1281756 九、發明說明: 【發明所屬之技術領域】 本發明係有關於-種發光二極體結構,尤其係有關於一種由 III-V族元素(III-V gIOUp element)構成,具有建構絲化薄膜 接觸層之發光二極體結構。 【先前技術】 氮化鎵(GaN)基外延技術自1993年為日本專家突破後,在全球 掀起了氮化鎵基藍光發光二極體產業化的高潮。 習知的氮化鎵系發光二極體結構1(如第一圖所示)係形成於 一基材10上,例如Ah〇2之基材,其結構從下至上依序為晶核層 (nucleation layer)12、用以使後續長晶更佳順利與容易之n型播 雜氮化鎵的N型摻雜導電緩衝層(N-type conductive buffer layer)14、下束缚層(confinement layer)16、供做發光用之主動 層(active layer)18、上束缚層20、P型氮化鎵的接觸層22及供做 發光二極體1陽極之透明電極24,其中下束缚層16與上束缚層2〇的 摻雜型是相反的,例如當下束缚層16為N型摻雜的氮化鎵時,上束 缚層20為P型摻雜的氮化鎵。透明電極24的材料通常為n型摻雜, 如氧化銦錫(Indium tin oxide)、氧化錫鎘(Cadmium tin oxide) 或極薄之金屬。另外,在緩衝層14上與上、下束缚層2〇, i6及主動 層18隔離之區域上形成供做發光二極體丨陰極之電極26。 第二圖為第一圖中當發光二極體1的發光區域範圍之示意 1281756 圖。於發光一極體1的透明電極24及電極26上施加順向偏壓後,會 使得發光二極體1導通,此時電流會自透明電極24流向主動層18。 習知P型氮化鎵接觸層22的載子(carrier)濃度無法太高,且接觸 電阻咼’以致電流散佈(current spreading)效應不佳,而p型透 明電極24緊覆蓋部份接觸層22。由第二圖中可以看出電流流過的 區域僅為與透明電極24寬度相當之區域,也因此造成發光二極體1 的發光區域受到限制,無法發揮主動層18的功效,致使發光二極 體1之發光效率便大為降低。 綜上所述,習知的發光二極體結構受限於接觸層的物理特 性,而使其無法有效的成長高濃度之p型摻雜層,這使得發光二極 體的製造成本提咼,同時產品良率也降低。再者,習知的發光二 極體結構無法提供一個高發光效率的二極體,二極體中大部份的 主動層區域沒有被好好的利用。再者,透明電極與接觸層兩者的 摻雜型(導電型)並不同型,故在透明電極與接觸層之間可能會產 生接合面(junction),而影響發光二極體的操作。 因此,改善接觸層的物理特性應可使發光二極體之發光效率 獲得有效之改善。中華民國發明專利第156268號中揭示了一種摻 (strained layer super lattices, SLS)^f^ 為發光二極體的接觸層以提升習知發光二極體的發光效率。中華 民國發明專利公告第546859號中亦揭示了一種具有數位穿透層之 亂化鎵系發光二極體,藉以使氧化錮錫層與PS氮化鎵系接觸層成 1281756 為歐姆接觸的狀悲’以降低二者間的電阻。雖然,此歧改良或多 或少對於發光效率的提升皆有助益,惟仍未達到令人滿意之結果。 因此,本發明即致力於克服上述之缺點,以有效改善發光二 極體之發光效率。 【發明内容】 本發明之目的,係提供一種具有建構式氧化薄膜接觸層 (Constructive Oxide Contact Structure, COCS)之發光二極體 結構。 本發明之另-目的,係提供-種能有效降低接觸層電阻之發 光二極體結構,以有效改善其發光效率。 根據本發撕指出之-種發光二極體結構,細建構式氧化 薄膜接觸層結縣做鱗光二鋪的接觸層,使其㈣形成高濃 度(高導電率)之接觸層。當此接觸層辅以適當之透明電極,可= 以有效的增加發光效率及降低操作電壓。 以根據本發明所指出之建構式氧化薄膜接觸層結構做為發光 二極體的接觸層,可不需限制接觸層摻雜物之類型,而透明電極 更可以與接觸層具同-導電型的材料,藉以消除透明電極與 層之間所產生之接合面。 織二㈣_ ’具有 1281756 月電極的尺寸可以大致與主動層—致,藉以提高電流通過主 的區域’以提高主動層可發光區域,而使發光效率提高。曰 根據本發明所指出之發光二極體結構,其構造簡述如下: 根據本發明所指出之發光二極體結構係雜於一基板上 二、:衝層、一下束缚層、—發光層、一上束缚層、—接觸層, 弟一電極與第二電極(透明電極)。其中,第 係形成於此基板上,第一導電型之下束缚層則形成於此第 型之緩衝層上,其中下束_之掺雜物解衝層之摻雜物係 糾型,例如晴型或嶋雜物。發光層係形成於下束缚層上, 而第-導麵之上束缚層卿成於發光層上,其中上束缚層之推 雜物與下束缚層之摻雜物為不同型,例如其一為㈣換雜物,另一 則為Ν型摻雜物。第二導電型半導體化合物材料,形成於上束缚層 上供做接觸層。此接觸層係鍵構式氧化薄膜細層,其導電性θ 可為P3L Ν型或I型。至於透明電極則形成於接觸層上,做為發光 二極體之陽極。第-電極則形成於下束缚層上,並與發光層、接 觸層及透明電極隔離,做為發光二極體之陰極。 别述之透明電極與建構式氧化薄膜接觸層兩者之導電型可以 同型或不同型,例如兩者陳型侧,或其-為ρ型,另一則為 Ν型。 本表月在此另提出-種具有建構式氧化薄膜接觸層,架構於 -基板上之發光二極體結構。其係由一形成於此基板上之導電緩 1281756 衝層,一架構於缓衝層上且夾於上、下束缚層中之發光層,—形 成於上束缚層上之建構式氧化薄膜接觸層,其導電性可為?型 i或I支,形成於建構式氧化薄膜接觸層上之導電型薄膜,幵)成 於下束缚層上,並與發光層、接觸層及透明電極隔離之第一電極, 及形成於導電型薄膜上之第二電極(透明電極)。其中,導電^薄 膜係做為電流分散及透光層。上束、騎之摻雜物與下束缚層之推 雜物為不_,例如其—為p型摻雜物,另—則躺型推雜物。 前述之透明電極與建構式氧化薄膜接觸層兩者之導電型可以 同型或不同型,例如兩者同為p型或_,或其―為㈣,另 m ° 一 本發明將藉由參考下列的實施例做進一步的說明,這些實施 例並不限制本發明前面所揭示之内容。熟習本發明之技藝者,可 做些許之改良與修飾,但仍不脫離本發明之範疇。 【實施方式】 為使本發明之目的、特徵及優點能更㈣地為熟習本發明技 藝者了解,茲配合所附圖式做進一步詳細說明如下: 根據本發明所指出之發光二極體結構,係利用建構式氧化薄 (Constructive Oxide Contact Structure, C0CS)j^^ 成高濃度(高導電率)之接_,來降低接觸層雜。當此接觸層 輔以適田之透明電極,可用以有效的增加發光效率及降低操作電 12817561281756 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a light-emitting diode structure, and more particularly to a composition of a III-V gIOUp element having a structured silk Light-emitting diode structure of the film contact layer. [Prior Art] Since the breakthrough of Japanese experts in 1993, the gallium nitride (GaN)-based epitaxial technology has ignited the global industrialization of gallium nitride-based blue light-emitting diodes. A conventional gallium nitride-based light-emitting diode structure 1 (shown in the first figure) is formed on a substrate 10, such as a substrate of Ah 2 , whose structure is sequentially a nucleation layer from bottom to top ( Nucleation layer 12, N-type conductive buffer layer 14 and lower confinement layer 16 for n-type hybrid gallium nitride for smoothing and easy subsequent crystal growth. An active layer 18 for light emission, an upper tie layer 20, a contact layer 22 of a P-type gallium nitride, and a transparent electrode 24 for an anode of the light-emitting diode 1, wherein the lower tie layer 16 is bound to the upper layer The doping type of layer 2 turns is reversed. For example, when the lower tie layer 16 is N-type doped gallium nitride, the upper tie layer 20 is P-type doped gallium nitride. The material of the transparent electrode 24 is usually n-type doped, such as indium tin oxide, cadmium tin oxide or an extremely thin metal. Further, an electrode 26 for a cathode of the light-emitting diode is formed on the buffer layer 14 in a region separated from the upper and lower tie layers 2, i6 and the active layer 18. The second figure is a schematic 1281756 diagram of the range of the light-emitting area of the light-emitting diode 1 in the first figure. When a forward bias is applied to the transparent electrode 24 and the electrode 26 of the light-emitting body 1, the light-emitting diode 1 is turned on, and current flows from the transparent electrode 24 to the active layer 18. It is conventional that the carrier concentration of the P-type gallium nitride contact layer 22 cannot be too high, and the contact resistance 咼' causes a current spreading effect to be poor, and the p-type transparent electrode 24 tightly covers a portion of the contact layer 22 . It can be seen from the second figure that the area through which the current flows is only the area corresponding to the width of the transparent electrode 24, and thus the light-emitting area of the light-emitting diode 1 is limited, and the function of the active layer 18 cannot be exerted, resulting in the light-emitting diode. The luminous efficiency of the body 1 is greatly reduced. In summary, the conventional light-emitting diode structure is limited by the physical properties of the contact layer, so that it can not effectively grow a high-concentration p-type doped layer, which makes the manufacturing cost of the light-emitting diode improve. At the same time, the product yield is also reduced. Furthermore, conventional light-emitting diode structures do not provide a diode with high luminous efficiency, and most of the active layer regions of the diode are not well utilized. Further, since the doping type (conducting type) of both the transparent electrode and the contact layer is different, a junction may be generated between the transparent electrode and the contact layer, which affects the operation of the light-emitting diode. Therefore, improving the physical properties of the contact layer should result in an effective improvement in the luminous efficiency of the light-emitting diode. The Republic of China Patent No. 156268 discloses a strained layer super lattices (SLS) which is a contact layer of a light-emitting diode to enhance the luminous efficiency of a conventional light-emitting diode. The Republic of China Invention Patent Publication No. 546859 also discloses a chaotic gallium-based light-emitting diode having a digital penetrating layer, whereby the tantalum oxide layer and the PS gallium nitride-based contact layer are in an ohmic contact with 1281756. 'To reduce the resistance between the two. Although this improvement has been more or less helpful for the improvement of luminous efficiency, it has not yet achieved satisfactory results. Accordingly, the present invention has been made in an effort to overcome the above disadvantages in order to effectively improve the luminous efficiency of a light-emitting diode. SUMMARY OF THE INVENTION An object of the present invention is to provide a light-emitting diode structure having a structured oxide contact structure (COCS). Another object of the present invention is to provide a light-emitting diode structure which can effectively reduce the contact layer resistance to effectively improve its luminous efficiency. According to the light-emitting diode structure pointed out by the present invention, the finely-structured oxidized film contact layer is formed in the contact layer of the scaly light to make the (four) high-concentration (high conductivity) contact layer. When the contact layer is supplemented with a suitable transparent electrode, it can effectively increase the luminous efficiency and lower the operating voltage. The structured oxide film contact layer structure according to the present invention is used as the contact layer of the light emitting diode, and the type of the contact layer dopant is not limited, and the transparent electrode can be made of the same conductive material as the contact layer. In order to eliminate the joint between the transparent electrode and the layer. The woven two (four) _ ' has a size of 1281756 months. The size of the electrode can be substantially the same as that of the active layer, thereby increasing the current through the main region' to increase the active layer illuminable region, thereby improving the luminous efficiency. The structure of the light-emitting diode according to the present invention is briefly described as follows: The light-emitting diode structure according to the present invention is mixed on a substrate, a punch layer, a lower tie layer, a light-emitting layer, An upper binding layer, a contact layer, a second electrode and a second electrode (transparent electrode). Wherein, the first system is formed on the substrate, and the first conductive type lower binding layer is formed on the buffer layer of the first type, wherein the dopant of the underlying dopant layer is corrected, for example, sunny Type or noisy. The light-emitting layer is formed on the lower tie layer, and the tie layer on the first guide surface is formed on the light-emitting layer, wherein the dopant of the upper tie layer and the dopant of the lower tie layer are different, for example, one of (4) Change the impurities, and the other is the erbium type dopant. A second conductive type semiconductor compound material is formed on the upper tie layer to serve as a contact layer. The contact layer is a fine layer of a bond structure oxidized thin film, and its conductivity θ can be P3L Ν type or I type. As for the transparent electrode, it is formed on the contact layer as an anode of the light-emitting diode. The first electrode is formed on the lower tie layer and is isolated from the light-emitting layer, the contact layer and the transparent electrode as a cathode of the light-emitting diode. The conductivity type of both the transparent electrode and the structured oxide film contact layer may be of the same type or different type, for example, the two sides, or - is p type, and the other is Ν type. This table also proposes a light-emitting diode structure having a structured oxide film contact layer and a structure on the substrate. The conductive layer is formed by a conductive layer of 1281756 formed on the substrate, a light-emitting layer sandwiched on the buffer layer and sandwiched between the upper and lower tie layers, and a structured oxide film contact layer formed on the upper tie layer. What is its conductivity? a type i or I, a conductive film formed on the contact layer of the structured oxide film, formed on the lower tie layer, and separated from the light emitting layer, the contact layer and the transparent electrode, and formed in the conductive type a second electrode (transparent electrode) on the film. Among them, the conductive film is used as a current dispersion and a light transmitting layer. The pusher of the upper bundle, the rider and the lower tie layer are not, for example, they are p-type dopants, and the other is a lying pusher. The conductive type of the transparent electrode and the structured oxide film contact layer may be of the same type or different type, for example, both of them are p-type or _, or they are (four), and another m ° of the present invention will be referred to by the following The examples are further described, and these examples do not limit the disclosure of the foregoing. A person skilled in the art can make some modifications and modifications without departing from the scope of the invention. [Embodiment] The objects, features, and advantages of the present invention will be more fully understood by those skilled in the <RTIgt; The use of Constructive Oxide Contact Structure (C0CS) is a high concentration (high conductivity) to reduce contact layer impurities. When the contact layer is supplemented with a transparent electrode of the field, it can be used to effectively increase the luminous efficiency and reduce the operating power. 1281756
有更觸層編觸㈣㈣ 形成歐姆娜^與之 基接職h〇ttkyCQntact), 載^度不夠㈣成蕭 ..使侍^件之知作電壓增加。另外, =電極可制與建構式氧化_接觸層相同導龍之材料 传透明電極與接觸層之間不易產生接合面(脚如),且透明電 極與接觸層之尺寸較易做成一致。 杏,閱弟二圖’為根據本發明所指出之發光二極體結構職佳 只施例之剖面示意圖。根據本發明所指出之發光二極體結獅〇首 先係提供-基板120,此基板12〇可以為__物質,亦可由導電 型半導體材料所製備,在此並沒有特別的限制,只妓任何習知 或未去可供作為發光一極體基板之材料皆可被應用在根據本發明 斤才曰出之U—極體結構中。當其為絕緣物質時,在此可舉出的 例子’包含氧化銘(佩sapphire)、氮化銘(A1N)、氮化嫁_)、 尖晶石(Spinel)、氧化鋰鎵③⑷沾3)或氧化鋁鋰江^丨仏)等,但並 不僅限於此。當其為導電型半導體材料時,在此可舉出的例子, 包含碳化發(SiC)、氧化辞⑽)、梦⑹、雜鎵(剛、坤_ (GaAs)、硒化鋅(ZnSe)、磷化銦(lnp)或加入梦雜質導電型氮化鎵 (GaN)等,但並不僅限於此。 接著,一層第一導電型緩衝層122形成於基板12〇上,其材料 1281756 可為AlJr^Gai^N等化合物,其中xg〇 ; y^〇 ; 〇^x+y<i。在此可 以舉出的例子,包含氮化銦UnN)、氮化銦鎵(inGaN)、氮化鋁鎵 (AlGaN)或氮化鎵(GaN)。 形成一下束缚層124於第一導電型緩衝層122上,其可藉由任 何習知或未知之含有氮化鎵(GaN)之in—v族元素化合物製備,此 化合物可藉由AlJn^GaiJ之化學通式表示,其中0^〇 ; p^〇 ; 〇 $〇+ρ<1 ; o>x。例如,第一導電型氮化鎵(GaN)。下束缚層124 上再形成一發光層126,其亦可藉由任何習知或未知之含有氮化鎵麵| (GaN)之III-V族元素化合物製備,例如氮化銦鎵(InGaN)。於此發 光層126上再形成一上束缚層128,其亦可藉由任何習知或未知之 含有氮化鎵(GaN)之III-V族元素化合物製備,例如第二導電型氮 - 化鎵(GaN)或氮化鋁鎵(A1GaN)。其中,發光層126係由下束缚層124 及上束缚層128所包覆。且此三層含有氮化鎵(GaN)之III-V族元素 化合物的材料選擇、成分含量、摻雜物的選用等,可以實際所需 及設計加關整,前賴舉之之例子僅騎例制,並稀制本 _ 發明之權利範圍。 接著,再於上束缚層128上形成一接觸層13〇。根據本發明所 指出之發光二極體結構100中,其接觸層13〇係由具有極高載子濃 度之III-V族το素化合物材料所製成,係為—建構式氧化薄膜接觸 層,其可藉由四種材料所堆疊而成,分別為p+GaN、YiInN、Y如g_n 及¥姻,其堆疊次序可依P型、N型摻雜物作隨意堆疊變化。其中, 11 1281756 osxisi,Yi、h及h可為P型或摻雜物,故其導電性亦可為p 型、N型或I型。此建構式氧化薄膜接觸層之厚度範圍在〇. W,麵 奈米(nano meter, nm)之間。 接著,於下束缚層124上,與發光層126、上束缚層128及接觸 層130P雨離之區域上形成第一電極132,做為發光二極體結構剛的 陰極,其與下束缚層124有好的歐姆接觸,進而有較低之接觸電 阻。另外,於接觸層130上形成一第二電極(透明電極)134,其係 由一薄金屬材料所製備,做為發光二極體結構1〇〇的陽極。 _| 前述第一電極或第二電極係為選自由銦(In)、錫(Sn)、鋅 (Zn)、鎳(Νι)、金(Au)、鉻(Cr)、銘(Co)、鎘(Cd)、!呂(A1)、鈒 (V)、銀(Ag)、鈦(Ti)、鎢(w)、翻(Pt)、鈀⑽)、铑⑽)、釕(RU) 等金屬所形成之一元、二元或二元以上之合金的金屬電極,其厚 度範圍在1〜10,000奈米(nm)之間。 根據本發明所指出之發光二極體之另一實施例如第四圖所 示’其結構大致上與第三圖中之實施例相同,惟其接觸層13〇上再 # 形成一層導電型薄膜136,供作為電流分散及透光用。其可應用於 覆晶式發光二極體材料封裝上,藉以有效提高此發光二極體之散 熱特性及抗靜電能力。此導電型薄膜136係為由銦(In)、錫(Sn)、 鋅(Zn)、鎳(Ni)、金(Au)、鉻(Cr) ' !古(Co)、鑛(Cd)、#呂(A1)、 飢(V)、銀(Ag)、鈦(Ti)、嫣(W)、鉑(Pt)、把(Pd)、錄(Rh)或釕 (Ru)等金屬所形成之一元、二元或二元以上之氧化薄膜或合金之 12 1281756 透明氧化導電層,厚度範圍在10〜10, 〇〇〇之間。此導電型薄膜^邪 亦可藉由具有咼反射率金屬所形成之一元、二元或二元以上之合 金所製備。其中,此具有高反射率之金屬在此可舉出之例子,包 含鋁(A1)、銀(Ag)、鉑(Pt)、鈀(Pd)、铑(Rh)、釕(Ru)、鈦(Ti)、 金(Au)、鎳⑽)及銅(Cu)等,但並不僅限於此。 此外,由於建構式氧化薄膜接觸層具有較本體層(bulk layer) 有更兩之載子濃度,使得架構於其上之透明電極可以輕易的與之 形成歐姆接觸(Ohmic contact),不致因載子濃度不夠高而形成蕭 基接觸(Schottky contact),而使得元件之操作電壓增加。另外, 透明電極可使用與建構式氧化薄膜接觸層相同導電型之材料,使 知透明龟極與接觸層之間不易產生接合面(juncti〇n),且透明電 極與接觸層之尺寸較易做成一致。 綜上所述,根據本發明所指出之發光二極體結構至少具有以 下之特色: 1·以本發明所指出之建構式氧化薄膜接觸層做為發光二極體之接 觸層時,可容易的形成高載子濃度之接觸層。 2·本發明所指出之建構式氧化薄膜接觸層與透明電極具有較佳的 歐姆接觸雜,可碰光效率提高,贿低元狀操作電壓。 3·透明電極與接觸層兩者之導電型可以為同型或不同型,當兩者 為同一導電型時,可進一步消除接合面之問題。 由於發光二極體通常為靜電敏感之材料,當將根據本發明所 13 1281756 指出之料二極麟顯f知之結構進行靜電峨時,做為接觸 層之建構錄域難觸層,可纽提錄縣發騎指出之發 光二極體之抗靜電放細ectrostatic _卿,esd)能輪 一)。 參閱第五圖,為根據本發明所指出之發光二極體電流-電壓特 性測試之數據分·,_巾可以看出,當於辭相_電流, 根據本發騎指出之發光二極低電流賴作下,可比習知之 發光二極體獲得較低的電壓特性。 參閱第六目,係為根縣發騎邮之贱二極體之電流—亮 度測試之數據分析圖。於施予相_電流下根據本發明所指出之 發光二極雜習知之發光二極體能發出較高之亮度。 、’、不上所述根據本發明所指出之發光二極體結構,確實能較 習知之發《二極財有較高之發光效率、較低之元件操作電壓及 較強之抗靜電放電能力。 【圖式簡單說明】 第-圖係·習知含ΙΠ,元素之發光二極體之剖面示 意圖; 第-圖係顯7F第-圖中發光二極體的發光區域範圍之示 意圖; 第三圖係為根據本發明所指出之發光二極體結構較佳實 施例之剖面示意圖; 1281756 第四圖係為根據本發明所指出之發光二極體結構另一實 施例之剖面示意圖; 第五圖係為根據本發明所指出之發光二極體電流-電壓特 性測試之數據分析圖。 ♦:習知之發光二極體結構; :本發明之發光二極體結構。 第六圖係為根據本發明所指出之發光二極體之電流-亮度 測試之數據分析圖。 ♦:習知之發光二極體結構; :本發明之發光二極體結構。 【元件代表符號簡單說明】 1 發光二極體 10 基材 12 晶核層 14 緩衝層 16 下束缚層 18 主動層 20 上束缚層 22 接觸層 24 透明電極 15 1281756 26 電極 100發光二極體結構 120基板 122緩衝層 124下束缚層 126發光層 128上束缚層 130接觸層 132第一電極 134第二電極 136導電型薄膜 to 皿 級數3 級數2 級數1 人體模式(HBM) 本發明發光二 極體結構 習知發光二極 體結構 晶粒型式 4000〜15999(ν) 2000〜3999(v) 0〜1999(v) 機械模式(-) 機械模式(+) 1 人體模式㈠ 人體模式(+) 機械模式(-) 機械模式(+) 人體模式㈠ 人體模式(+) 靜電量測試模式 § 1 機械模式(MM) -800 700 -5000 4000 250 -250 2000 100 〜199(ν) 50〜99(v) 0 〜49(v) -600 500 -3000 5000 1 to U\ Ο -1500 2500 K) s M4 s -450 500 -4000 4000 1 1—* Ο 300 -2000 2000 U) >799(v) 400〜799(v) 200〜399(v) -500 1000 -3000 5000 ο 200 -1750 2500 4^ -600 500 -5000 7000 Ο -200 3000 Lh 機械模式·· EIAJ-KM21 Method 20 人體模式:MIL-STD-883CMethod3015.7 測試標準 -700 700 -3000 6000 Κ) 250 -1000 2500 C\ -500 I 800 -4000 4500 -100 1—* U\ Ο -250 2500 •^ι -600 [ 600 -4500 5000 100 -500 3000 00 -600 750 -5000 4500 通 U\ ο 300 -2000 2500 Ό -500 500 I- -4000 5000 I Lh Ο 200 -500 3000 >丨诔鷄势_umfri}-^^^卜菡鷂雜雜障緣t^iili ~雜>There are more touch layers (4) (4) Forming Omna ^ and base picking h〇ttkyCQntact), the load is not enough (four) into Xiao.. Make the voltage of the waiter increase. In addition, the = electrode can be made of the same material as the structured oxide _ contact layer. The interface between the transparent electrode and the contact layer is less likely to be formed (foot), and the size of the transparent electrode and the contact layer are relatively easy to be made. The apricot, reading the second figure is a schematic cross-sectional view of the embodiment of the light-emitting diode structure according to the present invention. The light-emitting diode lion scorpion according to the present invention is first provided with a substrate 120, which may be a substance or a conductive semiconductor material, and is not particularly limited herein. Any of the materials that are conventionally available or not available as a substrate for a light-emitting body can be applied to the U-pole structure which is extracted according to the present invention. When it is an insulating substance, the example which can be exemplified here includes oxidized sapphire, nitrite (A1N), nitrided _), spinel, and lithium gallium oxide 3 (4). Or alumina lithium hydride, etc., but not limited to this. When it is a conductive semiconductor material, examples thereof include carbonized hair (SiC), oxidized (10), dream (6), hetero Gallium (Gang, Kun_(GaAs), zinc selenide (ZnSe), Indium phosphide (lnp) or montmorillonite conductive type gallium nitride (GaN), etc., but is not limited thereto. Next, a first conductivity type buffer layer 122 is formed on the substrate 12, and the material 1281756 may be AlJr^ a compound such as Gai^N, wherein xg〇; y^〇; 〇^x+y<i. Examples which may be exemplified include indium nitride UnN), indium gallium nitride (inGaN), aluminum gallium nitride ( AlGaN) or gallium nitride (GaN). Forming a tie layer 124 on the first conductivity type buffer layer 122, which can be prepared by any conventional or unknown in-v element compound containing gallium nitride (GaN), which can be obtained by AlJn^GaiJ Chemical formula, where 0^〇; p^〇; 〇$〇+ρ<1;o>x. For example, the first conductive type gallium nitride (GaN). A light-emitting layer 126 is further formed on the lower tie layer 124, which may also be prepared by any conventional or unknown III-V element compound containing gallium nitride surface (GaN), such as indium gallium nitride (InGaN). An upper tie layer 128 is further formed on the light-emitting layer 126, and can also be prepared by any conventional or unknown compound of a group III-V element containing gallium nitride (GaN), for example, a second conductive type nitrogen-gallium oxide. (GaN) or aluminum gallium nitride (A1GaN). The light-emitting layer 126 is covered by the lower tie layer 124 and the upper tie layer 128. And the material selection, composition content, and selection of dopants of the three-layer III-V element compound containing gallium nitride (GaN) can be practically required and designed and adjusted, and the example of the former is only riding. The system is exemplified and the scope of the invention is limited. Next, a contact layer 13 is formed on the upper tie layer 128. In the light-emitting diode structure 100 pointed out by the present invention, the contact layer 13 is made of a III-V group compound material having a very high carrier concentration, which is a structured oxide film contact layer. It can be stacked by four materials, namely p+GaN, YiInN, Y such as g_n and singularity, and the stacking order can be randomly stacked according to P-type and N-type dopants. Among them, 11 1281756 osxisi, Yi, h and h can be P-type or dopant, so the conductivity can also be p-type, N-type or I-type. The thickness of the contact layer of the structured oxide film is between 〇. W and nano meter (nm). Next, on the lower tie layer 124, a first electrode 132 is formed on the region away from the light-emitting layer 126, the upper tie layer 128, and the contact layer 130P, as a cathode of the light-emitting diode structure, and the lower tie layer 124 There is a good ohmic contact and thus a lower contact resistance. Further, a second electrode (transparent electrode) 134 is formed on the contact layer 130, which is prepared from a thin metal material as an anode of the light-emitting diode structure. The first electrode or the second electrode is selected from the group consisting of indium (In), tin (Sn), zinc (Zn), nickel (Νι), gold (Au), chromium (Cr), Ming (Co), cadmium. (Cd),! One of the metals formed by Lv (A1), yttrium (V), silver (Ag), titanium (Ti), tungsten (w), turn (Pt), palladium (10), yttrium (10), yttrium (RU) A metal electrode of an alloy of two or more elements having a thickness ranging from 1 to 10,000 nanometers (nm). Another embodiment of the light-emitting diode according to the present invention, as shown in the fourth figure, is substantially the same as the embodiment of the third embodiment except that the contact layer 13 is formed thereon to form a conductive film 136. Used as current dispersion and light transmission. The utility model can be applied to a flip-chip light-emitting diode material package, thereby effectively improving the heat dissipation characteristics and antistatic capability of the light-emitting diode. The conductive film 136 is made of indium (In), tin (Sn), zinc (Zn), nickel (Ni), gold (Au), chromium (Cr) '! ancient (Co), ore (Cd), # A unit formed by metals such as Lu (A1), hunger (V), silver (Ag), titanium (Ti), yttrium (W), platinum (Pt), or (Pd), ruthenium (Rh) or ruthenium (Ru) 12 1281756 transparent oxidized conductive layer of binary or binary oxide film or alloy, thickness between 10~10, 〇〇〇. The conductive film can also be prepared by forming a single, binary or binary alloy of a metal having a yttrium reflectivity. Among them, examples of the metal having high reflectance include aluminum (A1), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), and titanium ( Ti), gold (Au), nickel (10), and copper (Cu), etc., but are not limited thereto. In addition, since the structured oxide film contact layer has a carrier concentration higher than that of the bulk layer, the transparent electrode formed thereon can easily form an ohmic contact with the carrier. The concentration is not high enough to form a Schottky contact, which increases the operating voltage of the component. In addition, the transparent electrode can use the same conductivity type as the structured oxide film contact layer, so that it is difficult to form a joint surface between the transparent turtle and the contact layer, and the size of the transparent electrode and the contact layer is relatively easy to be made. In agreement. In summary, the light-emitting diode structure according to the present invention has at least the following features: 1. When the structured oxide film contact layer indicated by the present invention is used as a contact layer of a light-emitting diode, it can be easily A contact layer of high carrier concentration is formed. 2. The structured oxide film contact layer and the transparent electrode indicated by the invention have better ohmic contact impurities, can improve the light-collecting efficiency, and bribe the low-order operating voltage. 3. The conductivity type of both the transparent electrode and the contact layer may be the same type or different type, and when the two are the same conductivity type, the problem of the joint surface can be further eliminated. Since the light-emitting diode is usually a static-sensitive material, when the structure of the material of the contact layer is electrostatically rubbed according to the description of 131281756 of the present invention, it is used as a contact layer for the construction of the touch layer. Recording the county's riding and pointing out the anti-static fine ectrostatic of the LEDs _qing, esd) can turn a). Referring to the fifth figure, for the data of the current-voltage characteristic test of the light-emitting diode according to the present invention, it can be seen that when the phase is _ current, the light-emitting diode low current is indicated according to the present riding. Under the circumstance, the lower voltage characteristics can be obtained than the conventional light-emitting diodes. Refer to the sixth item, which is the data analysis chart of the current-brightness test for the riding diode of the county. The light-emitting diode of the light-emitting diode according to the present invention, which is applied under the phase current, can emit a higher brightness. The light-emitting diode structure according to the present invention is indeed more conventional than the conventional one. "The two poles have higher luminous efficiency, lower component operating voltage and stronger anti-static discharge capability. . [Simple diagram of the diagram] The first diagram is a schematic diagram of the light-emitting diode of the element, and the schematic diagram of the range of the light-emitting region of the light-emitting diode in the 7F-picture; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of a light emitting diode structure according to the present invention; 1281756 is a schematic cross-sectional view showing another embodiment of the light emitting diode structure according to the present invention; A data analysis diagram of a current-voltage characteristic test of a light-emitting diode as indicated in accordance with the present invention. ♦: A conventional light-emitting diode structure; the light-emitting diode structure of the present invention. The sixth figure is a data analysis diagram of the current-brightness test of the light-emitting diodes indicated in accordance with the present invention. ♦: A conventional light-emitting diode structure; the light-emitting diode structure of the present invention. [Simple description of component symbol] 1 Light-emitting diode 10 Substrate 12 Nucleation layer 14 Buffer layer 16 Lower tie layer 18 Active layer 20 Upper tie layer 22 Contact layer 24 Transparent electrode 15 1281756 26 Electrode 100 Light-emitting diode structure 120 Substrate 122 buffer layer 124 lower tie layer 126 light-emitting layer 128 on the tie layer 130 contact layer 132 first electrode 134 second electrode 136 conductive film to dish number 3 series 2 series 1 human body mode (HBM) Polar body structure known light-emitting diode structure grain type 4000~15999(ν) 2000~3999(v) 0~1999(v) Mechanical mode (-) Mechanical mode (+) 1 Human body mode (1) Human body mode (+) Mechanical mode (-) Mechanical mode (+) Human body mode (1) Human body mode (+) Static electricity quantity test mode § 1 Mechanical mode (MM) -800 700 -5000 4000 250 -250 2000 100 ~199(ν) 50~99(v ) 0 to 49(v) -600 500 -3000 5000 1 to U\ Ο -1500 2500 K) s M4 s -450 500 -4000 4000 1 1—* Ο 300 -2000 2000 U) >799(v) 400 ~799(v) 200~399(v) -500 1000 -3000 5000 ο 200 -1750 2500 4^ -600 500 -5000 7000 Ο -200 3000 Lh Machinery EIAJ-KM21 Method 20 Human Body Mode: MIL-STD-883CMethod3015.7 Test Standard -700 700 -3000 6000 Κ) 250 -1000 2500 C\ -500 I 800 -4000 4500 -100 1—* U\ Ο - 250 2500 •^ι -600 [ 600 -4500 5000 100 -500 3000 00 -600 750 -5000 4500 pass U\ ο 300 -2000 2500 Ό -500 500 I- -4000 5000 I Lh Ο 200 -500 3000 >丨诔鸡势_umfri}-^^^ Bu 菡鹞 杂 t t t ^ iili ~ Miscellaneous >