Nothing Special   »   [go: up one dir, main page]

RU2180233C1 - Способ получения жидких лекарственных форм рекомбинантных белков - Google Patents

Способ получения жидких лекарственных форм рекомбинантных белков Download PDF

Info

Publication number
RU2180233C1
RU2180233C1 RU2001117274A RU2001117274A RU2180233C1 RU 2180233 C1 RU2180233 C1 RU 2180233C1 RU 2001117274 A RU2001117274 A RU 2001117274A RU 2001117274 A RU2001117274 A RU 2001117274A RU 2180233 C1 RU2180233 C1 RU 2180233C1
Authority
RU
Russia
Prior art keywords
protein
buffer solution
biocompatible
tween
solutions
Prior art date
Application number
RU2001117274A
Other languages
English (en)
Inventor
Н.В. Беляков
Л.П. Коробицын
А.М. Пивоваров
А.А. Прокопьев
Original Assignee
Общество с ограниченной ответственностью "Протеиновый контур"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Протеиновый контур" filed Critical Общество с ограниченной ответственностью "Протеиновый контур"
Priority to RU2001117274A priority Critical patent/RU2180233C1/ru
Application granted granted Critical
Publication of RU2180233C1 publication Critical patent/RU2180233C1/ru

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к области биотехнологии, а именно к технологии получения лекарственных форм рекомбинантных белков. Сущность изобретения состоит в том, что при приготовлении жидкой лекарственной формы соответствующего рекомбинантного белка эффективное количество последнего растворяют в биосовместимом буферном растворе, содержащем неионный детергент и в некоторых случаях дополнительно стабилизатор. Для приготовления лекарственной формы берут буферный раствор со значением рН, отличающийся более чем на 1 единицу от изоэлектрической точки белка. Это обеспечивает стабильное нахождение белка при низких концентрациях (1-100 мкг/мл) в растворах без агрегации и олигомеризации. В качестве детергента можно использовать Tween-20, Tween-80, Tween-60, Nonidet P-40 и др. В качестве биосовместимых буферных систем могут быть использованы изотонические буферные растворы на основе цитратов, ацетатов, фосфатов и др. В ряде случаев для корректировки осмолярности растворы могут содержать в качестве стабилизатора биосовместимые полимерные компоненты - многоатомные спирты, декстрины, поливинилпирролидоны и др. Технический результат заключается в том, что в результате разработанного способа получают более дешевый и безопасный препарат. 3 з.п. ф-лы, 4 табл., 3 ил.

Description

Настоящее изобретение относится к биотехнологии, а именно к технологии получения лекарственных форм рекомбинантных белков.
Терапевтически значимые белки, полученные на основе технологии рекомбинантных ДНК, в последние годы получили широкое распространение для лечения широкого круга заболеваний. К наиболее значимым и распространенным препаратам данного класса следует отнести препараты, созданные на основе рекомбинантных эритропоэтина, интерферона-альфа, гранулоцитарного колониестимулирующего фактора и некоторых других цитокинов человека.
Общим для данного класса веществ является практическая невозможность и нецелесообразность выделения их из природных источников и, как следствие, получение их в искусственно созданных прокариотических (как правило, E.Coli) или эукариотических (обычно СНО) системах.
Белки данного класса обладают высокой удельной биологической активностью, вследствие чего их разовая терапевтическая доза находится в микрограммовом диапазоне. Некоторые из используемых в медицинской практике белков данного класса (как правило, получаемых в прокариотических системах) находятся в частично денатурированном состоянии и склонны к агрегации и выпадению в осадок. В первую очередь это относится к рекомбинантным интерферонам-альфа. В процессе приготовления лекарственных форм на основе белков данного класса наиболее распространенным в настоящее время подходом является введение в состав готового лекарственного средства в качестве стабилизатора сывороточного альбумина и/или сублимационная сушка. Однако оба этих подхода не свободны от недостатков. Введение в качестве стабилизатора сывороточного альбумина человека повышает риск вирусных контаминаций препарата и ограничивает его применение пациентами некоторых религиозных конфессий. Сублимационная сушка не только снижает активность препарата, но и вызывает частичную денатурацию альбумина, что в свою очередь иногда приводит к аллергическим реакциям у пациентов. Ранее было описано и реализовано приготовление лекарственной формы препарата рекомбинантного интерферона-альфа человека, свободного от сывороточного альбумина человека. Для этого в состав для сушки в качестве наполнителя вводили декстраны (РЕАЛЬДИРОН, БИОТЕХНА, Литва). Подобный подход позволяет произвести сушку препарата, но стабильность в растворе остается низкой за счет потерь на стенках сосуда и агрегации.
Другим подходом к решению проблемы стабильности рекомбинантных белков в готовых лекарственных формах является введение в композицию мочевины, комплекса амфотерных электролитов (аминокислот) и детергентов с последующей лиофильной сушкой (RU 2043118), где удалось получить стабильную лекарственную форму рекомбинантного эритропоэтина человека. В то же время имеются существенные ограничения на срок хранения препарата после его растворения.
Наиболее близким по совокупности существенных признаков к заявляемому способу является способ приготовления готовых форм рекомбинантных белков [US 5,656,730, 1996, МПК А 61 К 035/14; А 61 К 38/00; С 07 К 014/505; С 07 К 014/535] , согласно которому лекарственные формы рекомбинантных белков приготовляли с использованием сложных композиций, состоящих из комплекса аминокислот, хлорбутанола, бензилового спирта, бензалкониумхлорида и неорганических компонентов буферных растворов. Согласно прототипу для получения готовой лекарственной формы, содержащей 10-2000 мкг/мл рекомбинантного белка, в указанном растворе растворяют соответствующее количество субстанции и используют полученный раствор в равной степени для приготовления жидкой или лиофилизованной формы. Существенным недостатком данного подхода является необходимость использования крайне сложной композиции, содержащей такие компоненты, как 1,1,1-трихлор-2-метил-2-пропанол, бензиловый спирт и бензалкониум хлорид.
Задачей изобретения является разработка более простого и дешевого способа получения лекарственных форм рекомбинантных белков, обладающих стабильной биологической активностью при хранении.
Технический результат заключается в том, что в результате разработанного способа получают более дешевый и безопасный препарат, не включающий токсичных компонентов.
Поставленная задача решается посредством того, что при приготовлении жидкой лекарственной формы соответствующего рекомбинантного белка эффективное количество последнего растворяют в биосовместимом буферном растворе, содержащем неионный детергент и в некоторых случаях дополнительно стабилизатор. Для приготовления лекарственной формы берут буферный раствор со значением рН, отличающимся более чем на 1 единицу от изоэлектрической точки белка. Это обеспечивает стабильное нахождение белка при низких концентрациях (1-100 мкг/мл) в растворах без агрегации и олигомеризации.
В качестве детергента можно использовать Tween-20, Tween-80, Tween-60, Nonidet P-40 и др. В качестве биосовместимых буферных систем могут быть использованы изотонические буферные растворы на основе цитратов, ацетатов, фосфатов и др. В ряде случаев для корректировки осмолярности растворы могут содержать в качестве стабилизатора биосовместимые полимерные компоненты - многоатомные спирты, декстрины, поливинилпирролидоны и др.
Предложенный способ иллюстрируется следующими примерами.
Пример 1. Получение жидкой лекарственной формы рекомбинантного интерферона-альфа человека
Для получения жидкой лекарственной формы рекомбинантного интерферона-альфа использовали высокоочищенный препарат, выделенный из телец включения штамма E.Coli IF212S, не содержащий заметных примесей олигомерных форм, продуктов протеолиза и примесей белков клеток-продуцентов. Удельная биологическая активность препарата составляла 2•108 МЕ/мл, кажущаяся молекулярная масса 18,1 кD, изоэлектрическая точка pl=5,96.
Контроль биологической активности осуществляли по методу ингибирования цитопатогенного действия вируса везикулярного стоматита на клетках эмбрионального легкого человека линии Л-68. В лунки 96-ячеечных микропланшетов вносили по 0,1 мл суспензии клеток в питательной среде Игла DMEM с добавкой 80-160 мкг/мл гентамицина и 2% сыворотки плодов коров в концентрации 200-300 тыс. клеток/мл. Для определения активности интерферона готовят двукратные разведения (выше и ниже предполагаемого титра) исследуемых препаратов и стандарта активности интерферона в среде Игла DMEM, содержащей 2% сыворотки плодов коров и антибиотики (пенициллин 100 Ед./мл, гентамицин 80 мкг/мл). На каждое разведение препарата используют не менее 4 лунок с культурой клеток. В каждую лунку с клеточной культурой вносили по 0,1 мл приготовленных образцов интерферона. Четыре лунки с культурой в каждом микропланшете оставляли в качестве контрольных. Кроме того, 16 лунок оставляли для контроля дозы индикаторного вируса. В эти лунки вносили по 0,1 мл питательной среды. Инокулированные и контрольные культуры клеток инкубировали в течение 1 суток при (37,0±1,0)oС в атмосфере с (5,0±0,5)% СO2, после чего в каждую лунку с испытуемыми материалами вносили определенную заранее дозу вируса везикулярного стоматита, соответствующую 100 ТЦД50 в 0,1 мл. Одновременно осуществляли контроль взятой дозы вируса на предназначенных для этой операции 16 лунках с культурой. После внесения индикаторного вируса и титрования его дозы, культуру клеток инкубировали на протяжении 1-2 суток при температуре (37,0±1,0)oС в атмосфере с (5,0±0,5)% СO2 под контролем дозы вируса, после чего проводили учет активности интерферона. За титр интерферона принимали величину, обратную разведению препарата, при котором клеточная культура в 50% лунок оказалась полностью защищенной от цитопатического действия вируса.
Физическое содержание интерферона определяли методом иммуноферментного анализа с использованием тест-систем ProCon IF2 (Протеиновый контур, Россия). Для контроля олигомерных форм использовали твердофазный иммуноферментный тест с антителами PC/IF1 (Протеиновый контур, Россия) в качестве сорбирующего и открывающего реагентов.
Была приготовлена серия 0,05 М аммонийацетатных буферных растворов, содержащих 0,1 М хлорида натрия и 0,02% Твин-20, в интервале рН от 4 до 8. В каждый из буферных растворов был внесен рекомбинантный интерферон-альфа из расчета 3•106 и 6•106 МЕ/мл, растворы подвергли стерилизующей фильтрации и стерильно аликвотировали по 1 мл в стеклянные ампулы. Ампулы были запаяны и в равных количествах помещены на хранение при температурах -70, +4 и +37oС. С периодичностью в 7 дней ампулы извлекали из термостатов и подвергали анализу на общее содержание интерферона и содержание олигомерных форм по отношению к замороженному препарату. В начале и в конце эксперимента были проведены дополнительно измерения биологической активности. Результирующие данные по хранению препарата с исходной активностью 3•106 МЕ/мл представлены на фиг. 1 и в таблице 1. Полностью аналогичные данные были получены и для препарата с активностью 6•106 МЕ/мл.
Пример 2. Приготовление жидкой лекарственной формы рекомбинантного эритропоэтина человека
Для получения жидкой лекарственной формы рекомбинантного эритропоэтина человека использовали высокоочищенный препарат, выделенный из кондиционированной культуральной жидкости клеток СНО SP/M pZip NeoEPO SV(x) DFR в соответствии с методом, описанным в патенте [RU 2145610, М.кл6 C 12 N 11/00] и не содержащий заметных примесей олигомерных форм, продуктов протеолиза, и примесей белков клеток-продуцентов. Удельная биологическая активность препарата составляла 1,4•105 МЕ/мл, кажущаяся молекулярная масса - 35,2 кD, pl= 3,5-5,0.
Контроль биологической активности осуществляли in vitro по методу [Krystal G. , 1983] , основанном на оценке стимуляции пролиферации клеток крови полицитемических мышей в присутствии эритропоэтина. Анемическое состояние у мышей-гибридов F1 CDF•C57Bl вызывали двукратным, через 30 часов, внутрибрюшинным введением фенилгидразина в дозе 60 мкг/кг. Спленоциты выделяли через 3 суток после последнего введения фенилгидразина и культивировали в ячейках 96-луночных планшетов в среде DMEM с 5% телячьей эмбриональной сыворотки, 2 mM L-глутамина и 80 мкг/мл гентамицина и присутствии раститрованных образцов стандартного и исследуемого препаратов в СО2-инкубаторе в течение 24 часов. За два часа до окончания культивирования в ячейки вносили 40 мкБк 3H-тимидина. Клеточные культуры переносили на фильтры, отмывали и производили учет включения 3H-тимидина при помощи сцинциляционного счетчика RackBeta 1217, Фармация. По графику уровня включения 3H-тимидина для стандартного образца определяли биологическую активность исследуемых препаратов.
Физическое содержание эритропоэтина определяли методом иммуноферментного анализа с использованием тест-систем ProCon EPO (Протеиновый контур, Россия). Для контроля олигомерных форм использовали твердофазный иммуноферментный тест с антителами PC/ED7 (Протеиновый контур, Россия) в качестве сорбирующего и открывающего реагентов. Была приготовлена серия 0,05 М натрий-цитратных буферных растворов, содержащих 0,12 М хлорида натрия и 0,02% Твин-20, в интервале рН от 4 до 8. В каждый из буферных растворов был внесен рекомбинантный эритропоэтин человека из расчета 2•103 и 4•103 МЕ/мл, растворы подвергли стерилизующей фильтрации и стерильно аликвотировали по 1 мл в стеклянные ампулы. Ампулы были запаяны и в равных количествах помещены на хранение при температурах -70, +4 и +37oС. С периодичностью в 7 дней ампулы извлекали из термостатов и подвергали анализу на общее содержание эритропоэтина и содержание олигомерных форм по отношению к замороженному препарату. В начале и в конце эксперимента были проведены дополнительно измерения биологической активности. Результирующие данные по хранению препарата с исходной активностью 4•103 МЕ/мл представлены на фиг. 4 и в таблице 2. Полностью аналогичные данные были получены и для препарата с активностью 2•103 МЕ/мл.
Пример 3. Получение жидкой лекарственной формы рекомбинантного гранулоцитарного колониестимулирующего фактора (Г-КСФ) человека
Для получения жидкой лекарственной формы рекомбинантного Г-КСФ человека использовали высокоочищенный препарат, выделенный из кондиционированной культуральной жидкости клеток СНО pZip NeoGCSF CMV(x) DFR, не содержащий заметных примесей олигомерных форм, продуктов протеолиза, и примесей белков клеток-продуцентов (фиг. 5). Удельная биологическая активность препарата составляла 1,1•108 МЕ/мл, кажущаяся молекулярная масса 20 кD, pl=5,7-6,3.
Контроль биологической активности осуществляли по методу оценки стимуляции пролиферации клеток костного мозга мышей [Okabe M., et al., 1990]. Костномозговые клетки мышей-гибридов F1 СВА•C57Bl выделяли стандартным методом и культивировали в концентрации 5•105 клеток/мл в ячейках 96-луночных планшетов в среде DMEM с 10% телячьей эмбриональной сыворотки, 2 mM L-глутамина и 80 мкг/мл гентамицина в присутствии раститрованных образцов стандартного и исследуемого препаратов в СO2-инкубаторе в течение 72 часов. За 20 часов до окончания культивирования в ячейки вносили по 40 мкБк 3Н-тимидина. Клеточные культуры переносили на фильтры, отмывали и производили учет включения 3Н-тимидина при помощи сцинциляционного счетчика RackBeta 1217, Фармация. По графику уровня включения 3Н-тимидина для стандартного образца определяли биологическую активность исследуемых препаратов.
Физическое содержание Г-КСФ определяли методом иммуноферментного анализа с использованием тест-систем ProCon G-CSF (Протеиновый контур, Россия). Для контроля олигомерных форм использовали твердофазный иммуноферментный тест с антителами PC/G36F11 (Протеиновый контур, Россия) в качестве сорбирующего и открывающего реагентов.
Была приготовлена серия 0,02 М натрий-фосфатных буферных растворов, содержащих 0,15 М хлорида натрия и 0,02% Твин-80 в интервале рН от 4 до 8. В каждый из буферных растворов был внесен рекомбинантный Г-КСФ человека из расчета 3•107 МЕ/мл, растворы подвергли стерилизующей фильтрации и стерильно аликвотировали по 1 мл в стеклянные ампулы. Ампулы были запаяны и в равных количествах помещены на хранение при температурах -70, +4 и +37oС. С периодичностью в 7 дней ампулы извлекали из термостатов и подвергали анализу на общее содержание Г-КСФ и содержание олигомерных форм по отношению к замороженному препарату. В начале и в конце эксперимента были проведены дополнительно измерения биологической активности. Результирующие данные по хранению препарата на фиг. 6 и в таблице 3.
Из данных таблиц 1-3 и фиг. 1-3 видно, что наиболее стабильные композиции растворов белков находятся в областях, удаленных от изоэлектрических точек рассматриваемых объектов более чем на 1 единицу. Пониженная стабильность интерферона-альфа в кислой области определяется, по-видимому, одновременно комплексом факторов - гидролитическим расщеплением белка при повышенной температуре, олигомеризацией за счет тиол-дисульфидного обмена с участием свободных сульфгидрильных групп не полностью ренатурированного белка и повышенной сорбции положительно заряженного белка на поверхностных силанольных группах стекла. В то же время переход в основную область за изоэлектрическую точку приводит к стабилизации данного белка. Хорошо видна явная зависимость стабильности препаратов эритропоэтина от рН. В области, близкой от изоэлектрической точки, стабильность понижена в связи с образованием агрегатов, а по мере отдаления от рl электростатические взаимодействия подавляются. Та же тенденция может быть отмечена и в случае Г-КСФ.
Пример 4. Получение жидкой лекарственной формы рекомбинантного гранулоцитарного колониестимулирующего фактора (Г-КСФ) человека, содержащей лактозу
Для исследования влияния стабилизирующих свойств некоторых компонентов небелковой природы была приготовлена серия растворов лактозы, маннита, поливинилпирролидона 8000 (ПВП) и декстрана 10000 в 0,02 М натрий-фосфатном буферном растворе, содержащем 0,15 М хлорида натрия, 0,02% Твин-20, рН=7,0. Рекомбинантный Г-КСФ человека, как в примере 3, был внесен из расчета 3•107 МЕ/мл в каждый из растворов. Растворы аликвотировали и хранили так же, как в примере 3, подвергая еженедельному анализу на активность и содержание олигомерных форм. Результаты представлены в таблице 4.
В процессах получения готовых форм препаратов генно-инженерного происхождения в качестве стабилизирующих наполнителей часто используют компоненты мономерной и полимерной углеводной природы, многоатомные спирты и некоторые биосовместимые полимеры. Из таблицы 4 видно, что введение подобных компонентов в готовые формы препаратов белков генно-инженерного происхождения, находящихся при рН, существенно отличающихся от рl данного белка, не оказывает значительного эффекта на стабильность композиции.

Claims (4)

1. Способ получения жидких лекарственных форм рекомбинантных белков (белков генно-инженерного происхождения), включающий растворение данных белков в биосовместимом буферном растворе, отличающийся тем, что в биосовместимый буферный раствор добавляют неионный детергент, после чего вводят рекомбинантный белок эффективной концентрации, при этом используют буферный раствор, имеющий значение показателя водородного потенциала более чем на одну единицу отличающегося от изоэлектрической точки данного белка.
2. Способ по п. 1, отличающийся тем, что детергент вводят в буферный раствор в количестве 0,01-0,05 мас. %.
3. Способ по п. 1, отличающийся тем, что в биосовместимый буферный раствор дополнительно вводят стабилизатор углеводной природы в количестве 2-5 вес. %.
4. Способ по п. 1, отличающийся тем, что биосовместимый буферный раствор содержит в качестве стабилизатора многоатомные спирты и/или водорастворимый полимер.
RU2001117274A 2001-06-26 2001-06-26 Способ получения жидких лекарственных форм рекомбинантных белков RU2180233C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001117274A RU2180233C1 (ru) 2001-06-26 2001-06-26 Способ получения жидких лекарственных форм рекомбинантных белков

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001117274A RU2180233C1 (ru) 2001-06-26 2001-06-26 Способ получения жидких лекарственных форм рекомбинантных белков

Publications (1)

Publication Number Publication Date
RU2180233C1 true RU2180233C1 (ru) 2002-03-10

Family

ID=20251015

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001117274A RU2180233C1 (ru) 2001-06-26 2001-06-26 Способ получения жидких лекарственных форм рекомбинантных белков

Country Status (1)

Country Link
RU (1) RU2180233C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314952C (zh) * 2004-11-23 2007-05-09 中国检验检疫科学研究院 用于固相膜免疫分析方法流动相的样本处理制剂
RU2486899C2 (ru) * 2007-04-11 2013-07-10 Байомарин Фармасьютикал Инк. Композиции тетрагидробиоптерина и способы его количественной оценки
EA022424B1 (ru) * 2006-04-21 2015-12-30 Амген Инк. Лиофилизированная композиция терапевтического пептидного антитела
RU2809355C1 (ru) * 2022-12-26 2023-12-11 Общество с ограниченной ответственностью "Рефнот-Фарм" РЕКОМБИНАНТНАЯ ПЛАЗМИДА pET32a-TNF-Thy, ОБЕСПЕЧИВАЮЩАЯ СИНТЕЗ ГИБРИДНОГО БЕЛКА α-ФАКТОР НЕКРОЗА ОПУХОЛЕЙ - ТИМОЗИН АЛЬФА 1, ШТАММ БАКТЕРИЙ ESCHERICHIA COLI BL21 (DE3)/pET32A-TNF-Thy - ПРОДУЦЕНТ ГИБРИДНОГО БЕЛКА TNF-Thy, СПОСОБ ПОЛУЧЕНИЯ ГИБРИДНОГО БЕЛКА TNF-Thy И ЛЕКАРСТВЕННОЕ СРЕДСТВО

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314952C (zh) * 2004-11-23 2007-05-09 中国检验检疫科学研究院 用于固相膜免疫分析方法流动相的样本处理制剂
EA022424B1 (ru) * 2006-04-21 2015-12-30 Амген Инк. Лиофилизированная композиция терапевтического пептидного антитела
US9283260B2 (en) 2006-04-21 2016-03-15 Amgen Inc. Lyophilized therapeutic peptibody formulations
US10166189B2 (en) 2006-04-21 2019-01-01 Amgen Inc. Lyophilized therapeutic peptibody formulations
RU2486899C2 (ru) * 2007-04-11 2013-07-10 Байомарин Фармасьютикал Инк. Композиции тетрагидробиоптерина и способы его количественной оценки
RU2809355C1 (ru) * 2022-12-26 2023-12-11 Общество с ограниченной ответственностью "Рефнот-Фарм" РЕКОМБИНАНТНАЯ ПЛАЗМИДА pET32a-TNF-Thy, ОБЕСПЕЧИВАЮЩАЯ СИНТЕЗ ГИБРИДНОГО БЕЛКА α-ФАКТОР НЕКРОЗА ОПУХОЛЕЙ - ТИМОЗИН АЛЬФА 1, ШТАММ БАКТЕРИЙ ESCHERICHIA COLI BL21 (DE3)/pET32A-TNF-Thy - ПРОДУЦЕНТ ГИБРИДНОГО БЕЛКА TNF-Thy, СПОСОБ ПОЛУЧЕНИЯ ГИБРИДНОГО БЕЛКА TNF-Thy И ЛЕКАРСТВЕННОЕ СРЕДСТВО

Similar Documents

Publication Publication Date Title
DE69736177T2 (de) Mit aminosäuren stabilisierte erythropoietinlösung
DE69828330T2 (de) Aktiviertes Protein C Formulierungen
JP4493334B2 (ja) Hsa非含有組成物中のnesp/epoの安定化剤としてのl−メチオニン
EP2364691B1 (en) VEGF antagonist formulations suitable for intravitreal administration
CA1339440C (en) Process for stabilizing human albumin solutions and the solution obtained
KR101042660B1 (ko) 안정한 액체 인터페론 제제
KR100707713B1 (ko) Hgf 동결 건조 제제
KR20100051695A (ko) 양쪽 친매성 폴리머와 bmp 패밀리의 골형성 단백질의 복합체
JP2008500995A (ja) タンパク質安定化法
US9867852B2 (en) Viral inactivated biological mixture
IE57694B1 (en) Aqueous protein solutions which are stable towards denaturing,processes for their preparation and their use
EP1415663B1 (en) Sustained release hgf hydrogel preparations
RU2180233C1 (ru) Способ получения жидких лекарственных форм рекомбинантных белков
KR880002037B1 (ko) 인터페론 조성물 및 이의 제조방법
EP1524998B1 (en) Stable aqueous pharmaceutical composition comprising erythropoietin
CN100425283C (zh) 包含红细胞生成素的稳定的药物组合物
JP6247687B2 (ja) 疎水性タンパク質の新規放出システム
RU2182830C1 (ru) Таблетированная форма рекомбинантного человеческого эритропоэтина
JPS60260523A (ja) インタ−フエロンの凍結乾燥医薬組成物
JPH05345728A (ja) 非グリコシル化還元型組換えヒトil2の安定化医薬組成物及びその製造方法
US12133868B2 (en) Viral inactivated biological mixture
RU2362581C2 (ru) Состав раствора эритропоэтина
CN115177719A (zh) 一种犬α干扰素水针剂型及其制备方法和应用
MXPA06005791A (en) Erythropoietin solution formulation