Nothing Special   »   [go: up one dir, main page]

WO1998037336A1 - Gleichlaufdrehgelenk - Google Patents

Gleichlaufdrehgelenk Download PDF

Info

Publication number
WO1998037336A1
WO1998037336A1 PCT/EP1998/000397 EP9800397W WO9837336A1 WO 1998037336 A1 WO1998037336 A1 WO 1998037336A1 EP 9800397 W EP9800397 W EP 9800397W WO 9837336 A1 WO9837336 A1 WO 9837336A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
joint part
sections
constant velocity
ball tracks
Prior art date
Application number
PCT/EP1998/000397
Other languages
English (en)
French (fr)
Other versions
WO1998037336B1 (de
Inventor
Peter Schwärzler
Friedhelm John
Original Assignee
GKN Löbro GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GKN Löbro GmbH filed Critical GKN Löbro GmbH
Priority to GB9918257A priority Critical patent/GB2337316B/en
Priority to JP53618798A priority patent/JP3489840B2/ja
Priority to BR9807711-2A priority patent/BR9807711A/pt
Priority to US09/367,965 priority patent/US6319133B1/en
Publication of WO1998037336A1 publication Critical patent/WO1998037336A1/de
Publication of WO1998037336B1 publication Critical patent/WO1998037336B1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/2237Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts where the grooves are composed of radii and adjoining straight lines, i.e. undercut free [UF] type joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/2233Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts where the track is made up of two curves with a point of inflexion in between, i.e. S-track joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22306Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts having counter tracks, i.e. ball track surfaces which diverge in opposite directions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S464/00Rotary shafts, gudgeons, housings, and flexible couplings for rotary shafts
    • Y10S464/904Homokinetic coupling
    • Y10S464/906Torque transmitted via radially spaced balls

Definitions

  • the invention relates to a constant velocity joint for torque transmission, with an outer joint part with outer ball tracks, an inner joint part with inner ball tracks, torque transmitting balls which are guided by pairs of outer and inner ball tracks lying in matching meridian planes, and a ball cage which receives the balls in circumferentially distributed windows and holds in a common plane and leads to joint bisection on the bisecting plane, in which the center lines of the outer and inner ball tracks are each composed of at least two adjoining differently curved sections.
  • Rzeppa fixed joints RF
  • UF undercut-free fixed joints
  • the bending angle is further limited by the thickness of the connecting shaft, which strikes an inner cone of the outer joint part when the inner joint part is deflected and prevents further deflection. It makes sense the dimensions of the connecting shaft thickness and the inner cone shape and length are matched to one another in such a way that the abovementioned stop of the connecting shaft coincides with the required safety distance of the contact point of the ball from the end edge of the track.
  • the object of the present invention is to provide a constant velocity universal joint of the type mentioned at the beginning, the performance of which is improved in such a way that an increase in the functional values or a reduction in installation space and mass is possible without the loss of the other parameters.
  • the center lines S of the ball tracks of the outer joint part each have convexly curved inner sections S, and towards the opening side each have oppositely concave curved end sections S 2 .
  • the inner sections S are at least partially curved around an articulation center C and the end sections S 2 lying towards the opening side are curved in the opposite direction outwards.
  • the distance of the center lines of the ball tracks in the outer joint part from the axis A A increases in the end sections S 2 towards the opening side of the outer joint part.
  • the shape of the outer joint part is thus characterized in that the ball tracks widen towards the opening side of the outer joint part at the end or move radially from one another.
  • the inner sections S each around a center point Z, are curved within the outer joint part; it can also be provided that the end sections S 2 each extend curved around a center point Z 2 outside the outer joint part.
  • Preferred developments of the invention can be found in the further subclaims, the content of which is expressly incorporated by reference here.
  • the ball tracks in the inner joint part expand or remove at the axially opposite end, i. H. towards the bottom of the outer joint part, also in an end section from each other, again with respect to the center lines, the distance from the axis A- of the inner joint part is thus greatest at the end mentioned.
  • Said end sections S 2 can run according to certain lines of curvature, for example as circular arcs; straight paths of the end sections at an angle to the longitudinal axis A A are also possible.
  • the effect brought about by the path of the invention is that, unlike prior art joints, in which the contact points of the balls in the paths lie approximately in radial planes through the corresponding centers of the balls, according to the present invention there is an axial distance between the points of contact of the balls in the tracks in Relation to radial planes comes about through the center of the ball, the contact points being offset in each case towards the center plane of the joint.
  • improvements can be achieved with regard to the ratio of the parameters joint length / joint mass, maximum flexion angle and thickness of the connecting shaft.
  • Fig. 1 shows an undercut-free constant velocity universal joint (UF joint) according to the prior art in longitudinal section;
  • FIG. 2 shows a web runout of the outer joint part of the joint according to FIG. 1;
  • Fig. 3 shows the outer joint part of the joint of Figure 1 with the connecting shaft bent
  • Fig. 4 shows a constant velocity joint according to the invention with undercut-free tracks (UF joint) in longitudinal section;
  • FIG. 5 shows a web runout of the outer joint part of the joint according to FIG. 4;
  • FIG. 6 shows the outer joint part of the joint according to FIG. 4 with the connecting shaft bent.
  • FIG. 1 shows a constant velocity universal joint of known type, which has an outer joint part 11, an inner joint part 12, torque-transmitting balls 13 and a ball cage 14.
  • the outer joint part 11 is on one side through a floor 15 completed, to which a pivot pin 16 connects.
  • the bottom 15 is opposite an opening 17 of the outer joint part 11 in the axial direction.
  • one of a plurality of circumferentially distributed outer ball tracks 18 is shown, which, viewed from the opening side 17, is designed without an undercut.
  • the inner joint part 12 is provided with a central opening 19 into which a connecting shaft 20 is inserted, which is axially secured via a locking ring 21.
  • One of several circumferentially distributed inner ball tracks 22 is shown on the inner joint part 12, which is also undercut-free when viewed from the opening side 17.
  • Outer ball tracks 18 and inner ball tracks 22 are assigned to one another in pairs and each receive the torque-transmitting balls 13 in pairs.
  • the balls 13 are held together by the ball cage 14 in one plane, in that the balls 13 are inserted into the cage window 23 in the central plane of the cage, which corresponds to the central plane E of the joint.
  • the joint center plane E there is also the center of the joint C, which is defined by the intersection of the axes A A , A- of the outer joint part and the inner joint part when the joint is bent.
  • an inner cone 24 is formed on the opening side 17, which forms a stop for the connecting shaft 20 of the inner joint part 12 in the event of bending and thereby limits the bending angle ⁇ of the joint, as will be shown below.
  • the outer joint part 11 is shown in fragments with an outer ball track 18.
  • the inner cone 24 can also be seen, which cuts off the outer ball track 18 on the opening side 17.
  • a ball 13 is shown in the ball track 18 in the position which it assumes when the inner joint part is bent to the outer joint part.
  • the maximum joint flexion angle ⁇ between the axes leads to a Bending angle of the cage relative to the outer joint part of ß / 2, which is shown.
  • the ball 13 is also led out of the central joint plane E by the angle ⁇ / 2.
  • the center M of the ball follows the dash-dotted center line of the outer ball track 18, which is offset by a circular arc S with the radius R, whose center Z on the axis A A with the offset 0, relative to the joint center plane E, and one parallel to the Axis A A tangent line G is defined.
  • the contact point B of the ball lies on the outer ball track 18 in a radial plane through the center of the ball M.
  • the contact point B has a minimum axial distance L which, in view of possible edge breakouts at the end of the track, is not less may be.
  • the distance of the contact point B from the joint center plane E is denoted by N.
  • FIG. 3 shows the joint flexion angle ⁇ between the axis A A of the outer joint part 11 and the axis A x of the inner joint part at the center of the joint C.
  • the connection shaft 20 is shown here, which comes into contact with the inner cone 24 in this position. This limitation of the bend to the angle ⁇ ensures that the minimum distance L of the contact point B from the track end edge of the ball track 18 is maintained.
  • FIG. 4 shows a constant-velocity rotary joint according to the invention, which has an outer joint part 31, an inner joint part 32, torque-transmitting balls 33 and a ball cage 34.
  • the outer joint part 31 is closed on one side by a base 35, to which a pivot pin 36 connects.
  • the floor 35 is opposite an opening 37 of the outer joint part 31 in the axial direction.
  • one of a plurality of circumferentially distributed outer ball tracks 38 is shown, which, viewed from the opening side 37, is designed without an undercut, without this being absolutely necessary.
  • the inner joint part 32 is provided with a central opening 39, into which a connecting shaft 40 is inserted, which is axially secured by a locking ring 41.
  • one of a plurality of circumferentially distributed inner ball tracks 42 is shown, which is also undercut-free, viewed from the opening side 37, with respect to the center plane E of the joint, running symmetrically to the outer ball track.
  • Outer ball tracks 38 and inner ball tracks 42 are assigned to one another in pairs and each receive the torque-transmitting balls 33 in pairs.
  • the balls 33 are inserted in the cage window 43 in the center plane of a ball cage 34, which corresponds to the center plane E of the joint, and are held together by the ball cage 34 in one plane.
  • the joint center plane E there is also the center of the joint C, which is defined by the intersection of the axes A A , A- of the outer joint part and the inner joint part when the joint is bent.
  • an inner cone 44 is formed on the opening side 37, which can form a stop for the connecting shaft 40 when bending.
  • the center lines of the ball tracks 38, 42 which run parallel to the respective track base and which intersect at the center of the ball 33 (not shown), have turning points. It is important that the outer ball tracks 38 move towards the opening side 37 from the longitudinal axis A A , z. B. by a center of curvature of the end portion of the center line of the outer ball tracks outside the outer joint part or this center line.
  • the inner ball tracks 42 move away from the longitudinal axis A- towards the bottom side 35, in that a center of curvature of the end section of the center line of the inner ball tracks lies outside the inner joint part or this center line.
  • the outer joint part 31 with the outer ball track 38 is shown in fragments.
  • the inner cone 44 can be seen which cuts off the outer ball track 38 on the opening side 37.
  • the ball 33 of the ball track 38 is shown in the position which it assumes when the inner joint part is bent relative to the outer joint part by the unchanged joint flexion angle ⁇ .
  • the joint flexion angle ⁇ between the axes which will be shown below, leads to a flexion angle of the cage relative to the outer joint part of ⁇ / 2, which is shown.
  • the center M of the ball follows the dash-dotted center line of the outer ball track 38, which here is defined by a first circular arc S, with the radius R, the center Z n of which is offset on the axis A A by the offset 0 Z1 with respect to the joint center plane E, and an adjoining second circular arc S 2 with the radius R 2 , the center Z 2 of which is offset on a straight line lying outside the joint with the distance 0 Y2 from the longitudinal axis A A by the offset 0 Z2 with respect to the joint center plane E.
  • FIG. 6 shows the joint flexion angle ⁇ already mentioned between the axis A A of the outer joint part 31 and the axis A- of the inner joint part 32.
  • connection shaft 40 is shown here, which, as already mentioned, has a distance to the inner cone 44 in this position due to the displacement of the inner cone. This results in the possibility of increasing the thickness of the connecting shaft 40 for increasing the torque capacity for an unchanged bending angle ⁇ . If, contrary to the illustration, the position of the inner cone is changed to a lesser extent and the thickness of the connecting shaft is retained, the deflection angle ß can be increased while maintaining a sufficient safety distance L of the contact point B from the end of the ball track.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Steering Controls (AREA)
  • Friction Gearing (AREA)
  • Automatic Assembly (AREA)
  • Retarders (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Gleichlaufdrehgelenk zur Drehmomentübertragung, mit einem Gelenkaussenteil (35) mit äusseren Kugelbahnen (38). Einem Gelenkinnenteil (32) mit inneren Kugelbahnen (42), drehmomentübertragenden Kugeln (33). Die von in übereinstimmenden Meridianebenen liegenden Paaren von äusseren und inneren Kugelbahnen (38, 42) geführt werden, und einem Kugelkäfig (34), der die Kugeln (33) in umfangsverteilten Fenstern (43) aufnimmt und in einer gemeinsamen Ebene hält und bei Gelenkbeugung auf die winkelhalbierende Ebene führt, bei dem die Mittellinien der äusseren und inneren Kugelbahnen (38, 42) jeweils aus zumindest zwei aneinander anschliessenden unterschiedlich gekrümmten Abschnitten zusammengesetzt sind, wobei die Mittellinien der Kugelbahnen (38) des Gelenkaussenteils (31) jeweils konvex gekrümmte Innenabschnitte (51) und zur Öffnungsseite hin, jeweils dazu entgegengesetzt, konkav gekrümmte Endabschnitte (52) haben.

Description

Gleichlaufdrehgelenk
Beschreibung
Die Erfindung betrifft ein Gleichlaufdrehgelenk zur Drehmomentübertragung, mit einem Gelenkaußenteil mit äußeren Kugelbahnen, einem Gelenkinnenteil mit inneren Kugelbahnen, drehmomentübertragenden Kugeln, die von in übereinstimmenden Meridianebenen liegenden Paaren von äußeren und inneren Kugelbahnen geführt werden, und einem Kugelkäfig, der die Kugeln in umfangsverteilten Fenstern aufnimmt und in einer gemeinsamen Ebene hält und bei Gelenkbeugung auf die Winkelhalbierende Ebene führt, bei dem die Mittellinien der äußeren und inneren Kugelbahnen jeweils aus zumindest zwei aneinander anschließenden unterschiedlich gekrümmten Abschnitten zusammengesetzt sind.
Gelenke dieser Art sind als Rzeppa Festgelenke (RF) bzw. hinter- schnittfreie Festgelenke (UF) bekannt. Letztere sind in der DE-PS 22 52 827 beschrieben. Für eine bestimmte Baugröße eines solchen Gelenkes, insbesondere im Hinblick auf seine axiale Länge, besteht eine wechselseitige Abhängigkeit zwischen dem maximalen Gelenkbeugewinkel und der Dicke der mit dem Gelenkinnenteil zu verbindenden Anschlußwelle. Der Beugewinkel wird zum einen dadurch begrenzt, daß ein Austritt der Kugeln aus den Bahnenden vermieden werden muß; genauer gesagt ist im Hinblick auf Kantenbelastungen an den Bahnenden noch ein ausreichender Sicherheitsabstand des Berührpunktes der Kugel in der Bahn von der Bahnendkante zu wahren. Der Beugewinkel wird weiterhin durch die Dicke der Anschlußwelle begrenzt, die bei Abbeugung des Gelenkinnenteils an einem Innenkonus des Gelenkaußenteils anschlägt und die weitere Abbeugung verhindert. Sinnvollerweise werden die Bemessungen von Anschlußwellendicke und Innenkonus- form und -läge so aufeinander abgestimmt, daß der genannte Anschlag der Anschlußwelle mit dem Erreichen des notwendigen Sicherheitsabstandes des Berührpunktes der Kugel von der Bahnendkante übereinstimmt.
Die Entwicklung im Automobilbau verlangt nach erhöhter Leistungsfähigkeit der genannten Gleichlaufdrehgelenke, wobei dies bedeutet, bei vorgegebenem Bauraum bzw. Masse die Haltbarkeit und den Funktionsumfang zu steigern, bzw. bei vorgegebener Haltbarkeit und Funktionsumfang den Bauraum bzw. die Masse zu reduzieren.
Bei den bekannten Gelenkkonstruktionen läßt sich ein Gewinn auf der einen Seite beispielsweise im Hinblick auf den Beugewinkel nur mit verringerter Haltbarkeit und Bruchfestigkeit erzielen.
Aufgabe der vorliegenden Erfindung ist es, ein Gleichlaufdrehge- lenk der eingangs genannten Art zu schaffen, dessen Leistungsfähigkeit derart verbessert ist, daß eine Steigerung der Funktionswerte bzw. eine Reduzierung von Bauraum und Masse ohne die Hinnahme von Einbußen der übrigen Parameter möglich wird.
Die Lösung hierfür besteht darin, daß die Mittellinien S der Kugelbahnen des Gelenkaußenteils jeweils konvex gekrümmte Innenabschnitte S, und zur Öffnungsseite hin jeweils dazu entgegengesetzt konkav gekrümmte Endabschnitte S2 haben. Dies bedeutet, daß die Innenabschnitte S. zumindest teilweise um einen Gelenkmittelpunkt C herum gekrümmt verlaufen und die zur Öffnungsseite hin gelegenen Endabschnitte S2 entgegengesetzt nach außen gekrümmt verlaufen. Allgemein ergibt sich, daß sich der Abstand der Mittellinien der Kugelbahnen im Gelenkaußenteil von der Achse AA in den Endabschnitten S2 in Richtung zur Öffnungsseite des Gelenkaußenteils hin vergrößert. Die Form des Gelenkaußenteils ist somit dadurch gekennzeichnet, daß die Kugelbahnen sich zur Öffnungsseite des Gelenkaußenteils hin am Ende erweitern bzw. radial voneinander entfernen.
Nach einer speziellen Ausbildung kann vorgesehen werden, daß die Innenabschnitte S, jeweils um einen Mittelpunkt Z, innerhalb des Gelenkaußenteils gekrümmt verlaufen; weiterhin kann vorgesehen werden, daß die Endabschnitte S2 jeweils um einen Mittelpunkt Z2 außerhalb des Gelenkaußenteils gekrümmt verlaufen. Bevorzugte Weiterbildungen der Erfindung finden sich in den weiteren Unteransprüchen, auf deren Inhalt hier ausdrücklich Bezug genommen wird.
Aufgrund allgemeiner Symmetriebedingungen erweitern sich bzw. entfernen sich die Kugelbahnen im Gelenkinnenteil am axial entgegengesetzten Ende, d. h. zum Boden des Gelenkaußenteils hin, in einem Endabschnitt ebenfalls voneinander, wiederum bezogen auf die Mittellinien, deren Abstand von der Achse A- des Gelenkinnenteils somit am genannten Ende am größten ist.
Die genannten Endabschnitte S2 können gemäß bestimmter Krümmungslinien, beispielsweise als Kreisbögen verlaufen; ebenso sind gerade Bahnverläufe der Endabschnitte unter einem Winkel zur Längsachse AA möglich.
Der durch den erfindungsgemäßen Bahnverlauf bewirkte Effekt besteht darin, daß anders als bei Gelenken nach dem Stand der Technik, bei denen die Berührpunkte der Kugeln in den Bahnen etwa in radialen Ebenen durch die entsprechenden Mittelpunkte der Kugeln liegen, gemäß der vorliegenden Erfindung ein axialer Abstand zwischen den Berührpunkten der Kugeln in den Bahnen in Bezug auf Radialebenen durch die Kugelmittelpunkte zustande kommt, wobei die Berührpunkte jeweils zur Gelenkmittelebene hin versetzt sind. Hierdurch können Verbesserungen bezüglich des Verhältnisses der Parameter Gelenklänge/Gelenkmasse, maximaler Beugewinkel und Dicke der Anschluβwelle erzielt werden. Zur näheren Erläuterung der erfindungsgemäßen Maßnahmen und Wirkungen muß auf die nachstehenden Zeichnungen Bezug genommen werden. Das erfindungsgemäße Gelenk ist im Ausführungsbeispiel als UF- Gelenk dargestellt; die Hinterschnittfreiheit der Kugelbahnen ist jedoch keine Notwendigkeit für die Verwirklichung der erfindungsgemäßen technischen Lehre.
Fig. 1 zeigt ein hinterschnittfreies Gleichlaufdrehgelenk (UF-Gelenk) nach dem Stand der Technik im Längsschnitt;
Fig. 2 zeigt einen Bahnauslauf des Gelenkaußenteils des Gelenks nach Figur 1 ;
Fig. 3 zeigt das Gelenkaußenteil des Gelenks nach Fig. 1 mit abgebeugter Anschlußwelle;
Fig. 4 zeigt ein erfindungsgemäßes Gleichlaufdrehgelenk mit hinterschnittfreien Bahnen (UF-Gelenk) im Längsschnitt;
Fig. 5 zeigt einen Bahnauslauf des Gelenkaußenteils des Gelenks nach Figur 4;
Fig. 6 zeigt das Gelenkaußenteil des Gelenks nach Fig. 4 mit abgebeugter Anschlußwelle.
In Figur 1 ist ein Gleichlaufdrehgelenk bekannter Art dargestellt, das über ein Gelenkaußenteil 11, ein Gelenkinnenteil 12, drehmomentübertragende Kugeln 13 und einen Kugelkäfig 14 verfügt. Das Gelenkaußenteil 11 ist einseitig durch einen Boden 15 abgeschlossen, an den sich ein Gelenkzapfen 16 anschließt. Dem Boden 15 liegt eine Öffnung 17 des Gelenkaußenteils 11 in axialer Richtung gegenüber. Im Gelenkaußenteil 11 ist eine von einer Mehrzahl von umfangsverteilten äußeren Kugelbahnen 18 dargestellt, die von der Öffnungsseite 17 her betrachtet hinter- schnittfrei ausgebildet ist. Das Gelenkinnenteil 12 ist mit einer Zentralöffnung 19 versehen, in die eine Anschlußwelle 20 eingesteckt ist, die über einen Sicherungsring 21 axial gesichert ist. Am Gelenkinnenteil 12 ist eine von mehreren umfangsverteilten inneren Kugelbahnen 22 dargestellt, die ebenfalls von der Öffnungsseite 17 her betrachtet hinterschnittfrei ist. Äußere Kugelbahnen 18 und innere Kugelbahnen 22 sind einander paarweise zugeordnet und nehmen jeweils paarweise gemeinsam die drehmomentübertragenden Kugeln 13 auf. Die Kugeln 13 werden vom Kugelkäfig 14 gemeinsam in einer Ebene gehalten, indem die Kugeln 13 in Käfigfenster 23 in der Mittelebene des Käfigs eingesetzt sind, die mit der Mittelebene E des Gelenks übereinstimmt.
In der Gelenkmittelebene E liegt auch der Gelenkmittelpunkt C, der durch den Schnittpunkt der Achsen AA, A- von Gelenkaußenteil und Gelenkinnenteil bei Abbeugung des Gelenks definiert ist. Im Gelenkaußenteil 11 ist auf der Öffnungsseite 17 ein Innenkonus 24 ausgebildet, der einen Anschlag für die Anschlußwelle 20 des Gelenkinnenteils 12 bei Abbeugung bildet und hiermit den Beugewinkel ß des Gelenks begrenzt, wie nachfolgend noch gezeigt wird.
In Figur 2 ist das Gelenkaußenteil 11 mit einer äußeren Kugelbahn 18 bruchstückhaft gezeigt. Hierbei ist noch der genannte Innenkonus 24 erkennbar, der die äußere Kugelbahn 18 auf der Öffnungsseite 17 abschneidet. Weiterhin ist eine Kugel 13 in der Kugelbahn 18 in der Position gezeigt, die sie bei äußerster Abwinkelung des Gelenkinnenteils gegenüber dem Gelenkaußenteil einnimmt. Der maximale Gelenkbeugewinkel ß zwischen den Achsen, der nachfolgend noch dargestellt wird, führt hierbei zu einem Beugewinkel des Käfigs gegenüber dem Gelenkaußenteil von ß/2 , der eingezeichnet ist. Mit der entsprechenden Abbeugung der Mittelebene des Käfigs gegenüber der Gelenkmittelebene E wird auch die Kugel 13 um den Winkel ß/2 aus der Gelenkmittelebene E herausgeführt. Der Mittelpunkt M der Kugel folgt hierbei der strichpunktierten Mittellinie der äußeren Kugelbahn 18, die durch einen Kreisbogen S mit dem Radius R, , dessen Zentrum Z auf der Achse AA mit dem Offset 0, gegenüber der Gelenkmittelebene E versetzt ist, und eine parallel zur Achse AA daran tangential anschließende Gerade G definiert ist. In der dargestellten Kugelposition liegt der Berührpunkt B der Kugel an der äußeren Kugelbahn 18 in einer Radialebene durch die Kugelmitte M. Gegenüber der durch den Innenkonus 24 definierten Bahnendkante hat der Berührpunkt B einen minimalen Axialabstand L, der im Hinblick auf mögliche Kantenausbrechungen am Bahnende nicht unterschritten werden darf. Der Abstand des Berührpunktes B von der Gelenkmittelebene E ist hierbei mit N bzeichnet.
In Figur 3 ist der bereits angesprochene Gelenkbeugewinkel ß zwischen der Achse AA des Gelenkaußenteils 11 und der Achse Ax des Gelenkinnenteils im Gelenkmittelpunkt C dargestellt. Stellvertretend für das Gelenkinnenteil wird hierbei die Anschlußwelle 20 gezeigt, die in dieser Position am Innenkonus 24 zur Anlage kommt. Diese Begrenzung der Abwinkelung auf den Winkel ß stellt das Einhalten des Mindestabstandes L des Berührpunktes B von der Bahnendkante der Kugelbahn 18 sicher.
In Figur 4 ist ein Gleichlaufdrehgelenk gemäß der Erfindung dargestellt, das über ein Gelenkaußenteil 31, ein Gelenkinnenteil 32, drehmomentübertragende Kugeln 33 und einen Kugelkäfig 34 verfügt. Das Gelenkaußenteil 31 ist einseitig durch einen Boden 35 abgeschlossen, an den sich ein Gelenkzapfen 36 anschließt. Dem Boden 35 liegt eine Öffnung 37 des Gelenkaußenteils 31 in axialer Richtung gegenüber. Im Gelenkaußenteil 31 ist eine von einer Mehrzahl von umfangsverteilten äußeren Kugelbahnen 38 dargestellt, die von der Öffnungsseite 37 her betrachtet hinterschnittfrei ausgebildet ist, ohne daß dies zwingend erforderlich ist. Das Gelenkinnenteil 32 ist mit einer Zentralöffnung 39 versehen, in die eine Anschlußwelle 40 eingesteckt ist, die über einen Sicherungsring 41 axial gesichert ist. Am Gelenkinnenteil 32 ist eine von mehreren umfangsverteilten inneren Kugelbahnen 42 dargestellt, die bezüglich der Gelenkmittelebene E symmetrisch zur äußeren Kugelbahn verlaufend ebenfalls von der Öffnungsseite 37 her betrachtet hinterschnittfrei ist. Äußere Kugelbahnen 38 und innere Kugelbahnen 42 sind einander paarweise zugeordnet und nehmen jeweils paarweise gemeinsam die drehmomentübertragenden Kugeln 33 auf. Die Kugeln 33 sind in Käfigfenster 43 in der Mittelebene eines Kugelkäfigs 34 eingesetzt, die mit der Mittelebene E des Gelenks übereinstimmt, und werden vom Kugelkäfig 34 gemeinsam in einer Ebene gehalten. In der Gelenkmittelebene E liegt auch der Gelenkmittelpunkt C, der durch den Schnittpunkt der Achsen AA, A- von Gelenkaußenteil und Gelenkinnenteil bei Abbeugung des Gelenks definiert ist. Im Gelenkaußenteil ist auf der Öffnungsseite 37 ein Innenkonus 44 ausgebildet, der einen Anschlag für die Anschlußwelle 40 bei Abbeugung bilden kann. Die Mittellinien der Kugelbahnen 38, 42, die parallel zum jeweiligen Bahngrund verlaufen und die sich im Mittelpunkt der Kugel 33 schneiden (nicht eingezeichnet) , weisen Wendepunkte auf. Hierbei ist erheblich, daß die äußeren Kugelbahnen 38 sich zur Öffnungsseite 37 hin von der Längsachse AA entfernen, z. B. indem ein Krümmungsmittelpunkt des Endabschnitts der Mittellinie der äußeren Kugelbahnen außerhalb des Gelenkaußenteils bzw. dieser Mittellinie liegt. Entsprechend ergibt sich, daß die inneren Kugelbahnen 42 sich zur Bodenseite 35 hin von der Längsachse A- entfernen, indem ein Krümmungsmittelpunkt des Endabschnitts der Mittellinie der inneren Kugelbahnen außerhalb des Gelenkinnenteils bzw. dieser Mittellinie liegt. In Figur 5 ist das Gelenkaußenteil 31 mit der äußeren Kugelbahn 38 bruchstückhaft gezeigt. Hierbei ist der genannte Innenkonus 44 erkennbar, der die äußere Kugelbahn 38 auf der Öffnungsseite 37 abschneidet. Weiterhin ist die Kugel 33 der Kugelbahn 38 in der Position gezeigt, die sie bei Abwinkelung des Gelenkinnenteils gegenüber dem Gelenkaußenteil um den unveränderten Gelenkbeugewinkel γ einnimmt. Der Gelenkbeugewinkel ß zwischen den Achsen, der nachfolgend noch dargestellt wird, führt hierbei zu einem Beugewinkel des Käfigs gegenüber dem Gelenkaußenteil von ß/2 , der eingezeichnet ist. Mit der entsprechenden Abbeugung der Mittelebene des Käfigs gegenüber der Gelenkmittelebene E wird auch die Kugel 33 um den Winkel ß/2 aus der Gelenkmittelebene E herausgeführt. Der Mittelpunkt M der Kugel folgt hierbei der strichpunktierten Mittellinie der äußeren Kugelbahn 38, die hierbei durch einen ersten Kreisbogen S, mit dem Radius R, , dessen Zentrum Zn auf der Achse AA um den Offset 0Z1 gegenüber der Gelenkmittelebene E versetzt ist, und einen daran anschließenden zweiten Kreisbogen S2 mit dem Radius R2, dessen Zentrum Z2 auf einer außerhalb des Gelenks liegenden Geraden mit dem Abstand 0Y2 zur Längsachse AA um den Offset 0Z2 gegenüber der Gelenkmittelebene E versetzt ist, definiert ist.
Der Kugelmittelpunkt M liegt hierbei bei unverändert angenommenem Beugewinkel ß geringfügig zur Gelenkmittelebene E hin verlagert. Demgegenüber ist jedoch der Berührpunkt B der Kugel 33 an die äußere Kugelbahn noch hinter den Kugelmittelpunkt M zurück zur Gelenkmittelebene E und zusätzlich radial nach außen gewandert. Dabei wird der Abstand N* des Berührpunktes B von der Gelenkmittelebene kleiner verglichen mit dem früheren Abstand N. Dies bedeutet, daß bei Wahrung des minimalen Axialabstandes L des Berührpunktes von der Bahnendkante die Lage des Innenkonus 44 zum Boden 15 hin versetzt werden kann, das heißt das Gelenkaußenteil ist verkürzt worden. In Figur 6 ist der bereits angesprochene Gelenkbeugewinkel ß zwischen der Achse AA des Gelenkaußenteils 31 und der Achse A- des Gelenkinnenteils 32 dargestellt. Stellvertretend für das Gelenkinnenteil wird hierbei die Anschlußwelle 40 gezeigt, die in dieser Position, wie bereits erwähnt, durch die Verschiebung des Innenkonus 44 einen Abstand zu diesem hat. Hieraus ergibt sich ohne weiteres die Möglichkeit, für einen unveränderten Beugewinkel ß die Dicke der Anschlußwelle 40 zur Steigerung der Drehmomentkapazität zu erhöhen. Wird abweichend von der Darstellung die Lage des Innenkonus in geringerem Maße verändert und die Dicke der Anschlußwelle beibehalten, kann unter Wahrung eines ausreichenden Sicherheitsabstandes L des Berührpunktes B vom Ende der Kugelbahn der Beugewinkel ß vergrößert werden.
Gleichlaufdrehgelenk
Bezugszeichenliste
11, 31 Gelenkaußenteil
12, 32 Gelenkinnenteil
13, 33 Kugel
14, 34 Kugelkäfig
15, 35 Boden
16, 36 Gelenkzapfen
17, 37 Gelenköffnung
18, 38 äußere Kugelbahn
19, 39 Innenöffnung
20, 40 Anschlußwelle
21 , 41 Sicherungsring
22, 42 innere Kugelbahn
23, 43 Käfigfenster
24, 44 Innenkonus

Claims

GleichlaufdrehgelenkPatentansprüche
1. Gleichlaufdrehgelenk zur Drehmomentübertragung, mit einem Gelenkaußenteil (31) mit äußeren Kugelbahnen (38), einem Gelenkinnenteil (32) mit inneren Kugelbahnen (42) , drehmomentübertragenden Kugeln (33) , die von in übereinstimmenden Meridianebenen liegenden Paaren von äußeren und inneren Kugelbahnen (38, 42) geführt werden, und einem Kugelkäfig (34), der die Kugeln (33) in umfangsverteilten Fenstern (43) aufnimmt und in einer gemeinsamen Ebene hält und bei Gelenkbeugung auf die Winkelhalbierende Ebene führt, bei dem die Mittellinien der äußeren und inneren Kugelbahnen (38, 42) jeweils aus zumindest zwei aneinander anschließenden unterschiedlich gekrümmten Abschnitten zusammengesetzt sind,
dadurch gekennzeichnet,
daß die Mittellinien S der Kugelbahnen (38) des Gelenkaußenteils (31) jeweils konvex gekrümmte Innenabschnitte S, und zur Öffnungsseite (37) hin, jeweils dazu entgegengesetzt, konkav gekrümmte Endabschnitte S2 haben.
2. Gleichlaufdrehgelenk nach Anspruch 1,
dadurch gekennzeichnet,
daß die Innenabschnitte S, jeweils um einen Mittelpunkt Z, innerhalb des Gelenkaußenteils (31) gekrümmt verlaufen.
3. Gleichlaufdrehgelenk nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die Endabschnitte S2 jeweils um einen Mittelpunkt Z2 außerhalb des Gelenkaußenteils (31) gekrümmt verlaufen.
4. Gleichlaufdrehgelenk nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß sich die Endabschnitte S2 der Mittellinien stetig an die Innenabschnitte S, der Mittellinien S anschließen.
5. Gleichlaufdrehgelenk nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet,
daß sich die Endabschnitte S2 der Mittellinien in einem Wendepunkt an die Innenabschnitte S- der Mittellinien anschließen.
6. Gleichlaufdrehgelenk nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet,
daß die Tangenten an die Mittellinien S im Wendepunkt achsparallel sind.
7. Gleichlaufdrehgelenk nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet,
daß die Endabschnitte S2 und Innenabschnitte S der Mittellinien Kreisbögen sind.
8. Gleichlaufdrehgelenk nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet,
daß der Krümmungsradius R2 der Endabschnitte S2 kleiner als der Krümmungsradius R, der Innenabschnitte S, der Mittellinien ist.
9. Gleichlaufdrehgelenk nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet,
daß sich die Innenabschnitte S der Kugelbahnen (38) im Gelenkaußenteil (31) um 10 ° über die Gelenkmittelebene E hinaus zur Öffnungsseite (37) des Gelenkaußenteils (31) hin erstrecken.
PCT/EP1998/000397 1997-02-21 1998-01-24 Gleichlaufdrehgelenk WO1998037336A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB9918257A GB2337316B (en) 1997-02-21 1998-01-24 Constant velocity universal joint
JP53618798A JP3489840B2 (ja) 1997-02-21 1998-01-24 等速自在継手
BR9807711-2A BR9807711A (pt) 1997-02-21 1998-01-24 Junta giratória de velocidade constante
US09/367,965 US6319133B1 (en) 1997-02-21 1998-01-24 Constant velocity universal joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19706864A DE19706864C1 (de) 1997-02-21 1997-02-21 Gleichlaufdrehgelenk
DE19706864.2 1997-02-21

Publications (2)

Publication Number Publication Date
WO1998037336A1 true WO1998037336A1 (de) 1998-08-27
WO1998037336B1 WO1998037336B1 (de) 1998-10-08

Family

ID=7821025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/000397 WO1998037336A1 (de) 1997-02-21 1998-01-24 Gleichlaufdrehgelenk

Country Status (10)

Country Link
US (1) US6319133B1 (de)
JP (1) JP3489840B2 (de)
KR (1) KR100336058B1 (de)
CN (1) CN1120308C (de)
BR (1) BR9807711A (de)
DE (1) DE19706864C1 (de)
ES (1) ES2142746B1 (de)
FR (1) FR2760056B1 (de)
GB (1) GB2337316B (de)
WO (1) WO1998037336A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105593549A (zh) * 2013-09-11 2016-05-18 怡来汽车零部件系统株式会社 恒速万向接头

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6431988B1 (en) * 1999-09-17 2002-08-13 Ntn Corporation Fixed type constant velocity joint and assembling method therefor
FR2799519A1 (fr) * 1999-10-08 2001-04-13 Pierre Guimbretiere Joint homocinetique fixe a billes
DE10060220C2 (de) * 2000-12-04 2002-11-28 Gkn Automotive Gmbh Gleichlauffestgelenk
DE10108365B4 (de) * 2001-02-21 2007-04-05 Gkn Driveline Deutschland Gmbh Gelenkaußenteil für ein Gleichlaufgelenk
JP4219583B2 (ja) * 2001-10-26 2009-02-04 Ntn株式会社 固定型等速自在継手
JP2003194089A (ja) * 2001-12-25 2003-07-09 Toyota Motor Corp 等速ジョイント
EP2239475B1 (de) * 2002-03-07 2012-02-29 Shaft-Form-Engineering GmbH Gegenbahngelenk
CN100419293C (zh) * 2002-03-14 2008-09-17 韩国德尔福汽车系统公司 汽车驱动轴用球窝接头
DE10248372B4 (de) * 2002-10-17 2009-06-25 Bf New Technologies Gmbh Gegenbahngelenk
DE10337612B4 (de) * 2002-11-15 2009-11-05 Gkn Driveline International Gmbh Gegenbahngelenk mit Steuerwinkelumkehr
DE10304156B4 (de) 2003-02-03 2011-10-20 Gkn Driveline International Gmbh Gegenbahngelenk mit verbessertem Käfig
DE102004006225B4 (de) * 2003-08-22 2009-11-19 Gkn Driveline Deutschland Gmbh Gleichlaufgelenk mit geringer Radialbewegung der Kugeln
ATE377160T1 (de) * 2003-08-22 2007-11-15 Gkn Driveline Deutschland Gmbh Gegenbahngelenk für grosse beugewinkel
EP1526297B1 (de) * 2003-10-24 2007-03-28 GKN Driveline International GmbH Gelenkaussenteil mit Abstützscheibe
JP2005337291A (ja) * 2004-05-24 2005-12-08 Ntn Corp Atv用ドライブシャフト
DE102004048079C5 (de) * 2004-10-02 2011-05-12 Gkn Driveline Deutschland Gmbh Verbindungsanordnung zwischen einem Wellenzapfen und einem Gleichlaufdrehgelenk mit Verschraubungshülse
BRPI0419184B1 (pt) * 2004-11-02 2018-07-31 Gkn Driveline International Gmbh Junta de velocidade constante, árvore de acionamento, e, veículo motorizado
JP2006300205A (ja) * 2005-04-20 2006-11-02 Toyota Motor Corp 等速継手およびそのアウターレース
ITMI20061838A1 (it) * 2005-10-05 2007-04-06 Shaft Form Engineering Gmbh Giunto omocinetico a sfere
WO2007079762A1 (de) * 2005-12-29 2007-07-19 Gkn Driveline International Gmbh Kugelgleichlauffestgelenk mit grossem beugewinkel
WO2007082354A1 (en) * 2006-01-23 2007-07-26 Damien Higgins Power take-off shaft with 80 degree angular displacement
WO2008018290A1 (fr) * 2006-08-07 2008-02-14 Ntn Corporation Joint universel à vitesse constante fixe
EP2233763B1 (de) * 2009-03-25 2012-11-07 Aktiebolaget SKF Gehäuse eines universellen Gleichlaufgelenkes
CN102049780B (zh) * 2009-10-27 2015-04-15 任首旺 点对点防振可动关节
US9163672B2 (en) 2011-05-30 2015-10-20 Ntn Corporation Fixed constant velocity universal joint
JP5936855B2 (ja) * 2011-12-15 2016-06-22 Ntn株式会社 固定式等速自在継手
DE102012102678B4 (de) * 2012-03-28 2014-02-13 Gkn Driveline International Gmbh Gleichlaufgelenk
DE102013103155B4 (de) 2013-03-27 2017-08-24 Gkn Driveline International Gmbh Gleichlaufgelenk in Form eines Gegenbahngelenks
JP6274167B2 (ja) * 2015-08-07 2018-02-07 トヨタ自動車株式会社 車両の等速ジョイント
CN105114479A (zh) * 2015-09-14 2015-12-02 温州聚泉汽车部件有限公司 一种等速万向节传动轴
DE102017118605B4 (de) 2017-08-15 2023-08-24 Neapco Intellectual Property Holdings, Llc Gleichlaufdrehgelenk
DE102019105195A1 (de) * 2019-02-28 2020-09-03 Neapco Intellectual Property Holdings, Llc Gleichlaufdrehgelenk
CN115139066B (zh) * 2022-09-01 2022-12-16 万向钱潮股份公司 万向节钟形壳加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2252827C3 (de) 1972-10-27 1976-01-08 Loehr & Bromkamp Gmbh, 6050 Offenbach Gleichlaufgelenk
DE4208786C1 (en) * 1992-03-19 1993-07-08 Loehr & Bromkamp Gmbh, 6050 Offenbach, De Synchronised fixed joint assembly - has guide surfaces on inner joint section and guide element, with centres on joint movement centre
DE4302432A1 (en) * 1992-04-07 1993-08-19 Gkn Automotive Ag Clockwise rotary joint with deep drawn sheet steel outer part - has radially outwardly pointing collar like flange on open side of cavity of outer part and is enclosed by thin walled ring
DE4230639C1 (de) * 1992-09-12 1993-10-07 Loehr & Bromkamp Gmbh Kugelgleichlaufdrehgelenk

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2717936C3 (de) * 1977-04-22 1979-12-20 Uni-Cardan Ag, 5200 Siegen Gelenkwelle
JPS54125342A (en) 1978-03-24 1979-09-28 Ntn Toyo Bearing Co Ltd Identical-speed universal joint
DE3206127C2 (de) * 1982-02-20 1984-03-01 Uni-Cardan Ag, 5200 Siegburg Dichtungsmanschette
US4459122A (en) * 1982-03-24 1984-07-10 General Motors Corporation Two ball universal joint
JPH07317791A (ja) * 1994-03-30 1995-12-08 Toyoda Mach Works Ltd 等速ジョイント

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2252827C3 (de) 1972-10-27 1976-01-08 Loehr & Bromkamp Gmbh, 6050 Offenbach Gleichlaufgelenk
DE4208786C1 (en) * 1992-03-19 1993-07-08 Loehr & Bromkamp Gmbh, 6050 Offenbach, De Synchronised fixed joint assembly - has guide surfaces on inner joint section and guide element, with centres on joint movement centre
DE4302432A1 (en) * 1992-04-07 1993-08-19 Gkn Automotive Ag Clockwise rotary joint with deep drawn sheet steel outer part - has radially outwardly pointing collar like flange on open side of cavity of outer part and is enclosed by thin walled ring
DE4230639C1 (de) * 1992-09-12 1993-10-07 Loehr & Bromkamp Gmbh Kugelgleichlaufdrehgelenk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105593549A (zh) * 2013-09-11 2016-05-18 怡来汽车零部件系统株式会社 恒速万向接头

Also Published As

Publication number Publication date
DE19706864C1 (de) 1998-06-25
JP2000509799A (ja) 2000-08-02
ES2142746A1 (es) 2000-04-16
BR9807711A (pt) 2000-02-15
CN1120308C (zh) 2003-09-03
KR20000075495A (ko) 2000-12-15
GB9918257D0 (en) 1999-10-06
US6319133B1 (en) 2001-11-20
FR2760056A1 (fr) 1998-08-28
CN1248316A (zh) 2000-03-22
ES2142746B1 (es) 2000-12-01
GB2337316A (en) 1999-11-17
GB2337316B (en) 2000-12-06
KR100336058B1 (ko) 2002-05-10
JP3489840B2 (ja) 2004-01-26
FR2760056B1 (fr) 1999-06-04

Similar Documents

Publication Publication Date Title
WO1998037336A1 (de) Gleichlaufdrehgelenk
DE10060120B4 (de) Kugelgleichlaufgelenk als Gegenbahngelenk
EP2239477B1 (de) Gegenbahngelenk mit Bahnwendepunkt
DE2252827B2 (de) Gleichlaufgelenk
DE112007003190B4 (de) Gelenkanordnung mit Käfig- und Laufbahnversatz
DE19756768A1 (de) Gleichlaufgelenkwelle mit zwei Festgelenken und separater Verschiebung
DE10060220A1 (de) Gleichlauffestgelenk
DE69703632T2 (de) Homokinetisches Kugelgelenk
DE102004006225B4 (de) Gleichlaufgelenk mit geringer Radialbewegung der Kugeln
EP1656509B1 (de) Gegenbahngelenk für grosse beugewinkel
DE3925857A1 (de) Gleichlaufdrehgelenk
EP0577830A1 (de) Kugelgleichlaufdrehgelenk mit käfigsicherungselementen.
DE102012102678B4 (de) Gleichlaufgelenk
EP1896742B1 (de) Gleichlauffestgelenk
DE19941142A1 (de) Kugelgleichlaufdrehgelenk
EP1966500B1 (de) Kugelgleichlauffestgelenk mit grossem beugewinkel
WO2007028436A1 (de) Gelenkwelle, umfassend ein gegenbahngelenk mit begrenzter axialverschiebung
EP1299653A1 (de) Kugelgleichlauffestgelenk mit kugelpaaren, deren bahnen in symmetrischen ebenen liegen
DE3700868C1 (en) Constant-velocity fixed joint
DE10220715B4 (de) Seitenwelle mit einem Gegenbahngelenk mit gleicher Orientierung von gegenüberliegenden Bahnpaaren
DE3819528C1 (de)
EP3818276A1 (de) Gleichlaufgelenk
DE10253627A1 (de) Kugelkäfig für axial zu verbauende Kugelgleichlaufdrehgelenke
DE102017118605B4 (de) Gleichlaufdrehgelenk
EP3818275B1 (de) Gleichlaufgelenk

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98802723.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN GB JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 9918257

Country of ref document: GB

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1998 536187

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997007554

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09367965

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019997007554

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997007554

Country of ref document: KR