WO2002014137A1 - Verfahren zur regelung der gier- und querdynamik bei einem strassenfahrzeug - Google Patents
Verfahren zur regelung der gier- und querdynamik bei einem strassenfahrzeug Download PDFInfo
- Publication number
- WO2002014137A1 WO2002014137A1 PCT/EP2001/009411 EP0109411W WO0214137A1 WO 2002014137 A1 WO2002014137 A1 WO 2002014137A1 EP 0109411 W EP0109411 W EP 0109411W WO 0214137 A1 WO0214137 A1 WO 0214137A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- setpoint
- front axle
- control
- rear axle
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
- B62D7/06—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
- B62D7/14—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
- B62D7/15—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
- B62D7/159—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
Definitions
- the invention relates to a method for controlling the yaw and lateral dynamics in a road vehicle, each with a steering device for the front axle and for the rear axle and with these individually assigned, electrically controllable ⁇ v - and ⁇ H - steering angle actuators, each having a controller are controllable, which generate the required control signals for the steering angle actuators for the tracking of the controlled variables from target / actual value comparisons for the yaw and transverse dynamic behavior of the vehicle of characteristic quantities (for example the yaw rate ⁇ and a float angle ß), and with the others , Generic features mentioned in the preamble of claim 1.
- the object of the invention is therefore to specify a method of the type mentioned at the outset, which is activated when a steering element provided for setting a driver's request, e.g. of a steering wheel or joystick leads to a vehicle reaction which is largely analogous to that of a vehicle which only has front axle steering, but nevertheless allows improved utilization of the cornering forces which can be built up via the two steering angle adjusting members.
- the type of determination of a setpoint of the lateral force on the front wheels corresponds to a float angle control on the front axle in the manner as generally provided for the setpoint determination of the lateral force on the rear axle, while the type of determination of a setpoint of the cornering force on the Front axle corresponds to a yaw rate control via the steering angle control circuit assigned to the front axle.
- the approximate determination of target values of the slip angle of the front wheels and the rear wheels of the vehicle, which is provided according to claim 4, is sufficient in the vast majority of statistically significant driving situations to enable a situation-appropriate steering to be able to carry out an angle determination for the front and rear wheels of the vehicle.
- a lateral acceleration sensor is particularly expedient which detects the lateral acceleration effective in the center of gravity of the vehicle.
- two transverse acceleration sensors can also be provided, the distance of which from one another measured in the longitudinal direction of the vehicle should be as large as possible.
- the vehicle is correspondingly different in its own way, both due to the fact that the control device can be changed to defined different control modes, as provided in accordance with claim 7, and through a targeted selection between different reference model variants of the vehicle, which are implemented by a computer, and are implemented by a computer
- Response behavior to an actuation of a steering element acting as an expression of a specific driver request can be set, ie the vehicle type (sports car or heavy limousine) that corresponds to the desired driving behavior of the vehicle can be selected.
- control modes explained so far can also be used if the rear axle steering is realized by the fact that the rear wheel brakes can be controlled individually to develop defined braking forces, so that the yaw behavior of the vehicle via the rear wheels is targeted even without a steering angle actuator of the rear axle can influence.
- control variables preferably those whose design model corresponds to that of the controller for the observed control variable, since, in contrast to a controller with an I component, it is not the control error that is integrated, but the error between the measurements and estimation and can be used for disturbance measurement.
- Fig. 1 is a schematically simplified block diagram of a device according to the invention for transverse dynamics control on a road vehicle with front and rear axle steering and
- FIG. 2 shows a lateral force / slip angle diagram for a qualitative explanation of the function of the control device according to FIG. 1
- transverse dynamics control device for a four-wheeled road vehicle, denoted overall by 11, in which both the front wheels 12 and 13 and the rear wheels 14 and 16 are steerable, with the setting of steering angles ⁇ v of Front wheels 12 and 13 and for setting steering angles ⁇ h of the rear wheels 14 and 16 each have an electrically controllable steering angle actuator 17 or 18, it is a steering behavior to achieve, which enables the driver to control the vehicle easily.
- the front axle steering angle actuator 17 conveys a "common" setting of the steering angles ⁇ vl and ⁇ TC of both front wheels in the manner of a trapezoidal steering and that the same also applies to the rear axle steering angle actuator 18 , so that in the sense of a simplifying "single-track" model of the vehicle, the front wheel steering angles ⁇ vl and ⁇ ⁇ can be described by a single front axle steering angle ⁇ v and the rear wheel steering angles ⁇ ⁇ and ⁇ to by a common "average" rear axle steering angle ⁇ h ,
- the steering angle actuators 17 and 18 can be implemented as electrohydraulic or as .electromechanical actuators, which by electrical signals, the target values ⁇ vsoll and ö ⁇ - ⁇ of the front axle steering angle ⁇ v and the rear axle steering angle ⁇ h , seen in the single-track model of the vehicle 11 , represent, can be controlled to set the relevant setpoints.
- setpoint signals for the front axle steering angle ⁇ v and the rear axle steering angle ⁇ h are generated by controllers 19, 21 and 22, which operate in decoupled control loops and are more characteristic of the lateral dynamic behavior of the vehicle 11 from setpoint / actual value comparisons
- Variables namely the yaw rate ⁇ in the center of gravity 23 of the vehicle 11, the float angle ß v in the area of the front axle 24 of the vehicle and the float angle ß h in the area of the rear axle 26 of the vehicle 11 are the control signals for the steering angle actuators 17 which are characteristic of the setpoint and generate 18.
- a reference model 28 implemented by an electronic computer is provided, to which, at a first input 29, the "driver's request input”, an electrical output signal of a steering angle organ position transmitter 31, which is characteristic of a steering angle ⁇ F , is supplied to a corresponds to the steering behavior of the vehicle 11 desired by the driver; At a second input 32, a "speed input”, an electrical status signal is fed to the reference model 28, which is a measure of the longitudinal vehicle speed v x of the real vehicle.
- the reference model 28 is at a first output 33 from an electrical output signal which is a measure for a desired value of ⁇ to the yaw rate of the real vehicle about its passing through the center vertical axis 23.
- the reference model 28 outputs an electrical output signal which, when cornering, is a measure of the setpoint slip angle ⁇ vsoll of the vehicle's slip angle in the region of its front axle 24, and an electrical output signal at a third output 36. which is a measure of the target value ⁇ ⁇ o n of the float angle of the real vehicle 11 on the rear axle 26 of the vehicle.
- the generation of these setpoints, the adjustment of the reaction behavior of the vehicle to an actuation of the steering wheel 27 - setting the steering angle ⁇ F - determines expediently such that the driver 11 understands the transverse dynamic behavior of the vehicle 11 in an "understandable" - well manageable - manner.
- the reference model 28 can be designed so that there is a "neutral" cornering behavior, the same slip angle o ⁇ . and ⁇ ⁇ correspond to the front axle 24 and the rear axle 26; however, it is also possible that the reference model 28 is so. is designed so that there is a slightly oversteering cornering behavior of the vehicle that approximates that of a sports vehicle, or also understeering behavior is achieved, as can be characteristic of front-wheel drive vehicles.
- Is intended for comparison with the ⁇ -, ß VSO n-, and p Hset -WertSignalen suitable actual-value signals are generated by an implemented in turn by an electronic calculator vehicle model 37, measured from a processing operating characteristic variables as well as vehicle-specific data first on a
- Output 38 emits an electrical output signal which is a measure of the actual value ⁇ i ⁇ t of the yaw angle velocity of the vehicle 11 about its vertical axis, and also outputs an electrical output signal at a second output 39 which is a measure of the actual value ⁇ vist of the slip angle of the front axle 24 is, and outputs an electrical output signal at a third output 41, which is a measure of the actual value ⁇ h . of the float angle ß h on the rear axle 26 of the real vehicle 11.
- Variable data suitable for generating the actual value output signals of the vehicle model 37 ie. Those that have to be recorded continuously while driving and "vehicle-specific data", ie those which are predetermined by the vehicle or can be determined by a single measurement and can then be regarded as constant for at least a longer period of time, are included in the selected one Explanatory example of the following:
- the output signals of the vehicle wheels 12, 13, 14 and 16 of individually assigned wheel speed sensors 42 1 to 42 4 which enable a precise determination of the vehicle longitudinal speed v x
- Front axle steering angle position transmitter 43 and a steering angle position transmitter 44 assigned to the rear axle steering angle actuator 18 the output signal of a yaw rate ( ⁇ ) sensor 46 as a measure of the yaw rate ⁇ about the vertical axis thereof passing through the center of gravity 23 of the vehicle
- the output s signal from a lateral acceleration (a y ) sensor 47 as a measure of the focus 23
- vehicle-specific data which in conjunction with the aforementioned variable information for determining the actual values ⁇ iBt , ß vist and ß fc i s ,. are suitable, in the vehicle model 37 the center distance L of the vehicle and, if applicable, the track widths of the front and rear axles as a fixed value (s), as well as variables which are subject to minor variations, which can be corrected if necessary by temporary measurement or estimation, the vehicle mass m, the distance l v of the center of gravity 23 from the front axle 24 or l h of the center of gravity 23 from the rear axle 26, the yaw inertia ferment J 2 of the vehicle 11 about its vertical axis, as well as tire characteristics, which show the relationship between the steering actuation on the front axle and the rear axle buildable side forces S v and S h depending on the respective slip angles o ⁇ and ⁇ ⁇ .
- v y denotes the speed component of the vehicle resulting from cornering at right angles to the longitudinal speed component v x of the vehicle speed v F , which is the vectorial sum of these two speed components.
- the transverse speed component v y can be at least approximately determined from an integration of the transverse acceleration a y acting in the center of gravity of the vehicle, and / or can be estimated from the wheel speeds, the set steering angles ⁇ v and ⁇ h and the geometric dimensions of the vehicle.
- the one provided for controlling the front axle steering angle actuator 17 is designed as a yaw rate controller, which according to a governing law of the form
- a target value S vsoll of the lateral force which is a function S ( ⁇ v ) of the slip angle o ⁇ on the front axle.
- ⁇ vsoll "ß + + ⁇ vsoll ( 1 ').
- the dependency of the lateral force S on the slip angle ⁇ is either stored in a tabular form or in one of the tables in the ⁇ controller 19, which in turn is implemented as a computer and which determines the desired value ⁇ vsoll for the front axle steering angle ⁇ v in accordance with the relationship (l 1 ) Computer-evaluable control algorithm implemented.
- the setpoint value ⁇ ⁇ n of the slip angle is determined in the sense of a linear approximation according to a relationship of the shape
- C v denotes a tire-characteristic skew stiffness.
- Values of this slip resistance can be taken from the manufacturer's information or estimated or determined by suitable tests and / or adaptive measurement methods.
- the approximation according to the relationship (9) represents a sufficiently precise approximation, at least for small slip angles (up to 10 °), as the S ( ⁇ ) curve 51 of the diagram can be seen directly.
- the control deviation e is the difference of the output from the real vehicle model 37 ⁇ is -Wertsignals and ⁇ output from the reference model 28 is to -Wertsignals at the ⁇ - determined reference junction 52 and freely selectable in the controller according to the relation (6) having a principle regulator Gain k of the ⁇ controller 19 processed.
- the inputs required by the ⁇ controller for the sizes l h • m 'a y / L, the ratio J 2 / L, the float angle ß in the center of gravity of the vehicle and for the size l v • ⁇ / v x are from the real vehicle model 37 generated and supplied to the controller 19 "directly".
- the signal paths required in this regard are represented by a single signal flow arrow 54 in FIG. 1 for the sake of simplicity.
- the controller 22 provided for controlling the rear axle steering angle actuator 18 is designed as a float angle ( ⁇ h ) controller, which is based on a governing law of the form
- the starting point for the design of the controller is the plausible assumption that the temporal change in SS 11 the difference between the actual value Wegwin- kel-ß hist and the reference value h of the slip angle at the rear axle 26 of the vehicle is proportional;
- the one required by the ⁇ h controller 22 for evaluating the relationship (10) or the relationship (10 ') -Input is generated by the reference model 28 and fed "directly" to the controller 22, as represented schematically by the ⁇ signal path 56.
- the determination of the target value a hBoll of the slip angle o ⁇ on the rear axle 26 from the target value S bgoll of the lateral force on the rear axle 26 obtained by the float angle control on the rear axle 26 is carried out analogously to the type described with reference to the ⁇ -.- controller 19.
- Vehicle model 37 is generated and sent to controller 22 via signal paths which, for the sake of simplicity of illustration, are only represented by a single signal arrow 60.
- transverse dynamics control device 10 as an alternative to actuating the front axle steering angle actuator 17 with ⁇ vsoll output signals of the ⁇ controller 19, an actuation of the front axle steering angle actuator 17 with ⁇ vsoll output signals of the further controller 21 is provided, as by a selector switch 61 is shown schematically.
- This further controller 21 is designed in a functional analogy to the ß h controller 22 provided for controlling the rear axle steering angle actuator 18 as a float angle (ß v ) controller, which is based on a governing law of the form • m • v
- the ß VSDll input required by the ß v controller 21 is generated by the reference model 28 and, as shown schematically by the ß vsoll signal path 62, is fed "directly" to the ß v controller 21.
- the determination of target values ⁇ ,,, ... ⁇ of the slip angle ⁇ v on the front axle 24 from the target value S vsoll of the lateral force obtained by the float angle control on the front axle is carried out as explained on the basis of the description of the ⁇ controller 19, as is the determination of the target value ⁇ vsoll for the front axle steering angle ⁇ v to be set .
- the ⁇ controller 19 and the ß v controller 21 are designed so that the reaction behavior of the vehicle 11 is significant in that operating mode of the lateral dynamics control device 10 in which the front axle steering angle ⁇ v is set by means of the ⁇ controller 19 is different from that reaction behavior of the vehicle when the control device 10 operates in the operating mode in which the front axle steering angle ⁇ v is set by means of the ⁇ v controller 21.
- the vehicle 11 can thus be switched over by As a result, switch 61 can be set to two desired reaction modes, for example to "sporty", ie moderately oversteering, and to neutral cornering behavior.
- reaction - vehicle types
- reference model 28 can be set to selectively different ways of generating its setpoint output signals.
- individually assigned store observers are provided, the purpose of which is to record disturbance variables such as cross wind, road inclination and / or different adhesion factors on the two sides of the vehicle ( ⁇ -split ratios) and for control purposes in the sense of a disturbance variable to consider.
- the model observers are also intended to compensate for model errors which result from the fact that the vehicle model can only take reality into account approximately.
- the store observers 66 and 67 are, in general, designed as models of the controlled system which are implemented by electronic computers and which receive the same inputs, namely the setpoint output signals of the assigned controllers 19 and 22 as the assigned controlled systems and from them correspond to the controlled variables ⁇ and ß h Generate expenses, and from the comparison of their respective expenditures with the corresponding expenditures of the vehicle model 37 of the real vehicle, generate estimates ⁇ vh for the respective disturbance, by their
- ⁇ h denotes a deviation from the model relationship (13), which is due, among other things, to the linearization of the side force S h .
- ⁇ h k '• (ß hist - ß h ) (15) designed.
- k is a gain factor with which the difference ß ⁇ ,. - ß h is fed back into the observer model represented by the relationship (13 '), and with k' the gain factor with which the said difference is attributed to the model of the disturbance represented by the relationship (13 '').
- the actual value ß Hi6t is available as the output of the real vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01960665A EP1227965A1 (de) | 2000-08-16 | 2001-08-15 | Verfahren zur regelung der gier- und querdynamik bei einem strassenfahrzeug |
JP2002519250A JP2004505855A (ja) | 2000-08-16 | 2001-08-15 | 路上走行車においてヨー・ダイナミックスおよび横方向ダイナミックスを制御するための方法 |
US10/344,283 US6909957B2 (en) | 2000-08-16 | 2001-08-15 | Method for controlling yaw and transversal dynamics in a road vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10039782.4 | 2000-08-16 | ||
DE10039782A DE10039782A1 (de) | 2000-08-16 | 2000-08-16 | Verfahren zur Regelung der Gier-und Querdynamik bei einem Straßenfahrzeug |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002014137A1 true WO2002014137A1 (de) | 2002-02-21 |
Family
ID=7652447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2001/009411 WO2002014137A1 (de) | 2000-08-16 | 2001-08-15 | Verfahren zur regelung der gier- und querdynamik bei einem strassenfahrzeug |
Country Status (5)
Country | Link |
---|---|
US (1) | US6909957B2 (de) |
EP (1) | EP1227965A1 (de) |
JP (1) | JP2004505855A (de) |
DE (1) | DE10039782A1 (de) |
WO (1) | WO2002014137A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1464564A3 (de) * | 2003-04-02 | 2005-06-01 | Toyoda Koki Kabushiki Kaisha | Vorrichtung und Verfahren zur Regelung der Fahrzeugbewegung |
FR2864002A1 (fr) * | 2003-12-18 | 2005-06-24 | Renault Sas | Procede et systeme de commande du braquage de roue arriere directrice et vehicule correspondant |
FR2864003A1 (fr) * | 2003-12-18 | 2005-06-24 | Renault Sas | Procede et systeme de commande du braquage de roue arriere directrice et vehicule correspondant |
WO2005061305A1 (fr) * | 2003-12-18 | 2005-07-07 | Renault S.A.S. | Procede et systeme de commande du braquage de roue arriere directrice et vehicule correspondant |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10236734A1 (de) * | 2002-08-09 | 2004-02-12 | Bayerische Motoren Werke Ag | Verfahren zum Führen eines mehrspurigen Fahrzeugs auf einer Kurvenbahn |
DE10254392A1 (de) * | 2002-11-18 | 2004-05-27 | Volkswagen Ag | Verfahren und Vorrichtung zur Fahrdynamikregelung |
JP4003627B2 (ja) * | 2002-11-26 | 2007-11-07 | トヨタ自動車株式会社 | 車輌用操舵制御装置 |
DE10328979B4 (de) * | 2003-06-27 | 2021-07-22 | Robert Bosch Gmbh | Verfahren zur Koordination eines Fahrdynamikregelungssystems mit einem aktiven Normalkraftverstellsystem |
WO2005054040A1 (de) * | 2003-12-04 | 2005-06-16 | Continental Teves Ag & Co.Ohg | Verfahren und vorrichtung zum unterstützen eines fahrzeugbedieners beim stabilisieren eines fahrzeugs |
JP4140720B2 (ja) * | 2004-01-14 | 2008-08-27 | 三菱電機株式会社 | 車両挙動再現システム |
DE102004009467A1 (de) * | 2004-02-27 | 2005-09-15 | Daimlerchrysler Ag | Steuerungssystem für ein Fahrzeug |
DE102004009822A1 (de) * | 2004-02-28 | 2005-09-15 | Zf Lenksysteme Gmbh | Verfahren zum Betrieb eines Lenksystems mit Signalplausibilisierung |
US7099759B2 (en) * | 2004-03-30 | 2006-08-29 | General Motors Corporation | Method and apparatus for estimating steering behavior for integrated chassis control |
JP4638185B2 (ja) * | 2004-08-04 | 2011-02-23 | 富士重工業株式会社 | 車両の挙動制御装置 |
JP4480543B2 (ja) | 2004-11-01 | 2010-06-16 | 三菱電機株式会社 | 運転状況判定システム |
DE102004055856A1 (de) * | 2004-11-19 | 2006-05-24 | Daimlerchrysler Ag | Vorrichtung zur Schätzung der Schwerpunktlage eines Fahrzeugs |
US7416766B2 (en) * | 2005-08-16 | 2008-08-26 | S.C. Johnson & Son, Inc. | Bottles made from metallocene polypropylene for delivery of fragrances |
JP4301287B2 (ja) * | 2005-12-27 | 2009-07-22 | トヨタ自動車株式会社 | 車両用スパッツ装置 |
JP5011866B2 (ja) * | 2006-01-23 | 2012-08-29 | 日産自動車株式会社 | 横すべり角推定装置、自動車、及び横すべり角推定方法 |
DE102006009682A1 (de) * | 2006-03-02 | 2007-09-06 | Bayerische Motoren Werke Ag | Verfahren zum Bestimmen des Fahrzustands eines zweispurigen Fahrzeugs durch Schwimmwinkel-Schätzung |
WO2007125083A1 (de) * | 2006-04-27 | 2007-11-08 | Continental Teves Ag & Co. Ohg | Verfahren und vorrichtung zum ermitteln eines optimalen lenkwinkels in untersteuersituationen eines fahrzeugs |
DE102010017704B4 (de) * | 2010-07-02 | 2017-08-24 | Ford Global Technologies, Llc. | Fahrdynamikregler für ein Stabilitätssteuerungssystem eines Kraftfahrzeugs, sowie Verfahren zum Betreiben eines Stabilitätssteuerungssystems |
DE102010017703A1 (de) * | 2010-07-02 | 2012-01-05 | Ford Global Technologies, Llc. | Verfahren und Vorrichtung zur Fahrzeugsteuerung |
JP5919889B2 (ja) * | 2012-03-01 | 2016-05-18 | 株式会社ジェイテクト | 車両姿勢制御装置 |
DE102013110490A1 (de) | 2013-09-23 | 2015-03-26 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren und Vorrichtung zur Regelung der Gier- und Querdynamik eines Fahrzeugs |
DE102016206077A1 (de) * | 2016-04-12 | 2017-10-12 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Bestimmen einer sicherheitskritischen Gierbewegung eines Fahrzeugs |
CN107416021B (zh) * | 2017-06-19 | 2019-11-08 | 北京长城华冠汽车科技股份有限公司 | 车辆的四轮转向控制方法、装置及车辆 |
US11034359B2 (en) | 2018-11-29 | 2021-06-15 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Control device for a vehicle |
FR3102444B1 (fr) * | 2019-10-25 | 2021-10-08 | Safran Electronics & Defense | Procédé de commande d’un véhicule roulant en condition d’adhérence précaire |
CN113353079B (zh) * | 2020-03-05 | 2024-09-03 | 纳恩博(常州)科技有限公司 | 控制车辆转弯姿态的方法和装置以及车辆 |
CN118061984B (zh) * | 2024-04-22 | 2024-08-13 | 北京理工大学前沿技术研究院 | 一种无人驾驶车辆多级横摆运动控制方法、系统和设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3532247A1 (de) * | 1984-09-10 | 1986-03-20 | Nissan Motor Co., Ltd., Yokohama, Kanagawa | Lenksteuersystem fuer mit raedern versehene fahrzeuge |
DE3532222A1 (de) * | 1984-09-10 | 1986-03-20 | Nissan Motor Co., Ltd., Yokohama, Kanagawa | System zum steuern der lenkeigenschaften von mit raedern versehenen fahrzeugen |
US4767588A (en) * | 1985-04-13 | 1988-08-30 | Nissan Motor Co., Ltd. | Vehicle control system for controlling side slip angle and yaw rate gain |
DE4330055A1 (de) * | 1992-09-04 | 1994-03-10 | Mazda Motor | Kraftfahrzeug-Lenksystem |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06104455B2 (ja) * | 1985-03-15 | 1994-12-21 | 日産自動車株式会社 | 車両運動状態推定装置 |
US5208751A (en) * | 1988-04-19 | 1993-05-04 | Dr. Ing. H.C.F. Porsche Ag | Active four-wheel steering system for motor vehicles |
JP2623940B2 (ja) * | 1990-08-28 | 1997-06-25 | 日産自動車株式会社 | 車両の挙動制御装置 |
DE4127725A1 (de) * | 1991-08-22 | 1993-02-25 | Porsche Ag | Verfahren und vorrichtung zur minimierung des seitenwind-einflusses auf das fahrverhalten eines fahrzeugs |
DE4305155C2 (de) * | 1993-02-19 | 2002-05-23 | Bosch Gmbh Robert | Vorrichtung zur Regelung der Fahrdynamik |
DE4307420C1 (de) * | 1993-03-09 | 1994-04-28 | Deutsche Forsch Luft Raumfahrt | Verfahren zum Lenken eines Straßenfahrzeugs mit Vorderradlenkung |
JP3189610B2 (ja) * | 1995-02-20 | 2001-07-16 | トヨタ自動車株式会社 | 車両挙動制御装置 |
JP3463415B2 (ja) * | 1995-06-22 | 2003-11-05 | 日産自動車株式会社 | 車両のヨーイング挙動制御装置 |
-
2000
- 2000-08-16 DE DE10039782A patent/DE10039782A1/de not_active Withdrawn
-
2001
- 2001-08-15 WO PCT/EP2001/009411 patent/WO2002014137A1/de not_active Application Discontinuation
- 2001-08-15 US US10/344,283 patent/US6909957B2/en not_active Expired - Lifetime
- 2001-08-15 EP EP01960665A patent/EP1227965A1/de not_active Withdrawn
- 2001-08-15 JP JP2002519250A patent/JP2004505855A/ja not_active Ceased
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3532247A1 (de) * | 1984-09-10 | 1986-03-20 | Nissan Motor Co., Ltd., Yokohama, Kanagawa | Lenksteuersystem fuer mit raedern versehene fahrzeuge |
DE3532222A1 (de) * | 1984-09-10 | 1986-03-20 | Nissan Motor Co., Ltd., Yokohama, Kanagawa | System zum steuern der lenkeigenschaften von mit raedern versehenen fahrzeugen |
US4767588A (en) * | 1985-04-13 | 1988-08-30 | Nissan Motor Co., Ltd. | Vehicle control system for controlling side slip angle and yaw rate gain |
DE4330055A1 (de) * | 1992-09-04 | 1994-03-10 | Mazda Motor | Kraftfahrzeug-Lenksystem |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1464564A3 (de) * | 2003-04-02 | 2005-06-01 | Toyoda Koki Kabushiki Kaisha | Vorrichtung und Verfahren zur Regelung der Fahrzeugbewegung |
US7315773B2 (en) | 2003-04-02 | 2008-01-01 | Jtekt Corporation | Vehicle motion control method and vehicle motion control apparatus |
FR2864002A1 (fr) * | 2003-12-18 | 2005-06-24 | Renault Sas | Procede et systeme de commande du braquage de roue arriere directrice et vehicule correspondant |
FR2864003A1 (fr) * | 2003-12-18 | 2005-06-24 | Renault Sas | Procede et systeme de commande du braquage de roue arriere directrice et vehicule correspondant |
WO2005061305A1 (fr) * | 2003-12-18 | 2005-07-07 | Renault S.A.S. | Procede et systeme de commande du braquage de roue arriere directrice et vehicule correspondant |
WO2005061316A1 (fr) * | 2003-12-18 | 2005-07-07 | Renault S.A.S. | Procede et systeme de commande du braquage de roue arriere directrice et vehicule ainsi equipe |
WO2005061306A1 (fr) * | 2003-12-18 | 2005-07-07 | Renault S.A.S. | Procede et systeme de commande du braquage de roue arriere directrice et vehicule correspondant |
KR101139636B1 (ko) | 2003-12-18 | 2012-05-15 | 르노 에스.아.에스. | 조향 가능한 후륜 로크를 제어하는 방법 및 장치와 대응하는 차량 |
Also Published As
Publication number | Publication date |
---|---|
US6909957B2 (en) | 2005-06-21 |
EP1227965A1 (de) | 2002-08-07 |
DE10039782A1 (de) | 2002-02-28 |
JP2004505855A (ja) | 2004-02-26 |
US20040015284A1 (en) | 2004-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002014137A1 (de) | Verfahren zur regelung der gier- und querdynamik bei einem strassenfahrzeug | |
DE19812237C1 (de) | Verfahren zur Fahrdynamik-Regelung an einem Straßenfahrzeug | |
DE10340629B4 (de) | Steuersystem für ein Kraftfahrzeug | |
DE19926745B4 (de) | Hindernis-Ausweich-Steuerungssystem für ein Fahrzeug | |
DE60314199T2 (de) | System und Verfahren für die Anwendung der Absicht einer Fahrzeugbedienungsperson zum Abstimmen des Fahrzeugsteuerungssystems | |
DE3610461C2 (de) | Lenkeinrichtung für ein Fahrzeug | |
EP1000838B1 (de) | Verfahren zur Regelung der Querdynamik eines Fahrzeuges mit Vorderachs-Lenkung | |
DE60318674T2 (de) | Verfahren und Vorrichtung zur Fahrzeugstabilisierung | |
DE102005034650B4 (de) | Steuerungssystem, das eine aktive Hinterradlenkung für ein Fahrzeug bewirkt, unter Anwendung einer Schätzung von Fahrzeugdynamikparametern | |
EP2590850B1 (de) | Verfahren zur bestimmung einer zahnstangenkraft für eine lenkvorrichtung in einem fahrzeug | |
DE60319790T2 (de) | Verfahren und Vorrichtung zur Fahrzeugstabilisierung | |
EP2065291B1 (de) | Verfahren zum Betrieb einer Überlagerungslenkung für ein Kraftfahrzeug | |
DE10348738B4 (de) | Steuerungssystem für ein Kraftfahrzeug und Verfahren zum Steuern eines Kraftfahrzeugs | |
DE10157976A1 (de) | Fahrzeuganhängersteuersystem | |
EP1807300A1 (de) | Verfahren und vorrichtung zum unterstützen eines fahrzeusbedieners beim stabilisier eines fahrzeugs | |
WO2007107361A1 (de) | Verfahren sowie fahrmodussteuersystem zur optimalen einstellung eines mechatronischen kraftfahrzeug-chassis | |
DE19827882A1 (de) | Verfahren und Vorrichtung zur Stabilisierung eines Fahrzeugs | |
DE19827881A1 (de) | Verfahren und Vorrichtung zur Stabilisierung eines Fahrzeugs | |
DE69935379T2 (de) | Verfahren zur Schätzung der Fahrzeuggiergeschwindigkeit | |
DE102007038575A1 (de) | Verfahren zum Einstellen eines Lenkwinkels einer elektronisch gelenkten Achse eines Nutzfahrzeuges | |
DE102005018069B4 (de) | Steuerung für aktive Radlenkung | |
DE102010024171A1 (de) | Verfahren zur Einstellung eines Rückstellmomentes bei einem elektromechanischen Fahrzeuglenksystem | |
DE102011100428A1 (de) | Verfahren und System zum Einschätzen der Fahrzeugbewegung | |
DE102004042188B4 (de) | Fahrzeugbewegungssteuergerät | |
DE102019133917B4 (de) | Verfahren und Vorrichtung zur Steuerung einer Hinterachslenkung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001960665 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2002 519250 Kind code of ref document: A Format of ref document f/p: F |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: 2001960665 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10344283 Country of ref document: US |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001960665 Country of ref document: EP |