Nothing Special   »   [go: up one dir, main page]

US20170355743A1 - Insulin receptor partial agonists - Google Patents

Insulin receptor partial agonists Download PDF

Info

Publication number
US20170355743A1
US20170355743A1 US15/527,363 US201515527363A US2017355743A1 US 20170355743 A1 US20170355743 A1 US 20170355743A1 US 201515527363 A US201515527363 A US 201515527363A US 2017355743 A1 US2017355743 A1 US 2017355743A1
Authority
US
United States
Prior art keywords
insulin
linker
group
chain
moiety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/527,363
Other languages
English (en)
Inventor
Songnian Lin
Lin Yan
Pei Huo
Dmitri Pissarnitski
Danqing Feng
Ravi Nargund
Yuping Zhu
Ahmet Kekec
Christina B. Madsen-Duggan
Zhi-Cai Shi
Zhicai Wu
Yingjun Mu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Sharp and Dohme LLC
Original Assignee
Merck Sharp and Dohme LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Sharp and Dohme LLC filed Critical Merck Sharp and Dohme LLC
Priority to US15/527,363 priority Critical patent/US20170355743A1/en
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHU, YUPING, FENG, DANQING, HUO, PEI, KEKEC, AHMET, LIN, SONGNIAN, MADSEN-DUGGAN, CHRISTINA B., MU, YINGJUN, NARGUND, RAVI, PISSARNITSKI, DMITRI, SHI, ZHI-CAI, WU, ZHICAI, YAN, LIN
Publication of US20170355743A1 publication Critical patent/US20170355743A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to insulin dimers and insulin analog dimers that act as partial agonists at the insulin receptor.
  • Insulin is an essential therapy for type 1 diabetes mellitus (T1DM) patients and many type 2 mellitus diabetics (T2DMs), prescribed to close to one third of U.S. patients among all anti-diabetic drug users in the past decade.
  • T1DM type 1 diabetes mellitus
  • T2DMs type 2 mellitus diabetics
  • the worldwide market for insulins was US$20.4 billion in 2013 and is growing at a faster rate than all other anti-diabetic agents combined.
  • challenges of current insulin therapies including narrow TI to hypoglycemia and body weight gain, limit their wider adoption and potential for patients to achieve ideal glycemic control.
  • the pancreas In addition to prandial insulin secretion in response to meals, the pancreas releases insulin at a “basal” rate, governed largely by plasma glucose levels to maintain appropriate fasting glucose regulation. This is achieved mainly by controlling hepatic glucose release, through endogenous insulin's hepato-preferring action.
  • Modern insulin analogs include rapid acting and basal insulins, as well as mixtures of these two. Rapid-acting insulin analogs (RAA) are developed to control post-prandial hyperglycemia while insulins with extended duration of action regulate basal glucose levels. Long-acting insulins are used by all T1DM (in combination with prandial injections) and the majority of T2DM patients start their insulin therapy from a basal product. Basal insulin consumption is growing rapidly as the worldwide diabetes population (particularly T2DM) soars.
  • hypoglycemia remains a key medical risk with huge burden on patients and causes significant morbidity and mortality.
  • the present invention provides compounds comprising to two insulin molecules covalently linked to form an insulin molecule dimer that may activate the insulin receptor with regular insulin-like potency but with reduced maximum activity.
  • These compounds are insulin receptor partial agonists (IPRAs): they behave like other insulin analogs to lower glucose effectively but with lower risk of hypoglycemia.
  • the IPRAs of the present invention may lower glucose effectively with reduced risk of hypoglycemia in diabetic minipig and has the property of a once daily (QD) basal insulin.
  • QD once daily
  • the improved TI may empower practitioners to more aggressively dose IRPAs of the present invention to achieve target goals for control of fasting glucose.
  • Tight control of fasting glucose and HbA1c by an IRPA may allow it to serve as 1) a stand-alone long-acting insulin with an enhanced efficacy and safety profile in T2DM and 2) an improved foundational basal insulin in T1DM (and some T2DM) for use with additional prandial rapid-acting insulin analogs (RAA) doses.
  • RAA rapid-acting insulin analogs
  • the present invention provides an insulin receptor partial agonist or insulin dimer comprising a first insulin or insulin analog heterodimer and a second insulin or insulin analog heterodimer each heterodimer including an A-chain polypeptide and a B-chain polypeptide, wherein the A-chain polypeptide and the B-chain polypeptide are linked together through interchain disulfide bonds; wherein the first and second insulin or insulin analog heterodimers are covalently linked together through a linking moiety joining the side chain of an amino acid at or near the carboxy terminus of the two respective B-chain polypeptides; and wherein at least one amino terminus of the A-chain polypeptides and the B-chain polypeptides is covalently linked to a substituent, with the proviso that the linking moiety does not include a disulfide bond.
  • at least the amino terminus of the A-chain polypeptide and the B-chain polypeptide of the first insulin or insulin analog are covalently linked to a substituent.
  • each A-chain polypeptide and each B-chain polypeptide is covalently linked to a substituent.
  • the amino terminus of the A-chain polypeptide and the B-chain polypeptide of the first insulin or insulin analog and the amino terminus of the A-chain polypeptide and B-chain polypeptide of the second insulin or insulin analog are each covalently linked to a substituent.
  • the substituent on the amino termini of the A-chain and B-chain polypeptides of the first insulin or insulin analog may be the same as the substituent on the amino termini of the A-chain and B-chain polypeptides of the second insulin or insulin analog.
  • the substituent on the amino termini of the A-chain and B-chain polypeptides of the first insulin or insulin analog may be different from the substituent on the amino termini of the A-chain and B-chain polypeptides of the second insulin or insulin analog.
  • the linking moiety covalently links the first insulin or insulin analog heterodimer and the second insulin or insulin analog heterodimer via the epsilon amino group of a lysine residue at or near the carboxy terminus of their respective B-chain polypeptides.
  • the substituent has a general formula RC(O)—, where R can be R′CH2, R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, PEG, saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl , carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • the substituent is selected from the group consisting of acetyl, phenylacetyl , carbamoyl, N-alkyl carbamoyl, isobutyl, methoxy acetyl, glycine, aminoethylglucose (AEG), AEG-C6, PEG1, PEG2, N-dimethyl, and alkoxycarbonyl.
  • each A-chain polypeptide independently comprises the amino acid sequence GX 2 X 3 EQCCX 8 SICSLYQLX 17 NX 19 CX 23 (SEQ ID NO:3) and each B-chain polypeptide independently comprises the amino acid sequence X 25 LCGX 29 X 30 LVEALYLVCGERGFX27YTX 31 X 32 (SEQ ID NO:4) or X 22 VNQX 25 X 26 CGX 29 X 30 LVEALYLVCGERGFX 27 YTX 31 X 32 X 33 X 34 X 35 (SEQ ID NO:5) wherein X 2 is isoleucine or threonine; X 3 is valine, glycine, or leucine; X 8 is threonine or histidine; X 17 is glutamic acid or glutamine; X 19 is tyrosine, 4-methoxy-phenylalanine, alanine, or 4-amino pheny
  • the first and second insulins or insulin analogs are independently native human insulin, insulin lispro, insulin as part, desB30 insulin, or insulin glargine.
  • the linking moiety may be an optionally substituted group selected from the group consisting of acyl, aliphatic, heteroaliphatic, aryl, heteroaryl, and heterocyclic.
  • the linking moiety may be a bivalent, straight or branched, saturated or unsaturated, optionally substituted C1-C20 hydrocarbon chain wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R)—, —C(O)—, C(O)O—, OC(O)—, —N(R)C(O)—, —C(O)N(R)—, —S(O)—, —S(O) 2 —, —N(R)SO 2 —, SO 2 N(R)—, a heterocyclic group, an aryl group, or a heteroaryl group, wherein each occurrence of R is independently hydrogen, a suitable protecting group, an acyl, aliphatic, heteroaliphatic,
  • C2 oxalyl
  • C4 succinyl
  • C6 adipoyl
  • C8 suberyol
  • decanedioyl (C10) moiety a dodecanedioyl (C12) moiety, a tetradecanedioy
  • the present invention further provides an insulin receptor partial agonist or insulin dimer comprising the formula
  • D 1 and D 2 are each independently an insulin or insulin analog polypeptide, wherein each insulin polypeptide is a heterodimer comprising an A-chain polypeptide and a B-chain polypeptide linked together through interchain disulfide bonds;
  • L is a linking moiety wherein one end of the linker moiety is attached to an amino acid residue at or near the carboxyl group of D 1 and the other end of the linker moiety is attached to an amino acid residue at or near the carboxyl end of D 2 with the proviso that L does not include a disulfide linkage; and wherein the first and second insulin or insulin analog polypeptides include a substituent attached to the amino terminus of the A-chain polypeptide and the B-chain polypeptide.
  • D 1 and D 2 are the same or wherein D 1 and D 2 are different.
  • the linking moiety covalently links D 1 and D 2 via the epsilon amino group of a lysine residue at or near the carboxy terminus of D 1 and D 2 .
  • the substituent has a general formula RC(O)—, where R can be R′CH2, R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, PEG, saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • the substituent is selected from the group consisting of acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, isobutyl, methoxy acetyl, glycine, aminoethylglucose (AEG), AEG-C6, PEG1, PEG2, N-dimethyl, and alkoxycarbonyl.
  • each A-chain polypeptide independently comprises the amino acid sequence GX 2 X 3 EQCCX 8 SICSLYQLX 17 NX 19 CX 23 (SEQ ID NO:3) and each B-chain polypeptide independently comprises the amino acid sequence X 25 LCGX 29 X 30 LVEALYLVCGERGFX27YTX 31 X 32 (SEQ ID NO:4) or X 22 VNQX 25 X 26 CGX 29 X 30 LVEALYLVCGERGFX 27 YTX 31 X 32 X 33 X 34 X 35 (SEQ ID NO:5) wherein X 2 is isoleucine or threonine; X 3 is valine, glycine, or leucine; X 8 is threonine or histidine; X 17 is glutamic acid or glutamine; X 19 is tyrosine, 4-methoxy-phenylalanine, alanine, or 4-amino pheny
  • D 1 and D 2 are independently native human insulin, insulin lispro, insulin aspart, desB30 insulin, or insulin glargine.
  • the linking moiety may be an optionally substituted group selected from the group consisting of acyl, aliphatic, heteroaliphatic, aryl, heteroaryl, and heterocyclic.
  • the linking moiety may be a bivalent, straight or branched, saturated or unsaturated, optionally substituted C1-C20 hydrocarbon chain wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R)—, —C(O)—, C(O)O—, OC(O)—, —N(R)C(O)—, —C(O)N(R)—, —S(O)—, —S(O) 2 —, —N(R)SO 2 —, SO 2 N(R)—, a heterocyclic group, an aryl group, or a heteroaryl group, wherein each occurrence of R is independently hydrogen, a suitable protecting group, an acyl, aliphatic, heteroaliphatic,
  • the linking moiety is an acyl moiety, —C(O)RC(O)—, where R is alkyl chain, poly(ethylene glycol) (PEG) chain, amide-containing chain, triazole(s)-containing chain, cyclooctyne-containing moiety, a substituted acyl chain, or a polyethylene glycol (PEG) chain.
  • C2 oxalyl
  • C4 succinyl
  • C6 adipoyl
  • C8 suberyol
  • decanedioyl (C10) moiety a dodecanedioyl (C12) moiety, a tetradecanedioy
  • compositions comprising any one of the aforementioned insulin receptor partial agonists or insulin dimer and a pharmaceutically acceptable carrier.
  • the present invention further provides an insulin receptor partial agonist or insulin dimer comprising a first insulin or insulin analog heterodimer and a second insulin or insulin analog heterodimer each heterodimer including an A-chain polypeptide and a B-chain polypeptide, wherein the A-chain polypeptide and the B-chain polypeptide are linked together through interchain disulfide bonds; wherein the first and second insulin or insulin analog heterodimers are covalently linked together through a linking moiety joining the side chain of an amino acid at or near the carboxy terminus of the two respective B-chain polypeptides; and optionally wherein the amino terminus of at least one of the A-chain polypeptides and the B-chain polypeptides of the first insulin polypeptide or second insulin polypeptide is covalently linked to a substituent, with the proviso that (1) the linking moiety does not include a disulfide bond and (2) when the insulin or insulin analog is not a human insulin or insulin analog and the amino terminus of the A-chain polypeptide and the
  • the first and second insulin or insulin analog heterodimers are the same or wherein the first and second insulin or insulin analog heterodimers are different.
  • the linking moiety covalently links the first insulin or insulin analog heterodimer and the second insulin or insulin analog heterodimer via the epsilon amino group of a lysine residue at or near the carboxy terminus of their respective B-chain polypeptides.
  • the substituent has a general formula RC(O)—, where R can be R′CH2, R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, PEG, saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • the substituent is selected from the group consisting of acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, isobutyl, methoxy acetyl, glycine, aminoethylglucose (AEG), AEG-C6, PEG1, PEG2, N-dimethyl, and alkoxycarbonyl.
  • the first and second insulins or insulin analogs are independently native human insulin, insulin lispro, insulin aspart, desB30 insulin, or insulin glargine.
  • each A-chain polypeptide independently comprises the amino acid sequence GX 2 X 3 EQCCX 8 SICSLYQLX 17 NX 19 CX 23 (SEQ ID NO:3) and each B-chain polypeptide independently comprises the amino acid sequence X 25 LCGX 29 X 30 LVEALYLVCGERGFX 27 YTX 31 X 32 (SEQ ID NO:4) or X 22 VNQX 25 X 26 CGX 29 X 30 LVEALYLVCGERGFX 27 YTX 31 X 32 X 33 X 34 X 35 (SEQ ID NO:5) wherein X 2 is isoleucine or threonine; X 3 is valine, glycine, or leucine; X 8 is threonine or histidine; X 17 is glutamic acid or glutamine; X 19 is tyrosine, 4-methoxy-phenylalanine, alanine, or 4-amino phen
  • the linking moiety may be an optionally substituted group selected from the group consisting of acyl, aliphatic, heteroaliphatic, aryl, heteroaryl, and heterocyclic.
  • the linking moiety may be a bivalent, straight or branched, saturated or unsaturated, optionally substituted C1-C20 hydrocarbon chain wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R)—, —C(O)—, C(O)O—, OC(O)—, —N(R)C(O)—, —C(O)N(R)—, —S(O)—, —S(O) 2 —, —N(R)SO 2 —, SO 2 N(R)—, a heterocyclic group, an aryl group, or a heteroaryl group, wherein each occurrence of R is independently hydrogen, a suitable protecting group, an acyl, aliphatic, heteroaliphatic,
  • the linking moiety is an acyl moiety, —C(O)RC(O)—, where R is alkyl chain, poly(ethylene glycol) (PEG) chain, amide-containing chain, triazole(s)-containing chain, cyclooctyne-containing moiety, a substituted acyl chain, or a polyethylene glycol (PEG) chain.
  • the linking moiety is a C2-C20 acyl moiety.
  • C2 oxalyl
  • C4 succinyl
  • C6 adipoyl
  • C8 suberyol
  • decanedioyl (C10) moiety a dodecanedioyl (C12) moiety, a tetradecanedioy
  • compositions comprising any one of the aforementioned insulin receptor partial agonists or insulin dimers and a pharmaceutically acceptable carrier.
  • the present invention further provides an insulin receptor partial agonist or insulin dimer comprising the formula
  • D 1 and D 2 are each independently an insulin or insulin analog polypeptide, wherein each insulin polypeptide is a heterodimer comprising an A-chain polypeptide and a B-chain polypeptide linked together through interchain disulfide bonds;
  • L is a linking moiety wherein one end of the linker moiety is attached to an amino acid residue at or near the carboxyl group of D 1 and the other end of the linker moiety is attached to an amino acid residue at or near the carboxyl end of D 2 with the proviso that L does not include a disulfide linkage; and optionally, wherein at least one of D 1 or D 2 includes a substituent attached to the amino terminus of the A-chain polypeptide or the B-chain polypeptide of D 1 or D 2 ; with the proviso that (1) the linking moiety does not include a disulfide bond and (2) when the amino terminus of the A-chain polypeptide and the B-chain polypeptide do not include a substituent then the linking moiety is not an
  • D 1 and D 2 are the same or wherein D 1 and D 2 are different.
  • the linking moiety covalently links D 1 and D 2 via the epsilon amino group of a lysine residue at or near the carboxy terminus of D 1 and D 2 .
  • the substituent has a general formula RC(O)—, where R can be R′CH2, R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, PEG, saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • the substituent is selected from the group consisting of acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, isobutyl, methoxy acetyl, glycine, aminoethylglucose (AEG), AEG-C6, PEG1, PEG2, N-dimethyl, and alkoxycarbonyl.
  • D 1 and D 2 are independently native human insulin, insulin lispro, insulin aspart, desB30 insulin, or insulin glargine.
  • each A-chain polypeptide independently comprises the amino acid sequence GX 2 X 3 EQCCX 8 SICSLYQLX 17 NX 19 CX 23 (SEQ ID NO:3) and each B-chain polypeptide independently comprises the amino acid sequence X 25 LCGX 29 X 30 LVEALYLVCGERGFX27YTX 31 X 32 (SEQ ID NO:4) or X 22 VNQX 25 X 26 CGX 29 X 30 LVEALYLVCGERGFX 27 YTX 31 X 32 X 33 X 34 X 35 (SEQ ID NO:5) wherein X 2 is isoleucine or threonine; X 3 is valine, glycine, or leucine; X 8 is threonine or histidine; X 17 is glutamic acid or glutamine; X 19 is tyrosine, 4-methoxy-phenylalanine, alanine, or 4-amino pheny
  • the linking moiety may be an optionally substituted group selected from the group consisting of acyl, aliphatic, heteroaliphatic, aryl, heteroaryl, and heterocyclic.
  • the linking moiety may be a bivalent, straight or branched, saturated or unsaturated, optionally substituted C1-C20 hydrocarbon chain wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R)—, —C(O)—, C(O)O—, OC(O)—, —N(R)C(O)—, —C(O)N(R)—, —S(O)—, —S(O) 2 —, —N(R)SO 2 —, SO 2 N(R)—, a heterocyclic group, an aryl group, or a heteroaryl group, wherein each occurrence of R is independently hydrogen, a suitable protecting group, an acyl, aliphatic, heteroaliphatic,
  • the linking moiety is an acyl moiety, —C(O)RC(O)—, where R is alkyl chain, poly(ethylene glycol) (PEG) chain, amide-containing chain, triazole(s)-containing chain, cyclooctyne-containing moiety, a substituted acyl chain, or a polyethylene glycol (PEG) chain.
  • the linking moiety is a C2-C20 acyl moiety.
  • C2 oxalyl
  • C4 succinyl
  • C6 adipoyl
  • C8 suberyol
  • decanedioyl (C10) moiety a dodecanedioyl (C12) moiety, a tetradecanedioy
  • the present invention further provides an insulin analog dimer comprising:
  • the first and second insulin or insulin analog heterodimers are the same or wherein the first and second insulin or insulin analog heterodimers are different.
  • the linking moiety covalently links the first insulin or insulin analog heterodimer and the second insulin or insulin analog heterodimer via the epsilon amino group of a lysine residue at or near the carboxy terminus of their respective B-chain polypeptides.
  • the substituent has a general formula RC(O)—, where R can be R′CH2, R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, PEG, saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • the substituent is selected from the group consisting of acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, isobutyl, methoxy acetyl, glycine, aminoethylglucose (AEG), AEG-C6, PEG1, PEG2, N-dimethyl, and alkoxycarbonyl.
  • At least one of the first and second insulin or insulin analog is further conjugated to polyethylene glycol, a sugar moiety, or a heterocycle.
  • the linking moiety may be an optionally substituted group selected from the group consisting of acyl, aliphatic, heteroaliphatic, aryl, heteroaryl, and heterocyclic.
  • the linking moiety may be a bivalent, straight or branched, saturated or unsaturated, optionally substituted C1-C20 hydrocarbon chain wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R)—, —C(O)—, C(O)O—, OC(O)—, —N(R)C(O)—, —C(O)N(R)—, —S(O)—, —S(O) 2 —, —N(R)SO 2 —, SO 2 N(R)—, a heterocyclic group, an aryl group, or a heteroaryl group, wherein each occurrence of R is independently hydrogen, a suitable protecting group, an acyl moiety,
  • the linking moiety is an acyl moiety, —C(O)RC(O)—, where R is alkyl chain, poly(ethylene glycol) (PEG) chain, amide-containing chain, triazole(s)-containing chain, cyclooctyne-containing moiety, a substituted acyl chain, or a polyethylene glycol (PEG) chain.
  • the linking moiety is a C2-C20 acyl moiety.
  • C2 oxalyl
  • C4 succinyl
  • C6 adipoyl
  • C8 suberyol
  • decanedioyl (C10) moiety a dodecanedioyl (C12) moiety, a tetradecanedioy
  • the present invention further provides an insulin analog dimer comprising the formula
  • D 1 and D 2 are each independently an insulin or insulin analog polypeptide, wherein each insulin polypeptide is a heterodimer comprising an A-chain polypeptide and a B-chain polypeptide linked together through interchain disulfide bonds;
  • L is a linking moiety wherein one end of the linker moiety is attached to an amino acid residue at or near the carboxyl group of D 1 and the other end of the linker moiety is attached to an amino acid residue at or near the carboxyl end of D 2 with the proviso that L does not include a disulfide linkage;
  • the insulin analog is selected from insulin lispro, insulin aspart, and insulin glargine; and optionally, wherein at least one of D 1 or D 2 includes a substituent attached to the amino terminus of the A-chain polypeptide or the B-chain polypeptide of D 1 or D 2 ; with the proviso that the linking moiety does not include a disulfide bond.
  • D 1 and D 2 are the same or wherein D 1 and D 2 are different.
  • the linking moiety covalently links D 1 and D 2 via the epsilon amino group of a lysine residue at or near the carboxy terminus of D 1 and D 2 .
  • the substituent has a general formula RC(O)—, where R can be R′CH2, R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, PEG, saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • the substituent is selected from the group consisting of acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, isobutyl, methoxy acetyl, glycine, aminoethylglucose (AEG), AEG-C6, PEG1, PEG2, N-dimethyl, and alkoxycarbonyl.
  • the linking moiety may be an optionally substituted group selected from the group consisting of acyl, aliphatic, heteroaliphatic, aryl, heteroaryl, and heterocyclic.
  • the linking moiety may be a bivalent, straight or branched, saturated or unsaturated, optionally substituted C1-C20 hydrocarbon chain wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R)—, —C(O)—, C(O)O—, OC(O)—, —N(R)C(O)—, —C(O)N(R)—, —S(O)—, —S(O) 2 —, —N(R)SO 2 —, SO 2 N(R)—, a heterocyclic group, an aryl group, or a heteroaryl group, wherein each occurrence of R is independently hydrogen, a suitable protecting group, an acyl moiety,
  • the linking moiety is an acyl moiety, —C(O)RC(O)—, where R is alkyl chain, poly(ethylene glycol) (PEG) chain, amide-containing chain, triazole(s)-containing chain, cyclooctyne-containing moiety, a substituted acyl chain, or a polyethylene glycol (PEG) chain.
  • the linking moiety is a C2-C20 acyl moiety.
  • C2 oxalyl
  • C4 succinyl
  • C6 adipoyl
  • C8 suberyol
  • decanedioyl (C10) moiety a dodecanedioyl (C12) moiety, a tetradecanedioy
  • the present invention provides an insulin receptor partial agonist, comprising
  • IR human insulin receptor
  • the functional phosphorylation assay may be an Insulin Receptor (IR) AKT-Phosphorylation assay.
  • IR Insulin Receptor
  • the linking moiety does not include a disulfide bond and when the amino terminus of the A-chain polypeptide and the B-chain polypeptide do not include a substituent the linking moiety is not an oxalyl (C2) moiety, a suberyol (C8) moiety, or a dodecanedioyl (C12) moiety.
  • the first and second insulin or insulin analog heterodimers are the same or wherein the first and second insulin or insulin analog heterodimers are different.
  • the linking moiety covalently links the first insulin or insulin analog heterodimer and the second insulin or insulin analog heterodimer via the epsilon amino group of a lysine residue at or near the carboxy terminus of their respective B-chain polypeptides.
  • the substituent has a general formula RC(O)—, where R can be R′CH2, R′NH, R′O—, and R′ can be H, linear alkyl chain, amino acid, peptide, PEG, saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • the substituent is selected from the group consisting of acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, isobutyl, methoxy acetyl, glycine, aminoethylglucose (AEG), AEG-C6, PEG1, PEG2, N-dimethyl, and alkoxycarbonyl.
  • the first and second insulins or insulin analogs are independently native human insulin, insulin lispro, insulin aspart, desB30 insulin, or insulin glargine.
  • each A-chain polypeptide independently comprises the amino acid sequence GX 2 X 3 EQCCX 8 SICSLYQLX 17 NX 19 CX 23 (SEQ ID NO:3) and each B-chain polypeptide independently comprises the amino acid sequence X 25 LCGX 29 X 30 LVEALYLVCGERGFX27YTX 31 X 32 (SEQ ID NO:4) or X 22 VNQX 25 X 26 CGX 29 X 30 LVEALYLVCGERGFX 27 YTX 31 X 32 X 33 X 34 X 35 (SEQ ID NO:5) wherein X 2 is isoleucine or threonine; X 3 is valine, glycine, or leucine; X 8 is threonine or histidine; X 17 is glutamic acid or glutamine; X 19 is tyrosine, 4-methoxy-phenylalanine, alanine, or 4-amino phenylalanine;
  • the linking moiety may be an optionally substituted group selected from the group consisting of acyl, aliphatic, heteroaliphatic, aryl, heteroaryl, and heterocyclic.
  • the linking moiety may be a bivalent, straight or branched, saturated or unsaturated, optionally substituted C1-20 hydrocarbon chain wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R)—, —C(O)—, C(O)O—, OC(O)—, —N(R)C(O)—, —C(O)N(R)—, —S(O)—, —S(O) 2 —, —N(R)SO 2 —, SO 2 N(R)—, a heterocyclic group, an aryl group, or a heteroaryl group, wherein each occurrence of R is independently hydrogen, a suitable protecting group, an acyl moiety, aryl, or a heteroaryl group
  • the linking moiety is an acyl moiety, —C(O)RC(O)—, where R is alkyl chain, poly(ethylene glycol) (PEG) chain, amide-containing chain, triazole(s)-containing chain, cyclooctyne-containing moiety, a substituted acyl chain, or a polyethylene glycol (PEG) chain.
  • the linking moiety is a C2-C20 acyl moiety.
  • C2 oxalyl
  • C4 succinyl
  • C6 adipoyl
  • C8 suberyol
  • decanedioyl (C10) moiety a dodecanedioyl (C12) moiety, a tetradecanedioy
  • the present invention further provides an insulin dimer comprising a first B29 or B28 Lys of a first insulin heterodimer molecule having a first A-chain polypeptide and first B-chain polypeptide and a second B29 or B28 Lys of a second insulin heterodimer having a second A-chain polypeptide and second B-chain polypeptide conjugated together by a bifunctional linker selected from the group consisting Linker 1, Linker 2, Linker 3, Linker 10, Linker 11, Liner 12, Linker 13, Linker 14, Linker 15, Linker 16, Linker 17, Linker 18, Linker 19, Linker 20, Linker 21, Linker 22, Linker 23, Linker 24, Linker 25, Linker 26, Linker 27, Linker 28, Linker 29, Linker 30, Linker 31, Linker 32, Linker 33, Linker 34, Linker 35, Linker 36, Linker 37, Linker 38, Linker 39, Linker 40, Linker 41, Linker 42, Linker 43, Linker 44, Linker 45, Linker 46, Linker 47, Linker 48, Linker 49, and Linker
  • the substituent comprises an N-hydroxysuccinimide ester linked to a group having the general formula RC(O)—, where R can be R′CH 2 , R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, polyethylene glycol (PEG), saccharides.
  • the substituent is a carbamoyl group, acetyl group, glycine, methyl group, methoxy group, dimethyl group, isobutyl group, PEG1 group, AEG group, AEG-C6 alkyl group, or PEG2 group.
  • the present invention further provides an insulin dimer comprising a first B29 or B28 Lys of a first insulin heterodimer molecule having a first A-chain polypeptide and first B-chain polypeptide is conjugated to a first linker selected from the group consisting of Linker 5 and Linker 7 and a second B29 or B28 Lys of a second insulin heterodimer having a second A-chain polypeptide and second B-chain polypeptide conjugated to a second linker selected from the group consisting of Linker 4, Linker 6, Linker 8, and Linker 9 conjugated together via the first linker and the second linker.
  • the present invention provides an insulin analog dimer, comprising a first B29 or B28 Lys of a first insulin heterodimer molecule having a first A-chain polypeptide and first B-chain polypeptide conjugated to a first linker selected from the group consisting of Linker 5 and Linker 7 and a second B29 or B28 Lys of a second insulin heterodimer having a second A-chain polypeptide and second B-chain polypeptide conjugated to a second linker selected from the group consisting of Linker 5 and Linker 7, wherein the first and second linkers are conjugated together via a bridging linker having a structure
  • R is a covalent bond, a carbon atom, a phenyl, a heteroatom, or an optionally substituted group selected from the group consisting of acyl, aliphatic, heteroaliphatic, aryl, heteroaryl, and heterocyclic.
  • R is a C2, C3, C4, C6, C7, C8, C9 or C10 acyl group or a PEG2, PEG3, PEG4, PEG5, PEG6, PEG7, PEG8, PEG9,PEG10, PEG11, PEG12, PEG13, or PEG25.
  • the substituent comprises an N-hydroxysuccinimide ester linked to a group having the general formula RC(O)—, where R can be R′CH 2 , R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, polyethylene glycol (PEG), saccharides.
  • the substituent is a carbamoyl group, acetyl group, glycine, methyl group, methoxy group, dimethyl group, isobutyl group, PEG1 group, AEG group, AEG-C6 alkyl group, or PEG2 group.
  • the present invention provides an insulin analog dimer, comprising a first B29 or B28 Lys of a first insulin heterodimer molecule having a first A-chain polypeptide and first B-chain polypeptide conjugated to a first linker selected from the group consisting of Linker 4, Linker 6, Linker 8, and Linker 9 and a second B29 or B28 Lys of a second insulin heterodimer having a second A-chain polypeptide and second B-chain polypeptide conjugated to a second linker selected from the group consisting of Linker 4, Linker 6, Linker 8, and Linker 9, wherein the first and second linkers are conjugated together via a bridging linker having a structure
  • R is a covalent bond, a carbon atom, a phenyl, a heteroatom, or an optionally substituted group selected from the group consisting of acyl, aliphatic, heteroaliphatic, aryl, heteroaryl, and heterocyclic.
  • R is a C2, C3, C4, C6, C7, C8, C9 or C10 acyl group or a PEG2, PEG3, PEG4, PEG5, PEG6, PEG7, PEG8, PEG9,PEG10, PEG11, PEG12, PEG13, or PEG 25.
  • the substituent comprises an N-hydroxysuccinimide ester linked to a group having the general formula RC(O)—, where R can be R′CH 2 , R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, polyethylene glycol (PEG), saccharides.
  • the substituent is a carbamoyl group, acetyl group, glycine, methyl group, methoxy group, dimethyl group, isobutyl group, PEG1 group, AEG group, AEG-C6 alkyl group, or PEG2 group.
  • the present invention further provides compositions comprising any one of the insulin receptor partial agonists disclosed herein and a pharmaceutically acceptable salt.
  • the present invention provides a method for treating diabetes comprising administering to an individual with diabetes a therapeutically effective amount of a composition comprising any one of the aforementioned insulin receptor partial agonists.
  • the diabetes is Type 1 diabetes, Type 2 diabetes, or gestational diabetes.
  • the present invention provides for the use of a composition for the treatment of diabetes comprising any one of the aforementioned insulin receptor partial agonists.
  • the diabetes is Type 1 diabetes, Type 2 diabetes, or gestational diabetes.
  • the present invention provides for the use of any one of the insulin receptor partial agonists disclosed herein for the manufacture of a medicament for the treatment of diabetes.
  • the diabetes is Type 1 diabetes, Type 2 diabetes, or gestational diabetes.
  • Insulin means the active principle of the pancreas that affects the metabolism of carbohydrates in the animal body and which is of value in the treatment of diabetes mellitus.
  • the term includes synthetic and biotechnologically derived products that are the same as, or similar to, naturally occurring insulins in structure, use, and intended effect and are of value in the treatment of diabetes mellitus.
  • the term is a generic term that designates the 51 amino acid heterodimer comprising the A-chain peptide having the amino acid sequence shown in SEQ ID NO: 1 and the B-chain peptide having the amino acid sequence shown in SEQ ID NO: 2, wherein the cysteine residues a positions 6 and 11 of the A chain are linked in a disulfide bond, the cysteine residues at position 7 of the A chain and position 7 of the B chain are linked in a disulfide bond, and the cysteine residues at position 20 of the A chain and 19 of the B chain are linked in a disulfide bond.
  • Insulin analog or analogue includes any heterodimer analogue or single-chain analogue that comprises one or more modification(s) of the native A-chain peptide and/or B-chain peptide. Modifications include but are not limited to substituting an amino acid for the native amino acid at a position selected from A4, A5, A8, A9, A10, A12, A13, A14, A15, A16, A17, A18, A19, A21, B1, B2, B3, B4, B5, B9, B10, B13, B14, B15, B16, B17, B18, B20, B21, B22, B23, B26, B27, B28, B29, and B30; deleting any or all of positions B1-4 and B26-30; or conjugating directly or by a polymeric or non-polymeric linker one or more acyl, polyethylglycine (PEG), or saccharide moiety (moieties); or any combination thereof.
  • PEG polyethylg
  • the term further includes any insulin heterodimer and single-chain analogue that has been modified to have at least one N-linked glycosylation site and in particular, embodiments in which the N-linked glycosylation site is linked to or occupied by an N-glycan.
  • insulin analogues include but are not limited to the heterodimer and single-chain analogues disclosed in published international application WO20100080606, WO2009/099763, and WO2010080609, the disclosures of which are incorporated herein by reference.
  • single-chain insulin analogues also include but are not limited to those disclosed in published International Applications WO9634882, WO95516708, WO2005054291, WO2006097521, WO2007104734, WO2007104736, WO2007104737, WO2007104738, WO2007096332, WO2009132129; U.S. Pat. Nos. 5,304,473 and 6,630,348; and Kristensen et al., Biochem. J. 305: 981-986 (1995), the disclosures of which are each incorporated herein by reference.
  • the term further includes single-chain and heterodimer polypeptide molecules that have little or no detectable activity at the insulin receptor but which have been modified to include one or more amino acid modifications or substitutions to have an activity at the insulin receptor that has at least 1%, 10%, 50%, 75%, or 90% of the activity at the insulin receptor as compared to native insulin and which further includes at least one N-linked glycosylation site.
  • the insulin analogue is a partial agonist that has less than 80% (or 70%) activity at the insulin receptor as does native insulin.
  • These insulin analogues which have reduced activity at the insulin growth hormone receptor and enhanced activity at the insulin receptor, include both heterodimers and single-chain analogues.
  • Single-chain insulin or single-chain insulin analog encompasses a group of structurally-related proteins wherein the A-chain peptide or functional analogue and the B-chain peptide or functional analogue are covalently linked by a peptide or polypeptide of 2 to 35 amino acids or non-peptide polymeric or non-polymeric linker and which has at least 1%, 10%, 50%, 75%, or 90% of the activity of insulin at the insulin receptor as compared to native insulin.
  • the single-chain insulin or insulin analogue further includes three disulfide bonds: the first disulfide bond is between the cysteine residues at positions 6 and 11 of the A-chain or functional analogue thereof, the second disulfide bond is between the cysteine residues at position 7 of the A-chain or functional analogue thereof and position 7 of the B-chain or functional analogue thereof, and the third disulfide bond is between the cysteine residues at position 20 of the A-chain or functional analogue thereof and position 19 of the B-chain or functional analogue thereof
  • Connecting peptide or C-peptide refers to the connection moiety “C” of the B-C-A polypeptide sequence of a single chain preproinsulin-like molecule.
  • the C-peptide connects the amino acid at position 30 of the B-chain and the amino acid at position 1 of the A-chain.
  • the term can refer to both the native insulin C-peptide, the monkey C-peptide, and any other peptide from 3 to 35 amino acids that connects the B-chain to the A-chain thus is meant to encompass any peptide linking the B-chain peptide to the A-chain peptide in a single-chain insulin analogue (See for example, U.S. Published application Nos. 20090170750 and 20080057004 and WO9634882) and in insulin precursor molecules such as disclosed in WO9516708 and U.S. Pat. No. 7,105,314.
  • Amino acid modification refers to a substitution of an amino acid, or the derivation of an amino acid by the addition and/or removal of chemical groups to/from the amino acid, and includes substitution with any of the 20 amino acids commonly found in human proteins, as well as atypical or non-naturally occurring amino acids.
  • Commercial sources of atypical amino acids include Sigma-Aldrich (Milwaukee, Wis.), ChemPep Inc. (Miami, Fla.), and Genzyme Pharmaceuticals (Cambridge, Mass.).
  • Atypical amino acids may be purchased from commercial suppliers, synthesized de novo, or chemically modified or derivatized from naturally occurring amino acids.
  • Amino acid substitution refers to the replacement of one amino acid residue by a different amino acid residue.
  • Treat—As used herein, the term “treat” refers to the administration of an IRPA of the present disclosure to a subject in need thereof with the purpose to alleviate, relieve, alter, ameliorate, improve or affect a condition (e.g., diabetes), a symptom or symptoms of a condition (e.g., hyperglycemia), or the predisposition toward a condition.
  • a condition e.g., diabetes
  • a symptom or symptoms of a condition e.g., hyperglycemia
  • treating diabetes will refer in general to maintaining glucose blood levels near normal levels and may include increasing or decreasing blood glucose levels depending on a given situation.
  • compositions includes any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, emulsions such as an oil/water or water/oil emulsion, and various types of wetting agents suitable for administration to or by an individual in need.
  • the term also encompasses any of the agents approved by a regulatory agency of the US Federal government or listed in the US Pharmacopeia for use in animals, including humans.
  • compositions that retain the biological activity of the parent compound, and which are not biologically or otherwise undesirable. Many of the compounds disclosed herein are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto.
  • Pharmaceutically acceptable base addition salts can be prepared from inorganic and organic bases.
  • Salts derived from inorganic bases include by way of example only, sodium, potassium, lithium, ammonium, calcium, zinc, and magnesium salts.
  • Salts derived from organic bases include, but are not limited to, salts of primary, secondary and tertiary amines.
  • Salts derived from inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • Salts derived from organic acids include acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluene-sulfonic acid, salicylic acid, and the like.
  • Effective or therapeutically effective amount refers to a nontoxic but sufficient amount of an insulin analog to provide the desired effect.
  • one desired effect would be the prevention or treatment of hyperglycemia.
  • the amount that is “effective” will vary from subject to subject, depending on the age and general condition of the individual, mode of administration, and the like. Thus, it is not always possible to specify an exact “effective amount.” It is not always possible to determine the optimal effective amount prior to administration to or by an individual in need thereof. However, an appropriate “effective” amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation.
  • Parenteral as used herein, the term means not through the alimentary canal but by some other route such as intranasal, inhalation, subcutaneous, intramuscular, intraspinal, or intravenous.
  • FIG. 1 shows the glucose lowering effect of Dimers 24, 18, and 40 compared to RHI when administered to diabetic minipigs at 0.69 nmol/kg.
  • FIG. 2A shows the results of an Insulin Tolerance Test (ITT) in mice comparing compound A with RHI (Humulin).
  • ITT Insulin Tolerance Test
  • Compound A was administered at a dose of 72 U/kg and a dose of 300 U/kg and Humulin was administered at a dose of 18 U/kg and a dose of 72 U/kg.
  • FIG. 2B shows the results of an Insulin Tolerance Test (ITT) in mice comparing compound B with RHI (Humulin).
  • ITT Insulin Tolerance Test
  • Compound B was administered at a dose of 72 U/kg and a dose of 300 U/kg and Humulin was administered at a dose of 18 U/kg and a dose of 72 U/kg.
  • FIG. 2C shows the results of an Insulin Tolerance Test (ITT) in mice comparing Dimer 24 with RHI (Humulin). Dimer 24 was administered at a dose of 72 U/kg and a dose of 300 U/kg and Humulin was administered at a dose of 18 U/kg and a dose of 72 U/kg.
  • ITT Insulin Tolerance Test
  • FIG. 2D shows the results of Dimer 55 in an Insulin Tolerance Test (ITT) in mice. Dimer 55 was administered at a dose of 120 nmol/kg and a dose of 300 nmol/kg.
  • ITT Insulin Tolerance Test
  • FIG. 2E shows the results of Dimer 58 in an Insulin Tolerance Test (ITT) in mice. Dimer 58 was administered at a dose of 60 nmol/kg and a dose of 300 nmol/kg.
  • ITT Insulin Tolerance Test
  • FIG. 2F shows the results of Dimer 60 in an Insulin Tolerance Test (ITT) in mice. Dimer 60 was administered at a dose of 72 nmol/kg and a dose of 300 nmol/kg.
  • ITT Insulin Tolerance Test
  • FIG. 2G shows the results of Dimer 67 in an Insulin Tolerance Test (ITT) in mice. Dimer 67 was administered at a dose of 120 nmol/kg and a dose of 300 nmol/kg.
  • ITT Insulin Tolerance Test
  • FIG. 3 shows that Compound A insulin dimer was degrading to insulin monomers by 2 hour incubation with rat kidney cell membranes (RKCMs) without glutathione (GSH).
  • RKCMs rat kidney cell membranes
  • GSH glutathione
  • FIG. 4 shows that Compound A insulin dimer was degrading to insulin monomers by 2 hour incubation with rat kidney cell membranes (RKCMs) with glutathione (GSH).
  • RKCMs rat kidney cell membranes
  • GSH glutathione
  • FIG. 5 shows that Dimer 24 lost some A-chain polypeptide but did not degrade to monomers by 2 hour incubation with rat kidney cell membranes (RKCMs) without glutathione (GSH).
  • RKCMs rat kidney cell membranes
  • GSH glutathione
  • FIG. 6 shows that Dimer 24 lost some A-chain polypeptide but did not degrade to monomers by 2 hour incubation with rat kidney cell membranes (RKCMs) with glutathione (GSH).
  • RKCMs rat kidney cell membranes
  • GSH glutathione
  • FIG. 7A shows the glucose lowering effect of Dimers 4, 5, 7, 8, and 9 compared to RHI when administered to diabetic minipigs at 0.69 nmol/kg.
  • FIG. 7B shows the glucose lowering effect of Dimers 18, 19, 20, 21, and 22 compared to RHI when administered to diabetic minipigs at 0.69 nmol/kg.
  • FIG. 7C shows the glucose lowering effect of Dimers 23, 24, 26, 27, and 28 compared to RHI when administered to diabetic minipigs at 0.69 nmol/kg.
  • FIG. 7D shows the glucose lowering effect of Dimers 29, 32, 37, 38, and 39 compared to RHI when administered to diabetic minipigs at 0.69 nmol/kg.
  • FIG. 7E shows the glucose lowering effect of Dimers 40, 41, 43, 44, and 48 compared to RHI when administered to diabetic minipigs at 0.69 nmol/kg.
  • FIG. 7F shows the glucose lowering effect of Dimers 55, 57, 58, 60, and 61 compared to RHI when administered to diabetic minipigs at 0.69 nmol/kg.
  • FIG. 7G shows the glucose lowering effect of Dimers 62, 64, 67, 69, and 71 compared to RHI when administered to diabetic minipigs at 0.69 nmol/kg.
  • FIG. 7H shows the glucose lowering effect of Dimers 72, 77, and 78 compared to RHI when administered to diabetic minipigs at 0.69 nmol/kg.
  • the present invention provides compounds comprising two insulin molecules covalently linked to form a covalently-linked insulin dimer that may activate the insulin receptor with regular insulin-like potency and reduced maximum activity.
  • These compounds are insulin receptor partial agonists (IRPA): they behave like other insulin analogs to lower glucose effectively but with lower risk of hypoglycemia.
  • Insulin dimers have been disclosed in Brandenburg et al. in U.S. Pat. No. 3,907,763 (1973); Tatnell et al., Biochem J. 216: 687-694 (1983); Shuttler and Brandenburg, Hoppe-Seyler's Z. Physiol. Chem, 363, 317-330, 1982; Weiland et al., Proc Natl. Acad. Sci. (USA) 87: 1154-1158 (1990); Deppe et al., Naunyn-Schmiedeberg's Arch Pharmacol (1994) 350:213-217; Brandenburg and Havenith in U.S. Pat. No.
  • the inventors of the instant invention have discovered that the level of insulin activity and partial agonist activity of the dimers is a function of the dimeric structure, the sequence of the insulin analog, the length of the dimerization linker, and the site of dimerization that connects the two insulin polypeptides.
  • the inventors have discovered that the insulin dimers of the present invention have reduced risk of promoting hypoglycemia when administered in high doses than native insulin or other insulin analogs when administered at high doses.
  • the present invention provides partial agonist covalently-linked insulin dimers formulated as a novel and transformative basal insulin (once daily administration) that manifests improved therapeutic index (TI) over current standard of care (SOC) basal insulins. These molecules may lower glucose effectively with reduced risk of hypoglycemia in diabetic minipig and have the property of a once daily (QD) basal insulin.
  • the improved TI may enable practitioners to more aggressively dose IRPA dimer to achieve target goals for control of fasting glucose.
  • Tight control of fasting glucose and HbA1c may allow these molecules to serve as 1) a stand-alone long-acting insulin with an enhanced efficacy and safety profile in Type 2 diabetes mellitus (T2DM) and 2) an improved foundational basal insulin in Type 1 diabetes mellitus (T1DM) (and some T2DM) for use with additional prandial rapid-acting insulin analogs (RAA) doses.
  • T2DM Type 2 diabetes mellitus
  • T1DM Type 1 diabetes mellitus
  • ROA rapid-acting insulin analogs
  • An ideal long-acting insulin provides continuous control of fasting glucose in diabetics with highly stable and reproducible PK/PD.
  • basal insulins even those with improved stability and reproducibility of PK/PD continue to have a narrow therapeutic index and hypoglycemia incidents increase as glucose levels approach euglycemia target. This can often lead to underdosing to avoid hypoglycemia.
  • Treatment with an IRPA of the present invention is expected to alter this efficacy : hypoglycemia relationship by attenuating the rate of change in glucose lowering as dosing is increased.
  • the level of insulin activity of the dimers is a function of the dimeric structure, the sequence of the insulin analog, the length of the dimerization linker, and the site of dimerization that connects the two insulin polypeptides.
  • the insulin polypeptides of the present invention may comprise the native B and A chain sequences of human insulin (SEQ ID NOs: 1 and 2, respectively) or any of the known analogs or derivatives thereof that exhibit insulin agonist activity when linked to one another in a heteroduplex.
  • Such analogs include, for example, proteins that having an A-chain and a B-chain that differ from the A-chain and B-chain of human insulin by having one or more amino acid deletions, one or more amino acid substitutions, and/or one or more amino acid insertions that do not destroy the insulin activity of the insulin analog.
  • insulin analog “monomeric insulin analog,” is well known in the art. These are fast-acting analogs of human insulin, including, for example, insulin analogs wherein:
  • amino acyl residue at position B28 is substituted with Asp, Lys, Leu, Val, or Ala, and the amino acyl residue at position B29 is Lys or Pro;
  • an insulin analog comprising an Asp substituted at position B28 (e.g., insulin aspart (NOVOLOG); see SEQ ID NO:9) or a Lys substituted at position 28 and a proline substituted at position B29 (e.g., insulin lispro (HUMALOG); see SEQ ID NO:6).
  • Additional monomeric insulin analogs are disclosed in Chance, et al., U.S. Pat. No. 5,514,646; Chance, et al., U.S. patent application Ser. No. 8/255,297; Brems, et al., Protein Engineering, 5:527-533 (1992); Brange, et al., EPO Publication No. 214,826 (published Mar. 18, 1987); and Brange, et al., Current Opinion in Structural Biology, 1:934-940 (1991). These disclosures are expressly incorporated herein by reference for describing monomeric insulin analogs.
  • Insulin analogs may also have replacements of the amidated amino acids with acidic forms.
  • Asn may be replaced with Asp or Glu.
  • Gln may be replaced with Asp or Glu.
  • Asn(A18), Asn(A21), or Asp(B3), or any combination of those residues may be replaced by Asp or Glu.
  • Gln(A15) or Gln(B4), or both, may be replaced by either Asp or Glu.
  • insulin single chain analogs comprising a B chain and A chain of human insulin, or analogs or derivative thereof, wherein the carboxy terminus of the B chain is linked to the amino terminus of the A chain via a linking moiety.
  • the A chain is amino acid sequence GIVEQCCTSICSLYQLENYCN (SEQ ID NO: land
  • the B chain comprises amino acid sequence FVNQHLCGSH LVEALYLVCGERGFFYTPKT (SEQ ID NO: 2) or a carboxy shortened sequence thereof having B30 deleted, and analogs of those sequences wherein each sequence is modified to comprise one to five amino acid substitutions at positions corresponding to native insulin positions selected from A5, A8, A9, A10, A14, A15, A17, A18, A21, B1, B2, B3, B4, B5, B9, B10, B13, B14, B20, B22, B23, B26, B27, B28, B29 and B30, with the proviso that at least one of B28 or B29 is
  • amino acid substitutions are conservative amino acid substitutions. Suitable amino acid substitutions at these positions that do not adversely impact insulin's desired activities are known to those skilled in the art, as demonstrated, for example, in Mayer, et al., Insulin Structure and Function, Biopolymers. 2007;88(5):687-713, the disclosure of which is incorporated herein by reference.
  • the insulin analog peptides may comprise an insulin A chain and an insulin B chain or analogs thereof, wherein the A chain comprises an amino acid sequence that shares at least 70% sequence identity (e.g., 70%, 75%, 80%, 85%, 90%, 95%) over the length of the native peptide, with GIVEQCCTSICSLYQLENYCN (SEQ ID NO: 1) and the B chain comprises an amino acid sequence that shares at least 60% sequence identity (e.g., 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%) over the length of the native peptide, with FVNQHLCGSHLVEALYLVCGERGFFYTPKT (SEQ ID NO: 2) or a carboxy shortened sequence thereof having B30 deleted.
  • a chain comprises an amino acid sequence that shares at least 70% sequence identity (e.g., 70%, 75%, 80%, 85%, 90%, 95%) over the length of the native peptide, with GIVEQCCTSICSLYQLENYCN (SEQ ID NO: 1)
  • the B chain
  • Additional amino acid sequences can be added to the amino terminus of the B chain or to the carboxy terminus of the A chain of the insulin polypeptides of the present invention.
  • a series of negatively charged amino acids can be added to the amino terminus of the B chain, including for example a peptide of 1 to 12, 1 to 10, 1 to 8 or 1 to 6 amino acids in length and comprising one or more negatively charged amino acids including for example glutamic acid and aspartic acid.
  • the B chain amino terminal extension comprises 1 to 6 charged amino acids.
  • the insulin polypeptides disclosed comprise a C-terminal amide or ester in place of a C-terminal carboxylate on the A chain.
  • the insulin analog has an isoelectric point that has been shifted relative to human insulin.
  • the shift in isoelectric point is achieved by adding one or more arginine, lysine, or histidine residues to the N-terminus of the insulin A-chain peptide and/or the C-terminus of the insulin B-chain peptide.
  • insulin polypeptides include Arg A0 -human insulin, ArgB 31 Arg B32 -human insulin, Gly A21 Arg B31 Arg B32 -human insulin, Arg A0 Arg B31 Arg B32 -human insulin, and Arg A0 Gly A21 Arg B31 Arg B32 -human insulin.
  • insulin glargine (LANTUS; see SEQ ID NOs: 7 and 8) is an exemplary long-acting insulin analog in which Asn A21 has been replaced by glycine, and two arginine residues have been covalently linked to the C-terminus of the B-peptide.
  • the effect of these amino acid changes was to shift the isoelectric point of the molecule, thereby producing a molecule that is soluble at acidic pH (e.g., pH 4 to 6.5) but insoluble at physiological pH.
  • the insulin analog comprises an A-chain peptide wherein the amino acid at position A21 is glycine and a B-chain peptide wherein the amino acids at position B31 and B32 are arginine.
  • the present disclosure encompasses all single and multiple combinations of these mutations and any other mutations that are described herein (e.g., Gly A21 -human insulin, Gly A21 Arg B13 human insulin, Arg B31 Arg B32 -human insulin, Arg B31 -human insulin).
  • one or more amidated amino acids of the insulin analog are replaced with an acidic amino acid, or another amino acid.
  • asparagine may be replaced with aspartic acid or glutamic acid, or another residue.
  • glutamine may be replaced with aspartic acid or glutamic acid, or another residue.
  • Asn A18 , Asn A21 , or Asn B3 may be replaced by aspartic acid or glutamic acid, or another residue.
  • Gln A15 or Gln B4 may be replaced by aspartic acid or glutamic acid, or another residue.
  • the insulin analogs have an aspartic acid, or another residue, at position A21 or aspartic acid, or another residue, at position B3, or both.
  • the insulin analog has a protracted profile of action.
  • the insulin analog may be acylated with a fatty acid. That is, an amide bond is formed between an amino group on the insulin analog and the carboxylic acid group of the fatty acid.
  • the amino group may be the alpha-amino group of an N-terminal amino acid of the insulin analog, or may be the epsilon-amino group of a lysine residue of the insulin analog.
  • the insulin analog may be acylated at one or more of the three amino groups that are present in wild-type human insulin may be acylated on lysine residue that has been introduced into the wild-type human insulin sequence.
  • the insulin analog may be acylated at position A1, B1, or both A1 and B1.
  • the fatty acid is selected from myristic acid (C 14 ), pentadecylic acid (C 15 ), palmitic acid (C 16 ), heptadecylic acid (C 17 ) and stearic acid (C 18 ).
  • insulin analogs can be found for example in published International Application WO9634882, WO95516708; WO20100080606, WO2009/099763, and WO2010080609, US Pat. No. 6,630,348, and Kristensen et al., Biochem. J. 305: 981-986 (1995), the disclosures of which are incorporated herein by reference).
  • the in vitro glycosylated or in vivo N-glycosylated insulin analogs may be acylated and/or pegylated.
  • an insulin analog wherein the A chain of the insulin peptide comprises the sequence GIVEQCCX 8 SICSLYQLX 17 NX 19 CX 23 (SEQ ID NO: 3) and the B chain comprising the sequence X 25 LCGX 29 X 30 LVEALYLVCGERGFFYTX 31 X 32 (SEQ ID NO: 4) wherein
  • X 8 is threonine or histidine
  • X 17 is glutamic acid or glutamine
  • X 23 is asparagine or glycine
  • X 25 is histidine or threonine
  • X 29 is alanine, glycine or serine
  • X 30 is histidine, aspartic acid, glutamic acid, homocysteic acid, or cysteic acid;
  • X 31 is proline or lysine
  • X 32 is proline or lysine, with the proviso that at least one of X 31 or X 32 is lysine.
  • the B chain comprises the sequence X 22 VNQX 25 LCGX 29 X 30 LVEALYLVCGERGFFYT-X 31 X 32 X 33 X 34 X 35 (SEQ ID NO: 5) wherein
  • X 22 is or phenylalanine and desamino-phenylalanine
  • X 25 is histidine or threonine
  • X 29 is alanine, glycine, or serine
  • X 30 is histidine, aspartic acid, glutamic acid, homocysteic acid, or cysteic acid;
  • X 31 is aspartic acid, proline, or lysine
  • X 32 is lysine or proline
  • X 33 is threonine, alanine, or absent
  • X 34 is arginine or absent
  • X 35 is arginine or absent
  • At least one of X 31 or X 32 is lysine.
  • the insulin dimers disclosed herein are formed between a first and second insulin polypeptide wherein each insulin polypeptide comprises an A chain and a B chain.
  • the first and second insulin polypeptides may be two chain insulin analogs (i.e., wherein the A and B chains are linked only via inter-chain disulfide bonds between internal cysteine residues) wherein the first and second insulin polypeptides are linked to one another to form the dimer by a covalent bond, bifunctional linker, or using copper(I) catalyzed alkyne-azide cycloaddition (CuAAC) click chemistry or copper-free click chemistry to link linking moieties on the respective B chains.
  • CuAAC copper(I) catalyzed alkyne-azide cycloaddition
  • first and second insulin polypeptides are linked to one another by a bifunctional linker joining the side chain of the B28 or B29 lysine of the B chain of the first insulin polypeptide to the side chain of the B28 or B29 amino acid of the B chain of the second insulin polypeptide.
  • the linking moiety comprises a PEG linker, a short linear polymer of about 2 -25 ethylene glycol units or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 25 ethylene glycol units and optionally one or more amino acids.
  • the PEG linker comprises the structure (PEG) 2 , (PEG) 3 , (PEG) 4 , (PEG) 5 , (PEG) 6 , (PEG) 7 , (PEG) 8 , (PEG) 9 , (PEG) 10 , (PEG) 11 , (PEG) 12 , (PEG) 13 , (PEG) 14 , (PEG) 15 , (PEG) 16 , or (PEG) 25 .
  • the PEG linker may be a bifunctional linker that may be covalently conjugated or linked to epsilon amino group of the position B29 or B28 lysine residues of the first and second insulin polypeptides.
  • the structure of a bifunctional PEG linker conjugated to the epsilon amino group of the lysine groups at position B29 or B28 of the first and second insulin polypeptides may be represented by the following general formula
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 and the wavy lines indicate the bond between the linker and the epsilon amino group of the lysine at position B29 or B28 of the insulin polypeptides.
  • the linking moiety may have the structure
  • the linking moiety may have the structure
  • the linking moiety comprises a ring structure, which provides rigidity to the linking moiety.
  • the ring structure comprises a benzyl group or a saturated or unsaturated alicyclic group having 3, 4, 5, 6, 7, or 8 carbons.
  • the alicyclic group comprises a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentyl, or cyclooctyl.
  • the ring structure comprises a heteroatom.
  • the heteroatom may be O, S, or N.
  • the ring structure comprises a benzyl group or a saturated or unsaturated alicyclic group having 3, 4, 5, 6, 7, or 8 carbons in which one or more carbons are substituted with a heteroatom selected from N, O, and S.
  • the linking moiety comprises a bifunctional linker that may be covalently conjugated or linked to epsilon amino group of the position B29 or B28 lysine residues of the first and second insulin polypeptides which may be represented by a benzene-1,1 diacyl having the following general formula
  • the linking moiety comprises a bifunctional linker that may be covalently conjugated or linked to epsilon amino group of the position B29 or B28 lysine residues of the first and second insulin polypeptides which may be represented by a benzene-1,1 diacyl having the following general formula
  • the linking moiety comprises a bifunctional linker that may be covalently conjugated or linked to epsilon amino group of the position B29 or B28 lysine residues of the first and second insulin polypeptides which may be represented by a benzene-1,3 diacyl having the following general formula
  • R 1 and R 2 may be same or different wherein R 1 and R 2 are independently a bond, a saturated or non-saturated C1-C20 or C1-C6 alkyl chain wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R)—, —C(O)—, C(O)O—, OC(O)—, —N(R)C(O)—, —C(O)N(R)—, —S(O)—, —S(O) 2 —, —N(R)SO 2 —, SO 2 N(R)—, a heterocyclic group, an aryl group, or a heteroaryl group, wherein each occurrence of R is independently hydrogen, a suitable protecting group, an acyl moiety, arylalkyl moiety, aliphatic moiety, aryl moiety, heteroaryl moiety, or heteroaliphatic moiety, poly(ethylene glycol) (P
  • n and o are independently 0, 1, 2, 3, 4, or 5 wherein the wavy lines indicate the bond between the linker and the epsilon amino group of the lysine at position B29 or B28 of the insulin polypeptides.
  • the linking moiety comprises a bifunctional linker that may be covalently conjugated or linked to epsilon amino group of the position B29 or B28 lysine residues of the first and second insulin polypeptides which may be represented by a benzene-1,3 diacyl having the following general formula
  • the linking moiety comprises a bifunctional linker that may be covalently conjugated or linked to epsilon amino group of the position B29 or B28 lysine residues of the first and second insulin polypeptides which may be represented by a cyclohexane-1,4 diacyl having the following general formula
  • the linking moiety comprises a bifunctional linker that may be covalently conjugated or linked to epsilon amino group of the position B29 or B28 lysine residues of the first and second insulin polypeptides which may be represented by a cyclohexane-1,4 diacyl having the following general formula
  • the linking moiety comprises a bifunctional linker that may be covalently conjugated or linked to epsilon amino group of the position B29 or B28 lysine residues of the first and second insulin polypeptides which may be represented by a benzene-1,3 diacyl having the following general formula
  • R 1 and R 2 may be same or different wherein R 1 and R 2 are independently a bond, a saturated or non-saturated C1-C20 or C1-C6 alkyl chain wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R)—, —C(O)—, C(O)O—, OC(O)—, —N(R)C(O)—, —C(O)N(R)—, —S(O)—, —S(O) 2 —, —N(R)SO 2 —, SO 2 N(R)—, a heterocyclic group, an aryl group, or a heteroaryl group, wherein each occurrence of R is independently hydrogen, a suitable protecting group, an acyl moiety, arylalkyl moiety, aliphatic moiety
  • the linking moiety comprises a bifunctional linker that may be covalently conjugated or linked to epsilon amino group of the position B29 or B28 lysine residues of the first and second insulin polypeptides which may be represented by a benzene-1,3 diacyl having the following general formula
  • n and n are each independently 1 or 2; wherein p and q are independently 0, 1, 2, 3, 4, or 5 wherein the wavy lines indicate the bond between the linker and the epsilon amino group of the lysine at position B29 or B28 of the insulin polypeptides.
  • the linking moiety comprises a bifunctional linker that may be covalently conjugated or linked to epsilon amino group of the position B29 or B28 lysine residues of the first and second insulin polypeptides which may be represented by a 1,1 diacyl having the following general formula
  • the linking moiety comprises a bifunctional linker that may be covalently conjugated or linked to epsilon amino group of the position B29 or B28 lysine residues of the first and second insulin polypeptides which may be represented by a 1,2 diacyl having the following general formula
  • n 1, 2, 3, or 4 wherein the wavy lines indicate the bond between the linker and the epsilon amino group of the lysine at position B29 or B28 of the insulin polypeptides.
  • the 1,2 diacyl may have a structure selected from
  • the linking moiety comprises a bifunctional linker that may be covalently conjugated or linked to epsilon amino group of the position B29 or B28 lysine residues of the first and second insulin polypeptides which may be represented by a cyclobutyl-1,3 diacyl having the following general formula
  • the epsilon amino group of the B29 or B28 lysine of the second insulin polypeptide is conjugated to a linker moiety having a proximal end and a distal end wherein the proximal end of the linker moiety is conjugated to the epsilon amino group and the distal comprises an alkyne group.
  • the azide and the alkyne groups will form a contiguous linking moiety comprising a triazole moiety. See U.S. Pat. No. 8,129,542, which is incorporated herein in its entirety, for a description of CuAAC click chemistry.
  • the first insulin polypeptide may have conjugated to the epsilon amino group of the B29 or B28 lysine a linker having the formula
  • the linkers combine to provide a linking moiety having the structure
  • the first insulin polypeptide may have conjugated to the epsilon amino group of the B29 or B28 lysine a linker having the formula
  • linkers In the presence of Cu2+ and a reducing agent, the linkers combine to provide a linking moiety having the structure
  • n independently is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • both the first insulin polypeptide and the second insulin polypeptide may have conjugated to its respective epsilon amino group of the B29 or B28 lysine a linker having the formula
  • n is independently 1,2,3,4,5,6,7,8,9,or 10.
  • Conjugation of the linkers to form a linking moiety may be achieved by providing a molecule (intermediate or bridging linker) having a structure
  • R is a covalent bond, a carbon atom, a phenyl, a heteroatom, or an optionally substituted group selected from the group consisting of acyl, aliphatic, heteroaliphatic, aryl, heteroaryl, and heterocyclic.
  • R is a C2, C3, C4, C6, C7, C8, C9 or C10 acyl group or a PEG2, PEG3, PEG4, PEGS, PEG6, PEG7, PEG8, PEG9,PEG10, PEG11, PEG12, PEG13, or PEG25.
  • both the first insulin polypeptide and the second insulin polypeptide may have conjugated to its respective epsilon amino group of the B29 or B28 lysine a linker having the formula
  • n is independently 1,2,3,4,5,6,7,8,9,or 10.
  • Conjugation of the linkers to form a linking moiety may be achieved by providing a molecule (intermediate or bridging linker) having a structure
  • R is a covalent bond, a carbon atom, a phenyl, a heteroatom, or an optionally substituted group selected from the group consisting of acyl, aliphatic, heteroaliphatic, aryl, heteroaryl, and heterocyclic.
  • R is a C2, C3, C4, C6, C7, C8, C9 or C10 acyl group or a PEG2, PEG3, PEG4, PEGS, PEG6, PEG7, PEG8, PEG9,PEG10, PEG11, PEG12, PEG13, or PEG 25.
  • the first insulin polymer is conjugated at the epsilon amino group of the B29 or B28 lysine to an azide terminated linker as above and the second insulin polypeptide is conjugated at the epsilon amino group of the B29 or B28 lysine to a linker terminated with a cyclooctyne moiety and the linkers are conjugated to form a linker moiety using copper-free cycloaddition click chemistry. See for example, U.S. Pat. No. 7,807,619, which is incorporated herein in its entirety.
  • the following table shows exemplary linkers, which may be used to construct the dimers of the present invention.
  • the dimers shown comprise 2,5-dioxopyrrolidin-ly groups for conjugating to the epsilon amino group of the B29 or B29 lysine.
  • Conjugation of a bifunctional linker to the epsilon amino group of the lysine residue at position B29 or B28 of the B-chain polypeptide of two insulin or insulin analog molecules to form the insulin dimer linked by a linking moiety may be schematically shown as
  • insulin 1 and insulin 2 molecules may be the same or different and the bifunctional linker and resulting and linking moiety following conjugation may have the structure of any linker and resulting linking moiety disclosed herein.
  • At least one of the A-chain polypeptides or B-chain polypeptides of the insulin receptor partial agonist is modified to comprise an acyl group.
  • the acyl group can be covalently linked directly to an amino acid of the insulin polypeptide, or indirectly to an amino acid of the insulin polypeptide via a spacer, wherein the spacer is positioned between the amino acid of the insulin polypeptide and the acyl group.
  • the insulin polypeptide may be acylated at the same amino acid position where a hydrophilic moiety is linked, or at a different amino acid position.
  • acylation may occur at any position including any amino acid of the A- or B-chain polypeptides as well as a position within the linking moiety, provided that the activity exhibited by the non-acylated insulin polypeptide is retained upon acylation.
  • Non-limiting examples include acylation at positions Al of the A chain and positions position B1 of the B chain.
  • the first and/or second insulin polypeptide (or derivative or conjugate thereof) is modified to comprise an acyl group by direct acylation of an amine, hydroxyl, or thiol of a side chain of an amino acid of the insulin polypeptide.
  • the first and/or second insulin polypeptide is directly acylated through the side chain amine, hydroxyl, or thiol of an amino acid.
  • an insulin polypeptide may be provided that has been modified by one or more amino acid substitutions in the A- or B-chain polypeptide sequence, including for example at positions A1, A14, A15, B1, B10, or B22 or at any position of the linking moiety with an amino acid comprising a side chain amine, hydroxyl, or thiol.
  • the spacer between the first and/or second insulin polypeptide and the acyl group is an amino acid comprising a side chain amine, hydroxyl, or thiol (or a dipeptide or tripeptide comprising an amino acid comprising a side chain amine, hydroxyl, or thiol).
  • the spacer comprises a hydrophilic bifunctional spacer.
  • the spacer comprises an amino poly(alkyloxy)carboxylate.
  • the spacer can comprise, for example, NH 2 (CH 2 CH 2 O) n (CH 2 ) m COOH, wherein m is any integer from 1 to 6 and n is any integer from 2 to 12, such as, e.g., 8-amino-3,6-dioxaoctanoic acid, which is commercially available from Peptides International, Inc. (Louisville, Ky.).
  • the hydrophilic bifunctional spacer comprises two or more reactive groups, e.g., an amine, a hydroxyl, a thiol, and a carboxyl group or any combinations thereof.
  • the hydrophilic bifunctional spacer comprises a hydroxyl group and a carboxylate.
  • the hydrophilic bifunctional spacer comprises an amine group and a carboxylate.
  • the hydrophilic bifunctional spacer comprises a thiol group and a carboxylate.
  • the spacer between the first and/or second insulin polypeptide and the acyl group is a hydrophobic bifunctional spacer.
  • Hydrophobic bifunctional spacers are known in the art. See, e.g., Bioconjugate Techniques, G. T. Hermanson (Academic Press, San Diego, Calif., 1996), which is incorporated by reference in its entirety.
  • the hydrophobic bifunctional spacer comprises two or more reactive groups, e.g., an amine, a hydroxyl, a thiol, and a carboxyl group or any combinations thereof.
  • the hydrophobic bifunctional spacer comprises a hydroxyl group and a carboxylate.
  • the hydrophobic bifunctional spacer comprises an amine group and a carboxylate. In other embodiments, the hydrophobic bifunctional spacer comprises a thiol group and a carboxylate. Suitable hydrophobic bifunctional spacers comprising a carboxylate and a hydroxyl group or a thiol group are known in the art and include, for example, 8-hydroxyoctanoic acid and 8-mercaptooctanoic acid.
  • the bifunctional spacer can be a synthetic or naturally occurring amino acid comprising an amino acid backbone that is 3 to 10 atoms in length (e.g., 6-amino hexanoic acid, 5-aminovaleric acid, 7-aminoheptanoic acid, and 8-aminooctanoic acid).
  • the spacer can be a dipeptide or tripeptide spacer having a peptide backbone that is 3 to 10 atoms (e.g., 6 to 10 atoms) in length.
  • Each amino acid of the dipeptide or tripeptide spacer attached to the insulin polypeptide can be independently selected from the group consisting of: naturally-occurring and/or non-naturally occurring amino acids, including, for example, any of the D or L isomers of the naturally-occurring amino acids (Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp, Tyr), or any D or L isomers of the non-naturally occurring amino acids selected from the group consisting of: ⁇ -alanine (( ⁇ -Ala), N- ⁇ -methyl-alanine (Me-Ala), aminobutyric acid (Abu), ⁇ -aminobutyric acid ( ⁇ -Abu), aminohexanoic acid ( ⁇ -Ahx), aminoisobutyric acid (Aib), aminomethylpyrrole carboxylic acid, aminopiperidinecarboxylic acid, aminoserine (Am
  • the dipeptide spacer is selected from the group consisting of: Ala-Ala, ⁇ -Ala- ⁇ -Ala, Leu-Leu, Pro-Pro, ⁇ -aminobutyric acid- ⁇ -aminobutyric acid, and ⁇ -Glu- ⁇ -Glu.
  • the first and/or second insulin polypeptide may be modified to comprise an acyl group by acylation of a long chain alkane.
  • the long chain alkane comprises an amine, hydroxyl, or thiol group (e.g. octadecylamine, tetradecanol, and hexadecanethiol) which reacts with a carboxyl group, or activated form thereof, of the insulin polypeptide.
  • the carboxyl group, or activated form thereof, of the insulin polypeptide can be part of a side chain of an amino acid (e.g., glutamic acid, aspartic acid) of the insulin polypeptide or can be part of the peptide backbone.
  • the first and/or second insulin polypeptide is modified to comprise an acyl group by acylation of the long chain alkane by a spacer which is attached to the insulin polypeptide.
  • the long chain alkane comprises an amine, hydroxyl, or thiol group which reacts with a carboxyl group, or activated form thereof, of the spacer.
  • Suitable spacers comprising a carboxyl group, or activated form thereof, are described herein and include, for example, bifunctional spacers, e.g., amino acids, dipeptides, tripeptides, hydrophilic bifunctional spacers and hydrophobic bifunctional spacers.
  • activated form of a carboxyl group refers to a carboxyl group with the general formula R(C ⁇ O)X, wherein X is a leaving group and R is the insulin polypeptide or the spacer.
  • activated forms of a carboxyl groups may include, but are not limited to, acyl chlorides, anhydrides, and esters.
  • the activated carboxyl group is an ester with an N-hydroxysuccinimide (NHS) leaving group.
  • the long chain alkane in which a long chain alkane is acylated by the peptide, the insulin polypeptide or the spacer, the long chain alkane may be of any size and can comprise any length of carbon chain.
  • the long chain alkane can be linear or branched. In certain aspects, the long chain alkane is a C 4 to C 30 alkane.
  • the long chain alkane can be any of a C 4 alkane, C 6 alkane, C 8 alkane, C 10 alkane, C 12 alkane, C 14 alkane, C 16 alkane, C 18 alkane, C 20 alkane, C 22 alkane, C 24 alkane, C 26 alkane, C 28 alkane, or a C 30 alkane.
  • the long chain alkane comprises a C 8 to C 20 alkane, e.g., a C 14 alkane, C 16 alkane, or a C 18 alkane.
  • the acyl group of the acylated peptide the first and/or second insulin polypeptide can be of any size, e.g., any length carbon chain, and can be linear or branched.
  • the acyl group is a C 4 to C 30 fatty acid.
  • the acyl group can be any of a C 4 fatty acid, C 6 fatty acid, C 8 fatty acid, C 10 fatty acid, C 12 fatty acid, C 14 fatty acid, C 16 fatty acid, C 18 fatty acid, C 20 fatty acid, C 22 fatty acid, C 24 fatty acid, C 26 fatty acid, C 28 fatty acid, or a C 30 fatty acid.
  • the acyl group is a C 8 to C 20 fatty acid, e.g., a C 14 fatty acid or a C 16 fatty acid.
  • the acyl group is urea.
  • the acylated first and/or second insulin polypeptide described herein can be further modified to comprise a hydrophilic moiety.
  • the hydrophilic moiety can comprise a polyethylene glycol (PEG) chain.
  • PEG polyethylene glycol
  • the incorporation of a hydrophilic moiety can be accomplished through any suitable means, such as any of the methods described herein.
  • the acylated single chain analog comprises an amino acid selected from the group consisting of a Cys, Lys, Orn, homo-Cys, or Ac-Phe, and the side chain of the amino acid is covalently bonded to a hydrophilic moiety (e.g., PEG).
  • the acyl group is attached to position A1, A14, A15, B1, B2, B10, or B22 (according to the amino acid numbering of the A and B chains of native insulin), optionally via a spacer comprising Cys, Lys, Orn, homo-Cys, or Ac-Phe.
  • At least one N-terminal amino acid is conjugated via the N2 nitrogen to a substituent comprising an N-hydroxysuccinimide ester linked to a group having the general formula RC(O)—, where R can be R′CH 2 , R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, polyethylene glycol (PEG), saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • the substituent is a carbamoyl group, acetyl group, glycine, methyl group, methoxy group, dimethyl group, isobutyl group, PEG1 group, or PEG2 group.
  • the present invention provides insulin dimers wherein a first B29 or B28 Lys of a first insulin heterodimer molecule having a first A-chain polypeptide and first B-chain polypeptide and a second B29 or B28 Lys of a second insulin heterodimer having a second A-chain polypeptide and second B-chain polypeptide are conjugated together by a bifunctional linker selected from the group consisting Linker 1, Linker 2, Linker 3, Linker 10, Linker 11, Liner 12, Linker 13, Linker 14, Linker 15, Linker 16, Linker 17, Linker 18, Linker 19, Linker 20, Linker 21, Linker 22, Linker 23, Linker 24, Linker 25, Linker 26, Linker 27, Linker 28, Linker 29, Linker 30, Linker 31, Linker 32, Linker 33, Linker 34, Linker 35, Linker 36, Linker 37, Linker 38, Linker 39, Linker 40, Linker 41, Linker 42, Linker 43, Linker 44, Linker 45, Linker 46, Linker 47, Linker 48, Linker 49,
  • the substituent comprises an N-hydroxysuccinimide ester linked to a group having the general formula RC(O)—, where R can be R′CH 2 , R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, polyethylene glycol (PEG), saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl , carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • R can be R′CH 2 , R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, polyethylene glycol (PEG), saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl , carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • the substituent is a carbamoyl group, acetyl group, glycine, methyl group, methoxy group, dimethyl group, isobutyl group, PEG1 group, AEG group, AEG-C6 alkyl group, or PEG2 group.
  • the present invention provides insulin dimers wherein a first B29 or B28 Lys of a first insulin heterodimer molecule having a first A-chain polypeptide and first B-chain polypeptide is conjugated to a first linker selected from the group consisting of Linker 5 and Linker 7 and a second B29 or B28 Lys of a second insulin heterodimer having a second A-chain polypeptide and second B-chain polypeptide is conjugated to a second linker selected from the group consisting of Linker 4, Linker 6, Linker 8, and Linker 9 are conjugated together via the first linker and the second linker.
  • At least one of the first or second A-chain or B-chain polypeptides is conjugated at its N-terminal amino acid to a substituent as disclosed herein or at least the N-terminal amino acids of the first insulin heterodimer molecule are conjugated to a substituent as disclosed herein or the N-terminal amino acids of both the first insulin heterodimer and second insulin heterodimer are conjugated to a substituent.
  • the substituent comprises an N-hydroxysuccinimide ester linked to a group having the general formula RC(O)—, where R can be R′CH 2 , R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, polyethylene glycol (PEG), saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • R can be R′CH 2 , R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, polyethylene glycol (PEG), saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • the substituent is a carbamoyl group, acetyl group, glycine, methyl group, methoxy group, dimethyl group, isobutyl group, PEG1 group, AEG group, AEG-C6 alkyl group, or PEG2 group.
  • the present invention provides insulin dimers wherein a first B29 or B28 Lys of a first insulin heterodimer molecule having a first A-chain polypeptide and first B-chain polypeptide is conjugated to a first linker selected from the group consisting of Linker 5 and Linker 7 and a second B29 or B28 Lys of a second insulin heterodimer having a second A-chain polypeptide and second B-chain polypeptide is conjugated to a second linker selected from the group consisting of Linker 5 and Linker 7, wherein the first and second linkers are conjugated together via a bridging linker having a structure
  • R is a covalent bond, a carbon atom, a phenyl, a heteroatom, or an optionally substituted group selected from the group consisting of acyl, aliphatic, heteroaliphatic, aryl, heteroaryl, and heterocyclic.
  • R is a C2, C3, C4, C6, C7, C8, C9 or C10 acyl group or a PEG2, PEG3, PEG4, PEG5, PEG6, PEG7, PEG8, PEG9,PEG10, PEG11, PEG12, PEG13, or PEG25.
  • At least one of the first or second A-chain or B-chain polypeptides is conjugated at its N-terminal amino acid to a substituent as disclosed herein or at least the N-terminal amino acids of the first insulin heterodimer molecule are conjugated to a substituent as disclosed herein or the N-terminal amino acids of both the first insulin heterodimer and second insulin heterodimer are conjugated to a substituent.
  • the substituent comprises an N-hydroxysuccinimide ester linked to a group having the general formula RC(O)—, where R can be R′CH 2 , R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, polyethylene glycol (PEG), saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • R can be R′CH 2 , R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, polyethylene glycol (PEG), saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • the substituent is a carbamoyl group, acetyl group, glycine, methyl group, methoxy group, dimethyl group, isobutyl group, PEG1 group, AEG group, AEG-C6 alkyl group, or PEG2 group.
  • the present invention provides insulin dimers wherein a first B29 or B28 Lys of a first insulin heterodimer molecule having a first A-chain polypeptide and first B-chain polypeptide is conjugated to a first linker selected from the group consisting of Linker 4, Linker 6, Linker 8, and Linker 9 and a second B29 or B28 Lys of a second insulin heterodimer having a second A-chain polypeptide and second B-chain polypeptide is conjugated to a second linker selected from the group consisting of Linker 4, Linker 6, Linker 8, and Linker 9, wherein the first and second linkers are conjugated together via a bridging linker having a structure
  • R is a covalent bond, a carbon atom, a phenyl, a heteroatom, or an optionally substituted group selected from the group consisting of acyl, aliphatic, heteroaliphatic, aryl, heteroaryl, and heterocyclic.
  • R is a C2, C3, C4, C6, C7, C8, C9 or C10 acyl group or a PEG2, PEG3, PEG4, PEG5, PEG6, PEG7, PEG8, PEG9,PEG10, PEG11, PEG12, PEG13, or PEG 25.
  • At least one of the first or second A-chain or B-chain polypeptides is conjugated at its N-terminal amino acid to a substituent as disclosed herein or at least the N-terminal amino acids of the first insulin heterodimer molecule are conjugated to a substituent as disclosed herein or the N-terminal amino acids of both the first insulin heterodimer and second insulin heterodimer are conjugated to a substituent.
  • the substituent comprises an N-hydroxysuccinimide ester linked to a group having the general formula RC(O)—, where R can be R′CH 2 , R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, polyethylene glycol (PEG), saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • R can be R′CH 2 , R′NH, R′O, and R′ can be H, linear alkyl chain, amino acid, peptide, polyethylene glycol (PEG), saccharides, which in particular aspects RC(O)— may be acetyl, phenylacetyl, carbamoyl, N-alkyl carbamoyl, or alkoxycarbonyl.
  • the substituent is a carbamoyl group, acetyl group, glycine, methyl group, methoxy group, dimethyl group, isobutyl group, PEG1 group, AEG group, AEG-C6 alkyl group, or PEG2 group.
  • first and second insulin heterodimers may comprise any of the insulin or insulin analog molecules disclosed herein.
  • the present invention also provides insulin dimers selected from
  • compositions may contain an insulin dimer as disclosed herein at a concentration of at least 0.5 mg/ml, 1 mg/ml, 2 mg/ml, 3 mg/ml, 4 mg/ml, 5 mg/ml, 6 mg/ml, 7 mg/ml, 8 mg/ml, 9 mg/ml, 10 mg/ml, 11 mg/ml, 12 mg/ml, 13 mg/ml, 14 mg/ml, 15 mg/ml, 16 mg/ml, 17 mg/ml, 18 mg/ml, 19 mg/ml, 20 mg/ml, 21 mg/ml, 22 mg/ml, 23 mg/ml, 24 mg/ml, 25 mg/ml or higher.
  • an insulin dimer as disclosed herein at a concentration of at least 0.5 mg/ml, 1 mg/ml, 2 mg/ml, 3 mg/ml, 4 mg/ml, 5 mg/ml, 6 mg/ml, 7 mg/ml, 8 mg/ml, 9 mg/m
  • the pharmaceutical compositions comprise aqueous solutions that are sterilized and optionally stored contained within various package containers.
  • the pharmaceutical compositions comprise a lyophilized powder.
  • the pharmaceutical compositions can be further packaged as part of a kit that includes a disposable device for administering the composition to a patient.
  • the containers or kits may be labeled for storage at ambient room temperature or at refrigerated temperature.
  • the disclosed insulin dimers are believed to be suitable for any use that has previously been described for insulin peptides. Accordingly, the insulin dimers disclosed herein can be used to treat hyperglycemia, or treat other metabolic diseases that result from high blood glucose levels. Accordingly, the present invention encompasses pharmaceutical compositions comprising a insulin dimers as disclosed herein and a pharmaceutically acceptable carrier for use in treating a patient suffering from high blood glucose levels.
  • the patient to be treated using a insulin dimer disclosed herein is a domesticated animal, and in another embodiment the patient to be treated is a human.
  • the insulin dimers disclosed herein may be administered alone or in combination with other anti-diabetic agents.
  • Anti-diabetic agents known in the art or under investigation include native insulin, native glucagon and functional analogs thereof, sulfonylureas, such as tolbutamide (Orinase), acetohexamide (Dymelor), tolazamide (Tolinase), chlorpropamide (Diabinese), glipizide (Glucotrol), glyburide (Diabeta, Micronase, Glynase), glimepiride (Amaryl), or gliclazide (Diamicron); meglitinides, such as repaglinide (Prandin) or nateglinide (Starlix); biguanides such as metformin (Glucophage) or phenformin; thiazolidinediones such as rosiglitazone (Avandia), pioglitazone (Actos), or
  • compositions comprising the insulin dimers disclosed herein can be formulated and administered to patients using standard pharmaceutically acceptable carriers and routes of administration known to those skilled in the art. Accordingly, the present disclosure also encompasses pharmaceutical compositions comprising one or more of the insulin dimers disclosed herein, or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable carrier.
  • the pharmaceutical compositions comprising the insulin dimers disclosed herein may optionally contain zinc ions, preservatives (e.g., phenol, cresol, parabens), isotonicizing agents (e.g., mannitol, sorbitol, lactose, dextrose, trehalose, sodium chloride, glycerol), buffer substances, salts, acids and alkalis and also further excipients. These substances can in each case be present individually or alternatively as mixtures. Glycerol, dextrose, lactose, sorbitol and mannitol are customarily present in the pharmaceutical preparation in a concentration of 100-250 mM, NaCl in a concentration of up to 150 mM.
  • preservatives e.g., phenol, cresol, parabens
  • isotonicizing agents e.g., mannitol, sorbitol, lactose, dextrose, trehalose, sodium chloride
  • Buffer substances such as, for example, phosphate, acetate, citrate, arginine, glycylglycine or TRIS (i.e. 2-amino-2-hydroxymethyl-1,3-propanediol) buffer and corresponding salts, are present in a concentration of 5-250 mM, commonly from about 10-100 mM. Further excipients can be, inter alia, salts or arginine.
  • the pharmaceutical composition comprises a 1 mg/mL concentration of the insulin dimer at a pH of about 4.0 to about 7.0 in a phosphate buffer system.
  • the pharmaceutical compositions may comprise the insulin dimer as the sole pharmaceutically active component, or the insulin dimer can be combined with one or more additional active agents.
  • insulin dimers include all pharmaceutically acceptable salts thereof.
  • the compounds of this invention may be prepared by standard synthetic methods, recombinant DNA techniques, or any other methods of preparing peptides and fusion proteins. Although certain non-natural amino acids cannot be expressed by standard recombinant DNA techniques, techniques for their preparation are known in the art. Compounds of this invention that encompass non-peptide portions may be synthesized by standard organic chemistry reactions, in addition to standard peptide chemistry reactions when applicable.
  • UPLC-MS Method A Waters AcquityTM UPLC® BEH C18 1.7 ⁇ m 1.0 ⁇ 50 mm column with gradient 10:90-95:5 v/v CH 3 CN/H 2 O+v 0.05% TFA over 2.0 min; flow rate 0.3 mL/min, UV wavelength 215 nm; UPLC-MS;
  • Method D Waters AcquityTM UPLC® BEH C8 1.7 ⁇ m 2.1 ⁇ 100 mm column with gradient 10:90-55:45 v/v CH 3 CN/H 2 O+v 0.05% TFA over 4.0 min and 55:45-95:5 v/v CH 3 CN/H 2 O +v 0.05% TFA over 40 sec; flow rate 0.3 mL/min, UV wavelength 200-300 nm; UPLC-MS;
  • Method E Waters AcquityTM UPLC® BEH300 C4 1.7 ⁇ m 2.1 ⁇ 100 mm column with gradient 10:90-50:50 v/v CH 3 CN/H 2 O+v 0.05% TFA over 4.3 min and 50:50-70:30 v/v CH 3 CN/H 2 O+v 0.05% TFA over 0.5 min; flow rate 0.3 mL/min, UV wavelength 200-300 nm; UPLC-MS;
  • linkage positions specifically, insulin dimers were subjected to DTT treatment (for a/b chain) or Glu-C digestion (with or without reduction and alkylation), and then the resulting peptides were analyzed by LC-MS. Based on the measured masses, the linkage positions were deduced.
  • Reverse-phase chromatography was carried out on C18-bonded silica gel (20-60 ⁇ m, 60-100 ⁇ pore size) in pre-packed cartridges of the size noted.
  • Preparative scale HPLC was performed on Gilson 333-334 binary system using Waters DELTA PAK C4 15 ⁇ m, 300 ⁇ , 50 ⁇ 250 mm column or KROMASIL® C8 10 ⁇ m, 100 ⁇ , 50 ⁇ 250 mm column, flow rate 85 mL/min, with gradient noted. Concentration of solutions was carried out on a rotary evaporator under reduced pressure or freeze-dried on a VirTis Freezemobile Freeze Dryer (SP Scientific).
  • acetonitrile AcCN
  • aqueous aqueous
  • DIPEA N,N-diisopropylethylamine or Hünig's base
  • DIPEA N,N-dimethylformamide
  • DMF dimethyl sulfoxide
  • EtOAc ethyl acetate
  • EDC N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride
  • EDC N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride
  • EDC N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride
  • EDC N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride
  • EDC N-(3-dimethylaminopropyl)-N′-e
  • RHI refers to recombinant human insulin and is used to indicate that the insulin has the amino acid sequence characteristic of native, wild-type human insulin. As used herein in the tables, the term indicates that the amino acid sequence of the insulin comprising the dimer is that of native, wild-type human insulin.
  • Step 1 Benzyl 6-((6-(benzyloxy)-6-oxohexyl)amino)-6-oxohexanoate
  • insulin or insulin analog was dissolved, with gentle stirring, at room temperature in a mixed solvent: 2:3 v/v 0.1 M Na 2 CO 3 :AcCN. After the mixture cleared, the pH was adjusted to the value of 10.5-10.8 using alkaline solution, e.g., 0.1 N NaOH.
  • alkaline solution e.g., 0.1 N NaOH.
  • an activated ester intermediate was dissolved in an organic solvent, e.g., DMSO, at room temperature.
  • the solution was first concentrated by ultrafiltration, either through a tangential flow filtration (TFF) system or using Amicon Ultra-15 Centrifugal Units, with 1K, 3K or 10K MWCO membrane.
  • the concentrated solution was usually first subjected to ion exchange chromatography (PolySULFOETHYL A column, PolyLC Inc., 250 ⁇ 21 mm, 5 ⁇ m, 1000 ⁇ ; Buffer A: 0.1% (v/v)H 3 PO 4 /25% AcCN; Buffer B: 0.1% (v/v)H 3 PO 4 /25% AcCN/0.5 M NaCl). Fractions containing B29-conjugate with desired purity were combined and concentrated using TFF system or Amicon Ultra-15.
  • the solution was first concentrated by ultrafiltration using Amicon Ultra-15 Centrifugal Units with 3K or 10K MWCO membrane.
  • the concentrated solution was subjected to reverse phase HPLC (KROMASIL C8 250 ⁇ 50 mm, 10 ⁇ m, 100 ⁇ column, 25-35% Buffer B in Buffer A over 20 min; Buffer A: 0.05% TFA in water; Buffer B: 0.05% TFA in AcCN).
  • Fractions containing Analog 1 were combined and then freeze-dried.
  • N 6,29B -acylated RHI Analog 2, Analog 3, and Analog 4 were prepared for use in constructing dimers using “click” chemistry and were prepared using General Method A or the procedure analogous to those described for EXAMPLE 4 but substituting recombinant human insulin and either
  • the N-terminal substituent has the structure
  • N 6,29B -acylated RHI analogs (Analog 11, Analog 12, and Analog 13) were prepared for use in constructing dimers using “click” chemistry.
  • the analogs were prepared using General Method A or the procedure analogous to those described for EXAMPLE 4 but substituting recombinant human insulin (RHI) and the appropriate linking moiety selected from
  • insulin or insulin analog is suspended at room temperature in an organic solvent or mixed aqueous (aq)/organic solvents, e.g., DMSO, in the presence of a base, e.g., TEA.
  • a base e.g., TEA
  • the mixture is allowed to stir gently until insulin is completely dissolved.
  • an activated ester intermediate (linker) in solution of organic solvents, such as DMSO or DMF.
  • UPLC chromatogram shows that a substantial portion of the reaction mixture has converted into N 6,29B ,N 6,B29B′ -insulin dimer (or N 6,28B ,N 6,28B′ -insulin lispro dimer).
  • the reaction mixture may be subjected directly to reverse phase HPLC purification (Waters C4 250 ⁇ 50 mm column, 10 ⁇ m, 1000 ⁇ column or KROMASIL C8 250 ⁇ 50 mm, 10 ⁇ m, 100 ⁇ column; Buffer A: 0.05-0.1% TFA in deionized water; Buffer B: 0.05-0.1% TFA in AcCN), or the reaction may be quenched by careful dilution with cold acidic H 2 O (20 ⁇ , pH about 3.0) at 0° C. and its pH is adjusted to a final pH of 2.5 using 1 N HCl (and 0.1 N NaOH if needed).
  • the solution may first be concentrated by ultrafiltration, either through a tangential flow filtration (TFF) system or using Amicon Ultra-15 Centrifugal Units, with 1K, 3K or 10K MWCO membrane.
  • the concentrated solution is usually first subjected to ion exchange chromatography (PolySULFOETHYL A column, PolyLC Inc., 250 ⁇ 21 mm, 5 ⁇ m, 1000 ⁇ ; Buffer A: 0.1% (v/v)H3PO4/25% AcCN; Buffer B: 0.1% (v/v)H3PO4/25% AcCN/0.5 M NaCl).
  • Fractions containing B29-conjugate with desired purity are combined and concentrated using TFF system or Amicon Ultra-15.
  • insulin or insulin analog is dissolved, with gentle stirring, at room temperature in a mixed solvent: 2:3 v/v 0.1 M Na 2 CO 3 :AcCN. After the mixture cleared, the pH is adjusted to the value of 10.5-10.8 using alkaline solution, e.g., 0.1 N NaOH.
  • alkaline solution e.g., 0.1 N NaOH.
  • an activated ester intermediate is dissolved in an organic solvent, e.g., DMSO, at room temperature.
  • the solution is first concentrated by ultrafiltration, either through a tangential flow filtration (TFF) system or using Amicon Ultra-15 Centrifugal Units, with 1K, 3K or 10K MWCO membrane.
  • the concentrated solution is usually first subjected to ion exchange chromatography (PolySULFOETHYL A column, PolyLC Inc., 250 ⁇ 21 mm, 5 ⁇ m, 1000 ⁇ ; Buffer A: 0.1% (v/v) H 3 PO 4 /25% AcCN; Buffer B: 0.1% (v/v) H 3 PO 4 /25% AcCN/0.5 M NaCl).
  • Table 3 shows dimers that were prepared using appropriate intermediates (linkers) following either General Method B or General Method C as noted using the RHI, DesB30 RHI, insulin lispro, insulin aspart, insulin glargine, or the appropriate analog.
  • linkers for dimers with carbamoylated N-termini, Analog 5 or Analog 6 (DesB30) were used; for dimers with acetylated Al N-termini, Analog 8 was used.
  • the dimers were characterized using UPLC-MS Method D or UPLC-MS Method E, exhibiting either six charged, i.e. [(M+6)/6], (or seven charged, i.e. [(M+7)/7]) species of parent compound at certain retention time (Rt).
  • the insulin and the insulin' molecules linked together by the linking moiety are the same for each of the dimers shown in Table 3.
  • acetylene containing insulin intermediate (Analog) was dissolved, with gentle stirring, at room temperature in a mixed solvent of DMSO and aq. triethylammonium acetate buffer (pH 7.0, final concentration 0.2 mM).
  • appropriate azido containing insulin intermediate (Analog) was dissolved, with gentle stirring, at rt in a mixed solvent of DMSO and water. Both solutions were combined, thoroughly mixed, degassed by gently bubbling N 2 through.
  • the solution was first concentrated by ultrafiltration, either through a tangential flow filtration (TFF) system or using Amicon Ultra-15 Centrifugal Units, with 1K, 3K, or 10K MWCO membrane.
  • the concentrated solution was usually first subjected to ion exchange chromatography (PolySULFOETHYL A column, PolyLC Inc., 250 ⁇ 21 mm, 5 ⁇ m, 1000 ⁇ ; Buffer A: 0.1% (v/v) H 3 PO 4 /25% AcCN; Buffer B: 0.1% (v/v) H 3 PO 4 /25% AcCN/0.5 M NaCl). Fractions containing desired product with desired purity were combined and concentrated using TFF system or Amicon Ultra-15.
  • the resulting solution was then further purified by reverse phase HPLC (Waters C4 250 ⁇ 50 mm column, 10 ⁇ m, 1000 ⁇ column or KROMASIL C8 250 ⁇ 50 mm, 10 ⁇ m, 100 ⁇ column; Buffer A: 0.05-0.1% TFA in water; Buffer B: 0.05-0.1% TFA in AcCN). Fractions containing the desired product with desired purity were combined and freeze-dried or buffer exchanged using TFF system and/or Amicon Ultra-15 to give the insulin dimers.
  • Dimers 40, 41, 45, 46, 47, 59, 57, 79, 80, 82, and 84 which were prepared using the appropriate intermediates following General Method D. These dimers were characterized using UPLC-MS Method D or UPLC-MS Method E or UPLC-MS Method G, exhibiting either six charged, i.e. [(M+6)/6], (or seven charged, i.e. [(M+7)/7]) species of parent compound at certain retention time (Rt).
  • the solution was first concentrated by ultrafiltration, either through a tangential flow filtration (TFF) system or using Amicon Ultra-15 Centrifugal Units, with 1K, 3K, or 10K MWCO membrane.
  • the concentrated solution was usually first subjected to ion exchange chromatography (PolySULFOETHYL A column, PolyLC Inc., 250 ⁇ 21 mm, 5 ⁇ m, 1000 ⁇ ; Buffer A: 0.1% (v/v) H 3 PO 4 /25% AcCN; Buffer B: 0.1% (v/v) H 3 PO 4 /25% AcCN/0.5 M NaCl). Fractions containing desired product with desired purity were combined and concentrated using TFF system or Amicon Ultra-15.
  • the resulting solution was then further purified by reverse phase HPLC (Waters C4 250 ⁇ 50 mm column, 10 ⁇ m, 1000 ⁇ column or KROMASIL C8 250 ⁇ 50 mm, 10 ⁇ m, 100 ⁇ column; Buffer A: 0.05-0.1% TFA in water; Buffer B: 0.05-0.1% TFA in AcCN). Fractions containing the desired product with desired purity were combined and freeze-dried or buffer exchanged using TFF system and/or Amicon Ultra-15 to give the insulin dimers.
  • dimers were characterized using UPLC-MS Method D or UPLC-MS Method E, exhibiting either six charged, i.e. [(M+6)/6], (or seven charged, i.e. [(M+7)/7]) species of parent compound at certain retention time (Rt).
  • Dimer 40, 19, or 4 (21 mg, 1.777 ⁇ mol) in DMSO (2 mL) at room temperature was added TEA (3.96 ⁇ L,0.028 mmol) and then a solution of 2,5-dioxopyrrolidin-1-yl acetate (2.23 mg, 0.014 mmol) in DMSO (100 ⁇ L) or other appropriate N-hydroxysuccinimide activated ester (2,5-dioxopyrrolidin-1-yl methoxy acetate or 2,5-dioxopyrrolidin-1-yl PEG1 acetate) in DMSO (100 ⁇ L).
  • the resulting clear solution was concentrated by Amicon Ultra 15 Centrifuge Filters with 10K MWCO membrane.
  • the resulting solution was first subjected to ion exchange chromatography (PolySULFOETHYL A, 250 ⁇ 21 mm, 5 ⁇ m, 1000 ⁇ , 15 mL/min, gradient from 5% to 45% in 30 min; Buffer A: 0.1% (v/v) H 3 PO 4 /25% Acetonitrile in water; Buffer B: 0.1% (v/v) H 3 PO 4 /25% Acetonitrile/0.5 M NaCl in water).
  • N-terminal substituents have the structure
  • Table 7 shows Dimers 49, 50, and 51 and shows the acyl groups linked to the amino groups of N 2,A1 ,N 2,B1 ,N 2,A1′ and N 2,B1′ .
  • These dimers were prepared from Dimer 40 using the procedures analogous to that described for making Dimer 48 but substituting the appropriate N-hydroxysuccinimide activated esters for 2,5-dioxopyrrolidin-1-yl acetate to produce Dimers 49, 50, and 51.
  • the activated esters were 2,5-dioxopyrrolidin-1-yl Fmoc-glycine acetate,
  • dimers 50 and 51 UPLC-MS Method F
  • UPLC-MS Method G UPLC-MS Method G
  • Rt retention time
  • N-terminal substituents have the structure
  • reaction mixture was first subjected to ion exchange chromatography (PolySULFOETHYL A, 250 ⁇ 21 mm, 5 ⁇ m, 1000 ⁇ , 15 mL/min, gradient from 5% to 45% in 30 min; Buffer A: 0.1% (v/v) H 3 PO 4 /25% Acetonitrile in water; Buffer B: 0.1% (v/v) H 3 PO 4 /25% Acetonitrile/0.5 M NaCl in water). Fractions containing desired product with desired purity were combined and concentrated using Amicon Ultra-15 with 3K or 10K MWCO membrane.
  • N-terminal substituents have the structure
  • the dimers are shown in Table 9.
  • Linker 25 (C6-alanine), Linker 26 (C6-isoleucine), Linker 27 (C6-leucine), and Linker 28 (C6-valine) wherein the amino acid comprising the C6-amino acid linker is alanine, isoleucine, leucine, and valine, respectively, were synthesized similar to the process shown above. Dimers were constructed using the above linkers using prep. Method D. The results are shown in Table 10.
  • Step 1 bis(2,5-dioxopyrrolidin-1-yl) benzene-1,3-dicarboxylate
  • Step 1 bis (2,5-dioxopyrrolidin-1-yl) 4-((tent-butoxycarbonyl)amino) heptanedioate
  • Dimers 71, 72, 77, 78, 81, and 87 were as follows. Synthesis of bis(2,5-dioxopyrrolidin-1-yl) (1S,4S)-cyclohexane-1,4-dicarboxylate (Linker 30; trans-cyclohexane 1,4-diacid) is described.
  • insulin or insulin analog is suspended at room temperature in an organic solvent or mixed aq/organic solvents, e.g., DMSO, in the presence of a base, e.g., TEA, or 1,1,3,3-tetramethylguanidine (TMG).
  • a base e.g., TEA, or 1,1,3,3-tetramethylguanidine (TMG).
  • TMG 1,1,3,3-tetramethylguanidine
  • an activated ester intermediate in solution of organic solvents, such as DMSO or DMF.
  • the white pellet containing crude intermediate was then dissolved in 2 mL of TFA at 0 C and stirred for 10 minutes at same temperature.
  • the reaction solution was transferred, via autopipette, to a 50 mL centrifuge tube containing MTBE (45 mL). The addition was made dropwise.
  • the resulting white suspension was centrifuged (3000 rpm, 15 minutes, at 4° C.) to generate a clear supernatant and a white pellet. The supernatant was drawn off and white pellet was dried in vacuo. and re-dissolved in CH 3 CN/H 2 O (v/v 1:4) solution.
  • Reaction mixture may be subjected directly to reverse phase HPLC purification (Waters C4 250 ⁇ 50 mm column, 10 ⁇ m, 1000 ⁇ column or KROMASIL C8 250 ⁇ 50 mm, 10 ⁇ m, 100 ⁇ column; Buffer A: 0.05-0.1% TFA in deionized water; Buffer B: 0.05-0.1% TFA in AcCN), or the reaction may be quenched by careful dilution with cold acidic H 2 O (20 ⁇ , pH ⁇ 3.0) at 0° C. and its pH is adjusted to a final pH of 2.5 using 1 N HCl (and 0.1 N NaOH if needed).
  • reverse phase HPLC purification Waters C4 250 ⁇ 50 mm column, 10 ⁇ m, 1000 ⁇ column or KROMASIL C8 250 ⁇ 50 mm, 10 ⁇ m, 100 ⁇ column; Buffer A: 0.05-0.1% TFA in deionized water; Buffer B: 0.05-0.1% TFA in AcCN
  • the reaction may be quenched by careful d
  • the solution may first be concentrated by ultrafiltration, either through a tangential flow filtration (TFF) system or using Amicon Ultra-15 Centrifugal Units, with 1K, 3K or 10K MWCO membrane.
  • the concentrated solution is usually first subjected to ion exchange chromatography (PolySULFOETHYL A column, PolyLC Inc., 250 ⁇ 21 mm, 5 ⁇ m, 1000 ⁇ ; Buffer A: 0.1% (v/v)H 3 PO 4 /25% AcCN; Buffer B: 0.1% (v/v)H 3 PO 4 /25% AcCN/0.5 M NaCl).
  • Fractions containing B29-conjugate with desired purity are combined and concentrated using TFF system or Amicon Ultra-15.
  • the concentrated solution is then subjected to reverse phase HPLC purification (Waters C4 250 ⁇ 50 mm column, 10 ⁇ m, 1000 ⁇ column or KROMASIL C8 250 ⁇ 50 mm, 10 ⁇ m, 100 ⁇ column; Buffer A: 0.05-0.1% TFA in deionized water; Buffer B: 0.05-0.1% TFA in AcCN). Fractions containing the desired insulin dimer are combined and freeze-dried or buffer exchanged using TFF system and/or Amicon Ultra-15 to give the N 6,29B ,N 6,29B′ -Insulin dimers.
  • Table 12 lists Dimers 71, 72, 77, 78, 81, and 87, which were prepared using the appropriate linker following either General Method B (Dimers 77 and 78), General Method C (Dimers 71 and 72) or General Method F (Dimers 81 and 87). These dimers were characterized using UPLC-MS Method D or UPLC-MS Method E, exhibiting either six charged, i.e. [(M+6)/6], (or seven charged, i.e. [(M+7)/7]) species of parent compound at certain retention time (Rt).
  • Insulin Receptor Binding Assays were performed as follows.
  • Insulin Receptor (IR) AKT-Phosphorylation Assays were performed as follows.
  • IR AKT-Phosphorylation Assay Insulin receptor activation can be assessed by measuring phosphorylation of the Akt protein, a key step in the insulin receptor signaling cascade.
  • CHO cell lines overexpressing human IR were utilized in an HTRF sandwich ELISA assay kit (Cisbio “Phospho-AKT(Ser473) and Phospho-AKT(Thr308) Cellular Assay Kits”).
  • Cells were grown in F12 media supplemented with 10% FBS, 400 ⁇ g/mL G418 and 10 mM HEPES. Prior to assay, the cells were incubated in serum free media for 2 to 4 hr.
  • the cells could be frozen and aliquoted ahead of time in media containing 20% DMSO and used in the assay upon thawing, spin down and re-suspension.
  • Table 15 shows the in vitro biological activity of the insulin dimers towards the insulin receptor (IR). The activities were measured by either ligand competition assays as described in EXAMPLE 28 or functional Akt-phosphorylation assays as described in EXAMPLE 29.
  • RHI Humulin
  • FIGS. 2A, 2B, 2C, 2D, 2E, 2F and 2G The results are shown in FIGS. 2A, 2B, 2C, 2D, 2E, 2F and 2G .
  • the results show that the glucose profile for Dimer 24, Dimer 55, Dimer 58, Dimer 60, and Dimer 67 were substantially the same at both doses tested whereas increasing the dosage of compounds A and B caused an increased glucose lowering potency, indicating a lessor potential for hyperglycemic risk for the dimers compared to RHI or compounds A and B.
  • the glucose lowering effect of Dimers 24, 18, and 40 were compared to RHI in Diabetic Yucatan miniature pigs (D minipigs) as follows.
  • Yucatan minipigs were rendered Type 1 diabetic by Alloxan injections following a proprietary protocol developed by Sinclair Research Center (Auxvasse, Mo.). Induction is considered successful if basal glucose levels exceed 150 mg/dL. D minipigs with plasma glucose levels of approximately 300 mg/dl were utilized in these experiments.
  • VAP Jugular vein vascular access ports
  • Humulin and IRPA were formulated at 69 nmol/ml in a buffer containing Glycerin, 16 mg/mL; Metacresol, 1.6 mg/mL; Phenol, 0.65 mg/mL; Anhydrous Sodium Phosphate, Dibasic, 3.8 mg/mL; pH adjusted to 7.4 with HCl. After dosing, sampling continued for 480 minutes; time points for sample collection were ⁇ 30 min, 0 min , 8 min, 15 min, 30 min, 45 min, 60 min, 90 min, 120 min, 150 min, 180 min, 210 min, 240 min, 270 min, 300 min, 330 min, 360 min, 420 min, 480 min.
  • FIG. 1 shows that at 0.69 nmol/kg concentration, RHI reduced serum glucose levels below 50 mg/dL whereas the insulin dimers did not. This result shows that the insulin dimers present less risk of promoting hypoglycemia than RHI.
  • the glucose lowering effect of Dimers 4, 5, 7, 8, 9, 18-29, 32, 37-41, 43, 44, 48, 55, 57, 58, 60, 61, 62, 64, 67, 69, 71, 72, 77, and 78 were compared to RHI in Diabetic Yucatan miniature pigs (D minipigs) as follows.
  • Yucatan minipigs were rendered Type 1 diabetic by Alloxan injections following a proprietary protocol developed by Sinclair Research Center (Auxvasse, Mo.). Induction is considered successful if basal glucose levels exceed 150 mg/dl. D minipigs with plasma glucose levels of approximately 300-400 mg/dl and instrumented with two Jugular vein vascular access ports (VAP), were used in these studies.
  • VAP Jugular vein vascular access ports
  • RHI human insulin
  • Humulin and dimers were formulated at 69 nmol/mL in a buffer containing Glycerin, 16 mg/mL; Metacresol, 1.6 mg/mL; Phenol, 0.65 mg/mL; Anhydrous Sodium Phosphate, Dibasic, 3.8 mg/mL, pH adjusted to 7.4 with HCl. After dosing, sampling continued for 480 minutes; time points for sample collection were ⁇ 30 minutes, 0 minutes , 8 minutes, 15 minutes, 30 minutes, 45 minutes, 60 minutes, 90 minutes, 120 minutes, 150 minutes, 180 minutes, 210 minutes, 240 minutes, 270 minutes, 300 minutes, 330 minutes, 360 minutes, 420 minutes, and 480 minutes.
  • FIG. 7A-7H The Figures show that at 0.69 nmol/kg concentration, RHI reduced serum glucose levels below 50 mg/dL whereas the insulin dimers did not. This result shows that the insulin dimers present less risk of promoting hypoglycemia than RHI.
  • Dimer 24 produced metabolites that were detected in RKCM, however, while loss of the A-chain polypeptide due to breakage of the disulfide bonds between the A-chain polypeptide and the B-chain polypeptide was observed, no monomers were detected.
  • FIG. 5 shows that without GSH, loss of A-chain polypeptide was less than 1% of parent (stock solution of Dimer 24).
  • FIG. 6 shows that with GSH, loss of A-chain polypeptide was less than 1% of parent (stock solution of Dimer 24). No metabolites observed in 0 hour controls for Dimer 24 or in the stock solutions. The new quenching procedure with acidic conditions properly halted disulfide exchange.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Organic Chemistry (AREA)
  • Endocrinology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Emergency Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
US15/527,363 2014-11-21 2015-11-19 Insulin receptor partial agonists Abandoned US20170355743A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/527,363 US20170355743A1 (en) 2014-11-21 2015-11-19 Insulin receptor partial agonists

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462082857P 2014-11-21 2014-11-21
US201562242503P 2015-10-16 2015-10-16
US15/527,363 US20170355743A1 (en) 2014-11-21 2015-11-19 Insulin receptor partial agonists
PCT/US2015/061445 WO2016081670A2 (en) 2014-11-21 2015-11-19 Insulin receptor partial agonists

Publications (1)

Publication Number Publication Date
US20170355743A1 true US20170355743A1 (en) 2017-12-14

Family

ID=54838417

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/527,363 Abandoned US20170355743A1 (en) 2014-11-21 2015-11-19 Insulin receptor partial agonists
US14/945,461 Active 2035-12-18 US10017556B2 (en) 2014-11-21 2015-11-19 Insulin receptor partial agonists
US16/007,046 Active US10183981B2 (en) 2014-11-21 2018-06-13 Insulin receptor partial agonists
US16/199,774 Active US10800827B2 (en) 2014-11-21 2018-11-26 Insulin receptor partial agonists

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/945,461 Active 2035-12-18 US10017556B2 (en) 2014-11-21 2015-11-19 Insulin receptor partial agonists
US16/007,046 Active US10183981B2 (en) 2014-11-21 2018-06-13 Insulin receptor partial agonists
US16/199,774 Active US10800827B2 (en) 2014-11-21 2018-11-26 Insulin receptor partial agonists

Country Status (27)

Country Link
US (4) US20170355743A1 (ja)
EP (4) EP3221343B1 (ja)
JP (5) JP6484337B2 (ja)
KR (2) KR102101136B1 (ja)
CN (2) CN108064173B (ja)
AR (1) AR102712A1 (ja)
AU (3) AU2015349890B2 (ja)
BR (2) BR122024000898A2 (ja)
CA (2) CA2966765C (ja)
CL (3) CL2017001288A1 (ja)
CO (1) CO2017004976A2 (ja)
CR (1) CR20170208A (ja)
DO (1) DOP2017000124A (ja)
EA (1) EA036714B1 (ja)
ES (1) ES2946247T3 (ja)
GT (1) GT201700104A (ja)
IL (1) IL252257A0 (ja)
MX (3) MX2017006651A (ja)
NI (1) NI201700060A (ja)
PE (1) PE20170957A1 (ja)
PH (1) PH12017500935A1 (ja)
SG (4) SG10201809428UA (ja)
SV (1) SV2017005445A (ja)
TN (1) TN2017000178A1 (ja)
TW (1) TW201625673A (ja)
WO (1) WO2016081670A2 (ja)
ZA (1) ZA201703238B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10183981B2 (en) * 2014-11-21 2019-01-22 Merck Sharp & Dohme Corp. Insulin receptor partial agonists

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2911707T3 (es) 2014-08-04 2022-05-20 Nuevolution As Derivados de heterociclilo opcionalmente condensados de pirimidina útiles para el tratamiento de enfermedades inflamatorias, metabólicas, oncológicas y atoinmunitarias
AR105616A1 (es) 2015-05-07 2017-10-25 Lilly Co Eli Proteínas de fusión
US10953076B2 (en) 2016-05-24 2021-03-23 Merck Sharp & Dohme Corp. Insulin receptor partial agonists and GLP-1 analogues
WO2017205309A1 (en) 2016-05-25 2017-11-30 Merck Sharp & Dohme Corp. Insulin receptor partial agonists
CN109891237B (zh) * 2016-10-24 2022-08-23 诺和诺德股份有限公司 胰岛素制剂的生物测定法
US10919949B2 (en) 2017-08-17 2021-02-16 Novo Nordisk A/S Acylated insulin analogues and uses thereof
US11911484B2 (en) 2018-08-02 2024-02-27 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating myotonic dystrophy
US12097263B2 (en) 2018-08-02 2024-09-24 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating myotonic dystrophy
US20220193250A1 (en) 2018-08-02 2022-06-23 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating facioscapulohumeral muscular dystrophy
US11168141B2 (en) 2018-08-02 2021-11-09 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
US12018087B2 (en) 2018-08-02 2024-06-25 Dyne Therapeutics, Inc. Muscle-targeting complexes comprising an anti-transferrin receptor antibody linked to an oligonucleotide and methods of delivering oligonucleotide to a subject
US20210308273A1 (en) 2018-08-02 2021-10-07 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
CN112898172B (zh) * 2019-12-04 2022-05-31 中国科学院大连化学物理研究所 可被羧肽酶酶解的双亲和功能团化合物的合成方法
JP2021098692A (ja) 2019-12-20 2021-07-01 ヌエヴォリューション・アクティーゼルスカブNuevolution A/S 核内受容体に対して活性の化合物
EP4126874A1 (en) 2020-03-31 2023-02-08 Nuevolution A/S Compounds active towards nuclear receptors
CA3174176A1 (en) 2020-03-31 2021-10-07 Sanne Schroder Glad Compounds active towards nuclear receptors
EP4204442A4 (en) * 2020-08-26 2024-08-14 Merck Sharp & Dohme Llc PARTIAL INSULIN RECEPTOR AGONISTS
JP2023540746A (ja) * 2020-09-03 2023-09-26 ダイン セラピューティクス,インコーポレーテッド タンパク質-オリゴヌクレオチド複合体の調製方法
WO2022055877A2 (en) * 2020-09-09 2022-03-17 Merck Sharp & Dohme Corp. Insulin receptor partial agonists
US11633498B2 (en) 2021-07-09 2023-04-25 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating myotonic dystrophy
US11638761B2 (en) 2021-07-09 2023-05-02 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating Facioscapulohumeral muscular dystrophy
US11771776B2 (en) 2021-07-09 2023-10-03 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
US11969475B2 (en) 2021-07-09 2024-04-30 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating facioscapulohumeral muscular dystrophy
US11648318B2 (en) 2021-07-09 2023-05-16 Dyne Therapeutics, Inc. Anti-transferrin receptor (TFR) antibody and uses thereof
CA3226366A1 (en) 2021-07-09 2023-01-12 Dyne Therapeutics, Inc. Muscle targeting complexes and formulations for treating dystrophinopathies
AU2023254846A1 (en) 2022-04-15 2024-10-10 Dyne Therapeutics, Inc. Muscle targeting complexes and formulations for treating myotonic dystrophy

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1381273A (en) * 1971-01-28 1975-01-22 Nat Res Dev Insulin derivatives
US3907763A (en) 1972-03-01 1975-09-23 Bayer Ag Insulin derivatives crosslinked by a dicarboxylic acid moiety
PH25772A (en) 1985-08-30 1991-10-18 Novo Industri As Insulin analogues, process for their preparation
US5514646A (en) 1989-02-09 1996-05-07 Chance; Ronald E. Insulin analogs modified at position 29 of the B chain
US5304473A (en) 1991-06-11 1994-04-19 Eli Lilly And Company A-C-B proinsulin, method of manufacturing and using same, and intermediates in insulin production
WO1995016708A1 (en) 1993-12-17 1995-06-22 Novo Nordisk A/S Proinsulin-like compounds
AU5724996A (en) 1995-05-05 1996-11-21 Eli Lilly And Company Single chain insulin with high bioactivity
EP1085879A2 (en) * 1998-06-08 2001-03-28 Advanced Medicine, Inc. Multibinding agents that modulate the 5-ht transporter
DE19908041A1 (de) * 1999-02-24 2000-08-31 Hoecker Hartwig Kovalent verbrückte Insulindimere
KR100449454B1 (ko) 2000-10-02 2004-09-21 이현철 단일사슬 인슐린 유도체의 유전자를 포함하는 당뇨병치료용 벡터
AU2002248464A1 (en) 2001-02-21 2002-09-12 Medtronic Minimed, Inc. Stabilized insulin formulations
US7105314B2 (en) 2001-04-02 2006-09-12 Novo Nordisk A/S Method for making human insulin precursors
DK2226316T3 (en) 2002-05-30 2016-04-11 Scripps Research Inst Copper catalyzed ligation of azides and acetylenes
KR100507796B1 (ko) 2003-04-03 2005-08-17 한미약품 주식회사 생체내 반감기가 증가된 peg-생리활성 폴리펩티드 동종이량체 결합체 및 이의 제조방법
ATE517119T1 (de) 2003-12-03 2011-08-15 Novo Nordisk As Einzelketteninsulin
US20090197800A1 (en) 2004-10-27 2009-08-06 Novo Nordisk A/S Insulin Receptor Binding Peptides with Non-Insulin Gene Activation Profiles and Uses Thereof
EP1812031B1 (en) 2004-11-01 2015-06-24 The Regents of the University of California Compositions and methods for modification of biomolecules
EP1863840A1 (en) 2005-03-18 2007-12-12 Novo Nordisk A/S Pegylated single-chain insulin
WO2007096332A1 (en) 2006-02-21 2007-08-30 Novo Nordisk A/S Single-chain insulin analogues and pharmaceutical formulations thereof
WO2007104734A1 (en) 2006-03-13 2007-09-20 Novo Nordisk A/S Acylated single chain insulin
US20090069215A1 (en) 2006-03-13 2009-03-12 Novo Nordisk A/S Acylated Single Chain Insulin
WO2007104736A2 (en) 2006-03-13 2007-09-20 Novo Nordisk A/S Acylated single chain insulin
US20090099065A1 (en) 2006-03-13 2009-04-16 Novo Nordisk A/S Acylated Single Chain Insulin
JP5256199B2 (ja) 2006-08-07 2013-08-07 テヴァ バイオファーマシューティカルズ ユーエスエー,インコーポレーティッド アルブミン−インスリン融合タンパク質
WO2008145721A2 (en) * 2007-06-01 2008-12-04 Novo Nordisk A/S N-terminal modification of polypeptides for protection against degradation by aminopeptidases
AU2009210570B2 (en) 2008-01-30 2014-11-20 Indiana University Research And Technology Corporation Ester-based insulin prodrugs
BRPI0911571A2 (pt) 2008-04-22 2018-04-03 Univ Case Western Reserve método para tratar um mamífero, análogo de insulina, ácido nucléico e célula hospedeira
TWI394580B (zh) * 2008-04-28 2013-05-01 Halozyme Inc 超快起作用胰島素組成物
DK2349324T3 (en) * 2008-10-17 2017-12-11 Sanofi Aventis Deutschland COMBINATION OF AN INSULIN AND A GLP-1 AGONIST
JP5789515B2 (ja) 2008-12-19 2015-10-07 インディアナ ユニバーシティー リサーチ アンド テクノロジー コーポレーションIndiana University Research And Technology Corporation インスリン類似体
AU2009335715B2 (en) 2008-12-19 2016-09-15 Indiana University Research And Technology Corporation Amide-based insulin prodrugs
WO2011059895A1 (en) 2009-11-11 2011-05-19 Quest Diagnostics Investments Incorporated Hexa mutations
US8940860B2 (en) 2010-06-16 2015-01-27 Indiana University Research And Technology Corporation Single-chain insulin agonists exhibiting high activity at the insulin receptor
US8255297B2 (en) 2010-07-20 2012-08-28 Facebook, Inc. Creation, redemption, and accounting in a virtual currency system
CN103154024A (zh) 2010-10-15 2013-06-12 诺沃—诺迪斯克有限公司 新型n末端修饰的胰岛素衍生物
AU2012328407A1 (en) * 2011-10-27 2014-05-22 Case Western Reserve University Ultra-concentrated rapid-acting insulin analogue formulations
US9593156B2 (en) * 2012-09-26 2017-03-14 Indiana University Research And Technology Corporation Insulin analog dimers
CA2904198A1 (en) 2013-03-15 2014-09-18 Universite De Geneve Use of insulin signaling antagonists, optionally in combination of transfection of non-beta cells, for inducing insulin production
US9427475B2 (en) * 2013-10-04 2016-08-30 Merck Sharp & Dohme Corp. Glucose-responsive insulin conjugates
EP3068443B1 (en) * 2013-11-12 2019-04-10 Centre for Probe Development and Commercialization Residualizing linkers and uses thereof
AU2015206890B2 (en) 2014-01-20 2019-05-23 Hanmi Pharm. Co., Ltd. Long-acting insulin and use thereof
TN2017000178A1 (en) 2014-11-21 2018-10-19 Merck Sharp & Dohme Insulin receptor partial agonists

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10183981B2 (en) * 2014-11-21 2019-01-22 Merck Sharp & Dohme Corp. Insulin receptor partial agonists
US10800827B2 (en) 2014-11-21 2020-10-13 Merck Sharp & Dohme Corp. Insulin receptor partial agonists

Also Published As

Publication number Publication date
AU2018211207A1 (en) 2018-08-16
US20170107268A1 (en) 2017-04-20
US10183981B2 (en) 2019-01-22
BR112017010481A2 (pt) 2018-04-03
EP3660041A1 (en) 2020-06-03
CA3014641C (en) 2020-08-18
PE20170957A1 (es) 2017-07-13
CL2019001144A1 (es) 2019-07-19
SG10201809427SA (en) 2018-11-29
SG11201704064TA (en) 2017-06-29
EP3660040A2 (en) 2020-06-03
JP6931033B2 (ja) 2021-09-01
CN112494656A (zh) 2021-03-16
CL2017001288A1 (es) 2017-12-15
JP2019014734A (ja) 2019-01-31
ZA201703238B (en) 2018-05-30
EP3660041B1 (en) 2023-04-19
JP2020097572A (ja) 2020-06-25
JP6703068B2 (ja) 2020-06-03
DOP2017000124A (es) 2017-08-15
NI201700060A (es) 2017-07-18
IL252257A0 (en) 2017-07-31
WO2016081670A3 (en) 2016-08-04
US10017556B2 (en) 2018-07-10
BR122024000898A2 (pt) 2024-02-27
AU2015349890A1 (en) 2017-06-01
MX2020014121A (es) 2021-03-25
JP2018501203A (ja) 2018-01-18
EP3221343A2 (en) 2017-09-27
CN108064173B (zh) 2021-05-18
CL2019001143A1 (es) 2019-07-19
BR112017010481A8 (pt) 2023-04-11
US10800827B2 (en) 2020-10-13
JP6484337B2 (ja) 2019-03-13
JP2019011357A (ja) 2019-01-24
AU2018211208A1 (en) 2018-08-16
GT201700104A (es) 2018-11-27
CA3014641A1 (en) 2016-05-26
TN2017000178A1 (en) 2018-10-19
AU2018211207B2 (en) 2020-04-09
AU2018211208B2 (en) 2020-09-10
MX2017006651A (es) 2017-08-21
TW201625673A (zh) 2016-07-16
US20190092833A1 (en) 2019-03-28
KR20170084300A (ko) 2017-07-19
AR102712A1 (es) 2017-03-22
EA201791117A1 (ru) 2017-11-30
CA2966765C (en) 2020-04-14
JP2019014735A (ja) 2019-01-31
CR20170208A (es) 2017-07-17
ES2946247T3 (es) 2023-07-14
EP3221343B1 (en) 2020-09-16
WO2016081670A2 (en) 2016-05-26
CN108064173A (zh) 2018-05-22
EA036714B1 (ru) 2020-12-10
CN112494656B (zh) 2024-01-30
KR20190069622A (ko) 2019-06-19
CO2017004976A2 (es) 2017-10-10
BR122024000903A2 (pt) 2024-02-27
JP6943825B2 (ja) 2021-10-06
AU2015349890B2 (en) 2018-08-30
CA2966765A1 (en) 2016-05-26
SV2017005445A (es) 2018-04-04
US20180291078A1 (en) 2018-10-11
KR102049647B1 (ko) 2019-11-29
PH12017500935A1 (en) 2017-11-27
SG10201809428UA (en) 2018-11-29
EP3666792A2 (en) 2020-06-17
MX2020014120A (es) 2021-03-25
SG10201809457YA (en) 2018-11-29
EP3660040A3 (en) 2020-07-29
EP3666792A3 (en) 2020-07-29
KR102101136B1 (ko) 2020-04-14

Similar Documents

Publication Publication Date Title
US10800827B2 (en) Insulin receptor partial agonists
US10953076B2 (en) Insulin receptor partial agonists and GLP-1 analogues
US11058775B2 (en) Insulin dimer-incretin conjugates
US10689430B2 (en) Insulin receptor partial agonists
US20230310551A1 (en) Insulin receptor partial agonists
US20240294596A1 (en) Insulin receptor partial agonists
EA041034B1 (ru) Частичные агонисты инсулинового рецептора
BR112017010481B1 (pt) Composto útil como agonista parcial de receptor de insulina, composição, e, uso de uma composição

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, SONGNIAN;YAN, LIN;HUO, PEI;AND OTHERS;SIGNING DATES FROM 20160622 TO 20160627;REEL/FRAME:043941/0645

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION