Nothing Special   »   [go: up one dir, main page]

JP6705322B2 - Lead wire for electric parts and electric parts - Google Patents

Lead wire for electric parts and electric parts Download PDF

Info

Publication number
JP6705322B2
JP6705322B2 JP2016143806A JP2016143806A JP6705322B2 JP 6705322 B2 JP6705322 B2 JP 6705322B2 JP 2016143806 A JP2016143806 A JP 2016143806A JP 2016143806 A JP2016143806 A JP 2016143806A JP 6705322 B2 JP6705322 B2 JP 6705322B2
Authority
JP
Japan
Prior art keywords
lead wire
strip
less
electric component
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016143806A
Other languages
Japanese (ja)
Other versions
JP2018014272A (en
Inventor
友多佳 松村
友多佳 松村
西川 信也
信也 西川
福田 豊
豊 福田
圭太郎 宮澤
圭太郎 宮澤
岡田 智之
智之 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016143806A priority Critical patent/JP6705322B2/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to KR1020207015918A priority patent/KR102229067B1/en
Priority to KR1020217006690A priority patent/KR102362932B1/en
Priority to PCT/JP2017/024915 priority patent/WO2018016347A1/en
Priority to CN202011202219.1A priority patent/CN112310571B/en
Priority to KR1020187007165A priority patent/KR102121675B1/en
Priority to CN202011202455.3A priority patent/CN112310572A/en
Priority to KR1020227001887A priority patent/KR102469860B1/en
Priority to CN202011202483.5A priority patent/CN112310573B/en
Priority to CN201780003233.9A priority patent/CN108028329B/en
Publication of JP2018014272A publication Critical patent/JP2018014272A/en
Application granted granted Critical
Publication of JP6705322B2 publication Critical patent/JP6705322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、電気部品用リード線及び電気部品に関する。 The present invention relates to a lead wire for electric parts and an electric part.

電子機器の小型化の要求に伴い、その電源として用いられる電池の小型化、軽量化の要求が強まっている。一方、電池に対する高エネルギー密度化、高エネルギー効率化も求められている。こうした要求を満たすため、主として合成樹脂等からなる袋体の内部に電極及び電解液等が封入された非水電解質電池(例えばリチウムイオン電池等)への期待が高まっている。 Along with the demand for miniaturization of electronic devices, there is an increasing demand for miniaturization and weight reduction of batteries used as power sources thereof. On the other hand, higher energy density and higher energy efficiency for batteries are also required. In order to meet these requirements, expectations are increasing for non-aqueous electrolyte batteries (for example, lithium ion batteries) in which electrodes, an electrolytic solution, and the like are enclosed inside a bag body mainly made of synthetic resin or the like.

このような非水電解質電池においては、電流を外部に取り出すために、袋体からリード線が延びているのが一般的である。リード線としては、アルミニウム等の金属製のリード導体のみからなるものの他、リード導体を熱可塑性樹脂の絶縁層により被覆したものが知られている。そして、リード線は、例えば袋体の開口端部の内面によってリード線を挟んだ状態でその開口端部をヒートシールすることで、袋体に取り付けられる。 In such a non-aqueous electrolyte battery, in general, a lead wire extends from the bag in order to take out an electric current to the outside. As the lead wire, not only a lead wire made of a metal such as aluminum but also a lead wire covered with an insulating layer of a thermoplastic resin is known. The lead wire is attached to the bag body, for example, by heat-sealing the open end portion of the bag body with the inner surface of the open end portion sandwiching the lead wire.

このようなヒートシールによりリード導体を袋体に取り付ける方法では、絶縁層がヒートシール時の加熱時に溶融しリード導体が袋体の金属層とショートする可能性がある。そこで、絶縁層を架橋ポリオレフィンからなる架橋層を含むものとすることで、絶縁層の溶融を回避することが提案されている(例えば特許文献1、2参照)。 In such a method of attaching the lead conductor to the bag body by heat sealing, the insulating layer may be melted at the time of heating during heat sealing, and the lead conductor may be short-circuited with the metal layer of the bag body. Therefore, it has been proposed to prevent the melting of the insulating layer by making the insulating layer include a crosslinked layer made of crosslinked polyolefin (see, for example, Patent Documents 1 and 2).

特開2001−102016号公報JP, 2001-102016, A 特開2009−259739号公報JP, 2009-259739, A

上記従来のリード線を備える非水電解質電池は、上記リード線を折り曲げた状態で電子機器に収納されることが多い。そのため、上記電子機器の製造の際、上記非水電解質電池の備えるリード線は、リード導体が絶縁層で被覆されている箇所で折り曲げられ、この折り曲げ形状を維持したまま下流工程に送られることがある。そのため、リード線を折り曲げて使用することを想定した場合、スプリングバックが生じ難く折り曲げ形状を好適に維持できるリード線が望まれている。 The non-aqueous electrolyte battery including the conventional lead wire is often housed in an electronic device with the lead wire bent. Therefore, at the time of manufacturing the electronic device, the lead wire included in the non-aqueous electrolyte battery is bent at a position where the lead conductor is covered with an insulating layer, and may be sent to a downstream process while maintaining the bent shape. is there. Therefore, when it is assumed that the lead wire is bent and used, there is a demand for a lead wire in which springback is unlikely to occur and the bent shape can be preferably maintained.

ここで、リード導体はアルミニウム等の金属であり、折り曲げた際に塑性変形し、折り曲げ形状を保持しようとする力を生じる。一方で、絶縁層は樹脂等であるため、折り曲げた際に弾性変形し、折り曲げ形状から元の形状に復帰しようとする力を生じる。この2つの力のうち、絶縁層の弾性変形に起因する折り曲げ形状から元の形状に復帰しようとする力の方が強く作用した場合、上記リード線が曲げ形状を保持できずに少しだけ元の形状に復帰する現象(スプリングバック)が生じる。しかし、スプリングバックは、金属製リード導体及び樹脂製絶縁層という材質の異なる2つの部材の相互作用によって生じる複雑な現象であるため、リード導体及び絶縁層にどのような部材を適用すればスプリングバックを十分に抑制できるかを正確に予測することは困難である。 Here, the lead conductor is made of metal such as aluminum, and when it is bent, it is plastically deformed to generate a force for holding the bent shape. On the other hand, since the insulating layer is made of resin or the like, when it is bent, it is elastically deformed and a force is generated to restore the bent shape to the original shape. If the force that returns from the bent shape due to the elastic deformation of the insulating layer to the original shape is stronger than the other two forces, the lead wire cannot hold the bent shape and the original shape is slightly increased. The phenomenon of returning to the shape (spring back) occurs. However, springback is a complicated phenomenon caused by the interaction of two members made of different materials, that is, the metal lead conductor and the resin insulating layer. Therefore, what kind of member is used for the lead conductor and the insulating layer is the springback. It is difficult to accurately predict whether or not can be suppressed.

そこで、本発明は、折り曲げ使用するときにスプリングバックが生じ難く、曲げ形状を好適に維持できる電気部品用リード線及び電気部品を提供することを目的とする。 Therefore, it is an object of the present invention to provide a lead wire for an electric component and an electric component in which a springback is unlikely to occur when used in bending and a bent shape can be preferably maintained.

本発明の一形態に係る電気部品用リード線は、短冊状導体と、この短冊状導体の両面を被覆する一対の絶縁フィルムとを備える電気部品用リード線であって、上記短冊状導体の弾性率をD[Pa]、幅1mm当たりの断面二次モーメントをI[m/1mm]とし、かつ上記一対の絶縁フィルムの平均弾性率をD[Pa]、幅1mm当たりの断面二次モーメントをI[m/1mm]とした場合に、下記数式(1)で表される短冊状導体の幅1mm当たりの形状保持力H[N・m/1mm]に対する下記数式(2)で表される絶縁フィルムの幅1mm当たりの弾性回復力R[N・m/1mm]の比(R/H)が0.15以下である。
H=D×I・・・(1)
R=D×I・・・(2)
An electrical component lead wire according to an aspect of the present invention is an electrical component lead wire including a strip conductor and a pair of insulating films that cover both surfaces of the strip conductor, wherein the strip conductor has elasticity. The modulus is D m [Pa], the second moment of area per 1 mm width is I m [m 4 /1 mm], and the average elastic modulus of the pair of insulating films is D i [Pa], the second cross section per 1 mm width. When the secondary moment is I i [m 4 /1 mm], the following formula (2) for the shape retention force H [N·m 2 /1 mm] per 1 mm width of the strip-shaped conductor represented by the following formula (1) The ratio (R/H) of the elastic recovery force R [N·m 2 /1 mm] per 1 mm of the width of the insulating film represented by) is 0.15 or less.
H=D m ×I m (1)
R=D i ×I i (2)

本発明の一形態に係る電気部品は、当該電気部品用リード線を備える。 An electrical component according to an aspect of the present invention includes the electrical component lead wire.

上記発明によれば、折り曲げ使用するときにスプリングバックが生じ難く、曲げ形状を好適に維持できる電気部品用リード線と、作業効率に優れる電気部品とを提供できる。 According to the above invention, it is possible to provide a lead wire for an electric component, which is less likely to cause springback when used in bending, and which can maintain a preferable bent shape, and an electric component which is excellent in work efficiency.

図1は、本発明の別の一態様に係るリチウムイオン電池の一例を説明するための一部を破断して示した模式的斜視図である。FIG. 1 is a schematic perspective view showing a part of the lithium-ion battery according to another embodiment of the present invention with a part broken away. 図2は、図1のA−A線に沿う模式的断面図である。FIG. 2 is a schematic cross-sectional view taken along the line AA of FIG. 図3Aは、本発明の一態様に係る電気部品用リード線における短冊状導体及び絶縁フィルムの断面二次モーメントを説明するための長手方向視の模式的断面図である。FIG. 3A is a schematic cross-sectional view in the longitudinal direction for explaining the second moment of area of the strip-shaped conductor and the insulating film in the lead wire for an electric component according to an aspect of the present invention. 図3Bは、図3Aの電気部品用リード線の短冊状導体のみを示す模式的断面図である。FIG. 3B is a schematic cross-sectional view showing only the strip-shaped conductor of the lead wire for an electric component of FIG. 3A. 図3Cは、図3Aの電気部品用リード線の絶縁フィルムのみを示す模式的断面図である。FIG. 3C is a schematic cross-sectional view showing only the insulating film of the lead wire for electric component of FIG. 3A. 図4Aは、スプリングバック角度の評価に用いたリード線を説明するための模式的平面図である。FIG. 4A is a schematic plan view for explaining the lead wire used for evaluating the springback angle. 図4Bは、図4Aのリード線の模式的断面図である。4B is a schematic cross-sectional view of the lead wire of FIG. 4A. 図5Aは、スプリングバック角度の評価方法の一工程を説明するための模式的断面図である。FIG. 5A is a schematic cross-sectional view for explaining one step of the springback angle evaluation method. 図5Bは、図5Aの次の工程を説明するための模式的断面図である。FIG. 5B is a schematic cross-sectional view for explaining the next step of FIG. 5A. 図6は、スプリングバック角度の測定結果と、短冊状導体の幅1mm当たりの形状保持力Hに対する一対の絶縁フィルムの幅1mm当たりの弾性回復力Rの比(R/H)との関係を示すグラフである。FIG. 6 shows the relationship between the measurement result of the springback angle and the ratio (R/H) of the elastic recovery force R per 1 mm width of the pair of insulating films to the shape retention force H per 1 mm width of the strip-shaped conductor. It is a graph.

[本発明の実施形態の説明]
本発明の一形態に係る電気部品用リード線は、短冊状導体と、この短冊状導体の両面を被覆する一対の絶縁フィルムとを備える電気部品用リード線であって、上記短冊状導体の弾性率をD[Pa]、幅1mm当たりの断面二次モーメントをI[m/1mm]とし、かつ上記一対の絶縁フィルムの平均弾性率をD[Pa]、幅1mm当たりの断面二次モーメントをI[m/1mm]とした場合に、下記数式(1)で表される短冊状導体の幅1mm当たりの形状保持力H[N・m/1mm]に対する下記数式(2)で表される絶縁フィルムの幅1mm当たりの弾性回復力R[N・m/1mm]の比(R/H)が0.15以下である。
H=D×I・・・(1)
R=D×I・・・(2)
[Description of Embodiments of the Present Invention]
An electrical component lead wire according to an aspect of the present invention is an electrical component lead wire including a strip conductor and a pair of insulating films that cover both surfaces of the strip conductor, wherein the strip conductor has elasticity. The modulus is D m [Pa], the second moment of area per 1 mm width is I m [m 4 /1 mm], and the average elastic modulus of the pair of insulating films is D i [Pa], the second cross section per 1 mm width. When the secondary moment is I i [m 4 /1 mm], the following formula (2) for the shape retention force H [N·m 2 /1 mm] per 1 mm width of the strip-shaped conductor represented by the following formula (1) The ratio (R/H) of the elastic recovery force R [N·m 2 /1 mm] per 1 mm of the width of the insulating film represented by) is 0.15 or less.
H=D m ×I m (1)
R=D i ×I i (2)

ここで、リード線にスプリングバックが生じる理由は、上述のように短冊状導体の塑性変形に起因する折り曲げ形状を保持しようとする力よりも、絶縁フィルムの弾性変形に起因する折り曲げ形状から元の形状に復帰しようとする力の方が強く作用するためであると考えられる。そのため、短冊状導体の塑性変形に起因する力を大きくし、一方で絶縁フィルムの弾性変形に起因する力を小さくすれば、スプリングバックが抑制されてリード線の折り曲げ形状を維持し易くなると考えられる。ここで、リード線が折り曲げ形状を維持できるか否か、すなわちスプリングバックの発生し易さは、短冊状導体や絶縁フィルムの材質だけでなく、これらの厚み、形状にも依存すると考えられる。そこで、本発明者らは、当該電気部品用リード線の短冊状導体がスプリングバックに与える影響をその弾性率及び幅1mm当たりの断面二次モーメントをパラメータとする上記数式(1)で表される幅1mm当たりの形状保持力で判断できることを見出した。また、本発明者らは、当該電気部品用リード線の絶縁フィルムがスプリングバックに与える影響をその弾性率及び幅1mm当たりの断面二次モーメントをパラメータとする上記数式(2)で表される幅1mm当たりの弾性回復力で判断できることを見出した。さらに、本発明者らは、当該電気部品用リード線の絶縁フィルム及び短冊状導体によるスプリングバックに対する影響を短冊状導体の幅1mm当たりの形状保持力に対する一対の絶縁フィルムの幅1mm当たりの弾性回復力の比に関連付け、その比を上記上限以下とすることで、折り曲げ使用するときにスプリングバックが生じ難く、曲げ形状を好適に維持できることを見出した。 Here, the reason why springback occurs in the lead wire is that the bending shape caused by the elastic deformation of the insulating film is more original than the force for holding the bending shape caused by the plastic deformation of the strip-shaped conductor as described above. It is considered that this is because the force to return to the shape acts stronger. Therefore, if the force due to the plastic deformation of the strip-shaped conductor is increased, while the force due to the elastic deformation of the insulating film is reduced, it is considered that springback is suppressed and the bent shape of the lead wire is easily maintained. .. Here, it is considered that whether or not the lead wire can maintain the bent shape, that is, the easiness of occurrence of springback depends not only on the material of the strip-shaped conductor or the insulating film but also on the thickness and shape thereof. Therefore, the inventors of the present invention express the influence of the strip-shaped conductor of the lead wire for an electric component on the spring back by the above mathematical expression (1) with the elastic modulus and the second moment of area per 1 mm width as parameters. It was found that it can be judged by the shape retention force per 1 mm width. In addition, the inventors of the present invention have shown that the effect of the insulating film of the lead wire for an electric component on springback is represented by the above formula (2) with the elastic modulus and the second moment of area per 1 mm width as parameters. It was found that it can be judged by the elastic recovery force per 1 mm. Furthermore, the present inventors have studied the influence of the insulating film and the strip-shaped conductor of the electrical component lead wire on the springback by elastic recovery per 1 mm width of the pair of insulating films with respect to the shape-retaining force per 1 mm width of the strip-shaped conductor. It has been found that by relating to the force ratio and setting the ratio to the above upper limit or less, springback is less likely to occur during bending and use, and the bent shape can be maintained appropriately.

このように当該電気部品用リード線は、短冊状導体の幅1mm当たりの形状保持力に対する一対の絶縁フィルムの幅1mm当たりの弾性回復力の比を上記上限以下とすることで、スプリングバックが生じ難く、曲げ形状を好適に維持できる。そのため、リード線を折り曲げて使用する場合、その折り曲げ形状が維持され易いため、リード線を折り曲げた後に固着用テープ等を用いて折り曲げたリード線を他の要素に固定する必要がない。その結果、当該電気部品用リード線は、折り曲げて使用する場合の製造工程を簡略化でき、また折り曲げて使用することで省スペース化に寄与できる。 As described above, in the electrical component lead wire, springback occurs by setting the ratio of the elastic recovery force per 1 mm width of the pair of insulating films to the shape retention force per 1 mm width of the strip-shaped conductor to the above upper limit or less. It is difficult and the bent shape can be maintained appropriately. Therefore, when the lead wire is bent and used, the bent shape is easily maintained, and therefore it is not necessary to fix the bent lead wire to another element using a fixing tape or the like after the lead wire is bent. As a result, the electric component lead wire can be simplified in the manufacturing process when it is bent and used, and it can contribute to space saving by being bent and used.

ここで、「平均厚み」とは、任意の5点で測定した厚みの平均値を意味する。「弾性率」とは、短冊状導体及び絶縁フィルムに精密万能試験機(引張試験機)を用いて引張変形を加えた時のSSカーブ(応力−歪み曲線)の立ち上がりの傾きを指す。この弾性率の測定においては、引張試験機のサンプル把持(チャック)間隔を50mmとし、50mm/minで引っ張ることとする。但し、短冊状導体の弾性率測定の際には、試料と試験機のつかみ具との間での滑りの影響を考慮するため、微小変位を測定可能な歪みゲージを試料に取り付け測定するものとする。なお、この弾性率の測定で直接求められるのは(試験力[N]−移動距離[mm]曲線)となるが、下記数式(3)及び(4)に示すようにサンプルサイズ及びチャック間隔を用いて(応力[Pa]−歪み[%]曲線)に変換し、弾性率を求めることとする。また、短冊状導体及び絶縁フィルムが多層構造体である場合においても、上述した方法により弾性率を求めることができる。さらに、「一対の絶縁フィルムの平均弾性率」とは、2枚の絶縁フィルムのそれぞれの弾性率の測定値の平均を意味する。以下、「平均厚み」又は「弾性率」という場合には同様に定義される。
応力[Pa]=試験力[N]÷幅[mm]÷厚み[mm]・・・(3)
歪み[%]=移動距離[mm]÷チャック間隔[mm]×100・・・(4)
Here, the “average thickness” means an average value of thicknesses measured at arbitrary 5 points. The “elastic modulus” refers to the rising slope of the SS curve (stress-strain curve) when tensile deformation is applied to the strip-shaped conductor and the insulating film by using a precision universal testing machine (tensile testing machine). In the measurement of the elastic modulus, the sample gripping (chuck) interval of the tensile tester is set to 50 mm, and the sample is pulled at 50 mm/min. However, when measuring the elastic modulus of the strip conductor, in order to consider the effect of slip between the sample and the grip of the tester, a strain gauge capable of measuring minute displacement shall be attached to the sample for measurement. To do. In addition, what is directly obtained by the measurement of the elastic modulus is (test force [N]-movement distance [mm] curve), but the sample size and the chuck interval are determined by the following mathematical expressions (3) and (4). It is used to convert into (stress [Pa]-strain [%] curve) to obtain the elastic modulus. Further, even when the strip-shaped conductor and the insulating film have a multilayer structure, the elastic modulus can be obtained by the method described above. Furthermore, the “average elastic modulus of a pair of insulating films” means the average of the measured elastic moduli of the two insulating films. Hereinafter, the terms "average thickness" and "elastic modulus" are defined similarly.
Stress [Pa]=Test force [N]/Width [mm]/Thickness [mm] (3)
Distortion [%]=moving distance [mm]/chuck interval [mm]×100 (4)

当該電気部品用リード線は、180°折り曲げ後の曲げ戻り角度が20°以下であるとよい。このようなリード線によれば、180°折り曲げ後の曲げ戻り角度、すなわちスプリングバック角度が20°以下であることで、折り曲げ形状をより好適に維持できるため、リード線を折り曲げ、その形状を維持させる作業がより容易となり作業性がより向上する。 The lead wire for an electric component may have a bending return angle of 20° or less after being bent by 180°. With such a lead wire, since the bending return angle after bending by 180°, that is, the springback angle is 20° or less, the bent shape can be more preferably maintained, and therefore the lead wire is bent and the shape is maintained. The work to do is easier and the workability is improved.

上記弾性回復力Rとしては、3.0×10−5N・m/1mm以上6.0×10−3N・m/1mm以下が好ましい。このようなリード線によれば、上記弾性回復力Rが上記範囲であることで、当該電気部品用リード線の折り曲げ後のスプリングバックを適切に小さくできる。その結果、当該電気部品用リード線の折り曲げ作業がより容易となり作業性がより向上する。 The elastic recovery force R is preferably 3.0×10 −5 N·m 2 /1 mm or more and 6.0×10 −3 N·m 2 /1 mm or less. According to such a lead wire, since the elastic recovery force R is in the above range, the springback after bending the lead wire for an electric component can be appropriately reduced. As a result, the bending work of the lead wire for the electric component is easier, and the workability is further improved.

上記形状保持力Hとしては、3.0×10−4N・m/1mm以上6.0×10−2N・m/1mm以下が好ましい。このようなリード線によれば、上記形状保持力Hが上記範囲であることで、折り曲げ形状をより好適に維持できるため、当該電気部品用リード線に折り曲げ形状を適切に維持できる形状保持性を付与できる。その結果、当該電気部品用リード線の折り曲げ作業がより容易となり作業性がより向上する。 The shape retention force H is preferably 3.0×10 −4 N·m 2 /1 mm or more and 6.0×10 −2 N·m 2 /1 mm or less. According to such a lead wire, since the shape-retaining force H is within the above range, the bent shape can be more favorably maintained, and thus the lead wire for an electric component has a shape-retaining property capable of appropriately maintaining the bent shape. Can be given. As a result, the bending work of the lead wire for the electric component is easier, and the workability is further improved.

上記短冊状導体の平均厚みとしては、30μm以上200μm以下が好ましく、上記短冊状導体の弾性率としては、50GPa以上300GPa以下が好ましい。このようなリード線によれば、短冊状導体の形状保持力を好適な範囲とし、当該電気部品用リード線に折り曲げ形状を適切に維持できる形状保持性を付与できる。その結果、当該電気部品用リード線の折り曲げ作業がより容易となり作業性がより向上する。 The average thickness of the strip conductor is preferably 30 μm or more and 200 μm or less, and the elastic modulus of the strip conductor is preferably 50 GPa or more and 300 GPa or less. According to such a lead wire, the shape-retaining force of the strip-shaped conductor can be set in a suitable range, and shape retention can be imparted to the lead wire for an electric component, which can appropriately maintain the bent shape. As a result, the bending work of the lead wire for the electric component is easier, and the workability is further improved.

上記各絶縁フィルムの平均厚みとしては、いずれも25μm以上200μm以下が好ましく、上記各絶縁フィルムの弾性率としては、いずれも100MPa以上1,400MPa以下が好ましい。このようなリード線によれば、絶縁フィルムの弾性回復力を好適な範囲とし、当該電気部品用リード線の折り曲げ後のスプリングバックを適切に小さくできる。その結果、当該電気部品用リード線の折り曲げ作業がより容易となり、作業性がより向上する。 The average thickness of each insulating film is preferably 25 μm or more and 200 μm or less, and the elastic modulus of each insulating film is preferably 100 MPa or more and 1400 MPa or less. According to such a lead wire, the elastic recovery force of the insulating film can be set in a suitable range, and the springback after bending the lead wire for an electric component can be appropriately reduced. As a result, the work of bending the lead wire for the electric component becomes easier, and the workability is further improved.

本発明の一形態に係る電気部品は、当該電気部品用リード線を備える。当該電気部品は、当該電気部品用リード線を備えるため、当該電気部品用リード線の折り曲げ、その形状を維持する作業を簡略化できることで、作業効率を向上できる。 An electrical component according to an aspect of the present invention includes the electrical component lead wire. Since the electric component includes the lead wire for the electric component, it is possible to simplify the work of bending the lead wire for the electric component and maintaining the shape thereof, thereby improving work efficiency.

当該電気部品は、非水電解質電池であるとよい。このように、当該電気部品は、作業効率に優れるため、非水電解質電池として好適に用いることができる。 The electric component may be a non-aqueous electrolyte battery. As described above, since the electric component is excellent in work efficiency, it can be suitably used as a non-aqueous electrolyte battery.

[本発明の実施形態の詳細]
本発明の実施形態に係る電気部品用リード線及び電気部品の具体例について図面を参照して説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Specific examples of lead wires for electric parts and electric parts according to embodiments of the present invention will be described with reference to the drawings. It should be noted that the present invention is not limited to these exemplifications, and is shown by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.

<電気部品用リード線>
図1及び図2に示すように、本発明の実施形態に係る電気部品用リード線1は、短冊状導体2と、この短冊状導体2の両面を被覆する一対の絶縁フィルム3とを備える。
<Lead wire for electrical parts>
As shown in FIGS. 1 and 2, a lead wire 1 for an electric component according to an embodiment of the present invention includes a strip conductor 2 and a pair of insulating films 3 covering both sides of the strip conductor 2.

(短冊状導体)
短冊状導体2は、リチウムイオン電池4等の電気部品の電極(正極5A及び負極5B)等に接続されるものである。この短冊状導体2は、導電性の高い材料により形成されている。このような導電性の高い材料としては、例えばアルミニウム、チタン、ニッケル、銅、アルミニウム合金、チタン合金、ニッケル合金、銅合金等の金属材料や、これら金属材料をニッケル、金等でメッキした材料などが挙げられる。リチウムイオン電池4等の電気部品の正極5Aに接続される短冊状導体2の形成材料としては、放電時に溶解しないもの、具体的にはアルミニウム、チタン、アルミニウム合金及びチタン合金が好ましい。一方、負極5Bに接続される短冊状導体2の形成材料としては、ニッケル、銅、ニッケル合金、銅合金、ニッケルメッキ銅及び金メッキ銅が好ましい。なお、短冊状導体2は、耐電解液性の向上等のため、クロメート処理、三価クロム処理、ノンクロメート処理、粗面化処理等の表面処理が施されていてもよい。このような表面処理により、短冊状導体2の耐電解溶液性を向上できる。
(Strip conductor)
The strip-shaped conductor 2 is connected to the electrodes (the positive electrode 5A and the negative electrode 5B) of an electric component such as the lithium-ion battery 4 and the like. The strip conductor 2 is made of a highly conductive material. Examples of such highly conductive materials include metal materials such as aluminum, titanium, nickel, copper, aluminum alloys, titanium alloys, nickel alloys, and copper alloys, and materials obtained by plating these metal materials with nickel, gold, or the like. Is mentioned. As a material for forming the strip-shaped conductor 2 connected to the positive electrode 5A of the electric component such as the lithium-ion battery 4, a material that does not dissolve during discharge, specifically, aluminum, titanium, an aluminum alloy and a titanium alloy are preferable. On the other hand, as a material for forming the strip-shaped conductor 2 connected to the negative electrode 5B, nickel, copper, nickel alloy, copper alloy, nickel-plated copper and gold-plated copper are preferable. The strip conductor 2 may be subjected to a surface treatment such as a chromate treatment, a trivalent chromium treatment, a non-chromate treatment, and a surface roughening treatment in order to improve resistance to the electrolytic solution. By such surface treatment, the electrolytic solution resistance of the strip-shaped conductor 2 can be improved.

短冊状導体2の弾性率をD[Pa]、幅1mm当たりの断面二次モーメントをI[m/1mm]とした場合に下記数式(1)で表される短冊状導体2の幅1mm当たりの形状保持力H[N・m/1mm]の下限値としては、3.0×10−4N・m/1mmが好ましく、2.0×10−3N・m/1mmがより好ましい。この形状保持力Hの上限値としては、6.0×10−2N・m/1mmが好ましく、1.0×10−2N・m/1mmがより好ましい。
H=D×I・・・(1)
When the elastic modulus of the strip-shaped conductor 2 is D m [Pa] and the second moment of area per 1 mm of width is I m [m 4 /1 mm], the width of the strip-shaped conductor 2 represented by the following mathematical formula (1). As a lower limit of the shape retention force H [N·m 2 /1 mm] per 1 mm, 3.0×10 −4 N·m 2 /1 mm is preferable, and 2.0×10 −3 N·m 2 /1 mm. Is more preferable. The upper limit of the shape-retaining force H is preferably 6.0×10 −2 N·m 2 /1 mm, more preferably 1.0×10 −2 N·m 2 /1 mm.
H=D m ×I m (1)

短冊状導体2は、上記形状保持力Hが上記範囲であることで、折り曲げ形状をより好適に維持できるため、電気部品用リード線1に折り曲げ形状を適切に維持できる形状保持性を付与できる。その結果、電気部品用リード線1の折り曲げ、その形状を維持させる作業がより容易となり作業性がより向上する。 When the shape-retaining force H is within the above range, the strip-shaped conductor 2 can more favorably maintain the bent shape, and therefore, the shape-retaining property that can appropriately maintain the bent shape can be imparted to the electrical component lead wire 1. As a result, the work of bending the electric component lead wire 1 and maintaining the shape thereof becomes easier, and the workability is further improved.

ここで、上記数式(1)における短冊状導体2の幅1mm当たりの断面二次モーメントと、後述する数式(2)における一対の絶縁フィルム3の幅1mm当たりの断面モーメントとの求め方について、図3Aの電気部品用リード線11を例に説明する。図3Aに示す電気部品用リード線11は、一対の絶縁フィルム13の平均厚みが同一であり、かつ平均幅が同一である。この電気部品用リード線11の平均厚みをT、短冊状導体12の平均厚みをT[m]、一対の絶縁フィルム13の各平均厚みをT[m]とする。また、短冊状導体12の平均幅をW[m]、一対の絶縁フィルム13の平均幅をW[m]とする。さらに、電気部品用リード線11を厚み方向に2等分する面(短冊状導体12を厚み方向に2等分する面)を電気部品用リード線11の曲げ変形の中心面Mと見做すことができる。 Here, a method for obtaining a geometrical moment of inertia per 1 mm width of the strip-shaped conductor 2 in the mathematical formula (1) and a cross-sectional moment per 1 mm of width of the pair of insulating films 3 in the mathematical formula (2) described later is illustrated. The lead wire 11 for electric parts of 3A will be described as an example. In the electrical component lead wire 11 illustrated in FIG. 3A, the pair of insulating films 13 have the same average thickness and the same average width. Let T be the average thickness of the lead wire 11 for an electric component, T m [m] be the average thickness of the strip-shaped conductor 12, and T i [m] be the average thickness of each of the pair of insulating films 13. The average width of the strip-shaped conductor 12 is W m [m], and the average width of the pair of insulating films 13 is W i [m]. Furthermore, the surface that bisects the electrical component lead wire 11 in the thickness direction (the surface that bisects the strip-shaped conductor 12 in the thickness direction) is regarded as the center plane M of the bending deformation of the electrical component lead wire 11. be able to.

次に、短冊状導体12の断面モーメントは、図3Bに示す断面形状をもとに下記数式(5)により算出できる。同様に、一対の絶縁フィルム13の断面モーメントは、図3Cに示す断面形状をもとに下記数式(6)により算出できる。
短冊状導体の幅1mm当たりの断面二次モーメント[m/1mm]=1/12×短冊状導体の平均幅W[m]×(短冊状導体の平均厚みT[m])/短冊状導体の平均幅W[mm]・・・(5)
一対の絶縁フィルムの幅1mm当たりの断面二次モーメント[m/1mm]=1/12×一対の絶縁フィルムの平均幅W[m]×{(電気部品用リード線の平均厚みT[m])−(短冊状導体の平均厚みT[m])}/一対の絶縁フィルムの平均幅W[mm]・・・(6)
Next, the sectional moment of the strip-shaped conductor 12 can be calculated by the following mathematical expression (5) based on the sectional shape shown in FIG. 3B. Similarly, the sectional moment of the pair of insulating films 13 can be calculated by the following mathematical expression (6) based on the sectional shape shown in FIG. 3C.
Second moment of area per 1 mm of width of strip conductor [m 4 /1 mm]=1/12×average width of strip conductor W m [m]×(average thickness of strip conductor T m [m]) 3 / Average width W m [mm] of the strip conductor (5)
Second moment of area per 1 mm width of a pair of insulating films [m 4 /1 mm]=1/12×average width W i [m]×{(average thickness T[m of electrical component lead wires ]) 3 - (average thickness of the strip-shaped conductor T m [m]) 3} / the average width W i [mm a pair of insulating film] (6)

なお、電気部品用リード線1の一対の絶縁フィルム3の平均厚み又は平均幅が同一でない場合、一対の絶縁フィルム3の各平均厚み又は各平均幅の平均値を求め、一対の絶縁フィルム3の平均厚み又は平均幅がいずれも上記平均値であると仮定して上述の計算を行う。そして、この計算により得られる短冊状導体2及び一対の絶縁フィルム3の幅1mm当たりの断面二次モーメントを用い、上記形状保持力H及び弾性回復力Rを求めるものとする。 When the average thickness or the average width of the pair of insulating films 3 of the electrical component lead wire 1 is not the same, the average value of the average thickness or the average width of the pair of insulating films 3 is calculated, and the average value of the pair of insulating films 3 is calculated. The above calculation is performed assuming that the average thickness or the average width is the average value. Then, the shape retention force H and the elastic recovery force R are obtained by using the second moment of area per 1 mm width of the strip conductor 2 and the pair of insulating films 3 obtained by this calculation.

短冊状導体2の幅1mm当たりの断面モーメントの下限値としては、5.0×10−15/1mmが好ましく、2.0×10−14/1mmがより好ましい。一方、上記断面モーメントの上限値としては、8.0×10−13/1mmが好ましく、1.0×10−13/1mmがより好ましい。上記断面モーメントが上記範囲であることで、短冊状導体2の幅1mm当たりの形状保持力Hを容易かつ確実に上記範囲に調節することができる。 The lower limit of the sectional moment per 1 mm of the width of the strip-shaped conductor 2 is preferably 5.0×10 −15 m 4 /1 mm, more preferably 2.0×10 −14 m 4 /1 mm. On the other hand, the upper limit of the above-mentioned sectional moment is preferably 8.0×10 −13 m 4 /1 mm, more preferably 1.0×10 −13 m 4 /1 mm. When the sectional moment is in the above range, the shape retaining force H per 1 mm width of the strip-shaped conductor 2 can be easily and reliably adjusted to the above range.

短冊状導体2の平均厚みとしては、30μm以上200μm以下が好ましい。短冊状導体2の平均厚みの下限値としては、40μmがより好ましく、47μmがさらに好ましい。一方、短冊状導体2の平均厚みの上限値としては、150μmがより好ましく、120μmがさらに好ましい。短冊状導体2の平均厚みが上記下限未満の場合、電気部品用リード線1の電気抵抗値が増大するおそれがある。逆に、上記平均厚みが上記上限を超える場合、電気部品用リード線1が不用に厚くなり、薄肉化の要求に十分応えられないおそれがある。 The average thickness of the strip conductor 2 is preferably 30 μm or more and 200 μm or less. The lower limit of the average thickness of the strip conductor 2 is more preferably 40 μm, further preferably 47 μm. On the other hand, the upper limit of the average thickness of the strip-shaped conductor 2 is more preferably 150 μm, further preferably 120 μm. When the average thickness of the strip-shaped conductor 2 is less than the above lower limit, the electric resistance value of the lead wire 1 for electric parts may increase. On the contrary, when the average thickness exceeds the upper limit, the electric component lead wire 1 becomes unnecessarily thick, and there is a possibility that the demand for thinning cannot be sufficiently satisfied.

短冊状導体2の弾性率としては、50GPa以上300GPa以下が好ましい。短冊状導体2の弾性率の下限値としては、60GPaがより好ましく、67GPaがさらに好ましい。一方、短冊状導体2の弾性率の上限値としては、250GPaがより好ましく、210GPaがさらに好ましい。短冊状導体2の弾性率が上記下限未満の場合、電気部品用リード線1のスプリングバックを抑制し難くなるおそれがある。逆に、上記弾性率が上記上限を超える場合、電気部品用リード線1の折り曲げ作業に力を要することで作業性が低下するおそれがある。なお、短冊状導体2の弾性率は、その材質の変更により調節が可能であり、特に短冊状導体2を合金とすることで合金成分の変更によって微調節が可能である。 The elastic modulus of the strip conductor 2 is preferably 50 GPa or more and 300 GPa or less. As the lower limit of the elastic modulus of the strip conductor 2, 60 GPa is more preferable, and 67 GPa is further preferable. On the other hand, as the upper limit of the elastic modulus of the strip conductor 2, 250 GPa is more preferable, and 210 GPa is further preferable. When the elastic modulus of the strip-shaped conductor 2 is less than the above lower limit, it may be difficult to suppress springback of the lead wire 1 for electric parts. On the other hand, when the elastic modulus exceeds the upper limit, workability may be deteriorated because force is required to bend the electric component lead wire 1. The elastic modulus of the strip conductor 2 can be adjusted by changing the material thereof, and particularly when the strip conductor 2 is made of an alloy, it can be finely adjusted by changing the alloy composition.

また、短冊状導体2は、平均厚みが30μm以上200μm以下であり、かつ弾性率が50GPa以上300GPa以下であることで、その形状保持力Hを好適な範囲とし、電気部品用リード線1に折り曲げ形状を適切に維持できる形状保持性を付与できる。その結果、電気部品用リード線1の折り曲げ時の形状固定作業がより容易となり作業性がより向上する。 In addition, the strip-shaped conductor 2 has an average thickness of 30 μm or more and 200 μm or less and an elastic modulus of 50 GPa or more and 300 GPa or less, so that the shape-retaining force H is in a suitable range and the lead wire 1 for an electric component is bent. It is possible to impart shape-retaining property capable of appropriately maintaining the shape. As a result, the work of fixing the shape of the lead wire 1 for an electric component at the time of bending becomes easier and the workability is further improved.

(一対の絶縁フィルム)
一対の絶縁フィルム3は、短冊状導体2の両端部を露出させた状態で、短冊状導体2の中央部の両面を被覆するものであり、例えばリチウムイオン電池4等の電気部品の袋体6に固着される部分である。
(A pair of insulating films)
The pair of insulating films 3 covers both sides of the central portion of the strip-shaped conductor 2 in a state where both ends of the strip-shaped conductor 2 are exposed. For example, a bag body 6 of an electric component such as a lithium-ion battery 4 or the like. It is the part that is fixed to.

各絶縁フィルム3は、絶縁性が高い樹脂材料により形成されている。この樹脂材料は、短冊状導体2への接着性が高い樹脂材料であるか、袋体6をヒートシールするときの加熱により溶融し難い樹脂材料が好ましい。 Each insulating film 3 is formed of a resin material having a high insulating property. This resin material is preferably a resin material having high adhesiveness to the strip-shaped conductor 2 or a resin material which is not easily melted by heating when the bag body 6 is heat-sealed.

短冊状導体2への接着性が高い樹脂材料としては、例えば熱可塑性ポリオレフィン等が挙げられる。この熱可塑性ポリオレフィンとしては、例えばポリエチレン、酸変性ポリエチレン、ポリプロピレン、酸変性ポリプロピレン(例えば無水マレイン酸変性ポリプロピレン)、アイオノマー等の反応性樹脂又はこれらの混合物等が挙げられる。 Examples of the resin material having high adhesiveness to the strip-shaped conductor 2 include thermoplastic polyolefin. Examples of the thermoplastic polyolefin include polyethylene, acid-modified polyethylene, polypropylene, acid-modified polypropylene (for example, maleic anhydride-modified polypropylene), reactive resins such as ionomers, and mixtures thereof.

一方、袋体6をヒートシールするときの加熱により溶融し難い樹脂材料としては、例えば架橋ポリオレフィン等が挙げられる。この架橋ポリオレフィンとしては、先に例示したポリオレフィンを架橋したものを用いることができる。ポリオレフィンを架橋する方法としては、電子線やガンマ線等の電離放射線の照射による架橋、パーオキサイド等による化学架橋、シラン架橋等が用いられる。ポリオレフィンを電離放射線によって架橋する場合、必要に応じてポリオレフィンに架橋助剤が添加される。この架橋助剤としては、例えばトリメチロールプロパンメタクリレート、ペンタエリスリトールトリアクリレート、エチングリコールジメタクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート等が用いられる。 On the other hand, examples of the resin material that is difficult to melt due to heating when heat-sealing the bag body 6 include cross-linked polyolefin. As the crosslinked polyolefin, the one obtained by crosslinking the above-exemplified polyolefin can be used. As a method for crosslinking the polyolefin, crosslinking by irradiation with ionizing radiation such as electron beam or gamma ray, chemical crosslinking by peroxide or the like, silane crosslinking or the like is used. When a polyolefin is crosslinked by ionizing radiation, a crosslinking aid is added to the polyolefin as necessary. As the crosslinking aid, for example, trimethylolpropane methacrylate, pentaerythritol triacrylate, ethyne glycol dimethacrylate, triallyl cyanurate, triallyl isocyanurate and the like are used.

架橋ポリオレフィンにおけるゲル分率としては、20%以上90%以下が好ましい。なお、ゲル分率は、架橋の度合いを示す指標であり、キシレン等の溶媒に不溶になった架橋ポリオレフィン中のゲル(不溶になった高分子鎖)の割合をいう。ゲル分率が20%未満では、架橋の度合いが不十分であり、ヒートシール時に絶縁フィルム3が溶融するおそれがある。逆に、ゲル分率が90%を超えると、架橋の度合いが大きすぎ、袋体6等との接着性が悪化するおそれがある。 The gel fraction in the crosslinked polyolefin is preferably 20% or more and 90% or less. The gel fraction is an index showing the degree of cross-linking, and refers to the proportion of gel (insoluble polymer chain) in the cross-linked polyolefin that has become insoluble in a solvent such as xylene. When the gel fraction is less than 20%, the degree of crosslinking is insufficient and the insulating film 3 may melt during heat sealing. On the other hand, when the gel fraction exceeds 90%, the degree of cross-linking is too large, and the adhesiveness to the bag body 6 or the like may be deteriorated.

また、各絶縁フィルム3は、単層であっても、複数層に積層されたものであってもよい。絶縁フィルム3を複数層として構成する場合、短冊状導体2への接着性が高い樹脂材料により形成された絶縁層と、袋体6をヒートシールするときの加熱により溶融し難い樹脂材料により形成された絶縁層とを含むことが好ましい。このような積層構造の絶縁フィルム3を採用した場合、短冊状導体2への接着性を確保できると同時に、ヒートシール時の溶融を防止することができる。 Further, each insulating film 3 may be a single layer or may be laminated in a plurality of layers. When the insulating film 3 is composed of a plurality of layers, it is formed of an insulating layer formed of a resin material having high adhesiveness to the strip-shaped conductor 2 and a resin material that is difficult to melt due to heating when the bag body 6 is heat-sealed. And an insulating layer. When the insulating film 3 having such a laminated structure is adopted, the adhesiveness to the strip-shaped conductor 2 can be ensured and, at the same time, the melting at the time of heat sealing can be prevented.

一対の絶縁フィルム3の平均弾性率をD[Pa]、幅1mm当たりの断面二次モーメントをI[m/1mm]とした場合に下記数式(2)で表される一対の絶縁フィルム3の幅1mm当たりの弾性回復力R[N・m/1mm]の下限値としては、3.0×10−5N・m/1mmが好ましく、1.0×10−4N・m/1mmがさらに好ましい。一方、弾性回復力Rの上限値としては、6.0×10−3N・m/1mmが好ましく、1.0×10−3N・m/1mmがより好ましい。
R=D×I・・・(2)
When the average elastic modulus of the pair of insulating films 3 is D i [Pa] and the second moment of area per width 1 mm is I i [m 4 /1 mm], the pair of insulating films represented by the following formula (2) As a lower limit of the elastic recovery force R [N·m 2 /1 mm] per 1 mm of width 3, 3.0×10 −5 N·m 2 /1 mm is preferable, and 1.0×10 −4 N·m. 2 / 1mm is more preferable. On the other hand, the upper limit value of the elastic recovery force R is preferably 6.0×10 −3 N·m 2 /1 mm, more preferably 1.0×10 −3 N·m 2 /1 mm.
R=D i ×I i (2)

一対の絶縁フィルム3の幅1mm当たりの弾性回復力が上記範囲であることで、電気部品用リード線1の折り曲げ後のスプリングバックを適切に抑制できる。その結果、電気部品用リード線1を折り曲げ、その形状を維持させる作業がより容易となり作業性がより向上する。なお、絶縁フィルム3の弾性率は、その材質の変更により調節が可能であり、各絶縁フィルム3を架橋樹脂により形成する場合には架橋度の変更によっても調節が可能である。 When the elastic recovery force per width of 1 mm of the pair of insulating films 3 is within the above range, spring back of the electrical component lead wire 1 after bending can be appropriately suppressed. As a result, the work of bending the electric component lead wire 1 and maintaining its shape becomes easier, and the workability is further improved. The elastic modulus of the insulating film 3 can be adjusted by changing the material thereof, and when each insulating film 3 is formed of a crosslinked resin, it can also be adjusted by changing the degree of crosslinking.

一対の絶縁フィルム3の幅1mm当たりの断面モーメントの下限値としては、1.0×10−13/1mmが好ましく、5.0×10−13/1mmがより好ましい。一方、上記断面モーメントの上限値としては、8.0×10−12/1mmが好ましく、1.0×10−12/1mmがより好ましい。上記断面モーメントが上記範囲であることで、一対の絶縁フィルム3の幅1mm当たりの弾性回復力を容易かつ確実に上記範囲に調節することができる。 As a lower limit of the sectional moment per 1 mm width of the pair of insulating films 3, 1.0×10 −13 m 4 /1 mm is preferable, and 5.0×10 −13 m 4 /1 mm is more preferable. On the other hand, the upper limit of the sectional moment is preferably 8.0×10 −12 m 4 /1 mm, more preferably 1.0×10 −12 m 4 /1 mm. When the sectional moment is in the above range, the elastic recovery force per 1 mm width of the pair of insulating films 3 can be easily and reliably adjusted to the above range.

各絶縁フィルム3の平均厚みとしては、いずれも25μm以上200μm以下が好ましい。上記平均厚みの下限値としては、40μmがより好ましく、60μmがさらに好ましい。一方、上記平均厚みの上限値としては、120μmがより好ましく、80μmがさらに好ましい。各絶縁フィルム3の平均厚みが上記下限値未満である場合、絶縁フィルム3の厚みが短冊状導体2の厚み対して薄くなりすぎ、その結果、電気部品用リード線1を袋体6に取り付けるためにヒートシールした際に短冊状導体2及び袋体6の間でショートするおそれがある。このショートのおそれは、短冊状導体2のエッジ部(幅方向の両端)において特に顕著である。逆に、上記平均厚みが上記上限を超える場合、電気部品用リード線1のスプリングバックを十分に抑制できないおそれがある。 The average thickness of each insulating film 3 is preferably 25 μm or more and 200 μm or less. The lower limit of the average thickness is more preferably 40 μm, further preferably 60 μm. On the other hand, the upper limit of the average thickness is more preferably 120 μm, further preferably 80 μm. When the average thickness of each insulating film 3 is less than the above lower limit, the thickness of the insulating film 3 becomes too thin with respect to the thickness of the strip-shaped conductor 2, and as a result, the lead wire 1 for an electric component is attached to the bag body 6. There is a risk of short-circuiting between the strip-shaped conductor 2 and the bag body 6 when heat-sealed. The possibility of this short circuit is particularly remarkable at the edge portions (both ends in the width direction) of the strip-shaped conductor 2. On the other hand, if the average thickness exceeds the upper limit, springback of the electrical component lead wire 1 may not be sufficiently suppressed.

各絶縁フィルム3のそれぞれの平均厚み及び弾性率は、略同一であることが好ましい。具体的には、一方側の絶縁フィルム3の平均厚みに対する他方側の絶縁フィルム3の平均厚みの比(一方側の絶縁フィルム3の平均厚み/他方側の絶縁フィルム3の平均厚み)が0.95以上1.05以下であることが好ましい。また、一方側の絶縁フィルム3の弾性率に対する他方側の絶縁フィルム3の弾性率の比(一方側の絶縁フィルム3の弾性率/他方側の絶縁フィルム3の弾性率)が0.7以上1.5以下であることが好ましい。 The average thickness and elastic modulus of each insulating film 3 are preferably substantially the same. Specifically, the ratio of the average thickness of the insulating film 3 on the other side to the average thickness of the insulating film 3 on the one side (average thickness of the insulating film 3 on the one side/average thickness of the insulating film 3 on the other side) is 0. It is preferably 95 or more and 1.05 or less. The ratio of the elastic modulus of the insulating film 3 on the other side to the elastic modulus of the insulating film 3 on the one side (the elastic modulus of the insulating film 3 on the one side/the elastic modulus of the insulating film 3 on the other side) is 0.7 or more. It is preferably 0.5 or less.

また、短冊状導体2の平均厚みに対する各絶縁フィルム3の平均厚みの比(絶縁フィルムの平均厚み/短冊状導体の平均厚み)の下限値としては、いずれも0.2が好ましく、0.3がより好ましく、0.35がさらに好ましい。一方、上記比の上限値としては、1.5が好ましく、1.2がより好ましく、1.0がさらに好ましい。短冊状導体2の平均厚みに対する各絶縁フィルム3の平均厚みの比がいずれも上記範囲であることで、短冊状導体2の形状保持力に対する一対の絶縁フィルム3の弾性回復力の比を好適な範囲に調節でき、その結果、スプリングバック角度を小さくし、所望とする折り曲げ形状を維持することが可能となる。 The lower limit of the ratio of the average thickness of each insulating film 3 to the average thickness of the strip-shaped conductor 2 (average thickness of insulating film/average thickness of strip-shaped conductor) is preferably 0.2, 0.3 Is more preferable, and 0.35 is still more preferable. On the other hand, the upper limit of the above ratio is preferably 1.5, more preferably 1.2, and even more preferably 1.0. When the ratio of the average thickness of each insulating film 3 to the average thickness of the strip conductor 2 is in the above range, the ratio of the elastic recovery force of the pair of insulating films 3 to the shape retention force of the strip conductor 2 is preferable. The range can be adjusted, and as a result, the springback angle can be reduced and the desired bent shape can be maintained.

短冊状導体2の幅1mm当たりの断面二次モーメントに対する一対の絶縁フィルム3の幅1mm当たりの断面二次モーメントの比(一対の絶縁フィルムの幅1mm当たりの断面二次モーメント/短冊状導体の幅1mm当たりの断面二次モーメント)の下限値としては、1.0が好ましく、3.0がより好ましい。一方、上記比の上限値としては、4.0×10が好ましく、2.5×10がより好ましい。上記比が上記範囲であることで、短冊状導体2の形状保持力に対する一対の絶縁フィルム3の弾性回復力の比を好適な範囲に調節でき、その結果、スプリングバック角度を小さくし、所望とする折り曲げ形状を維持することが可能となる。 Ratio of second moment of area per 1 mm width of the pair of insulating films 3 to second moment of area per 1 mm width of the strip-shaped conductor 2 (second moment of area per 1 mm width of the pair of insulating films/width of strip-shaped conductor) As a lower limit of (second moment of area per mm), 1.0 is preferable and 3.0 is more preferable. On the other hand, the upper limit value of the ratio is preferably 4.0×10, more preferably 2.5×10. When the above ratio is in the above range, the ratio of the elastic recovery force of the pair of insulating films 3 to the shape retention force of the strip-shaped conductor 2 can be adjusted to a suitable range, and as a result, the springback angle can be reduced to a desired value. It is possible to maintain the bent shape.

各絶縁フィルム3の弾性率としては、いずれも100MPa以上1,400MPa以下が好ましい。上記弾性率の下限値としては、150MPaがより好ましく、200MPaがさらに好ましい。一方、上記弾性率の上限値としては、720MPaがより好ましく、350MPaがさらに好ましい。絶縁フィルム3の弾性率が上記範囲であることで、絶縁フィルム3の弾性回復力を好適なものとすることができる。 The elastic modulus of each insulating film 3 is preferably 100 MPa or more and 1400 MPa or less. The lower limit of the elastic modulus is more preferably 150 MPa, further preferably 200 MPa. On the other hand, the upper limit of the elastic modulus is more preferably 720 MPa, further preferably 350 MPa. When the elastic modulus of the insulating film 3 is in the above range, the elastic recovery force of the insulating film 3 can be made suitable.

また、各絶縁フィルム3は、平均厚みがいずれも25μm以上200μm以下であり、弾性率がいずれも100MPa以上1,400MPa以下であることで、電気部品用リード線1の折り曲げ後のスプリングバック角度を適切に小さくできる。その結果、電気部品用リード線1を折り曲げ、その形状を維持させる作業がより容易となり、作業性がより向上する。 In addition, each of the insulating films 3 has an average thickness of 25 μm or more and 200 μm or less and an elastic modulus of 100 MPa or more and 1400 MPa or less, so that the springback angle after bending the lead wire 1 for an electric component is Can be appropriately small. As a result, the work of bending the electric component lead wire 1 and maintaining its shape becomes easier, and the workability is further improved.

短冊状導体2の弾性率に対する一対の絶縁フィルム3の平均弾性率の比(一対の絶縁フィルム3の平均弾性率/短冊状導体2の弾性率)の下限値としては、1.0×10−3が好ましく、2.0×10−3がより好ましい。一方、上記比の上限値としては、4.0×10−2が好ましく、1.5×10−2がより好ましい。上記比が上記範囲であることで、短冊状導体2の形状保持力に対する一対の絶縁フィルム3の弾性回復力の比を好適な範囲に調節でき、その結果、スプリングバック角度を小さくし、所望とする折り曲げ形状を維持することが可能となる。 The lower limit of the ratio of the average elastic modulus of the pair of insulating films 3 to the elastic modulus of the strip-shaped conductor 2 (average elastic modulus of the pair of insulating films 3/elastic modulus of the strip-shaped conductor 2) is 1.0×10 −. 3 is preferable, and 2.0×10 −3 is more preferable. On the other hand, the upper limit of the above ratio is preferably 4.0×10 −2 , more preferably 1.5×10 −2 . When the above ratio is in the above range, the ratio of the elastic recovery force of the pair of insulating films 3 to the shape retention force of the strip-shaped conductor 2 can be adjusted to a suitable range, and as a result, the springback angle can be reduced to a desired value. It is possible to maintain the bent shape.

電気部品用リード線1は、短冊状導体2の幅1mm当たりの形状保持力Hに対する一対の絶縁フィルム3の幅1mm当たりの弾性回復力Rの比が0.15以下である。上記比の上限値としては、0.10が好ましく、0.05がより好ましい。なお、上記比の下限値については特に制限はないが、0.001が好ましく、0.002がより好ましい。 In the electrical component lead wire 1, the ratio of the elastic recovery force R per 1 mm width of the pair of insulating films 3 to the shape retention force H per 1 mm width of the strip-shaped conductor 2 is 0.15 or less. The upper limit of the ratio is preferably 0.10, more preferably 0.05. The lower limit of the ratio is not particularly limited, but is preferably 0.001 and more preferably 0.002.

電気部品用リード線1は、180°折り曲げ後の曲げ戻り角度(スプリングバック角度)が20°以下であることが好ましい。このような電気部品用リード線1によれば、180°折り曲げ後の曲げ戻り角度(スプリングバック角度)が20°以下であることで、折り曲げ形状をより好適に維持できるため、折り曲げ時の形状固定作業がより容易となり作業性がより向上する。なお、上記曲げ戻り角度は、小さければ小さいほどよく、12°以下がより好ましく、5°以下がさらに好ましく、0°が最も好ましいい。 It is preferable that the lead wire 1 for electric parts has a bending return angle (springback angle) of 20° or less after being bent by 180°. According to such a lead wire 1 for an electric component, since the bending return angle (spring back angle) after bending by 180° is 20° or less, the bent shape can be more preferably maintained, so that the shape is fixed during bending. Work becomes easier and workability improves. The smaller the bending back angle, the better. It is more preferably 12° or less, further preferably 5° or less, and most preferably 0°.

<電気部品>
本発明の実施形態に係る電気部品は、電気部品用リード線1を備える。この電気部品用リード線1が使用される電気部品としては、例えばリチウムイオン電池等の非水電解質電池や、リチウムイオンキャパシタ、電気二重層コンデンサ(Electric double−layer capacitor:EDLC)等のキャパシタが挙げられる。もちろん、電気部品用リード線1は、リード線を必要とする電気部品全般に適用可能であり、非水電解質電池以外の電池等に適用しても同様な効果を奏することができる。
<Electrical parts>
The electrical component according to the embodiment of the present invention includes an electrical component lead wire 1. Examples of the electric component in which the lead wire 1 for the electric component is used include a non-aqueous electrolyte battery such as a lithium ion battery, a capacitor such as a lithium ion capacitor, and an electric double-layer capacitor (EDLC). Be done. Of course, the electrical component lead wire 1 can be applied to all electrical components that require a lead wire, and the same effect can be obtained when applied to batteries other than the non-aqueous electrolyte battery.

以下、電気部品用リード線1を備える非水電解質電池について、リチウムイオン電池を例として図面を参照しつつ説明する。 Hereinafter, a non-aqueous electrolyte battery including the electrical component lead wire 1 will be described with reference to the drawings by taking a lithium ion battery as an example.

(リチウムイオン電池)
図1及び図2に示すリチウムイオン電池4は、袋体6の内部に非水電解液を保持した電池素子を封入したものである。電池素子は、正極5Aと負極5Bとの間にセパレータ(図示略)を介在させた状態で非水電解液を保持したものである。非水電解液としては、例えばプロピレンカーボネート、γ−ブチロラクトン等の有機溶媒に、リチウム化合物(LiClO、LiBF等)を溶解したものが用いられる。
(Lithium ion battery)
The lithium ion battery 4 shown in FIGS. 1 and 2 has a bag body 6 in which a battery element holding a non-aqueous electrolyte is enclosed. The battery element holds a non-aqueous electrolyte solution with a separator (not shown) interposed between the positive electrode 5A and the negative electrode 5B. As the non-aqueous electrolyte, for example, a solution obtained by dissolving a lithium compound (LiClO 4 , LiBF 4, etc.) in an organic solvent such as propylene carbonate, γ-butyrolactone or the like is used.

電気部品用リード線1は、絶縁フィルム3において袋体6に固定されている。電気部品用リード線1は、短冊状導体2の一方の端部2A及び他方の端部2Bが絶縁フィルム3から露出し、この短冊状導体2の露出した一方の端部2Aが電池素子の正極5A又は負極5Bに導通接続されていると共に、短冊状導体2の露出した他方の端部2Bが袋体6から突出している。 The electrical component lead wire 1 is fixed to the bag body 6 with an insulating film 3. In the lead wire 1 for electric parts, one end 2A and the other end 2B of the strip conductor 2 are exposed from the insulating film 3, and the exposed one end 2A of the strip conductor 2 is the positive electrode of the battery element. 5A or the negative electrode 5B is electrically connected, and the exposed other end 2B of the strip-shaped conductor 2 projects from the bag body 6.

このようなリチウムイオン電池4は、電気部品用リード線1を備えるため、電気部品用リード線1を折り曲げ、その形状を維持するための作業を簡略化できることで、作業効率を向上できる。 Since such a lithium-ion battery 4 is provided with the electric component lead wire 1, the work for bending the electric component lead wire 1 and maintaining the shape thereof can be simplified, thereby improving the work efficiency.

なお、電気部品用リード線1をリチウムイオン電池4以外の電気部品に適用した場合であっても、折り曲げ形状を維持するための作業を簡略化できることで、作業効率を向上できる。 Even when the electric component lead wire 1 is applied to an electric component other than the lithium ion battery 4, the work efficiency can be improved by simplifying the work for maintaining the bent shape.

次に、実験例により本発明を具体的に説明するが、本発明は下記実験例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Next, the present invention will be specifically described with reference to experimental examples. However, the present invention is not limited to the following experimental examples, and may be appropriately modified and implemented within a range compatible with the gist of the present invention. And all of them are included in the technical scope of the present invention.

本実験例では、リード線のスプリングバック角度を評価した。 In this experimental example, the springback angle of the lead wire was evaluated.

<リード線>
リード線は、短冊状導体の両端部が露出するように、短冊状導体の中央部を一対の絶縁フィルムにより被覆することで形成した。図4A及び図4Bに示すように、短冊状導体7としては、長さLが80mm、幅Wが5mmであり、弾性率及び平均厚みTが下記表1に示す値のものを用いた。絶縁フィルム8としては、いずれも長さLが6mm、幅Wが7mmであり、弾性率及び平均厚みTが下記表1に示す値のものを用いた。なお、2枚の絶縁フィルム8は、同一のものを用いた。また、短冊状導体7と一対の絶縁フィルム8との合計平均厚みをリード線の平均厚みTとした。
<Lead wire>
The lead wire was formed by covering the central portion of the strip-shaped conductor with a pair of insulating films so that both ends of the strip-shaped conductor were exposed. As shown in FIGS. 4A and 4B, the strip-shaped conductor 7 has a length L m of 80 mm, a width W m of 5 mm, and an elastic modulus and an average thickness T m shown in Table 1 below. I was there. As the insulating film 8, those having a length L i of 6 mm, a width W i of 7 mm, an elastic modulus and an average thickness T i shown in Table 1 below were used. The two insulating films 8 were the same. The total average thickness of the strip-shaped conductor 7 and the pair of insulating films 8 was defined as the average thickness T of the lead wire.

<断面二次モーメント>
短冊状導体7の幅1mm当たりの断面二次モーメント[m/1mm]は、1/12×W[m]×(T[m])/W[mm]に各数値を代入して求めた。一対の絶縁フィルム8の断面二次モーメント[m/1mm]は、1/12×W[m]×{(T[m])−(T[m])}/W[mm]に各数値を代入して求めた。
<Second moment of area>
The second moment of area [m 4 /1 mm] per 1 mm width of the strip-shaped conductor 7 is substituted by 1/12×W m [m]×(T m [m]) 3 /W m [mm]. I asked. The second moment of area [m 4 /1 mm] of the pair of insulating films 8 is 1/12×W i [m]×{(T[m]) 3 −(T m [m]) 3 }/W i [ mm] was substituted for each numerical value.

<スプリングバック角度の評価>
スプリングバック角度は、まず図5Aに示すように、リード線の一方側の絶縁フィルム8の長さ方向中央付近に厚さ0.5mmの板材Xの端面を当接させ、板材Xを狭持するようにリード線をゆっくりと180°折り曲げた後、他方側の絶縁フィルム8上に質量200gの錘を置くことで負荷Fを作用させ、この状態を10秒間保持した。次に、図5Bに示すように負荷を取り除いて5秒以上放置したときのスプリングバック角度θ[deg](リード線がなす角度)を測定することで評価した。スプリングバック角度の測定結果は下記表1に示した。また、スプリングバック角度θと、短冊状導体の幅1mm当たりの形状保持力Hに対する一対の絶縁フィルムの幅1mm当たりの弾性回復力Rの比(R/H)との関係を図6に示した。なお、リード線の弾性回復力R及び形状保持力Hは、それぞれ上記数式(1)及び(2)に基づき算出した。
<Evaluation of springback angle>
As for the spring back angle, as shown in FIG. 5A, first, the end surface of the plate material X having a thickness of 0.5 mm is brought into contact with the vicinity of the center in the length direction of the insulating film 8 on one side of the lead wire to sandwich the plate material X. After slowly bending the lead wire by 180° as described above, a load F was applied by placing a weight of 200 g on the insulating film 8 on the other side, and this state was maintained for 10 seconds. Next, as shown in FIG. 5B, the evaluation was performed by measuring the springback angle θ [deg] (angle formed by the lead wire) when the load was removed and left for 5 seconds or more. The measurement results of the springback angle are shown in Table 1 below. Further, FIG. 6 shows the relationship between the springback angle θ and the ratio (R/H) of the elastic recovery force R per 1 mm width of the pair of insulating films to the shape retention force H per 1 mm width of the strip-shaped conductor. .. The elastic recovery force R and the shape retention force H of the lead wire were calculated based on the above mathematical expressions (1) and (2), respectively.

Figure 0006705322
Figure 0006705322

表1及び図6に示すように、短冊状導体の平均厚みT1を変化させ、他の条件を同一としたグループA(製造例1〜4)、グループB(製造例5〜8)、及びグループC(製造例9〜12)では、いずれのグループにおいても、短冊状導体の平均厚みT1の増大、すなわち弾性回復力Rの形状保持力Hに対する比(R/H)の低減に伴いスプリングバック角度θも小さくなった。また、グループA〜C相互は絶縁フィルムの厚みT2が異なるものであるが、これらのグループA〜Cを比較した場合、絶縁フィルムの厚みT2の増大、すなわち弾性回復力Rの形状保持力Hに対する比(R/H)の増大に伴いスプリングバック角度θも大きくなった。これらの結果から、リード線の短冊状導体の平均厚み及び絶縁フィルムの平均厚みを調節し、弾性回復力Rの形状保持力Hに対する比(R/H)を0.15以下とすることでスプリングバック角度20°以下という良好な曲げ形状の維持が可能となると判断される。 As shown in Table 1 and FIG. 6, the average thickness T1 of the strip-shaped conductor was changed, and the other conditions were the same as group A (manufacturing examples 1 to 4), group B (manufacturing examples 5 to 8), and group. In C (Manufacturing Examples 9 to 12), in all groups, the springback angle increased as the average thickness T1 of the strip conductors increased, that is, the ratio (R/H) of the elastic recovery force R to the shape retention force H decreased. θ also became smaller. In addition, although the groups A to C are different from each other in the thickness T2 of the insulating film, when these groups A to C are compared, the thickness T2 of the insulating film is increased, that is, the elastic retention force R with respect to the shape retention force H. The springback angle θ also increased as the ratio (R/H) increased. From these results, the average thickness of the strip-shaped conductor of the lead wire and the average thickness of the insulating film are adjusted, and the ratio (R/H) of the elastic recovery force R to the shape retention force H is set to 0.15 or less. It is judged that it is possible to maintain a good bent shape with a back angle of 20° or less.

絶縁フィルムの弾性率を変化させ、他の条件を同一としたグループD(製造例13〜14)及びグループE(製造例15〜16)では、グループD及びEのいずれも、絶縁フィルムの弾性率の増大、すなわち弾性回復力Rの形状保持力Hに対する比(R/H)の増大に伴いスプリングバック角度θも大きくなった。この結果から、リード線の絶縁フィルムの弾性率を調節し、弾性回復力Rの形状保持力Hに対する比(R/H)を0.15以下とすることでスプリングバック角度20°以下という良好な曲げ形状の維持が可能となると判断される。 In Group D (Production Examples 13 to 14) and Group E (Production Examples 15 to 16) in which the elastic modulus of the insulating film was changed and the other conditions were the same, the elastic modulus of the insulating film was As the ratio (R/H) of the elastic recovery force R to the shape holding force H increases, the springback angle θ also increases. From this result, by adjusting the elastic modulus of the insulating film of the lead wire and setting the ratio (R/H) of the elastic recovery force R to the shape holding force H to 0.15 or less, the spring back angle of 20° or less was excellent. It is judged that the bent shape can be maintained.

短冊状導体及び絶縁フィルムの厚みを一定とし、弾性率を変化させたグループF(製造例17〜20)では、短冊状導体の弾性率の増大、絶縁フィルムの弾性率の低減又はこれらの組み合わせにより弾性回復力Rの形状保持力Hに対する比(R/H)を低減すると、これに伴いスプリングバック角度θが減少した。この結果から、リード線の絶縁フィルムの弾性率を調節し、弾性回復力Rの形状保持力Hに対する比(R/H)を0.15以下とすることでスプリングバック角度20°以下という良好な曲げ形状の維持が可能となると判断される。 In Group F (Production Examples 17 to 20) in which the thickness of the strip-shaped conductor and the insulating film were constant and the elastic modulus was changed, the elastic modulus of the strip-shaped conductor was increased, the elastic modulus of the insulating film was reduced, or a combination thereof was used. When the ratio (R/H) of the elastic recovery force R to the shape retention force H was reduced, the springback angle θ was reduced accordingly. From this result, by adjusting the elastic modulus of the insulating film of the lead wire and setting the ratio (R/H) of the elastic recovery force R to the shape holding force H to 0.15 or less, the spring back angle of 20° or less was excellent. It is judged that the bent shape can be maintained.

また、図6に示すように、弾性回復力Rの形状保持力Hに対する比(R/H)とスプリングバック角度とは高い相関性を示し、特に上記比(R/H)が小さい(例えば0.2以下)製造例ではより高い相関性を示した。そのため、スプリングバック角度を低減する上では、上記比(R/H)を調節することが非常に有効であることが確認できる。 Further, as shown in FIG. 6, the ratio (R/H) of the elastic recovery force R to the shape holding force H and the springback angle show a high correlation, and in particular, the ratio (R/H) is small (for example, 0. In the production examples, higher correlation was shown. Therefore, it can be confirmed that adjusting the ratio (R/H) is very effective in reducing the springback angle.

上記発明によれば、折り曲げ使用するときにスプリングバックが生じ難く、曲げ形状を好適に維持できる電気部品用リード線と、作業効率に優れる電気部品とを提供できる。 According to the above invention, it is possible to provide a lead wire for an electric component, which is less likely to cause springback when used in bending, and which can maintain a preferable bent shape, and an electric component which is excellent in work efficiency.

1,11 電気部品用リード線
2,7,12 短冊状導体
2A 一方の端部
2B 他方の端部
3,8,13 絶縁フィルム
4 リチウムイオン電池
5A 正極
5B 負極
6 袋体
M 曲げ変形の中心面
1,11 Lead wire for electric parts 2,7,12 Strip conductor 2A One end 2B The other end 3,8,13 Insulation film 4 Lithium ion battery 5A Positive electrode 5B Negative electrode 6 Bag M Central surface of bending deformation

Claims (8)

短冊状導体と、この短冊状導体の両面を被覆する一対の絶縁フィルムとを備える電気部品用リード線であって、
上記短冊状導体の弾性率をD[Pa]、幅1mm当たりの断面二次モーメントをI[m/1mm]とし、かつ上記一対の絶縁フィルムの平均弾性率をD[Pa]、幅1mm当たりの断面二次モーメントをI[m/1mm]とした場合に、下記数式(1)で表される短冊状導体の幅1mm当たりの形状保持力H[N・m/1mm]に対する下記数式(2)で表される絶縁フィルムの幅1mm当たりの弾性回復力R[N・m/1mm]の比(R/H)が0.15以下である電気部品用リード線。
H=D×I・・・(1)
R=D×I・・・(2)
A lead wire for an electric component, comprising a strip conductor and a pair of insulating films covering both surfaces of the strip conductor,
The elastic modulus of the strip conductor is D m [Pa], the second moment of area per 1 mm width is I m [m 4 /1 mm], and the average elastic modulus of the pair of insulating films is D i [Pa], When the second moment of area per 1 mm in width is I i [m 4 /1 mm], the shape-retaining force H [N·m 2 /1 mm per 1 mm in width of the strip-shaped conductor represented by the following mathematical formula (1). ] The ratio (R/H) of elastic recovery force R [N·m 2 /1 mm] per 1 mm width of the insulating film represented by the following mathematical formula (2) is 0.15 or less.
H=D m ×I m (1)
R=D i ×I i (2)
180°折り曲げ後の曲げ戻り角度が20°以下である請求項1に記載の電気部品用リード線。 The lead wire for an electric component according to claim 1, wherein a bending return angle after bending by 180° is 20° or less. 上記弾性回復力Rが3.0×10−5N・m/1mm以上6.0×10−3N・m/1mm以下である請求項1又は請求項2に記載の電気部品用リード線。 The lead for electrical parts according to claim 1 or 2, wherein the elastic recovery force R is 3.0 × 10 -5 N·m 2 /1 mm or more and 6.0 × 10 -3 N·m 2 /1 mm or less. line. 上記形状保持力Hが3.0×10−4N・m/1mm以上6.0×10−2N・m/1mm以下である請求項1、請求項2又は請求項3に記載の電気部品用リード線。 The shape retention force H is 3.0×10 −4 N·m 2 /1 mm or more and 6.0×10 −2 N·m 2 /1 mm or less, according to claim 1, claim 2 or claim 3. Lead wire for electrical parts. 上記短冊状導体の平均厚みが30μm以上200μm以下であり、
上記短冊状導体の弾性率が50GPa以上300GPa以下である請求項1から請求項4のいずれか1項に記載の電気部品用リード線。
The strip-shaped conductor has an average thickness of 30 μm or more and 200 μm or less,
The lead wire for an electric component according to any one of claims 1 to 4, wherein an elastic modulus of the strip conductor is 50 GPa or more and 300 GPa or less.
上記各絶縁フィルムの平均厚みがいずれも25μm以上200μm以下であり、
上記各絶縁フィルムの弾性率がいずれも100MPa以上1,400MPa以下である請求項1から請求項5のいずれか1項に記載の電気部品用リード線。
Each of the insulating films has an average thickness of 25 μm or more and 200 μm or less,
The lead wire for an electric component according to any one of claims 1 to 5, wherein each of the insulating films has an elastic modulus of 100 MPa or more and 1400 MPa or less.
請求項1に記載の電気部品用リード線を備える電気部品。 An electric component comprising the lead wire for an electric component according to claim 1. 非水電解質電池である請求項7に記載の電気部品。
The electric component according to claim 7, which is a non-aqueous electrolyte battery.
JP2016143806A 2016-07-21 2016-07-21 Lead wire for electric parts and electric parts Active JP6705322B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2016143806A JP6705322B2 (en) 2016-07-21 2016-07-21 Lead wire for electric parts and electric parts
CN202011202483.5A CN112310573B (en) 2016-07-21 2017-07-07 Lead wire for electrical component and electrical component
PCT/JP2017/024915 WO2018016347A1 (en) 2016-07-21 2017-07-07 Electrical component lead wire and electrical component
CN202011202219.1A CN112310571B (en) 2016-07-21 2017-07-07 Lead wire for electrical component and electrical component
KR1020187007165A KR102121675B1 (en) 2016-07-21 2017-07-07 Lead wires and electrical components for electrical components
CN202011202455.3A CN112310572A (en) 2016-07-21 2017-07-07 Lead wire for electrical component and electrical component
KR1020207015918A KR102229067B1 (en) 2016-07-21 2017-07-07 Electrical component lead wire and electrical component
KR1020217006690A KR102362932B1 (en) 2016-07-21 2017-07-07 Electrical component lead wire and electrical component
CN201780003233.9A CN108028329B (en) 2016-07-21 2017-07-07 Lead wire for electrical component and electrical component
KR1020227001887A KR102469860B1 (en) 2016-07-21 2017-07-07 Electrical component lead wire and electrical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016143806A JP6705322B2 (en) 2016-07-21 2016-07-21 Lead wire for electric parts and electric parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020083455A Division JP6992840B2 (en) 2020-05-11 2020-05-11 Lead wires for electrical parts and electrical parts

Publications (2)

Publication Number Publication Date
JP2018014272A JP2018014272A (en) 2018-01-25
JP6705322B2 true JP6705322B2 (en) 2020-06-03

Family

ID=60992997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016143806A Active JP6705322B2 (en) 2016-07-21 2016-07-21 Lead wire for electric parts and electric parts

Country Status (4)

Country Link
JP (1) JP6705322B2 (en)
KR (4) KR102362932B1 (en)
CN (4) CN112310572A (en)
WO (1) WO2018016347A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119586A1 (en) * 2021-12-23 2023-06-29 住友電気工業株式会社 Lead wire for nonaqueous electrolyte battery, insulating film, and nonaqueous electrolyte battery
KR20240122607A (en) * 2021-12-27 2024-08-13 스미토모 덴키 고교 가부시키가이샤 Lead wires, insulating films and non-aqueous electrolyte batteries
JPWO2023153301A1 (en) * 2022-02-08 2023-08-17

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2999657B2 (en) * 1993-09-06 2000-01-17 松下電器産業株式会社 Method for manufacturing semiconductor device
JPH09143595A (en) * 1995-11-24 1997-06-03 Sumitomo Electric Ind Ltd Metallic material for terminal
AU6419998A (en) * 1997-03-19 1998-10-12 Asahi Kasei Kogyo Kabushiki Kaisha Nonaqueous thin battery
JP3114174B1 (en) 1999-07-27 2000-12-04 住友電気工業株式会社 Lead wires for non-aqueous electrolyte batteries
JP2001256960A (en) * 2000-03-10 2001-09-21 Mitsubishi Chemicals Corp Battery
JP2002203534A (en) * 2000-12-27 2002-07-19 Toshiba Electronic Engineering Corp Thin-type secondary battery and battery pack
JP2004063133A (en) * 2002-07-25 2004-02-26 Toshiba Corp Thin secondary battery
WO2004020191A1 (en) * 2002-08-29 2004-03-11 Sumitomo Special Metals C0., Ltd. Aluminum/nickel clad material and method for manufacture thereof, and exterior terminal for electric cell
KR20040054128A (en) * 2002-12-17 2004-06-25 삼성에스디아이 주식회사 Pouched-type lithium secondary battery
JP2004263032A (en) * 2003-02-28 2004-09-24 Tsutsunaka Plast Ind Co Ltd Resin film for insulating material
EP1681738B1 (en) * 2003-09-05 2017-03-08 Hitachi Chemical Company, Ltd. Nonaqueous electrolyte secondary battery negative electrode material, production method therefor, nonaqueous electrolyte secondary battery negative electrode comprising the negative electrode material and nonaqueous electrolyte secondary battery comprising the negative electrode
KR20080064590A (en) * 2007-01-05 2008-07-09 삼성에스디아이 주식회사 Anode for lithium battery and lithium battery employing the same
KR100959090B1 (en) * 2007-12-18 2010-05-20 주식회사 엘지화학 Pouch type secondary battery with enhanced stability
JP5277702B2 (en) * 2008-04-21 2013-08-28 住友電気工業株式会社 Electrical parts, non-aqueous electrolyte batteries, and lead wires and enclosures used for them
JP5402547B2 (en) * 2009-11-11 2014-01-29 住友電気工業株式会社 Lead member, power storage device with lead member, and method of manufacturing lead member
JP4962676B2 (en) * 2010-09-10 2012-06-27 パナソニック株式会社 Electronic components and lead wires for electronic components
JP5611251B2 (en) * 2012-01-27 2014-10-22 トヨタ自動車株式会社 Sealed secondary battery
US9017861B2 (en) * 2012-03-15 2015-04-28 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2014220176A (en) * 2013-05-10 2014-11-20 住友電気工業株式会社 Lead member, nonaqueous electrolyte power storage device
JP6404214B2 (en) * 2013-06-21 2018-10-10 東京応化工業株式会社 Non-aqueous secondary battery and manufacturing method thereof
KR102084100B1 (en) * 2013-08-22 2020-04-14 삼성에스디아이 주식회사 Pouch type rechargeable battery
JP5804037B2 (en) * 2013-12-13 2015-11-04 株式会社豊田自動織機 Power storage device with current interrupt device

Also Published As

Publication number Publication date
KR20200067925A (en) 2020-06-12
KR102469860B1 (en) 2022-11-23
WO2018016347A1 (en) 2018-01-25
KR102362932B1 (en) 2022-02-14
CN112310572A (en) 2021-02-02
CN112310573A (en) 2021-02-02
KR20220013587A (en) 2022-02-04
KR20210028743A (en) 2021-03-12
CN112310571B (en) 2022-11-15
CN112310573B (en) 2023-01-03
CN108028329B (en) 2020-11-24
JP2018014272A (en) 2018-01-25
KR102121675B1 (en) 2020-06-10
KR102229067B1 (en) 2021-03-16
CN108028329A (en) 2018-05-11
CN112310571A (en) 2021-02-02
KR20180040652A (en) 2018-04-20

Similar Documents

Publication Publication Date Title
EP2535961B1 (en) Pouch type secondary battery and method for manufacturing the same
EP2216841A1 (en) Pouch-type lithium secondary battery
JP6705322B2 (en) Lead wire for electric parts and electric parts
KR20170109070A (en) Secondary battery having ptc device
JP2022050682A (en) Lithium secondary battery
US20120214060A1 (en) Lead member
US10177351B2 (en) Rechargeable battery
KR20080039093A (en) Secondary battery
JP6992840B2 (en) Lead wires for electrical parts and electrical parts
CN110383571B (en) Cable type battery
US9257727B2 (en) Assembled battery and battery pack
CN110678998B (en) Member for electricity storage device, method for producing same, and electricity storage device
JP7211473B2 (en) Lead wires for electrical parts and electrical parts
US20150147635A1 (en) Secondary battery
KR102411730B1 (en) The Secondary Battery And The Battery Module
CN204257745U (en) Lug lead-in wire and electric energy storage device
JP6136069B2 (en) Lead conductor and power storage device
US20140038013A1 (en) Method for manufacturing a connecting contact for an electrode of an electrochemical store, method for manufacturing an electrochemical store, and electrochemical store
JP2013020878A (en) Lead member and manufacturing method of the same
JP2014053230A (en) Lead member for nonaqueous electrolyte power storage device and method of manufacturing the same
JP2024132955A (en) Hot melt adhesive film, sealing film, metal terminal, battery, and device
KR20190024452A (en) metal tab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R150 Certificate of patent or registration of utility model

Ref document number: 6705322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250