and joining form of the clad material used.

また、以下の非特許文献1には、アルミニウム及び銅は、電気用材用として広い範囲で使用され、これらの材料間をつなぐ継手部は、ボルト等の機械的な締結では接触抵抗が大きく、また、Al/Cu爆接材は加熱により接合界面に金属間化合物を生成しやすく、これによって接合強度は曲げ強度が低下し、かかる金属の組み合わせでは爆接時においても界面部近傍の熱的影響は避けられず、条件が悪い場合には厚い反応層を形成して必ずしも十分な接合強度が得られない場合があることが記載されている。かかる問題を解決するための手段として、比較的薄いAl板(4mm厚さ)とCu板の組み合わせにおいて爆接実験を行い、Cu中間材の使用が有効であると記載されている。また、導電用異材継手に用いられるAl/Cuクラッドは、電流容量を確保するために、Al,Cuともに20mm程度の厚さが要求されると記載されている。   Further, in Non-Patent Document 1 below, aluminum and copper are used in a wide range for electrical materials, and the joint portion connecting these materials has a large contact resistance when mechanically fastened with bolts or the like. In addition, Al / Cu explosive materials tend to generate intermetallic compounds at the bonding interface by heating, and this reduces the bending strength of the bonding strength. With this combination of metals, the thermal effect in the vicinity of the interface is not affected even during explosive welding. Inevitably, it is described that when the conditions are bad, a thick reaction layer may be formed and sufficient bonding strength may not always be obtained. As a means for solving such a problem, it is described that an explosive welding experiment is performed in a combination of a relatively thin Al plate (4 mm thickness) and a Cu plate, and the use of a Cu intermediate material is effective. Moreover, it is described that the Al / Cu clad used for the dissimilar material joint for conduction is required to have a thickness of about 20 mm for both Al and Cu in order to ensure current capacity.

以上のとおり、爆発圧着クラッド材は電極端子接続部材として使用されているものの、厚みが薄いシート状のものは従来使用されていない。   As described above, although the explosive pressure-bonding clad material is used as an electrode terminal connecting member, a sheet-like material having a small thickness has not been conventionally used.

特開昭48−53280号公報JP-A-48-53280 特開昭51−20744号公報JP-A 51-20744 特許第3240211号公報Japanese Patent No. 3240211 国際公開第2010/087472号パンフレットInternational Publication No. 2010/087472 Pamphlet 特開2011−60623号公報JP 2011-60623 A 特開2012−160339号公報JP 2012-160339 A 特表2013−514188号公報Special table 2013-514188 gazette

溶接学会論文集 第12巻 第1号 p.77−81(1994)Welding Society Proceedings Vol. 12 No. 1 p. 77-81 (1994) 日本金属学会誌第75 巻第3 号(2011)166・172Journal of the Japan Institute of Metals Vol. 75, No. 3 (2011) 166 ・ 172

例えば、自動車用リチウムイオン二次電池では、大きな容量と低い内部抵抗、高い放熱性能が要求されるため、これらの要求を満足できる積層ラミネートタイプの電池が開発されている。この電池の構造を図7に示す。この電池は正極、セパレータ、負極を交互に積層し、それぞれの電極をタブといわれる金属電極に接続し、アルミラミネートフィルムで構成した容器の中に入れ、電解液を注入してシールした形であり、かかる構成により、軽量、薄型化が可能であり、放熱性に優れ、単純な集電構造により大電流充放電に対応可能であり、サイズや容量の変更が比較的容易であるなどの特徴を持っている。例えば、かかるラミネートタイプの複数のセルを積層し、隣接するセルの正極タブと負極タブを直列に接続する場合に、正極タブがアルミニウムで、負極タブが銅で構成されているため、異種金属同士の接続を確実に行う必要がある。   For example, since lithium ion secondary batteries for automobiles require large capacity, low internal resistance, and high heat dissipation performance, laminated laminate type batteries that can satisfy these requirements have been developed. The structure of this battery is shown in FIG. In this battery, positive electrodes, separators, and negative electrodes are alternately laminated, each electrode is connected to a metal electrode called a tab, placed in a container made of an aluminum laminate film, and an electrolyte is injected and sealed. With this configuration, it is possible to reduce the weight and thickness, have excellent heat dissipation, support a large current charge and discharge with a simple current collection structure, and change the size and capacity relatively easily. have. For example, when laminating a plurality of such laminate type cells and connecting the positive electrode tab and the negative electrode tab of adjacent cells in series, the positive electrode tab is made of aluminum and the negative electrode tab is made of copper. Must be securely connected.

例えば、セルの厚みが10mm以下と薄いものであれば、隣接する正極タブと負極タブの間隔も同じく10mm以下であり、また、正極タブであるアルミニウム板の厚みが0.5mm以下、負極タブの厚みが0.5mm以下、巾が100mm以下である場合に、このような狭い場所で両極間の電気的な接続をどのようにして確実に行うかが品質管理上極めて重要である。
すなわち、例えば、ラミネートタイプのリチウムイオン二次電池のセルを積層する場合、正極材がアルミ薄板、負極材が銅薄板であり材質が異なっている、電池をいくつも直列に接続するので異材接合の箇所が多い、さらに小型化のために接合部のスペースが限られている等の問題がある。
For example, if the cell thickness is as thin as 10 mm or less, the distance between adjacent positive electrode tabs and negative electrode tabs is also 10 mm or less, and the thickness of the aluminum plate as the positive electrode tab is 0.5 mm or less, When the thickness is 0.5 mm or less and the width is 100 mm or less, it is very important in terms of quality control how to reliably perform electrical connection between both electrodes in such a narrow place.
That is, for example, when laminating a cell of a laminate type lithium ion secondary battery, the positive electrode material is an aluminum thin plate, the negative electrode material is a copper thin plate, and the materials are different. There are problems such as a large number of locations and a limited space for the joint portion for miniaturization.

かかる状況の下、本発明が解決しようとする課題は、正負電極との高品質な接続を溶接で確実に行うことができ、電池の小型化が可能な正負電極端子間の接続部材を提供することである。   Under such circumstances, a problem to be solved by the present invention is to provide a connection member between positive and negative electrode terminals that can reliably perform high-quality connection with positive and negative electrodes by welding and can reduce the size of a battery. That is.

本発明者は、前記課題を解決すべく鋭意検討し実験を重ねた結果、薄型2層構造の爆発圧着クラッド材を使用することで、前記課題を解決できることを見出し、本発明を完成するに至ったものである。   As a result of intensive studies and experiments to solve the above problems, the present inventor has found that the above problems can be solved by using an explosion-bonded clad material having a thin two-layer structure, and the present invention has been completed. It is a thing.

すなわち、本発明は以下のとおりのものでる。
[1]複数の電池を直列に接続するための正負電極端子間に配置されるシート状接続部材であって、該シート状接続部材は、一方の面に正極端子を構成する金属又はその合金から構成される第一層を、他方の面に負極端子を構成する金属又はその合金から構成される第二層を、それぞれ、有し、かつ、厚みが2mm以下であり、該第一層と該第二層は接合されており、その接合面には、金属間化合物のない部分と金属間化合物がある部分が存在し、金属間化合物のない部分が全接合面積の10%以上であり、かつ、該一方の面内と該他方の面内の任意の位置において該第一層と該第二層の両者が該シート状接続部材の厚み方向において存在する、前記部材。
[2]前記電池はリチウムイオン二次電池である、前記[1]に記載の部材。
[3]前記シート状接続部材の厚みが1mm以下である、前記[1]又は[2]に記載の部材。
[4]前記第一層を構成する金属又はその合金がアルミニウム又はその合金であり、かつ、前記第二層を構成する金属又はその合金が銅又はその合金である、前記[1]〜[3]のいずれかに記載の部材。
[5]前記第一層と前記第二層の中間にチタン又はその合金から構成される中間層を有し、該第一層と該中間層と該第二層とが互いに接合されており、その接合面には、金属間化合物のない部分と金属間化合物がある部分が存在し、金属間化合物のない部分が全接合面積の10%以上である、前記[1]〜[4]のいずれかに記載の部材。
[6]前記シート状接続部材の形状は、縦3〜9mm×横50〜100mmの長方形の平板状である、前記[1]〜[5]のいずれかに記載の部材。
[7]前記シート状接続部材の形状は、縦10〜20mm×横50〜100mmの長方形の平板を、側面から見たときZ字状又はS字状に折り曲げた形状である、前記[1]〜[]のいずれかに記載の部材。
[8]材質1からなる電極及び材質2からなる電極で構成される平行平板異材電極の接合方法であって、一方の面が材質1からなり、他方の面が材質2からなり、該材質1と該材質2が爆発圧着により接合されており、かつ、厚みが2mm以下であるクラッド板を、Z字状又はS字状に折り曲げ、前記材質1の電極及び材質2の電極の間に、同じ材質同士が各々接するように挿入し、該電極及びクラッド板の同じ材質同士を接合することにより、材質1の電極及び材質2の電極を接合する前記方法。
[9]材質1からなる電極及び材質2からなる電極で構成される平行平板異材電極の接合方法であって、前記材質1からなる電極の、前記材質2からなる電極に隣接する面と反対側の面に、一方の面が材質1からなり、もう一方の面が材質2からなり、該材質1と該材質2が爆発圧着により接合されており、かつ、厚みが2mm以下であるクラッド板を、該クラッド板の材質1からなる面が接するように重ね合せて、接合し、該クラッド板を接合した材質1からなる電極を、前記材質2からなる電極の側へ、該クラッド板の材質2からなる面を外側に向けて、折り曲げ、該材質2からなる電極を前記材質1からなる電極の側へ折り曲げ、該材質2からなる電極とクラッド板の材質2からなる面が接するように重ね合せて、接合することにより、材質1からなる電極及び材質2からなる電極を接合する前記方法。
[10]前記クラッド板の厚みが0.3mm以上である前記[9]に記載の方法。
[11]前記材質1からなる電極及び材質2からなる電極は、リチウムイオン二次電池の正極タブ及び該リチウムイオン二次電池に隣接して配置されるもう一つのリチウムイオン二次電池の負極タブである、前記[]〜[10]のいずれかに記載の方法。
[12]前記クラッド板の異種金属接合面において、金属間化合物のない部分と金属間化合物がある部分が存在し、金属間化合物のない部分が全接合面積の10%以上である、前記[]〜[11]のいずれかに記載の方法。
[13]前記クラッド板と前記電極とを同種材同士で重ね合わせ、該電極側からレーザ照射し、該レーザ照射後のレーザ溶接部の溶け込み深さが該クラッド板の異種金属接合界面にまで到達していない、前記[]〜[12]のいずれかに記載の方法。
[14]前記[]〜[13]のいずれかに記載の方法により接合された平行平板異材電極を有する電池パック。
That is, the present invention is as follows.
[1] A sheet-like connecting member disposed between positive and negative electrode terminals for connecting a plurality of batteries in series, the sheet-like connecting member comprising a metal constituting the positive electrode terminal on one surface or an alloy thereof. The first layer is composed of a second layer composed of a metal constituting the negative electrode terminal or an alloy thereof on the other surface, and has a thickness of 2 mm or less. the second layer has been engaged against and its joint surface, there are portions where there is no part intermetallic compound of intermetallic compounds, and a portion without intermetallic compound more than 10% of the total junction area, And the said member in which both this 1st layer and this 2nd layer exist in the thickness direction of this sheet-like connection member in arbitrary positions in this one surface and this other surface.
[2] The member according to [1], wherein the battery is a lithium ion secondary battery.
[3] The member according to [1] or [2], wherein the thickness of the sheet-like connecting member is 1 mm or less.
[4] The above [1] to [3], wherein the metal constituting the first layer or an alloy thereof is aluminum or an alloy thereof, and the metal constituting the second layer or an alloy thereof is copper or an alloy thereof. ] The member in any one of.
[5] an intermediate layer composed of the intermediate titanium or an alloy thereof of the first layer and the second layer, and said more To intermediate layer and the second layer is engaged against each other [1] to [4] , in which there are a portion having no intermetallic compound and a portion having an intermetallic compound, and a portion having no intermetallic compound is 10% or more of the total bonding area . The member in any one of.
[6] The member according to any one of [1] to [5], wherein the sheet-like connection member has a rectangular flat plate shape with a length of 3 to 9 mm and a width of 50 to 100 mm.
[7] The shape of the sheet-like connecting member is a shape obtained by bending a rectangular flat plate having a length of 10 to 20 mm and a width of 50 to 100 mm into a Z shape or an S shape when viewed from the side. -The member in any one of [ 5 ].
[8] A method of joining different flat plate electrodes composed of an electrode made of material 1 and an electrode made of material 2, wherein one surface is made of material 1 and the other surface is made of material 2, And the material 2 are joined together by explosive pressure bonding, and a clad plate having a thickness of 2 mm or less is bent into a Z shape or an S shape, and the same is applied between the electrode of the material 1 and the electrode of the material 2 The said method of joining the electrode of the material 1 and the electrode of the material 2 by inserting so that materials may contact | connect each other and joining the same material of this electrode and a clad board.
[9] A method for joining parallel plate dissimilar electrodes composed of an electrode made of material 1 and an electrode made of material 2, wherein the electrode made of material 1 is opposite to the surface adjacent to the electrode made of material 2 A clad plate having one surface made of material 1 and the other surface made of material 2, the material 1 and material 2 being bonded together by explosive pressure bonding and having a thickness of 2 mm or less. , said clad plate overlapped in contact is a surface made of a material 1 of joining, the cladding plate made of a material 1 formed by joining the electrode, to the side of the electrode formed of the material 2, the material 2 of the clad plate a surface consisting outward, folding, bending an electrode made of said material substance 2 to the side of the electrode formed of the material 1, stacked as a surface made of a material 2 of electrode and the cladding plate consisting of said material substance 2 contacts And joining them together The method of bonding the electrode made of the electrode and the material 2 made of a material 1.
[10] The clad plate thickness is 0.3mm or more, the method according to [9].
[11] The electrode made of material 1 and the electrode made of material 2 are a positive electrode tab of a lithium ion secondary battery and a negative electrode tab of another lithium ion secondary battery disposed adjacent to the lithium ion secondary battery. The method according to any one of [ 8 ] to [ 10 ], wherein
[12] In the dissimilar metal joint surface of the clad plate, there is no portion and a portion where there is an intermetallic compound of intermetallic compounds, a portion having no intermetallic compound is more than 10% of the total junction area, the [8 ] To [ 11 ].
[13] The clad plate and the electrode are overlapped with the same kind of materials, laser irradiation is performed from the electrode side, and the penetration depth of the laser weld after the laser irradiation reaches the dissimilar metal joint interface of the clad plate The method according to any one of [ 8 ] to [ 12 ], which is not performed.
[14] A battery pack having parallel plate dissimilar electrodes joined by the method according to any one of [ 8 ] to [ 13 ].

本発明により、量産に適し、全面接合が可能で接合強度が高い爆発圧着クラッド又はそれを圧延したものを使用することで電池の正負極端子を同種材同士での接合とすることができるため、高品質な接合が可能となる。また、本発明により、正負極端子の接合面積を十分に保ったまま電池及びその周囲部材の小型化も可能となり、さらに、小型化と高品質な接合により、電極部の抵抗値とインダクタンスの減少による出力電流の増加などの性能アップが可能となる。   According to the present invention, the positive and negative terminals of the battery can be joined with the same kind of materials by using an explosive pressure-bonding clad that is suitable for mass production, can be joined all over and has high joint strength, or a rolled product thereof, High quality bonding is possible. Further, according to the present invention, it is possible to reduce the size of the battery and its peripheral members while maintaining a sufficient bonding area between the positive and negative electrode terminals, and further, the resistance value and inductance of the electrode portion are reduced by the miniaturization and high quality bonding. It is possible to improve performance such as an increase in output current.

爆発圧着クラッド材の製造方法におけるセット状態を示す概略図である。It is the schematic which shows the set state in the manufacturing method of an explosive pressure-bonding clad material. 爆発圧着クラッド材の製造方法における圧着進行状態を示す概略図である。It is the schematic which shows the crimping | compression-bonding progress state in the manufacturing method of an explosive-bonding clad material. 発圧着クラッド材の製造方法における圧着完了状態を示す概略図である。It is the schematic which shows the crimping completion state in the manufacturing method of a pressure-bonding clad material. 発圧着クラッド材における「さざ波状」の圧着界面の写真である。2 is a photograph of a “ripple-like” crimp interface in a pressure-bonding clad material. 特許文献4に記載された組電池及び接続体を示す概略図である(特許文献4の図1に同じ)。It is the schematic which shows the assembled battery and the connection body which were described in patent document 4 (same as FIG. 1 of patent document 4). 特許文献5に記載された電池セルを接続するための金属プレートを示す概略図である(特許文献5の図5に同じ)。It is the schematic which shows the metal plate for connecting the battery cell described in patent document 5 (same as FIG. 5 of patent document 5). 積層ラミネートタイプの自動車用リチウムイオン二次電池の構造の具体例を示す図面である。It is drawing which shows the specific example of the structure of the laminated ion type lithium ion secondary battery for motor vehicles. 本発明に係るシート状接続部材を、ラミネートタイプのリチウムイオン二次電池の隣接セルの正極タブと負極タブとの間に配置して、互いに溶接で接続する方法を説明する概略図である。It is the schematic explaining the method which arrange | positions the sheet-like connection member which concerns on this invention between the positive electrode tab of the adjacent cell of a laminate type lithium ion secondary battery, and a negative electrode tab, and connects it with welding. 爆発圧着クラッド材の接合部のミクロ観察を行った写真である(拡大SEM:接合部に金属間化合物の層が無い部分の撮影)。It is the photograph which performed the micro observation of the junction part of an explosive pressure bonding clad material (magnification SEM: imaging | photography of the part which does not have the layer of an intermetallic compound in a junction part). 冷間圧延後に採取した接続部材の写真である。It is the photograph of the connection member extract | collected after cold rolling. 接続部材を曲げたものの写真である。It is a photograph of the bent connection member. レーザ溶接部の断面のミクロ観察写真である。It is a micro observation photograph of the section of a laser welding part. 比較例のロウ付けクラッド材の超音波探傷試験した結果を示す写真である。It is a photograph which shows the result of having carried out the ultrasonic flaw test of the brazing clad material of a comparative example. 比較例の圧接クラッド材の超音波探傷試験した結果を示す写真である。It is a photograph which shows the result of having performed the ultrasonic flaw test of the pressure-contact clad material of a comparative example. 比較例のロウ付けクラッド材の接合界面の写真である。It is a photograph of the joining interface of the brazing clad material of a comparative example. 比較例の圧接クラッド材の接合界面の写真である。It is a photograph of the joining interface of the pressure-welded cladding material of a comparative example.

以下、本発明の実施形態について詳細に説明する。
本実施形態は、複数の電池を直列に接続するための正負電極端子間に配置されるシート状接続部材であって、一方の面に正極端子を構成する金属又はその合金から構成される第一層を、他方の面に負極端子を構成する金属又はその合金から構成される第二層を、それぞれ、有し、該第一層と該第二層が、爆発圧着により接合されており、該一方の面内と該他方の面内の任意の位置において該第一層と該第二層の両者が該シート状接続部材の厚み方向において存在する、前記部材である。好ましくは、該シート状接続部材の厚みは2mm以下である。
Hereinafter, embodiments of the present invention will be described in detail.
The present embodiment is a sheet-like connection member disposed between positive and negative electrode terminals for connecting a plurality of batteries in series, and is a first composed of a metal constituting the positive electrode terminal or an alloy thereof on one surface. Each having a second layer composed of a metal constituting the negative electrode terminal or an alloy thereof on the other surface, and the first layer and the second layer are joined by explosive pressure bonding, In this member, both the first layer and the second layer are present in the thickness direction of the sheet-like connecting member at an arbitrary position in one surface and the other surface. Preferably, the thickness of the sheet-like connecting member is 2 mm or less.

前記電池は、好ましくはリチウムイオン二次電池であり、より好ましくは積層ラミネートタイプの自動車用リチウムイオン二次電池であることができる。
積層ラミネートタイプの自動車用リチウムイオン二次電池においては、隣接するセルの正極タブと負極タブを直列に接続する場合に、通常、正極タブがアルミニウムで、負極タブが銅で構成されているため、異種金属同士の接続を確実に行うため、正極端子を構成する金属又はその合金から構成される第一層を構成する金属又はその合金は、アルミニウム又はその合金であり、かつ、負極端子を構成する金属又はその合金から構成される第二層を構成する金属又はその合金は、銅又はその合金であることができる。また、アルミニウムと銅との間の耐熱性を高めるために、第一層と第二層の中間にチタン又はその合金から構成される中間層を設け、第一層と中間層と第二層とが互いに爆発圧着により接合したものを用いてもよい。
図1〜3に示すように、銅板を母材として用い、合材としてアルミニウム板を用いて爆発圧着を行えば、銅とアルミニウムの二層からなる爆発圧着グラッド材を製造することができる。当業者は、技術常識に従い製造条件等を適宜設定し、所望のクラッド材を製造することができる。
The battery is preferably a lithium ion secondary battery, more preferably a laminated laminate type automotive lithium ion secondary battery.
In the laminated laminate type automotive lithium ion secondary battery, when the positive electrode tab and negative electrode tab of adjacent cells are connected in series, the positive electrode tab is usually made of aluminum and the negative electrode tab is made of copper. In order to securely connect different kinds of metals, the metal constituting the first layer composed of the metal constituting the positive electrode terminal or the alloy thereof or the alloy thereof is aluminum or an alloy thereof and constitutes the negative electrode terminal. The metal or alloy thereof constituting the second layer composed of metal or an alloy thereof can be copper or an alloy thereof. Moreover, in order to improve the heat resistance between aluminum and copper, an intermediate layer composed of titanium or an alloy thereof is provided between the first layer and the second layer, and the first layer, the intermediate layer, and the second layer are provided. May be bonded together by explosive pressure bonding.
As shown in FIGS. 1 to 3, an explosive pressure-bonding grad material consisting of two layers of copper and aluminum can be produced by using a copper plate as a base material and an aluminum plate as a mixture. A person skilled in the art can manufacture desired clad materials by appropriately setting production conditions and the like according to common technical knowledge.

本実施形態に係るシート状接続部材は、一方の面に正極端子を構成する金属又はその合金から構成される第一層を、他方の面に負極端子を構成する金属又はその合金から構成される第二層を、それぞれ、有し、該第一層と該第二層が、爆発圧着により接合されており、該一方の面内と該他方の面内の任意の位置において該第一層と該第二層の両者が該シート状接続部材の厚み方向において存在するものである。すなわち、例えば、下端が銅、上端がアルミニウムである長方形の接続部材とは異なり、例えば、銅層とアルミニウム層が全面に亘って積層されたシート状のものである。   The sheet-like connecting member according to the present embodiment includes a first layer composed of a metal constituting the positive electrode terminal or an alloy thereof on one surface and a metal constituting the negative electrode terminal or an alloy thereof on the other surface. Each having a second layer, the first layer and the second layer being joined together by explosive pressure bonding, and the first layer at any position within the one surface and the other surface Both of the second layers are present in the thickness direction of the sheet-like connecting member. That is, for example, unlike a rectangular connecting member having a lower end made of copper and an upper end made of aluminum, it is a sheet-like member in which a copper layer and an aluminum layer are laminated over the entire surface.

他の実施形態においては、前記第一層と前記第二層との接合面において、金属間化合物のない部分と金属間化合物がある部分が規則的に存在し、金属間化合物のない部分が全接合面積の10%以上であるものであることができる。   In another embodiment, on the joint surface between the first layer and the second layer, there are regularly a portion having no intermetallic compound and a portion having an intermetallic compound, and a portion having no intermetallic compound is entirely present. It may be 10% or more of the bonding area.

他の実施形態においては、材質1からなる電極及び材質2からなる電極で構成される平行平板異材電極の接合方法であって、一方の面が材質1からなり、他方の面が材質2からなるクラッド板をZ字状又はS字状に折り曲げ、前記材質1の電極及び材質2の電極の間に、同じ材質同士が各々接するように挿入し、該電極及びクラッド板の同じ材質同士を接合することにより、材質1の電極及び材質2の電極を接合する前記方法が提供される。   In another embodiment, a parallel plate dissimilar electrode composed of an electrode made of material 1 and an electrode made of material 2, one surface being made of material 1 and the other surface being made of material 2. The clad plate is bent into a Z-shape or S-shape, and the same material is inserted between the electrode of the material 1 and the electrode of the material 2 so as to be in contact with each other, and the same material of the electrode and the clad plate is joined. Thus, the above-described method of joining the electrode of material 1 and the electrode of material 2 is provided.

他の実施形態においては、材質1からなる電極及び材質2からなる電極で構成される平行平板異材電極の接合方法であって、前記材質1からなる電極の、前記材質2からなる電極に隣接する面と反対側の面に、一方の面が材質1からなり、もう一方の面が材質2からなるクラッド板を、該クラッド板の材質1からなる面が接するように重ね合せて、接合し、該クラッド板を接合した材質1からなる電極を、材質2からなる電極の側へ折り曲げ、該材質2からなる電極を前記材質1からなる電極の側へ折り曲げ、該材質2からなる電極と前記クラッド板の材質2からなる面が接するように重ね合せて、接合することにより、材質1からなる電極及び材質2からなる電極を接合する前記方法も提供される。   In another embodiment, a parallel plate dissimilar electrode composed of an electrode made of material 1 and an electrode made of material 2 is provided, and the electrode made of material 1 is adjacent to the electrode made of material 2. The clad plate made of material 1 on one side and the material 2 on the other side is overlapped with the surface opposite to the surface so that the surface made of material 1 of the clad plate is in contact with and joined, The electrode made of the material 1 to which the clad plate is bonded is bent toward the electrode made of the material 2, the electrode made of the material 2 is bent toward the electrode made of the material 1, and the electrode made of the material 2 and the clad There is also provided the above-described method of joining an electrode made of material 1 and an electrode made of material 2 by overlapping and joining so that the surfaces made of material 2 of the plate are in contact with each other.

好ましくは、前記材質1からなる電極及び材質2からなる電極は、リチウムイオン二次電池の正極タブ及び該リチウムイオン二次電池に隣接して配置されるもう一つのリチウムイオン二次電池の負極タブであることができる。また、前記クラッド板の厚みは、好ましくは0.3mm以上である。前記クラッド板の異種金属接合面において、金属間化合物のない部分と金属間化合物がある部分が規則的に存在し、金属間化合物のない部分が全接合面積の10%以上であることができる。   Preferably, the electrode made of the material 1 and the electrode made of the material 2 are a positive electrode tab of a lithium ion secondary battery and a negative electrode tab of another lithium ion secondary battery disposed adjacent to the lithium ion secondary battery. Can be. The thickness of the clad plate is preferably 0.3 mm or more. In the dissimilar metal bonding surface of the clad plate, a portion having no intermetallic compound and a portion having an intermetallic compound are regularly present, and a portion having no intermetallic compound may be 10% or more of the total bonding area.

前記クラッド板と前記電極とを重ね合わせて同種材同士で、溶け込み深さが該クラッドの異種金属接合界面にまで到達していない状態でレーザ溶接することができる。   Laser welding can be performed in a state where the cladding plate and the electrode are overlapped and the same kind of materials do not reach the dissimilar metal bonding interface of the cladding.

他の態様においては、前記方法により接合された平行平板異材電極を有する電池パックも提供される。   In another aspect, a battery pack having parallel plate dissimilar electrodes joined by the above method is also provided.

従来技術の圧延クラッド材においては、例えば、下端が銅、上端がアルミニウムである長方形の接続部材を、縦15mm×横70mm×厚み1mmの形状に得ようとする場合、長方形の下端を銅のみに、上端をアルミニウムになるように、厚み15mmの圧延クラッド材を予め用意し、これを1mmの厚さにスライスしたものを、長さ70mmになるように、切断して得なければならない。
これに反し、本実施形態に係る積層シート状の銅とアルミニムの爆発圧着クラッド材を、最終的に、例えば、縦15mm×横70mm×厚み1mmの形状に得ようとする場合、厚み1mmを超える爆発圧着クラッド材を予め用意し、これを1mmに圧延したものを、長さ70mm×15mmの長方形の形状に切断すればよい。
In a conventional rolled clad material, for example, when a rectangular connecting member having a lower end made of copper and an upper end made of aluminum is to be obtained in a shape of 15 mm long × 70 mm wide × 1 mm thick, the lower end of the rectangle is made only of copper. A rolled clad material having a thickness of 15 mm is prepared in advance so that the upper end is made of aluminum, and a slice of the rolled clad material having a thickness of 1 mm must be cut to a length of 70 mm.
On the other hand, when the explosion-bonded clad material of laminated sheet-like copper and aluminum according to the present embodiment is finally obtained in a shape of, for example, 15 mm long × 70 mm wide × 1 mm thick, the thickness exceeds 1 mm. An explosive pressure-bonding clad material is prepared in advance, and rolled to 1 mm, and then cut into a rectangular shape having a length of 70 mm × 15 mm.

前記したように、爆発圧着クラッド材では、圧着界面が「さざ波状」を呈するので、異種金属同士の剥離が起き難く、また冷間圧着であるために、加熱による金属間化合物の生成し難いため、異種金属間の高品質な電気的接続を達成することができる。かかる特徴は、厚み2mm以下に圧延された場合でも保持されている。本実施形態に係る積層シート状の銅とアルミニムの爆発圧着クラッド材の一方の面にはアルミニウムが確実に存在し、他方も面には銅が確実に存在し、アルミニウム正極タブとの同種金属溶接、及び銅負極タブとの同種金属溶接が可能となるため、溶接によりAl−Cu間異種金属間接合を行う際の品質低下の問題は全く生じない。例えば、かかる接合には、生産性の高いレーザ溶接を使用することができるため、ボルト・ナット等による接続による問題、大型化、緩み等の問題は生じない。   As described above, in the explosive pressure-bonding clad material, since the crimping interface exhibits a “ripple shape”, dissociation between dissimilar metals hardly occurs, and it is difficult to generate an intermetallic compound by heating because of cold crimping. High quality electrical connection between dissimilar metals can be achieved. Such characteristics are maintained even when rolled to a thickness of 2 mm or less. Aluminum is surely present on one side of the explosion-bonded clad material of copper and aluminum in the laminated sheet-like form according to this embodiment, copper is surely present on the other side, and the same metal welding with the aluminum positive electrode tab Since the same kind of metal welding with the copper negative electrode tab is possible, there is no problem of quality deterioration when joining different metals between Al and Cu by welding. For example, since high-productivity laser welding can be used for such joining, problems such as connection by bolts and nuts, enlargement, and looseness do not occur.

図8を参照して、本実施形態に係るシート状接続部材を、ラミネートタイプのリチウムイオン二次電池の隣接セルの正極タブと負極タブとの間に配置して、互いに溶接で接続する方法を説明する。
図8(a)案1では、例えば、一方の面がアルミニウムであり他面が銅である厚み1mm(アルミニウム0.5mm+銅0.5mm)×縦15mm×横70mmのシート状接続部材(ピッチ7mm用の場合)を用意し、これを側面方向からみてZ字型に折り曲げ、Z字の上面のアルミニウム側をアルミニウム正極タブに当接して、溶接し、同様に、Z字の下面の銅側を銅負極タブに当接して、溶接することで、正負タブ間を接続することができる。この案1では、正負極タブは折り曲げ加工する必要はない。
With reference to FIG. 8, a sheet-like connection member according to the present embodiment is disposed between the positive electrode tab and the negative electrode tab of the adjacent cell of the laminate type lithium ion secondary battery, and connected to each other by welding. explain.
In plan 1 of FIG. 8 (a), for example, a sheet-like connecting member having a thickness of 1 mm (aluminum 0.5 mm + copper 0.5 mm) × vertical 15 mm × horizontal 70 mm (one pitch is aluminum and the other is copper) (pitch 7 mm) For example), bend it into a Z-shape as viewed from the side, weld the aluminum side of the Z-shaped upper surface against the aluminum positive electrode tab, and similarly, weld the copper side of the lower surface of the Z-shaped The positive and negative tabs can be connected by contacting and welding the copper negative electrode tabs. In this plan 1, the positive and negative electrode tabs do not need to be bent.

図8(b)案2では、正負極タブを折り曲げ加工するが、シート状接続部材は折り曲げ加工しない。したがって、案2では、案1よりも厚いものを用いてもよく、例えば、一方の面がアルミニウムであり他面が銅である厚み2mm(アルミニウム1mm+銅1mm)×縦6.5mm×横70mmのシート状接続部材(ピッチ7mm用の場合)を用意し、銅負極タブの下方から上記シート状接続部材の銅面を当接し、これを90°下方に向かって折り曲げた後に溶接し、これを上方に向かって180°折り曲げ、次いで、アルミニウム正極タブを下方に向かって90°に折り曲げ、該シート状接続部材のアルミニム面に当接して、溶接することで、正負タブを接続することができる。案2は、案1に比べて、異種金属接合部の接合面積を大きくして抵抗値を低下することができ、また接続部材の厚みを大きくすることができるが、正負極タブの折り曲げ加工が必要になる。
正負極タブの折り曲げについては、折り曲げる前の状態で接続部材と重ね合わせてCuとAlの金属間化合物ができないように溶接した後で、正負極タブを折り曲げてもよい。爆発圧着では、金属間化合物ができないので接合強度が高いため、溶接後に正負極タブを折り曲げることができる。
In plan 2 of FIG. 8B, the positive and negative electrode tabs are bent, but the sheet-like connecting member is not bent. Therefore, the plan 2 may be thicker than the plan 1, for example, one side of which is aluminum and the other side is copper having a thickness of 2 mm (aluminum 1 mm + copper 1 mm) × length 6.5 mm × width 70 mm. Prepare a sheet-like connecting member (for 7 mm pitch), abut the copper surface of the sheet-like connecting member from below the copper negative electrode tab, bend it 90 ° downward and weld it, The positive and negative tabs can be connected by bending the aluminum positive electrode tab downward by 90 °, then bending the aluminum positive electrode tab downward by 90 °, abutting against the aluminum surface of the sheet-like connecting member, and welding. Compared to Alternative 1, Plan 2 can reduce the resistance value by increasing the joint area of the dissimilar metal joint, and can increase the thickness of the connecting member. I need it.
Regarding the bending of the positive and negative electrode tabs, the positive and negative electrode tabs may be bent after being welded so as not to form an intermetallic compound of Cu and Al by overlapping with the connection member in a state before being bent. In explosive pressure bonding, since an intermetallic compound is not formed, the bonding strength is high, and therefore, the positive and negative electrode tabs can be bent after welding.

本実施形態に係るシート状接続部材の形状は、適用するラミネートタイプのリチウムイオン二次電池の隣接セルの正極タブと負極タブの間隔や形状に依存して適宜選択することができるが、厚みは2mm以下、好ましくは1mm以下であることができ、例えば、縦3〜9mm×横50〜100mmの長方形の平板状、縦10〜20mm×横50〜100mmの長方形の平板を側面から見たときZ字状又はS字状に折り曲げた形状であることができる。   The shape of the sheet-like connecting member according to the present embodiment can be appropriately selected depending on the interval and shape of the positive electrode tab and the negative electrode tab of the adjacent cell of the laminate type lithium ion secondary battery to be applied. 2 mm or less, preferably 1 mm or less. For example, when a rectangular flat plate having a length of 3 to 9 mm × width of 50 to 100 mm, or a rectangular plate of 10 to 20 mm × width 50 to 100 mm is viewed from the side, Z It can be a shape bent into a letter shape or S shape.

本実施形態に係る接続部材と、正負極タブとの接続は、レーザ溶接、超音波溶接、鑞付け、スポット溶接なとの各種溶接により行うことができ、当業者は適用する電池に応じて適宜最適な溶接方法を選択することができる。   The connection member according to the present embodiment and the positive and negative electrode tabs can be connected by various types of welding such as laser welding, ultrasonic welding, brazing, and spot welding. The optimum welding method can be selected.

なお、前述したラミネートタイプのリチウムイオン二次電池の隣接セルの正極タブと負極タブとを接続する方法は、爆発圧着により接合されたシート状接続部材を用いる方法に限られない。一方の面が正極と、他方の面が負極と各々同一の材料から成るクラッド板であれば、前記方法における接続部材として使用することが可能である。   In addition, the method of connecting the positive electrode tab and negative electrode tab of the adjacent cell of the laminate-type lithium ion secondary battery described above is not limited to a method using a sheet-like connection member joined by explosive pressure bonding. If one surface is a clad plate made of the same material as the positive electrode and the other surface is the same as the negative electrode, it can be used as a connecting member in the method.

本明細書中、金属間化合物については、クラッドの断面を電子顕微鏡によって観察し、成分分析によって金属間化合物を判定した。接合界面において、金属間化合物が生成していない領域の長さを、観察断面全体の長さで除した値を、金属間化合物のない領域として算出した。また、溶接時の溶け込み深さについても、電子顕微鏡によって溶接部の断面を観察し、溶け込み深さが最も大きい部分を溶け込み深さとした。   In this specification, about the intermetallic compound, the cross section of the clad was observed with an electron microscope, and the intermetallic compound was determined by component analysis. A value obtained by dividing the length of the region where no intermetallic compound is formed at the bonding interface by the length of the entire observation cross section was calculated as the region without the intermetallic compound. Moreover, also about the penetration depth at the time of welding, the cross section of the welding part was observed with the electron microscope, and the part with the largest penetration depth was made into the penetration depth.

[実施例]
板厚4 mmのCuと板厚11 mmのAlをそれぞれ1000×2000 mmのサイズで爆発圧着によりクラッド材を製作した。このクラッド材の超音波探傷試験を行ったところ、非接合部は外周部の極一部に限られ、900x1900mm以上の全面接合が得られていることが分かった。かかる全面接合部分を正負電極端子間の接続部材とすることで、電気抵抗値が低く、且つ、接合強度が高い接続部材とすることができた。
この爆発圧着クラッド材の接合部のミクロ観察で、接合部がさざ波状であること確認できた。接合界面は、さざ波状の巻込み部分に金属間化合物ができやすいが、それ以外の部分ではほとんど金属間化合物ができずに接合しており、接合強度が高いものであった。この金属間化合物ができない領域は、全接合面積の5割以上を占めており、その領域を拡大SEMにより観察した画像を図9に示す。図9から金属間化合物の層が無いことを確認できた。
この爆発圧着クラッドから下記サイズの抵抗測定用試験片を採取し、接合部の抵抗値を4端子法で測定した。爆発圧着クラッドの接合部の抵抗値は1μΩ以下であり、金属間化合物がほとんど無いので非常に小さかった。この接合部の抵抗値は、下記抵抗計を使用して測定した値から、素材部の理論抵抗値を差し引いて、クラッド接合部の抵抗値を算出した値である。
試験片サイズ:(15+15)×5×5(板厚15 mmのCuと板厚15 mmのAlのクラッドを5 mm角に加工したもの)
電圧測定位置:接合部からそれぞれの素材側に10 mm離れた位置
抵抗計:日置電機製RM3545と専用4端子リード線を使用
[Example]
A clad material was produced by explosion-bonding Cu with a thickness of 4 mm and Al with a thickness of 11 mm each with a size of 1000 x 2000 mm. As a result of an ultrasonic flaw detection test of this clad material, it was found that the non-bonded portion was limited to a very small part of the outer peripheral portion, and a full-surface bond of 900 × 1900 mm or more was obtained. By using such a whole-surface joined portion as a connecting member between the positive and negative electrode terminals, a connecting member having a low electrical resistance value and a high joining strength could be obtained.
Microscopic observation of the joint of this explosive pressure-bonded clad material confirmed that the joint was rippled. At the bonding interface, an intermetallic compound was easily formed at the rippled entrained portion, but the other portion was bonded with almost no intermetallic compound, and the bonding strength was high. The region where the intermetallic compound is not formed occupies 50% or more of the total bonding area, and FIG. 9 shows an image obtained by observing the region with an enlarged SEM. From FIG. 9, it was confirmed that there was no intermetallic compound layer.
A test piece for resistance measurement having the following size was taken from this explosion-bonded clad, and the resistance value of the joint was measured by the four-terminal method. The resistance value of the joint of the explosive pressure-bonding clad was 1 μΩ or less, and it was very small because there was almost no intermetallic compound. The resistance value of the joint portion is a value obtained by subtracting the theoretical resistance value of the material portion from the value measured using the following resistance meter to calculate the resistance value of the clad joint portion.
Specimen size: (15 + 15) x 5 x 5 (15 mm thick Cu and 15 mm thick Al clad processed to 5 mm square)
Voltage measurement position: Position 10 mm away from the joint on the respective material side Resistance meter: Using Hioki RM3545 and dedicated 4-terminal lead wire

非特許文献2には、銅とアルミニウムの接合部に金属間化合物が接合面全体に層状に存在すると脆くなり接合強度が低下することが記載されているが、爆発圧着の場合は接合面に金属間化合物が存在せずに接合している部分が5割以上を占めているため、接合強度が高い。実際に引張試験を行ったところ、接合面で破断せずに、アルミ素材の部分で破断した。   Non-Patent Document 2 describes that when an intermetallic compound is present in a layered manner on the entire joint surface at the joint between copper and aluminum, it becomes brittle and the joint strength is reduced. Bonding strength is high because the portion bonded without intermetallic compound accounts for 50% or more. When the tensile test was actually performed, the aluminum material portion was broken without breaking at the joint surface.

次に、得られた爆発圧着クラッド材を、総厚1.5 mmまで冷間圧延した。圧延後のものについては、Cuの板厚は約0.4 mmで、Alの板厚は約1.1 mmとなる。冷間圧延した後でも前記全面接合範囲に変化はなく、冷間圧延後のものから接続部材を採取しても接合不良のものがほとんど発生しなかった。
図10に、冷間圧延後に採取した接続部材のミクロ観察結果を示す。図10から、爆発圧着クラッド材と同様、これを冷間圧延により製作した部材でも、接合面における金属間化合物ができない部分は全接合面積の5割以上を占めていることが分かった。
Next, the obtained explosion-bonded clad material was cold-rolled to a total thickness of 1.5 mm. For the one after rolling, the thickness of Cu is about 0.4 mm, and the thickness of Al is about 1.1 mm. Even after cold rolling, there was no change in the entire surface joining range, and even if a connecting member was taken from the one after cold rolling, almost no joint failure occurred.
In FIG. 10, the micro observation result of the connection member extract | collected after cold rolling is shown. From FIG. 10, it was found that, as with the explosive pressure-bonded clad material, even in a member manufactured by cold rolling, the portion where the intermetallic compound is not formed on the joint surface occupies 50% or more of the total joint area.

図11に、本実施形態に係る接続部材を曲げたものを示す。爆発圧着により接合したクラッド材は接合強度が高いので、両面どちら側に曲げても接合部は剥れないため、S字やZ字などの曲げ加工にも充分対応可能であることが分かった。   FIG. 11 shows a bent connection member according to this embodiment. Since the clad material joined by explosive pressure bonding has high joining strength, the joint part does not peel off even if it is bent on either side, so it has been found that it can sufficiently cope with bending work such as S-shape and Z-shape.

上記のように得られた板状の接続部材を電池用の正負電極端子間用接続部材として用いるため、厚さ0.2 mmのCu模擬電極と厚さ0.4 mmのAl模擬電極のそれぞれを同種材同士が重ねあうように配置して、レーザ溶接を行った。図12は、レーザ溶接部の断面のミクロ観察写真である。接続部材が上記構成であり、以下の条件下でレーザ溶接を行ったとき、溶け込み深さを同種材の範囲内で抑えることができ、爆発圧着接合部においても溶接の熱影響が少なく金属間化合物がほとんど増加していないことが分かった。
(レーザ溶接条件)
メーカ:アマダミヤチ
装置名:ファイバーレーザ溶接機
型名:ML6950A
スポット径:φ0.15 mm
溶接速度:200 mm/s
レーザ出力:CW2.3 kW
Since the plate-like connecting member obtained as described above is used as a connecting member for positive and negative electrode terminals for a battery, each of a 0.2-mm-thick Cu simulated electrode and a 0.4-mm-thick Al simulated electrode is made of the same kind of materials. Were placed so that they overlap each other, and laser welding was performed. FIG. 12 is a micro observation photograph of the cross section of the laser weld. When the connecting member is configured as described above and laser welding is performed under the following conditions, the penetration depth can be suppressed within the range of the same type of material, and the thermal effect of welding is low even at explosive pressure bonding joints. Was found to have hardly increased.
(Laser welding conditions)
Manufacturer: Amada Miyachi Device name: Fiber laser welder Model name: ML6950A
Spot diameter: φ0.15 mm
Welding speed: 200 mm / s
Laser power: CW2.3 kW

クラッド材への溶け込み深さは、Cu側で0.3 mm、Al側で1.0 mmであった。上記条件であれば、Cu側とAl側でレーザ溶接条件が同じなので、1台の一定出力のレーザ溶接機にて溶接が可能であり、溶接作業が簡単で、製造時間を短縮できるため、品質向上や価格の低減に繋がる。   The penetration depth into the clad material was 0.3 mm on the Cu side and 1.0 mm on the Al side. Under the above conditions, the laser welding conditions are the same on the Cu side and Al side, so welding is possible with a single laser welding machine with a constant output, the welding work is simple, and the manufacturing time can be shortened. It leads to improvement and price reduction.

レーザ出力をCW1.4 kWに変更した場合、クラッド材への溶け込み深さはAl側で0.2 mmであり、上記の条件と組み合わせれば、クラッド材の厚さは約0.6 mmあれば、溶け込み深さは接合界面まで到達しないように調整可能である。   When the laser output is changed to CW1.4 kW, the penetration depth into the clad material is 0.2 mm on the Al side, and in combination with the above conditions, if the clad material thickness is about 0.6 mm, the penetration depth The height can be adjusted so as not to reach the bonding interface.

さらに、下記の変更・調整を行えば、溶け込み深さをより高精度で制御することができ、クラッド材の厚さが0.3mmであれば、溶け込み深さが接合界面にまで到達しないように調整可能である。
・スポット径を、例えば、0.05 mmまで小さくしてレーザ出力を調整する。
・CuやAlなどの高反射材に対応したレーザ溶接機を使用する。
・Cu電極とAl電極の板厚を小さくする。例えば、0.1 mm。
・パルス出力タイプのレーザ溶接機を使用する。
Furthermore, if the following changes and adjustments are made, the penetration depth can be controlled with higher accuracy, and if the cladding material thickness is 0.3 mm, the penetration depth is adjusted so that it does not reach the joint interface. Is possible.
-Adjust the laser output by reducing the spot diameter to, for example, 0.05 mm.
・ Use a laser welding machine that supports highly reflective materials such as Cu and Al.
・ Reduce the thickness of Cu and Al electrodes. For example, 0.1 mm.
・ Use a pulse output type laser welding machine.

[比較例]
比較のために、下記の2種類のクラッド材を準備した。
・板厚12 mmのCuと板厚40 mmのAlそれぞれのサイズが280×300のものを板厚方向にロウ付けしたクラッド材
・長さ70 mmのCuと長さ70 mmのAlそれぞれの径がφ30のものを軸方向に圧接したクラッド材
これらの超音波探傷試験した結果を図13と14に示す。銅とアルミの接合面での超音波の理論反射率は約28 %であり、異種金属接合面で非接合部の反射信号を80 %となるように調整しているので、反射率約22 %の部分が接合している領域である。両方のクラッドとも内部に広い範囲で非接合があるので、接続部材の採取時には接合力不足や導電性不良などの不良品が発生する恐れがある。
[Comparative example]
For comparison, the following two types of clad materials were prepared.
・ Clad material with 12mm thick Cu and 40mm thick Al each size 280 × 300 brazed in the thickness direction ・ 70mm long Cu and 70mm long Al diameter Cladding material with a diameter of φ30 pressed in the axial direction The results of these ultrasonic flaw tests are shown in FIGS. The theoretical reflectivity of ultrasonic waves at the copper / aluminum joint surface is about 28%, and the reflection signal of the non-joint part is adjusted to 80% at the dissimilar metal joint surface, so the reflectivity is about 22%. This is a region where the portions are joined. Since both clads are unbonded in a wide range, there is a risk that defective products such as insufficient bonding force and poor conductivity may occur when connecting members are collected.

[金属間化合物の層厚の比較]
図15と16は、上記2種類のクラッドの接合界面である。ロウ付けクラッドはロウ材の厚さは200μm以上であり、また、ロウ材がなく空隙となっている箇所が多数存在した。圧接クラッドは金属間化合物の厚さが20μm以上であった。
上記のように金属間化合物の層が厚かったり、空隙があったりすると、抵抗値の上昇や許容電流値の低下などの性能低下の要因となる。
また、上記2種類の金属間化合物の層が厚いクラッドの引張試験を行ったところ、接合面から破断した。
[Comparison of intermetallic compound layer thickness]
15 and 16 show the junction interface of the above two types of clads. In the brazing clad, the thickness of the brazing material is 200 μm or more, and there are many places where there is no brazing material and there are voids. The pressure clad had an intermetallic compound thickness of 20 μm or more.
If the intermetallic compound layer is thick or has voids as described above, it causes a decrease in performance such as an increase in resistance value and a decrease in allowable current value.
In addition, when a tensile test was performed on a clad having a thick layer of the two types of intermetallic compounds, the joint surface was broken.

本発明に係る正負電極端子間に配置されるシート状接続部材を用いれば、量産に適し、全面接合が可能で接合強度が高い爆発圧着クラッド又はそれを圧延したものを使用することで電池の正負極端子を同種材同士での接合とすることができるため、高品質な接合が可能となる。また、本発明により、正負極端子の接合面積を十分に保ったまま電池及びその周囲部材の小型化も可能となり、さらに、小型化と高品質な接合により、電極部の抵抗値とインダクタンスの減少による出力電流の増加などの性能アップが可能となる。それゆえ、本発明に係る接続部材は、例えば、大きな容量と低い内部抵抗、高い放熱性能が要求される積層ラミネートタイプの自動車用リチウムイオン二次電池に好適に利用可能である。   If the sheet-like connecting member disposed between the positive and negative electrode terminals according to the present invention is used, the positive and negative of the battery can be obtained by using an explosive pressure-bonding clad or a rolled product suitable for mass production, capable of full-surface bonding and high bonding strength. Since the electrode terminals can be joined with the same kind of materials, high-quality joining is possible. Further, according to the present invention, it is possible to reduce the size of the battery and its peripheral members while maintaining a sufficient bonding area between the positive and negative electrode terminals, and further, the resistance value and inductance of the electrode portion are reduced by the miniaturization and high quality bonding. It is possible to improve performance such as an increase in output current. Therefore, the connection member according to the present invention can be suitably used for, for example, a laminated laminate type automotive lithium ion secondary battery that requires a large capacity, low internal resistance, and high heat dissipation performance.

Claims (14)

複数の電池を直列に接続するための正負電極端子間に配置されるシート状接続部材であって、該シート状接続部材は、一方の面に正極端子を構成する金属又はその合金から構成される第一層を、他方の面に負極端子を構成する金属又はその合金から構成される第二層を、それぞれ、有し、かつ、厚みが2mm以下であり、該第一層と該第二層は接合されており、その接合面には、金属間化合物のない部分と金属間化合物がある部分が存在し、金属間化合物のない部分が全接合面積の10%以上であり、かつ、該一方の面内と該他方の面内の任意の位置において該第一層と該第二層の両者が該シート状接続部材の厚み方向において存在する、前記部材。 A sheet-like connecting member disposed between positive and negative electrode terminals for connecting a plurality of batteries in series, the sheet-like connecting member being formed of a metal constituting the positive electrode terminal on one surface or an alloy thereof. Each of the first layer has a second layer made of a metal constituting the negative electrode terminal or an alloy thereof on the other surface, and has a thickness of 2 mm or less. The first layer and the second layer are engaged contact, in its joint surface, there are portions where there is no part intermetallic compound of intermetallic compounds, and a portion without intermetallic compound more than 10% of the total bond area, and the The member, wherein both the first layer and the second layer are present in the thickness direction of the sheet-like connecting member at an arbitrary position in one surface and the other surface. 前記電池はリチウムイオン二次電池である、請求項1に記載の部材。   The member according to claim 1, wherein the battery is a lithium ion secondary battery. 前記シート状接続部材の厚みが1mm以下である、請求項1又は2に記載の部材。   The member of Claim 1 or 2 whose thickness of the said sheet-like connection member is 1 mm or less. 前記第一層を構成する金属又はその合金がアルミニウム又はその合金であり、かつ、前記第二層を構成する金属又はその合金が銅又はその合金である、請求項1〜3のいずれか1項に記載の部材。   The metal constituting the first layer or an alloy thereof is aluminum or an alloy thereof, and the metal constituting the second layer or an alloy thereof is copper or an alloy thereof. The member as described in. 前記第一層と前記第二層の中間にチタン又はその合金から構成される中間層を有し、該第一層と該中間層と該第二層とが互いに接合されており、その接合面には、金属間化合物のない部分と金属間化合物がある部分が存在し、金属間化合物のない部分が全接合面積の10%以上である、請求項1〜4のいずれか1項に記載の部材。 An intermediate layer composed of the intermediate titanium or an alloy thereof of the second layer and the first layer, and said more To intermediate layer and the second layer are engaged against each other, the The bonding surface includes a portion having no intermetallic compound and a portion having an intermetallic compound, and the portion having no intermetallic compound is 10% or more of the total bonding area. The member described. 前記シート状接続部材の形状は、縦3〜9mm×横50〜100mmの長方形の平板状である、請求項1〜5のいずれか1項に記載の部材。   The shape of the said sheet-like connection member is a member of any one of Claims 1-5 which is a rectangular flat plate shape of length 3-9mm x width 50-100mm. 前記シート状接続部材の形状は、縦10〜20mm×横50〜100mmの長方形の平板を、側面から見たときZ字状又はS字状に折り曲げた形状である、請求項1〜のいずれか1項に記載の部材。 The shape of the sheet-like connecting member, a rectangular flat vertical 10 to 20 mm × horizontal 50 to 100 mm, a shape bent in a Z-shaped or S-shaped when viewed from the side, one of the claims 1-5 The member according to claim 1. 材質1からなる電極及び材質2からなる電極で構成される平行平板異材電極の接合方法であって、一方の面が材質1からなり、他方の面が材質2からなり、該材質1と該材質2が爆発圧着により接合されており、かつ、厚みが2mm以下であるクラッド板を、Z字状又はS字状に折り曲げ、前記材質1の電極及び材質2の電極の間に、同じ材質同士が各々接するように挿入し、該電極及びクラッド板の同じ材質同士を接合することにより、材質1の電極及び材質2の電極を接合する前記方法。   A method of joining parallel plate different material electrodes composed of an electrode made of material 1 and an electrode made of material 2, wherein one surface is made of material 1 and the other surface is made of material 2, and the material 1 and the material 2 is joined by explosive pressure bonding, and a clad plate having a thickness of 2 mm or less is bent into a Z-shape or S-shape, and the same material is placed between the material 1 electrode and the material 2 electrode. The method of joining the electrode of the material 1 and the electrode of the material 2 by inserting so that it may contact | connect each other and joining the same material of this electrode and a clad board. 材質1からなる電極及び材質2からなる電極で構成される平行平板異材電極の接合方法であって、前記材質1からなる電極の、前記材質2からなる電極に隣接する面と反対側の面に、一方の面が材質1からなり、もう一方の面が材質2からなり、該材質1と該材質2が爆発圧着により接合されており、かつ、厚みが2mm以下であるクラッド板を、該クラッド板の材質1からなる面が接するように重ね合せて、接合し、該クラッド板を接合した材質1からなる電極を、前記材質2からなる電極の側へ、該クラッド板の材質2からなる面を外側に向けて、折り曲げ、該材質2からなる電極を前記材質1からなる電極の側へ折り曲げ、該材質2からなる電極とクラッド板の材質2からなる面が接するように重ね合せて、接合することにより、材質1からなる電極及び材質2からなる電極を接合する前記方法。 A method of joining parallel plate dissimilar electrodes composed of an electrode made of material 1 and an electrode made of material 2, wherein the electrode made of material 1 is on the surface opposite to the surface adjacent to the electrode made of material 2 A clad plate having one surface made of material 1 and the other surface made of material 2, the material 1 and the material 2 being joined by explosive pressure bonding, and having a thickness of 2 mm or less, and overlapped in contact is a surface made of a material 1 of plate, and bonding, the electrode made of a material 1 formed by joining the clad plate, to the side of the electrode formed of the material 2, made of a material 2 of the clad plate surface the outward, folding, bending an electrode made of said material substance 2 to the side of the electrode formed of the material 1, are superimposed in such a way that a surface made of a material 2 of electrode and the cladding plate consisting of said material substance 2 is in contact, By joining the materials The method of bonding the electrode made of the electrode and the material 2 consisting of 1. 前記クラッド板の厚みが0.3mm以上である請求項9に記載の方法。 The clad plate thickness is 0.3mm or more, The method of claim 9. 前記材質1からなる電極及び材質2からなる電極は、リチウムイオン二次電池の正極タブ及び該リチウムイオン二次電池に隣接して配置されるもう一つのリチウムイオン二次電池の負極タブである、請求項10のいずれか1項に記載の方法。 The electrode made of the material 1 and the electrode made of the material 2 are a positive electrode tab of a lithium ion secondary battery and a negative electrode tab of another lithium ion secondary battery disposed adjacent to the lithium ion secondary battery. The method according to any one of claims 8 to 10 . 前記クラッド板の異種金属接合面において、金属間化合物のない部分と金属間化合物がある部分が存在し、金属間化合物のない部分が全接合面積の10%以上である、請求項11のいずれか1項に記載の方法。 In the dissimilar metal bonding surface of the cladding plate, there is no portion and a portion where there is an intermetallic compound of intermetallic compounds, a portion having no intermetallic compound is more than 10% of the total junction area of claims 8-11 The method according to any one of the above. 前記クラッド板と前記電極とを同種材同士で重ね合わせ、該電極側からレーザ照射し、該レーザ照射後のレーザ溶接部の溶け込み深さが該クラッド板の異種金属接合界面にまで到達していない、請求項12のいずれか1項に記載の方法。 The clad plate and the electrode are overlapped with the same kind of material, laser irradiation is performed from the electrode side, and the penetration depth of the laser weld after the laser irradiation does not reach the dissimilar metal bonding interface of the clad plate a method according to any one of claims 8-12. 請求項13のいずれか1項に記載の方法により接合された平行平板異材電極を有する電池パック。 Battery pack having a parallel plate dissimilar electrodes joined by the method according to any one of claims 8-13.
JP2016510383A 2014-03-25 2015-03-24 Battery positive / negative electrode terminal connection member Active JP6385426B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014061185 2014-03-25
JP2014061185 2014-03-25
PCT/JP2015/058907 WO2015146976A1 (en) 2014-03-25 2015-03-24 Connecting member between positive and negative electrode terminals of battery

Publications (2)

Publication Number Publication Date
JPWO2015146976A1 JPWO2015146976A1 (en) 2017-04-13
JP6385426B2 true JP6385426B2 (en) 2018-09-05

Family

ID=54195488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016510383A Active JP6385426B2 (en) 2014-03-25 2015-03-24 Battery positive / negative electrode terminal connection member

Country Status (2)

Country Link
JP (1) JP6385426B2 (en)
WO (1) WO2015146976A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679987A (en) * 2016-03-21 2016-06-15 广东莫莱卡焊接科技有限公司 Flexible connecting board for power battery and machining method for soft connecting board
CN105845881A (en) * 2016-05-20 2016-08-10 惠州市亿鹏能源科技有限公司 Connection structure for power module of power battery
JP6762156B2 (en) * 2016-07-15 2020-09-30 株式会社エンビジョンAescジャパン Assembled battery and manufacturing method of assembled battery
JP6261695B1 (en) * 2016-09-26 2018-01-17 株式会社フジクラ Storage module manufacturing method and storage module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120194A (en) * 1977-03-29 1978-10-20 Furukawa Electric Co Ltd:The Production of compression aluminum terminals
JP2002151045A (en) * 2000-11-10 2002-05-24 Honda Motor Co Ltd Bus bar for battery module and battery module
WO2010087472A1 (en) * 2009-02-02 2010-08-05 株式会社Gsユアサ Conductor for connecting terminals, assembled battery, and method for producing assembled battery
WO2013018841A1 (en) * 2011-08-04 2013-02-07 株式会社Neomaxマテリアル Negative-electrode terminal for cell

Also Published As

Publication number Publication date
JPWO2015146976A1 (en) 2017-04-13
WO2015146976A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
KR101900975B1 (en) Negative electrode terminal and cover member for lithium ion batteries, and lithium ion battery
JP5112429B2 (en) Battery cell electrode plate and method of manufacturing the same
Shin et al. Mechanical performance and electrical resistance of ultrasonic welded multiple Cu-Al layers
JP6385426B2 (en) Battery positive / negative electrode terminal connection member
JP5202772B1 (en) Battery negative terminal
Shaikh et al. Electro-thermo-mechanical behaviours of laser joints for electric vehicle battery interconnects
EP2610946B1 (en) Battery module, and connection method for a cell terminal of a battery cell
EP2512723A1 (en) Composite conductive component and method for making it
US8523045B2 (en) Method of joining copper conductors
US20190296316A1 (en) Battery tab having a localized welded joint and method of making the same
JP6181057B2 (en) Power storage device manufacturing method and power storage device
Rikka et al. Tailoring micro resistance spot welding parameters for joining nickel tab to inner aluminium casing in a cylindrical lithium ion cell and its influence on the electrochemical performance
WO2024056047A1 (en) Novel copper-aluminum composite terminal
JP5957651B2 (en) Assembled battery
US10158114B2 (en) One-sided ultrasonic bonding for applications to join battery tabs to bus bars
CN103000854B (en) Method for connecting multiple parallel connection sheets
US10714714B2 (en) Electrical energy store, specifically a battery cell, with spatially-optimized electrode interconnection
JP5574542B2 (en) Method for joining a plurality of electrode plate components
US20190363328A1 (en) Robust Reaction Metallurgical Joining
JP6786314B2 (en) Metal joint
KR20110120022A (en) Method for connecting between cathod lead or anode lead of secondary battery and external element
TW202425391A (en) Joining methods and devices made using said methods
JP2013097923A (en) Electrode lead connection body and electrode lead connection assembly
JP2023161114A (en) Busbar and battery pack including the same
Kim et al. Review on Ultrasonic and Laser Welding Technologies of Multi-Layer Thin Foils for the Lithium-Ion Pouch Cell Manufacturing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180807

R150 Certificate of patent or registration of utility model

Ref document number: 6385426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350