Nothing Special   »   [go: up one dir, main page]

KR101511933B1 - 핀 전계 효과 트랜지스터의 제조방법 - Google Patents

핀 전계 효과 트랜지스터의 제조방법 Download PDF

Info

Publication number
KR101511933B1
KR101511933B1 KR1020080107963A KR20080107963A KR101511933B1 KR 101511933 B1 KR101511933 B1 KR 101511933B1 KR 1020080107963 A KR1020080107963 A KR 1020080107963A KR 20080107963 A KR20080107963 A KR 20080107963A KR 101511933 B1 KR101511933 B1 KR 101511933B1
Authority
KR
South Korea
Prior art keywords
fin
gate insulating
insulating film
thickness
forming
Prior art date
Application number
KR1020080107963A
Other languages
English (en)
Other versions
KR20100048690A (ko
Inventor
강종훈
박태서
김동찬
신유균
류정도
정성훈
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020080107963A priority Critical patent/KR101511933B1/ko
Priority to US12/459,660 priority patent/US7968442B2/en
Publication of KR20100048690A publication Critical patent/KR20100048690A/ko
Application granted granted Critical
Publication of KR101511933B1 publication Critical patent/KR101511933B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7853Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection
    • H01L29/7854Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection with rounded corners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

본 발명의 핀 전계 효과 트랜지스터의 제조 방법은 반도체 기판으로부터 돌출된 핀을 형성하고, 상기 핀의 상부 가장자리를 라운딩시키면서 상기 핀의 상부면과 측면을 덮도록 게이트 절연막을 동시에 형성하되 상기 핀의 상부면 상에 형성되는 상기 게이트 절연막의 두께를 상기 핀의 측면 상에 형성되는 상기 게이트 절연막의 두께보다 두껍게 형성하고, 상기 핀을 가로지르며 상기 게이트 절연막을 덮게 게이트 전극을 형성하는 것을 포함한다.

Description

핀 전계 효과 트랜지스터의 제조방법{fabrication method of fin field effect transistor}
본 발명은 반도체 소자의 제조 방법에 관한 것으로, 보다 상세하게는 핀 전계 효과 트랜지스터(Fin field effect transistor)의 제조 방법에 관한 것이다.
일반적으로, 반도체 소자가 고집적화됨에 따라, 전계 효과 트랜지스터의 게이트 길이가 감소하고 있으며, 이로 인해 단채널 효과(short channel effect)가 심각한 문제로 대두되고 있다. 또한, 채널 농도 증가에 따른 이동도 및 전류 구동력 감소와 소오스/드레인 접합 깊이의 감소에 따른 접합 누설 전류의 증가 등의 문제를 갖고 있다. 따라서, 수평형 전계 효과 트랜지스터가 갖는 소자 특성의 한계를 극복하기 위하여 핀 전계 효과 트랜지스터를 포함하는 3차원 소자 구조 등이 꾸준히 연구되고 있다.
그런데, 3차원 소자 구조의 핀 전계 효과 트랜지스터는 핀의 상부 가장 자리(모서리) 부분이 트랜지스터 동작시 전계가 집중되어 누설 전류의 원인이 된다. 또한, 3차원 소자 구조의 핀 전계 효과 트랜지스터를 디램(DRAM) 소자 등에 구현할 경우, 트랜지스터 동작시 핀의 상부 가장 자리 부분에 전계가 집중되어 정적 리프레쉬 특성이 나빠지거나, 디램 소자의 신뢰성이 떨어지게 된다.
본 발명이 해결하고자 하는 과제는 트랜지스터 동작시 핀의 상부 가장 자리 부분에 전계가 집중되는 것을 방지할 수 있는 핀 전계 효과 트랜지스터의 제조방법을 제공하는 데 있다.
삭제
상술한 과제를 해결하기 위하여, 본 발명의 핀 전계 효과 트랜지스터는 반도체 기판으로부터 돌출된 핀을 형성한다. 핀의 상부 가장자리를 라운딩시키면서 핀의 상부면과 측면을 덮도록 게이트 절연막을 동시에 형성하되 핀의 상부면 상에 형성되는 게이트 절연막의 두께를 핀의 측면 상에 형성되는 게이트 절연막의 두께보다 두껍게 형성한다. 핀을 가로지르며 게이트 절연막을 덮게 게이트 전극을 형성한다.
삭제
삭제
핀의 상부 가장 자리를 라운딩시키면서 핀의 측면보다 상부면에 게이트 절연막의 두께를 동시에 두껍게 형성하는 것은, 플라즈마 공정을 이용한 산화법으로 수행할 수 있다.
또한, 본 발명의 다른 예에 의한 핀 전계 효과 트랜지스터는 반도체 기판으로부터 돌출된 핀을 형성하고, 핀의 상부 가장자리를 라운딩시킨다. 핀의 상부 가장 자리를 라운딩시키는 것은, 플라즈마를 이용한 건식 식각 공정으로 핀의 상부 가장 자리를 식각하여 수행한다. 상부 가장 자리가 라운딩된 핀의 상부면과 측면을 덮게 게이트 절연막을 형성하되 핀의 상부면 상에 형성되는 게이트 절연막의 두께를 핀의 측면 상에 형성되는 게이트 절연막의 두께보다 두껍게 형성한다. 핀을 가로지르며 게이트 절연막을 덮게 게이트 전극을 형성한다.
삭제
핀의 측면보다 상부면에 게이트 절연막의 두께를 두껍게 형성하는 것은, 플라즈마 챔버 내에 위치한 반도체 기판에 바이어스 전압을 가하면서 플라즈마 챔버 내에 주입된 산화 가스의 직진성을 강화시켜 핀의 측면보다 핀의 상부면의 게이트 절연막의 두께를 두껍게 형성할 수 있다.
핀의 측면보다 상부면에 게이트 절연막의 두께를 두껍게 형성하는 것은, 이온 주입 챔버 내에 위치한 반도체 기판에, 전기장에 의해 직진성을 갖는 산소 이온을 주입한 후 산화시켜 게이트 절연막을 형성하거나, 이온 주입 챔버 내에 위치한 반도체 기판에 이온주입을 통해 핀을 비정질화시킨 후, 비정질화된 핀을 산화하여 형성할 수 있다.
핀의 측면보다 상부면에 게이트 절연막의 두께를 두껍게 형성하는 것은, 핀의 상부면의 반응 속도가 핀의 측면의 반응 속도보다 빠르도록 반도체 기판의 면 지수를 변경하여 수행할 수 있다.
본 발명의 핀 전계 효과 트랜지스터는 핀의 상부 가장자리를 라운딩시키면서 핀의 상부면 상에 형성되는 게이트 절연막의 두께를 핀의 측면 상에 형성되는 게이트 절연막의 두께보다 두껍게 형성한다. 이에 따라, 본 발명의 핀 전계 효과 트랜지스터는 핀의 상부 가장 자리 부분에 전계가 집중되는 것을 방지할 수 있어 누설 전류를 줄일 수 있다.
또한, 본 발명의 전계 효과 트랜지스터는 디램 소자에 적용할 경우 핀의 상부 가장 자리 부분에 전계가 집중되는 것을 방지하여 정적 리프레쉬 특성을 개선할 수 있고, 디램 소자의 신뢰성을 향상시킬 수 있다.
본 발명의 3차원 핀 전계 효과 트랜지스터는 핀의 상부 가장 자리에 집중되는 전계를 완화 내지 감소시키기 위하여 게이트 절연막의 구조를 변경한다. 핀의 상부 가장 자리는 핀의 상부 방향 및 측면 방향에서 전계가 집중되는 전계 군집(field crowding) 현상이 발생하여 리키지 전류를 증가시킨다. 이를 해결하기 위해, 핀의 상면 및 측면 상에 형성되는 게이트 절연막의 두께를 두껍게 하여야 하는데, 이렇게 할 경우 핀 전계 효과 트랜지스터의 온 전류가 감소한다.
이에 따라, 본 발명의 핀 전계 효과 트랜지스터는 핀의 특정면의 게이트 절연막의 두께를 선택적으로 증가시켜 온 전류 감소를 해결한다. 특히, 본 발명의 핀 전계 효과 트랜지스터는 핀의 상면에 형성되는 게이트 절연막의 두께를 핀의 측면 상에 형성되는 게이트 절연막의 두께보다 두껍게 형성하는데, 이렇게 할 경우 온 전류 향상 및 소자 크기 감소(device shrinkage)에 보다 유리하다.
그리고, 본 발명의 핀 전계 효과 트랜지스터는 앞서 게이트 절연막의 두께 구조의 변경에 더하여 핀의 상부 가장 자리(모서리)를 라운딩시킨다. 이렇게 핀의 상부 가장 자리를 라운딩시킬 경우 핀의 상부 가장 자리에 집중되는 전계를 완화 내지 감소시켜 누설 전류를 더욱더 줄인다.
앞서 설명한 바와 같이 본 발명의 핀 전계 효과 트랜지스터는 핀의 상부 가장자리를 라운딩시키면서 핀의 상부면 상에 형성되는 게이트 절연막의 두께를 핀의 측면 상에 형성되는 게이트 절연막의 두께보다 두껍게 형성한다. 핀의 상부 가장 자리를 라운딩시키는 것과 게이트 절연막의 두께를 다르게 하는 것은 하나의 공정을 이용하여 동시에 수행하고, 두 개의 공정을 이용하여 별도로 수행한다. 하나의 공정을 이용할 경우에는 보다 효과적으로 본 발명의 핀 전계 효과 트랜지스터를 제조할 수 있다.
이상과 같은 본 발명의 핀 전계 효과 트랜지스터의 바람직한 실시예를 첨부도면을 참조하여 상세히 설명한다. 그러나, 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니고, 서로 다른 다양한 형태로 구현될 수 있다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. 이하의 도면들에서, 동일한 참조번호는 동일한 부재를 나타낸다.
도 1은 본 발명에 따른 핀 전계 효과 트랜지스터의 개략적인 사시도이다.
구체적으로, 본 발명의 핀 전계 효과 트랜지스터(100)는 반도체 기판(1)으로부터 돌출된 핀(3, 바디)이 형성되어 있다. 핀(1)의 양측의 반도체 기판(1) 상에는 절연층(5)이 형성되어 있다. 절연층(5)은 소자 분리층(isolation layer) 역할을 수행한다. 반도체 기판(1)은 실리콘 기판이고, 핀(3)은 실리콘층일 수 있다. 또한, 반도체 기판(1), 절연층(5), 및 핀(3)은 SOI(Silicon On Insulator) 기판을 패터닝하여 형성될 수 있다.
핀(3)의 상부면과 측면을 덮도록 게이트 절연막(7)이 형성되어 있다. 게이트 절연막(7)은 실리콘 산화막으로 구성된다. 핀(3)을 가로지르며 핀(3)의 상부면 및 측면을 덮는 게이트 절연막(7)을 덮도록 게이트 전극(11)이 형성되어 있다. 게이트 전극(11)은 불순물이 도핑된 폴리실리콘막이나, 불순물이 도핑된 폴리실리콘막 상에 금속 실리사이드를 형성하여 구성할 수 있다. 이온 주입 공정을 진행하여 핀(3) 방향으로 게이트 전극(11)의 양측면의 핀(3)에 소오스 드레인 영역(3a, 3b)이 형성 되어 있다.
본 발명의 핀 전계 효과 트랜지스터(100)는 핀(3)의 상부 가장자리(모서리, 9)가 라운딩(둥글게) 되어 있다. 이렇게 핀(3)의 상부 가장 자리가 라운딩되어 있을 경우, 핀(3)의 상부 가장 자리에 게이트 전극(11)을 통하여 집중적으로 가해지는 전계를 분산시킬 수 있다. 핀(3)에 가해지는 전계의 분산 및 핀(3)의 상부 가장 자리를 라운딩시키는 방법에 대하여는 후에 자세하게 설명한다.
또한, 본 발명의 핀 전계 효과 트랜지스터(100)는 핀(3)의 상부면 상에 형성되는 게이트 절연막(7b)의 두께를 핀(3)의 측면 상에 형성되는 게이트 절연막(7a)의 두께보다 두껍게 형성한다. 이렇게 핀(3)의 상부면 상에 형성되는 게이트 절연막(7b)의 두께를 측면 상에 형성되는 게이트 절연막(7a)보다 크게 할 경우, 핀(3)의 상부 가장 자리에 게이트 전극(11)을 통하여 집중적으로 가해지는 전계를 분산시킬 수 있다. 핀(3)에 가해지는 전계의 분산 및 핀(3) 상의 게이트 절연막(7)의 형성 방법 대하여는 후에 자세하게 설명한다.
도 2 내지 도 6은 도 1의 a-a'에 따른 핀 전계 효과 트랜지스터의 제조 방법을 설명하기 위한 단면도들이다.
도 2를 참조하면, 반도체 기판(1), 예컨대 실리콘 기판에 핀(3, 바디)을 형성한다. 핀(3)은 반도체 기판(1)을 식각하여 형성한다. 핀(3)이 형성되는 영역은 활성 영역(active region)이 되며, 핀(3)이 형성되지 않는 영역은 비활성 영역(non-active region) 또는 소자 분리 영역이 된다. 핀(3)의 형성 방법은 반도체 기판(1) 상에 사진공정으로 마스크층, 예컨대 산화막 패턴이나 질화막 패턴을 형성 한 후, 이를 마스크로 반도체 기판(1)을 선택적으로 식각하여 형성할 수 있다. 이외에도 핀(3)은 다양한 방법으로 형성할 수 있다.
도 3 및 도 4를 참조하면, 도 3에 도시한 바와 같이 핀(3)의 양측면에 절연층(5), 예컨대 산화층을 형성한다. 절연층(5)은 핀(3)이 형성된 반도체 기판(1)의 전면에 절연 물질층(미도시)을 형성한 후, 절연 물질층을 화학기계적연마(chemical mechanical polishing, CMP)하여 평탄화함으로써 형성한다.
도 4에 도시한 바와 같이 핀(3)의 양측에 형성된 절연층(5)을 일부 식각하여 핀(3)의 일부 측면을 노출시킨다. 노출되는 핀(3)의 높이(h)는 소자의 채널 길이나 채널 폭을 결정하게 되므로, 소자의 특성에 맞추어 핀(3)의 높이(h)를 정한다.
도 5를 참조하면, 핀(3)의 상부 가장자리(모서리, 9)를 라운딩(둥글게)시키고, 핀(3)의 측면보다 상부면의 두께가 두꺼운 게이트 절연막(7)을 형성한다. 즉, 핀(3)의 상부 가장 자리를 라운딩시키고, 핀(3)의 상부면 상에 형성되는 게이트 절연막(7b)의 두께(t2)를 핀(3)의 측면 상에 형성되는 게이트 절연막(7a)의 두께(t1)보다 두껍게 형성한다. 핀(3)의 상부 가장 자리를 라운딩시키는 것과 핀(3)의 측면보다 상부면에 게이트 절연막(7)의 두께를 두껍게 형성하는 것은 하나의 공정을 이용하여 동시에 형성할 수 있다.
하나의 공정을 이용하여 핀(3)의 상부 가장 자리를 라운딩시키면서 핀(3)의 측면보다 상부면에 게이트 절연막(7)의 두께를 두껍게 형성하는 것은, 플라즈마 공정을 이용한 산화법으로 수행할 수 있다.
플라즈마 공정을 이용한 산화법은, 플라즈마 챔버 내에 도 4의 반도체 기 판(1)을 위치시키고, 플라즈마 챔버 내에 위치한 반도체 기판(1)에 바이어스 전압을 가하면서 플라즈마 챔버 내에 주입된 산화 가스로부터 발생된 플라즈마 내부의 이온 또는 라디칼의 산란(scattering) 및 충격(bombardment)에 의해 핀(3)의 상부 가장 자리를 라운딩시키면서 핀(3) 상에 게이트 절연막(9)을 형성하는 것이다.
플라즈마 공정을 이용한 산화법을 수행할 때, 플라즈마는 RF(Radio frequency)나 마이크로파(microwave)를 이용하고, 산화 가스는 산소 가스나, 산소 가스에 수소 가스를 혼합하여 사용하고, 불활성 기체는 Ar, Xe 또는 Kr을 이용하여 형성할 수 있다. 구체적인 공정 조건의 예로는 플라즈마 챔버의 압력은 1mTorr 내지 760Torr, 바이어스 전압 1mV-100kV, 소오스 파워 10kW 이하이다. 바이어스 전압은 DC(직류), 직류(DC) 펄스, AC(교류)를 이용하여 인가할 수 있다.
핀(3)의 상부 가장 자리를 라운딩시키는 것과 핀(3)의 측면보다 상부면에 게이트 절연막(7)의 두께를 두껍게 형성하는 것은 두 개의 공정을 이용하여 형성할 수 있다. 두 개의 공정을 이용할 경우, 핀(3)의 상부 가장 자리를 라운딩시키는 것은 플라즈마를 이용한 건식 식각 공정으로 핀(3)의 상부 가장 자리를 식각하여 수행할 수 있다.
두 개의 공정을 이용할 경우, 핀(3)의 측면보다 상부면에 게이트 절연막(7)의 두께를 두껍게 형성하는 것은, 플라즈마 챔버 내에 도 4의 반도체 기판(1)을 위치시키고, 플라즈마 챔버 내에 위치한 반도체 기판(1)에 바이어스 전압을 가하면서 플라즈마 챔버 내에 주입된 산화 가스의 직진성을 강화시켜 핀(3)의 측면보다 핀(3)의 상부면의 게이트 절연막(7)의 두께를 두껍게 형성하는 것이다. 플라즈마 챔버의 공정 조건은 앞서 설명한 바와 같이 동일하게 하여 수행할 수 있다.
또한, 두 개의 공정을 이용할 경우, 핀(3)의 측면보다 상부면에 게이트 절연막(7)의 두께를 두껍게 형성하는 것은, 이온 주입 챔버 내에 도 4의 반도체 기판(1)을 위치시키고, 이온 주입 챔버 내에 위치한 반도체 기판(1)에 전기장에 의해 직진성을 갖는 산소 이온을 주입한 후 산화시켜 게이트 절연막을 형성한다.
또한, 두 개의 공정을 이용할 경우, 핀(3)의 측면보다 상부면에 게이트 절연막(7)의 두께를 두껍게 형성하는 것은, 이온 주입 챔버 내에 도 4의 반도체 기판(1)을 위치시키고, 이온 주입 챔버 내에 위치한 반도체 기판(1)에, 불소(F)와 같은 원소의 이온주입에 의해 핀, 예컨대 실리콘층을 비정질화시킨 후, 비정질화된 핀(3)을 산화하여 형성하는 것이다.
또한, 두 개의 공정을 이용할 경우, 핀(3)의 측면보다 상부면에 게이트 절연막(7)의 두께를 두껍게 형성하는 것은, 핀(3)의 상부면의 반응 속도가 핀(3)의 측면의 반응 속도보다 빠르도록 반도체 기판(1), 즉 반도체 웨이퍼의 면 지수를 변경하여 수행할 수 있다.
도 6을 참조하면, 핀(3)의 상부 가장자리(모서리, 9)가 라운딩(둥글게)되고, 핀(3)의 측면보다 상부면의 두께가 두꺼운 게이트 절연막(7) 상에 게이트 전극(11)을 형성한다. 이어서, 도 2에 도시한 바와 같이 이온 주입 공정을 진행하여 게이트 전극(11)의 양측면의 핀(3)에 소오스 드레인 영역(3a, 3b)을 형성하여 핀 전계 효과 트랜지스터(100)를 완성한다. 도 6의 핀 전계 효과 트랜지스터(100)는 소자 동작시 코너 채널(13)에 집중적으로 전계가 가해지기 않는다.
도 7 및 도 8은 도 5의 게이트 절연막의 제조 공정을 설명하기 위한 단면도이다.
구체적으로, 도 7은 상면의 게이트 절연막(7b)의 두께(t2)가 측면의 게이트 절연막(7a)의 두께(t1)보다 두껍게 형성하는 과정의 일 예를 도시한 것이다. 도 7에 도시한 바와 같이 게이트 절연막(7) 형성을 위하여 산화 공정을 진행할 때, 플라즈마 챔버 내에 주입된 산화 가스(15)의 직진성을 강화시켜 핀(3)의 측면보다 핀의 상부면의 게이트 절연막(7b)의 두께를 두껍게 형성하는 것이다. 플라즈마 챔버 내에 위치한 반도체 기판(1)에 바이어스 전압을 가하면, 상면의 게이트 절연막(7b)의 두께(t2)가 측면의 게이트 절연막(7a)의 두께(t1)의 비를 조절할 수 있다.
도 8은 핀(3)의 상부 가장 자리를 라운딩시키는 과정의 일 예를 도시한 것이다. 도 8에 도시한 바와 같이 플라즈마 챔버 내에 주입된 산화 가스로부터 발생된 플라즈마 내부의 이온 또는 라디칼(19)의 산란(scattering) 및 충격(bombardment)에 의해 핀(3)의 상부 가장 자리(17)가 라운딩되는 것이다.
도 9는 도 6과 비교를 위한 비교예의 핀 전계 효과 트랜지스터의 단면도이고, 도 10은 도 9의 수직 채널 길이에 따른 전자 농도를 도시한 도면이다.
구체적으로, 도 9의 비교예의 핀 전계 효과 트랜지스터(200)는 도 6과 비교할 때 핀(3)의 상부 가장 자리가 라운드되어 있지 않고, 핀(3)의 상부면 상에 형성되는 게이트 절연막(7b)의 두께(t1)를 핀(3)의 측면 상에 형성되는 게이트 절연막(7a)의 두께(t1)와 동일하다.
핀 전계 효과 트랜지스터(200)는 소자 동작시 코너 채널(13a)에 집중적으로 전계가 가해지기 때문에, 도 10에 도시한 바와 같이 코너 채널의 전자 농도가 높게 나타나고, 측면 채널의 전자 농도는 낮게 된다. 도 10에서, X축은 도 9의 코너 채널(13a)에서 아래 방향으로의 채널 길이를 나타낸다. 도 9의 핀 전계 효과 트랜지스터(200)는 핀(3)의 상부 가장 자리, 즉 코너 채널(13a)에 전계가 집중되어 소자가 오프 상태에서도 GIDL(gate induced drain leakage) 등에 의해 누설 전류가 발생할 수 있고, 디램과 같은 소자에 적용할 경우에는 정적 리프레쉬 특성이나 소자 신뢰성이 낮아지게 된다.
도 11은 도 9의 핀 전계 효과 트랜지스터의 핀의 상부 가장 자리에 전계가 집중되는 현상을 도시한 단면도이고, 도 12 내지 도 14는 도 6의 핀 전계 효과 트랜지스터의 핀의 상부 가장 자리에 전계 군집(electric field crowding) 현상이 방지되는 것을 설명하기 위한 단면도들이다.
구체적으로, 도 11의 비교예의 핀 전계 효과 트랜지스터는 핀(3)의 상부 가장 자리가 라운드되어 있지 않고, 핀(3)의 상부면 상에 형성되는 게이트 절연막(7a)의 두께(t1)를 핀(3)의 측면 상에 형성되는 게이트 절연막(7a)의 두께(t1)와 동일하다. 특히, 핀(3)의 상부 가장 자리 상에 형성되는 게이트 절연막(7a, 7b)의 두께(t3)는 핀(3)의 상부면이나 측면 상에 형성되는 게이트 절연막(7a, 7b)의 두께(t1)보다 낮게 된다. 이렇게 될 경우, 참조번호 21로 도시한 바와 같이 핀의 상부 가장 자리에 화살표로 표시한 전계(20)가 집중된다.
이에 반하여, 도 12는 본 발명과 같이 핀(3)의 상부면 상에 형성되는 게이트 절연막(7a)의 두께(t2)를 핀(3)의 측면 상에 형성되는 게이트 절연막(7a)의 두 께(t1)보다 크게 한 경우이다. 특히, 핀(3)의 상부 가장 자리 상에 형성되는 게이트 절연막(7a, 7b)의 두께(t4)는 핀(3)의 측면 상에 형성되는 게이트 절연막(7a)의 두께(t1)보다 크게 된다. 이렇게 될 경우, 도 12에 도시한 바와 같이 핀(3)의 상부 가장 자리에 화살표로 표시한 전계(20)의 집중, 전계 군집 현상이 완화된다.
그리고, 도 13은 본 발명과 같이 핀(3)의 상부 가장 자리가 라운드되어 있는 경우이다. 이렇게 될 경우, 참조번호 21로 도시한 바와 같이 핀(3)의 상부 가장 자리에 화살표로 표시한 전계(20)의 집중, 즉 전계 군집 현상이 완화된다.
특히, 도 13과 같이 핀의 상부 가장 자리가 라운드되어 있는 경우 핀(3)의 측면이나 상부면 상에 형성되는 게이트 절연막(7a, 7b)의 두께(t1)보다 핀(3)의 상부 가장 자리 상에 형성되는 게이트 절연막(7a, 7b)의 두께(t5)가 크게 된다. 이렇게 될 경우, 도 13에 도시한 바와 같이 핀(3)의 상부 가장 자리에 화살표로 표시한 전계(20)의 집중, 전계 군집 현상이 더욱더 완화된다.
도 14는 도 12 및 도 13을 조합하여 핀(3)의 상부 가장 자리에 화살표로 표시한 전계(20)의 집중, 즉, 전계 군집 현상이 완화되는 것을 표시한 것이다. 즉, 핀(3)의 상부면 상에 형성되는 게이트 절연막(7a)의 두께(t2)를 핀(3)의 측면 상에 형성되는 게이트 절연막(7a)의 두께(t1)보다 크게 하고, 핀(3)의 상부 가장 자리가 라운드되어 있는 경우이다. 특히, 도 14와 같이 핀(3)의 측면 상에 형성되는 게이트 절연막(7a)의 두께(t1)보다 핀(3)의 상부 가장 자리 상에 형성되는 게이트 절연막(7a, 7b)의 두께(t6)가 크게 된다. 게이트 절연막(7a, 7b)의 두께(t6)는 t3보다 크고, t4나 t5보다 더 크게 된다. 이렇게 될 경우, 핀(3)의 상부 가장 자리에 화살 표로 표시한 전계(20)의 집중, 즉 전계 군집 현상이 크게 완화된다.
이하에서는, 본 발명에 의한 핀 전계 효과 트랜지스터를 이용한 다양한 응용예를 설명한다. 본 발명에 의한 핀 전계 효과 트랜지스터를 집적 회로 반도체 소자, 예컨대 디램 소자에 적용하여 패키지할 경우 최종적으로 칩(반도체 칩)이 된다. 칩의 응용예는 여러 가지가 있을 수 있지만 몇 가지만 설명한다.
도 15는 본 발명에 의한 칩을 이용한 메모리 모듈의 평면도이다.
구체적으로, 본 발명에 의한 핀 전계 효과 트랜지스터를 집적 회로 반도체 소자에 적용하여 패키지할 경우 칩들(50-58)이 된다. 집적 회로 반도체 소자가 디램 소자일 경우 패키지하면 디램 칩들이 된다. 이러한 칩들(50-58), 예컨대 디램 칩들은 메모리 모듈(500, memory module)에 응용될 수 있다. 메모리 모듈(500)은 모듈 기판(501)에 칩들(50-58)이 부착되어 있다. 메모리 모듈(500)은 모듈 기판(501)의 일측에 마더 보드의 소켓에 끼워질 수 있는 접속부(502)가 위치하고, 모듈 기판(501) 상에는 세라믹 디커플링 커패시터(59)가 위치한다. 본 발명에 의한 메모리 모듈(500)은 도 15에 한정되지 않고 다양한 형태로 제작될 수 있다.
도 16은 본 발명에 의한 칩을 이용한 전자 시스템의 블록도이다.
구체적으로, 본 발명에 의한 전자 시스템(600)은 컴퓨터를 의미한다. 본 발명에 의한 전자 시스템(600)은 CPU(중앙처리장치, 505), 플로피 디스크 드라이브(507), CD 롬(ROM) 드라이브(509)와 같은 주변 장치, 입출력 장치(508, 510), 램(RAM, random access memory) 칩(512), 롬(ROM, read only memory) 칩(514) 등을 포함한다. 위의 각 부품들간에는 통신 채널(511, communication channel)을 이용하 여 제어신호나 데이터를 주고받는다.
도 16과 같은 전자 시스템(600)에서 본 발명에 의한 핀 전계 효과 트랜지스터를 채용한 집적 회로 반도체 소자를 패키징할 경우 램 칩(512)이 된다. 램칩(512)은 디램 칩일 수 있다. 도 16의 램 칩(512)은 도 15에 설명한 바와 같은 칩(50-58)을 포함하는 메모리 모듈(500)로 대체할 수도 있다.
도 1은 본 발명에 따른 핀 전계 효과 트랜지스터의 개략적인 사시도이다.
도 2 내지 도 6은 도 1의 a-a'에 따른 핀 전계 효과 트랜지스터의 제조 방법을 설명하기 위한 단면도들이다.
도 7 및 도 8은 도 5의 게이트 절연막의 제조 공정을 설명하기 위한 단면도이다.
도 9는 도 6과 비교를 위한 비교예의 핀 전계 효과 트랜지스터의 단면도이다.
도 10은 도 9의 수직 채널 길이에 따른 전자 농도를 도시한 도면이다.
도 11은 도 9의 핀 전계 효과 트랜지스터의 핀의 상부 가장 자리에 전계가 집중되는 현상을 도시한 단면도이다.
도 12 내지 도 14는 도 6의 핀 전계 효과 트랜지스터의 핀의 상부 가장 자리에 전계 군집(electric field crowding) 현상이 방지되는 것을 설명하기 위한 단면도들이다.
도 15는 본 발명에 의한 칩을 이용한 메모리 모듈의 평면도이다.
도 16은 본 발명에 의한 칩을 이용한 전자 시스템의 블록도이다.

Claims (10)

  1. 삭제
  2. 삭제
  3. 반도체 기판으로부터 돌출된 핀을 형성하고,
    상기 핀의 상부 가장자리를 라운딩시키면서 상기 핀의 상부면과 측면을 덮도록 게이트 절연막을 동시에 형성하되 상기 핀의 상부면 상에 형성되는 상기 게이트 절연막의 두께를 상기 핀의 측면 상에 형성되는 상기 게이트 절연막의 두께보다 두껍게 형성하고,
    상기 핀을 가로지르며 상기 게이트 절연막을 덮게 게이트 전극을 형성하는 것을 포함하여 이루어지는 것을 특징으로 하는 핀 전계 효과 트랜지스터의 제조 방법.
  4. 제3항에 있어서, 상기 핀의 상부 가장 자리를 라운딩시키면서 상기 핀의 측면보다 상부면에 상기 게이트 절연막의 두께를 동시에 두껍게 형성하는 것은,
    플라즈마 공정을 이용한 산화법으로 수행하는 것을 특징으로 하는 핀 전계 효과 트랜지스터의 제조 방법.
  5. 제4항에 있어서, 상기 플라즈마 공정을 이용한 산화법은,
    플라즈마 챔버 내에 위치한 상기 반도체 기판에 바이어스 전압을 가하면서 플라즈마 내부의 이온 또는 라디칼의 산란(scattering) 및 충격(bombardment)에 의해 상기 핀의 상부 가장 자리를 라운딩시키면서 상기 핀 상에 상기 게이트 절연막을 형성하는 것을 특징으로 하는 핀 전계 효과 트랜지스터의 제조 방법.
  6. 반도체 기판으로부터 돌출된 핀을 형성하고,
    상기 핀의 상부 가장자리를 라운딩시키고,
    상기 상부 가장 자리가 라운딩된 상기 핀의 상부면과 측면을 덮게 게이트 절연막을 형성하되 상기 핀의 상부면 상에 형성되는 상기 게이트 절연막의 두께를 상기 핀의 측면 상에 형성되는 상기 게이트 절연막의 두께보다 두껍게 형성하고,
    상기 핀을 가로지르며 상기 게이트 절연막을 덮게 게이트 전극을 형성하는 것을 포함하되,
    상기 핀의 상부 가장 자리를 라운딩시키는 것은, 플라즈마를 이용한 건식 식각 공정으로 상기 핀의 상부 가장 자리를 식각하여 수행하는 것을 특징으로 하는 핀 전계 효과 트랜지스터의 제조 방법.
  7. 삭제
  8. 제6항에 있어서, 상기 핀의 측면보다 상부면에 상기 게이트 절연막의 두께를 두껍게 형성하는 것은,
    플라즈마 챔버 내에 위치한 상기 반도체 기판에 바이어스 전압을 가하면서 상기 플라즈마 챔버 내에 주입된 산화 가스의 직진성을 강화시켜 상기 핀의 측면보다 상기 핀의 상부면의 상기 게이트 절연막의 두께를 두껍게 형성하는 것을 특징으로 하는 핀 전계 효과 트랜지스터의 제조 방법.
  9. 제6항에 있어서, 상기 핀의 측면보다 상부면에 상기 게이트 절연막의 두께를 두껍게 형성하는 것은,
    이온 주입 챔버 내에 위치한 상기 반도체 기판에, 전기장에 의해 직진성을 갖는 산소 이온을 주입한 후 산화시켜 상기 게이트 절연막을 형성하거나,
    이온 주입 챔버 내에 위치한 상기 반도체 기판에 이온주입을 통해 상기 핀을 비정질화시킨 후, 상기 비정질화된 핀을 산화하여 형성하는 것을 특징으로 하는 핀 전계 효과 트랜지스터의 제조 방법.
  10. 제6항에 있어서, 상기 핀의 측면보다 상부면에 상기 게이트 절연막의 두께를 두껍게 형성하는 것은,
    상기 핀의 상부면의 반응 속도가 상기 핀의 측면의 반응 속도보다 빠르도록 상기 반도체 기판의 면 지수를 변경하여 수행하는 것을 특징으로 하는 핀 전계 효과 트랜지스터의 제조 방법.
KR1020080107963A 2008-10-31 2008-10-31 핀 전계 효과 트랜지스터의 제조방법 KR101511933B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080107963A KR101511933B1 (ko) 2008-10-31 2008-10-31 핀 전계 효과 트랜지스터의 제조방법
US12/459,660 US7968442B2 (en) 2008-10-31 2009-07-06 Fin field effect transistor and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080107963A KR101511933B1 (ko) 2008-10-31 2008-10-31 핀 전계 효과 트랜지스터의 제조방법

Publications (2)

Publication Number Publication Date
KR20100048690A KR20100048690A (ko) 2010-05-11
KR101511933B1 true KR101511933B1 (ko) 2015-04-16

Family

ID=42130326

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080107963A KR101511933B1 (ko) 2008-10-31 2008-10-31 핀 전계 효과 트랜지스터의 제조방법

Country Status (2)

Country Link
US (1) US7968442B2 (ko)
KR (1) KR101511933B1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8735990B2 (en) * 2007-02-28 2014-05-27 International Business Machines Corporation Radiation hardened FinFET
KR101876793B1 (ko) * 2012-02-27 2018-07-11 삼성전자주식회사 전계효과 트랜지스터 및 그 제조 방법
US20140051256A1 (en) * 2012-08-15 2014-02-20 Lam Research Corporation Etch with mixed mode pulsing
CN103928328B (zh) * 2013-01-10 2016-12-28 中芯国际集成电路制造(上海)有限公司 鳍式场效应晶体管的形成方法
US8940602B2 (en) * 2013-04-11 2015-01-27 International Business Machines Corporation Self-aligned structure for bulk FinFET
CN104779284B (zh) * 2014-01-09 2019-01-22 中芯国际集成电路制造(上海)有限公司 一种FinFET器件及其制造方法
US9564445B2 (en) 2014-01-20 2017-02-07 International Business Machines Corporation Dummy gate structure for electrical isolation of a fin DRAM
CN105261566B (zh) * 2014-07-16 2019-03-12 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
US10903210B2 (en) * 2015-05-05 2021-01-26 International Business Machines Corporation Sub-fin doped bulk fin field effect transistor (FinFET), Integrated Circuit (IC) and method of manufacture
CN106847683B (zh) * 2015-12-07 2020-03-10 中芯国际集成电路制造(上海)有限公司 提高鳍式场效应管性能的方法
KR102446862B1 (ko) * 2016-03-07 2022-09-23 삼성전자주식회사 집적회로 소자 및 그 제조 방법
CN110164767B (zh) * 2018-02-12 2022-05-13 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
US10784359B2 (en) 2018-05-18 2020-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Non-conformal oxide liner and manufacturing methods thereof
US20210126101A1 (en) * 2019-10-29 2021-04-29 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structure of a semiconductor device and method of forming same
DE102020114865A1 (de) 2019-10-31 2021-05-06 Taiwan Semiconductor Manufacturing Co., Ltd. Nicht-konforme verkappungsschicht und verfahren zu deren herstellung
US11437491B2 (en) * 2019-10-31 2022-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Non-conformal capping layer and method forming same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612942B1 (ko) * 2005-06-30 2006-08-14 주식회사 하이닉스반도체 반도체 소자 제조 방법
KR100836761B1 (ko) * 2006-12-08 2008-06-10 삼성전자주식회사 핀 전계 효과 트랜지스터 및 그 제조방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358121B2 (en) * 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
US6885055B2 (en) * 2003-02-04 2005-04-26 Lee Jong-Ho Double-gate FinFET device and fabricating method thereof
KR100585131B1 (ko) * 2004-02-20 2006-06-01 삼성전자주식회사 반도체 소자 및 그 제조 방법
US7115920B2 (en) * 2004-04-12 2006-10-03 International Business Machines Corporation FinFET transistor and circuit
KR100634372B1 (ko) * 2004-06-04 2006-10-16 삼성전자주식회사 반도체 소자들 및 그 형성 방법들
US20060086977A1 (en) * 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
KR100689211B1 (ko) * 2004-12-11 2007-03-08 경북대학교 산학협력단 안장형 엠오에스 소자
KR101051180B1 (ko) 2004-12-30 2011-07-21 주식회사 하이닉스반도체 반도체 소자의 형성 방법
KR20070024965A (ko) 2005-08-31 2007-03-08 주식회사 하이닉스반도체 반도체 소자 제조 방법
JP2008066516A (ja) 2006-09-07 2008-03-21 Elpida Memory Inc 半導体装置及びその製造方法
KR100831390B1 (ko) * 2006-11-25 2008-05-21 경북대학교 산학협력단 고집적 플래시 메모리 소자 및 그 제조 방법
US7452776B1 (en) * 2007-04-24 2008-11-18 Promos Technoloies Pte. Ltd. Integrated circuits with substrate protrusions, including (but not limited to) floating gate memories
US7608495B1 (en) * 2008-09-19 2009-10-27 Micron Technology, Inc. Transistor forming methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612942B1 (ko) * 2005-06-30 2006-08-14 주식회사 하이닉스반도체 반도체 소자 제조 방법
KR100836761B1 (ko) * 2006-12-08 2008-06-10 삼성전자주식회사 핀 전계 효과 트랜지스터 및 그 제조방법

Also Published As

Publication number Publication date
KR20100048690A (ko) 2010-05-11
US7968442B2 (en) 2011-06-28
US20100109057A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
KR101511933B1 (ko) 핀 전계 효과 트랜지스터의 제조방법
US9190495B2 (en) Recessed channel array transistors, and semiconductor devices including a recessed channel array transistor
KR100749035B1 (ko) 반도체 장치의 형성방법
US20080014699A1 (en) Subresolution silicon features and methods for forming the same
US6010930A (en) Vertically oriented structure with sloped opening and method for etching
US20120139039A1 (en) Semiconductor Device Comprising a Transistor Gate Having Multiple Vertically Oriented Sidewalls
US8691649B2 (en) Methods of forming recessed channel array transistors and methods of manufacturing semiconductor devices
KR20100033918A (ko) 리세스 채널 트랜지스터 및 그 형성 방법, 이를 포함하는 반도체 소자 및 그 제조 방법
KR20090078151A (ko) 반도체 소자의 제조방법
JP5406583B2 (ja) 半導体装置
KR20080106319A (ko) 확장된 영역을 갖는 트렌치 분리 구조
KR100618698B1 (ko) 반도체 소자 및 그의 제조방법
KR100668511B1 (ko) 핀 트랜지스터 및 그 제조 방법
US7682897B2 (en) DRAM fabrication method using oxidation spacers on pillar dielectric sidewalls
KR100843855B1 (ko) 반도체 소자 및 그의 제조 방법
US7122850B2 (en) Semiconductor device having local interconnection layer and etch stopper pattern for preventing leakage of current
KR101619826B1 (ko) 리세스 채널 트랜지스터 및 그 형성 방법, 이를 포함하는 반도체 소자 및 그 제조 방법
KR20060128472A (ko) 리세스된 게이트 전극을 갖는 모스 트랜지스터 및 그제조방법
US7859041B2 (en) Gate structure of semiconductor device
KR101006519B1 (ko) 반도체 소자 및 그의 제조방법
KR100713915B1 (ko) 돌기형 트랜지스터 및 그의 형성방법
KR100680972B1 (ko) 트랜지스터 및 그의 형성방법
KR100606901B1 (ko) 반도체 소자의 격리막 형성방법
KR100548536B1 (ko) 에스 오 아이 기판에 형성되는 반도체 디바이스 및 그 제조방법
KR960015523B1 (ko) 반도체 기억장치 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20190329

Year of fee payment: 5