Nothing Special   »   [go: up one dir, main page]

JPWO2018079528A1 - 液晶表示素子 - Google Patents

液晶表示素子 Download PDF

Info

Publication number
JPWO2018079528A1
JPWO2018079528A1 JP2018547678A JP2018547678A JPWO2018079528A1 JP WO2018079528 A1 JPWO2018079528 A1 JP WO2018079528A1 JP 2018547678 A JP2018547678 A JP 2018547678A JP 2018547678 A JP2018547678 A JP 2018547678A JP WO2018079528 A1 JPWO2018079528 A1 JP WO2018079528A1
Authority
JP
Japan
Prior art keywords
light
mass
group
liquid crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018547678A
Other languages
English (en)
Inventor
英彦 山口
英彦 山口
小川 真治
真治 小川
崇之 三木
崇之 三木
穣 田淵
穣 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Publication of JPWO2018079528A1 publication Critical patent/JPWO2018079528A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Luminescent Compositions (AREA)
  • Liquid Crystal Substances (AREA)
  • Optical Filters (AREA)

Abstract

本発明が解決しようとする課題は、発光用ナノ結晶の劣化や部分的な高エネルギー光線の照射スポットによる液晶層の劣化を抑制または防止するものである。第一の基板(2)および第二の基板(7)が対向して設けられる一対の基板と、前記第一の基板(2)と第二の基板(7)との間に挟持された液晶層(5)と、前記第一の基板(2)または第二の基板(7)の少なくとも一方に設けられた画素電極と、前記第一の基板(2)または第二の基板(7)の少なくとも一方に設けられた共通電極と、ブラックマトリックスおよび赤色(R)、緑色(G)、青色(B)の三原色画素部から構成されるカラーフィルタ(6)と、紫外または可視光を発光する発光素子(L)と、前記発光素子(L)からの入射光を赤色(R)、緑色(G)、青色(B)の内少なくとも一色の光に変換して発光する発光用ナノ結晶を含有する光変換部(103)と、を備え、前記液晶層(5)が一般式(i)で表される化合物を10〜50重量%含有することを特徴とする液晶表示素子。

Description

本願発明は、液晶表示素子に関する。
表示品質が優れていることから、アクティブマトリクス形液晶表示装置が携帯端末、液晶テレビ、プロジェクタ、コンピューター等の市場に出されている。アクティブマトリクス表示方式は、画素毎にTFT(薄膜トランジスタ)あるいはMIM(メタル・インシュレータ・メタル)等が使われており、高電圧保持率を有する液晶組成物との組合せにおいて、TN型(ツイストネマチック)を初めとする一般的液晶表示素子として広く用いられている。また、更に広い視角特性を得るためにVA(バーチカルアライメント:垂直配向)、IPS(In Plane Switching:インプレーンスイッチング)、IPSの改良型であるFFS(Fringe Field Switching:フリンジフィールドスイッチング)等が用いられており、この様な表示素子に対応するために、現在も新しい液晶化合物あるいは液晶組成物の提案がなされている。
一方液晶表示素子は自己発光型では無いため、発光するための光源が必須となり、ディスプレイとして求められる色再現領域に発光スペクトルを有する白色光源が使用される。光源としては、冷陰極管や白色LED(発光ダイオード)等が用いられるが発光効率の観点から、現在では白色LEDを用いることが主流となっている。LEDは現在一つの素子で380nmから750nmにおよぶ可視光全領域のカバーすることはできず、白色光を得るためにはいくつかの形式が知られている。
1)青色LEDと黄色蛍光体の組合せ
2)3原色の各LED(赤色・緑色・青色)の組合せ
3)近紫外線または紫色LEDと赤色・緑色・青色の蛍光体との組合せ
これら3方式中、液晶表示素子の光源として最適な白色光を得る観点では3)が最も優れ、2)、1)の順となり、発光効率の観点では、1)が最も優れている。
液晶表示素子においては、消費電力の低減が重要であり、先進各国が検討中の省電力プログラムに対応するためには、光源の発光効率が重視されている。そのため、現在では1)の青色LEDと黄色蛍光体の組合せにより白色光を得ている。
この方式は、発光効率的には優れるものの、赤色光の不足など白色光源としての特性的には劣り、色再現性に問題を有していた。特に液晶表示素子はカラー表示を実現するために液晶素子と合わせてカラーフィルタを用いることから、光源部を改良しても色再現性を向上させることは難しく、そのため色再現性を向上させるにはカラーフィルタ中の高顔料濃度化を図るか、或いは、着色膜厚を大きくすることにより色純度を高める必要があった。然しながら、この場合、透過率が低下し、光量を増加させなければならず消費電力が増加することとなる問題があった。
そこで、液晶表示素子の色再現性と発光効率を同時に解決するための技術として、発光用ナノ結晶の一例である量子ドット技術(特許文献1参照)が注目されている。当該量子ドットは、粒子径数nmから数十nmの半導体微結晶からなり電子正孔対の閉じ込め効果によりエネルギーレベルが離散的に存在し、粒子径が小さくなるにつれてエネルギーバンドギャップが大きくなる性質を有している。この性質を応用し、粒子径をコントロールしバンドギャップを均一化することにより、発光スペクトルの半値幅が小さい光源を得ることができる。半値幅の小さい三原色の光源を得ることにより広色域ディスプレイが実現できることから、量子ドットをバックライトの構成部材として用いることにより、色再現性を向上させた液晶表示素子を構成できることが開示されている(特許文献2及び非特許文献1参照)。更に、光源として近紫外線または青色等の短波長可視光線を用いて、三色の量子ドットを従来のカラーフィルタの替わりに用いる提案がなされている(特許文献3参照)。これらの表示素子は、原理的には高い発光効率と色再現性を両立できるものである。
特表2001−523758号公報 国際公開2004/074739号パンフレット 米国特許8648524号公報 国際公開2014/045371号パンフレット
SID 2012 DIGEST,p895−896
しかしながら、上記の通り、発光用ナノ結晶の一例である量子ドットを発光素子に介在して用いることで液晶表示素子の白色光源を得る場合、図19に記載するように、発光用ナノ結晶の一例である量子ドットを発光素子に介在して用いた光源からの光は、赤色(R)、緑色(G)、青色(B)の三原色のそれぞれの半値幅が小さく、当該量子ドットに対応する特定の波長を備えている。そのため、一般的な白色LED(例えば、上記の1)〜3))とは発光スペクトルが大幅に異なる。これにより光シャッターとして使用される液晶材料には、発光用ナノ結晶を発光させる光や発光用ナノ結晶からの光が照射されることになり、液晶材料自体が分解しやすくなる等の問題が生じる。例えば、特許文献4には、一般的な白色光源と三原色を含むカラーフィルタを用いた液晶表示素子に使用される液晶組成物の最適化を行った技術は開示されているものの、量子ドット等の発光用ナノ結晶を光源として用いた場合に液晶材料の信頼性を維持することについては開示されていない。
特に、量子ドット等の発光用ナノ結晶を介在して白色光源を得た場合、発光用ナノ結晶の経時的劣化や外部環境による発光用ナノ結晶の劣化が生じると、光源に用いる短波長の可視光線や紫外光等を含む高エネルギー光線が、発光用ナノ結晶に吸収されにくくなり、直接液晶層に長時間高エネルギー光線が照射されることになる。これにより、液晶層を構成する液晶材料が分解し易くなる等の問題が生じる。また、発光用ナノ結晶の局所的不存在などにより特定の領域(スポット)に高エネルギー光線が暴露される問題、または、発光用ナノ結晶を含むフィルムにより液晶パネルの面を覆う形態の場合、液晶パネルの外延部周辺からの高エネルギー光線が漏れるため、高エネルギー光線が漏れた部分から液晶の劣化が生じるという問題がある。特にスポットや画面の端では部分的に劣化部分が生じやすく、部分的な劣化は全体的な劣化とは異なり、注目されやすい。
そこで、本発明が解決しようとする課題は、発光用ナノ結晶の劣化や部分的な高エネルギー光線の照射スポットによる液晶層の劣化を抑制または防止するものである。
本願発明者らは、上記課題を解決するために鋭意検討した結果、特定の液晶化合物を含有する液晶組成物を含む液晶層と、発光用ナノ結晶を介した光源とを備えた素子を用いることで、前記課題を解決できることを見出し本願発明の完成に至った。
すなわち、本発明は、第一の基板および第二の基板が対向して設けられる一対の基板と、
前記第一の基板と第二の基板と間に挟持された液晶層と、
前記第一の基板または第二の基板の少なくとも一方に設けられた画素電極と、
前記第一の基板または第二の基板の少なくとも一方に設けられた共通電極と、
ブラックマトリックスおよび赤色(R)、緑色(G)、青色(B)の三原色画素部から構成されるカラーフィルタと、
紫外または可視光を発光する発光素子と、
前記発光素子からの入射光を赤色(R)、緑色(G)、青色(B)の内少なくとも一色の光に変換して発光する発光用ナノ結晶を含有する光変換部と、を備え、
前記液晶層が一般式(i)
Figure 2018079528
(式中、R及びRはそれぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、Aは1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基を表し、nは0又は1を表す。)で表される化合物を10〜50重量%含有する液晶組成物を含有することを特徴とする液晶表示素子によって上記課題を解決する。
本発明は、発光用ナノ結晶の劣化や部分的な高エネルギー光線の照射スポットによる表示不良を低減した液晶表示素子を提供する。
本発明は、色再現領域が広く、高速応答性を備えた液晶表示素子を提供する。
本発明の液晶表示素子の実施形態を示す斜視図である。 本発明の液晶表示素子の他の実施形態を示す斜視図である。 図1のI−I線方向に液晶表示素子を切断した断面の模式図であり、本実施形態に用いられる液晶表示素子の構成を示すための一例の図である。 本発明に係る光変換部103の構成の一例を示す図である。 本発明に係る光変換部(特にバックライトユニット)の一例を示す模式図である。 本発明に係る好適なバックライトの他の一形態を示す図である。 図1のI−I線方向に液晶表示素子を切断した断面の模式図であり、本実施形態で用いられる液晶表示素子の構成を示すための一例の図である。 図1のI−I線方向に液晶表示素子を切断した断面の模式図であり、本実施形態で用いられる液晶表示素子の構成を示すための一例の図である。 図2のI−I線方向に液晶表示素子を切断した断面の模式図であり、本実施形態で用いられる液晶表示素子の構成を示すための一例の図である。 図2のI−I線方向に液晶表示素子を切断した断面の模式図であり、本実施形態で用いられる液晶表示素子の構成を示すための一例の図である。 本発明の液晶表示素子の画素部分を等価回路で示した模式図である。 本発明の画素電極の形状の一例を示す模式図である。 本発明の画素電極の形状の一例を示す模式図である。 本発明のIPS型の液晶表示素子の電極構造を示す模式図である。 図12または図13におけるIII−III線方向に図1に示す液晶表示素子を切断した断面図の例の一つである。 図14におけるIII−III線方向にIPS型の液晶パネルを切断した断面図である。 図2における基板上に形成された薄膜トランジスタを含む電極層3のII線で囲まれた領域を拡大した平面図である。 図17におけるIII−III線方向に図2に示す液晶表示素子を切断した断面図である。 量子ドットの発光スペクトルを示す図である。
本発明は、第一の基板および第二の基板が対向して設けられる一対の基板と、前記第一の基板と第二の基板と間に挟持された液晶層と、前記第一の基板または第二の基板の少なくとも一方に設けられた画素電極と、前記第一の基板または第二の基板の少なくとも一方に設けられた共通電極と、ブラックマトリックスおよび赤色(R)、緑色(G)、青色(B)の三原色画素部から構成されるカラーフィルタと、紫外または可視光を発光する発光素子と、前記発光素子からの入射光を赤色(R)、緑色(G)、青色(B)の内少なくとも一色の光に変換して発光する発光用ナノ結晶を含有する光変換部と、を備え、
前記液晶層が一般式(i):
Figure 2018079528
(式中、R及びRはそれぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、Aは1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基を表し、nは0又は1を表す。)で表される化合物を10〜50重量%含有する液晶組成物を含有することを特徴とする液晶表示素子である。
液晶表示素子が光変換部を備えることで色再現領域が従来の液晶表示素子より拡大され、かつ発光用ナノ結晶の劣化や部分的な高エネルギー光線の照射スポットによる表示不良を低減した液晶表示素子を提供する。
本発明に係る好適な液晶表示素子について図を用いて以下に説明した後、液晶表示素子の各構成要素について説明する。
図1は、本実施形態で用いられる液晶表示素子の一例の全体を示す斜視図であり、説明のために便宜上各構成要素を離間して記載している。
本発明に係る液晶表示素子1000は、バックライトユニット100と、液晶パネル10とを備えている。当該バックライトユニット100は、発光素子Lを有する光源部101と、導光板(図示せず)を有する導光部102と、を有している。また、発光素子Lからの入射光を変換して発光する光変換部103は、光源部101または導光部102の一部として備えている。そのため、図1では便宜上、光変換部103を光源部101の一部に備えている場合として、光源部101(103)と示し、光変換部103を導光部102の一部に備えている場合として、導光部102(103)と示している(図2も同様)。
また、図1、2では、発光素子Lを有する光源部101からの光および液晶パネル10からの光を矢印で表している。
図1に示すように、バックライト100の一形態は、複数の発光素子Lを含む光源部101が導光部102の一側面に配置されており、図1では、複数の発光素子Lが、液晶パネル10の一側面側に一列に並べられている。複数の発光素子Lを含む光源部101を、液晶パネル10の一側面側(導光部102の一側面)だけでなく、必要により、液晶パネル10の他方の側面側(対向する両側面)に設けてもよく、また、導光部102の周囲を囲むように、複数の発光素子Lを含む光源部101が、該導光部102の3つ側面又は該導光部102の全周囲を囲むように、4つの側面に設けられていてもよい。なお、導光部102は必要に応じて導光板の代わりに光拡散板(図示せず)を備えてもよい。
液晶パネル10は、一対の偏光板1,8の間に第一の基板2および第二の基板7が挟持され、さらに、対向に配置された第一の(透明絶縁)基板(透明基板とも称する)2と、第二の(透明絶縁)基板7との間に挟持された液晶組成物(または液晶層5)を有し、前記第一の(透明絶縁)基板2は、液晶層5側の面に電極層3が形成されている。また、液晶層5と、第一の(透明絶縁)基板2及び第二の(透明絶縁)基板7のそれぞれの間に、配向層4が設けられている。さらに、図1では、前記第二の基板7と配向層4との間にカラーフィルタ6が設けられている。
なお、図1では、電極層3として画素電極(図示せず)と共通電極(図示せず)とが第一の基板2側に設けられているが、別の実施形態では、画素電極を第一の基板2に設け、共通電極を第二の基板7に設けてもよい。
また、配向層4により電圧無印加時に該液晶組成物中の液晶分子が記基板2,7に対して所定方向に配向することができる。
図1では、一対の偏光板1、8により前記第一の基板2および前記第二の基板7を挟持した形態を記載しているが、偏光板1,8を設ける位置はこの図に限定されない。さらに、図1では、前記第二の基板7と配向層4との間にカラーフィルタ6が設けられているが、本発明に係る液晶表示素子の他の実施形態としては、いわゆるカラーフィルタオンアレイ(COA)であってもよく、電極層3と液晶層5の間にカラーフィルタ6を設けても、または当該電極層3と第一の基板2との間にカラーフィルタを設けてもよい。また、必要により、オーバコート層(図示せず)を、カラーフィルタ層6を覆って設けることで、カラーフィルタ層に含まれる物質が液晶層へ流出することを防止してもよい。
また、本明細書では説明のため便宜上、バックライトユニット側の基板上に形成されている層(図1では電極層3、配向層4)およびバックライトユニット側の基板(第一の基板2)を第一の表示基板SUB1と称し、前記バックライトユニット側の基板と対向する基板上に形成されている層(図1では、配向層4、カラーフィルター6)および前記バックライトユニット側の基板と対向する基板(第二の基板7)を第二の表示基板SUB2と称しており、実施形態によって、バックライトユニット側の基板上に形成されている層や前記バックライトユニット側の基板と対向する基板上に形成されている層を構成するものが異なる場合がある。例えば、図2で示す本発明に係る液晶表示素子の形態では、第二の表示基板SUB2における第二の基板側に設けられた層には、第二の電極層3’(例えば、共通電極)が設けられている。
また、図1〜2では説明上、本発明の液晶表示素子の好適な実施形態として、液晶層5と第一の基板2との間および液晶層5と前記第二の基板7との間にそれぞれの第一の基板および第二の基板上に配向層4が液晶層5と当接するように形成された例を記載しているが、本発明の液晶表示素子は、第一の基板2または第二の基板7上の少なくとも一方に配向層4が形成されていればよい。例えば、液晶層5と第一の基板2との間に配向層4が前記第一の基板2上に液晶層5と当接するように形成されている場合、他方の液晶層5と第二の基板7との間には、配向膜を設けなくてもよい。
すなわち、本発明に係る液晶パネル10は、第一の偏光板1と、第一の基板2と、電極層3と、配向層4と、液晶組成物を含む液晶層5と、配向層4と、カラーフィルタ6と、第二の基板7と、第二の偏光板8と、が順次積層された構成を含むことが好ましい。
図1において、発光素子Lからの入射光を変換して発光する光変換部103が、光源部101内に設けられている場合、光源部101から発光される光は、光変換部103により変換された光を含むものであり、当該光源部101から発光される光が導光部102(例えば、導光板)を介して液晶パネル10の面内を透過する。
他方、前記光変換部103が、導光部102内に設けられている場合は、発光素子Lから発光された光が光変換部103により変換された後、導光部102内の導光板を変換された光が通過して液晶パネル10の面内を透過しようとする、または発光素子Lから発光された光が導光部102内の導光板を通過した後、光変換部103により変換された光が液晶パネル10の面内を透過しようとする。
この際、前記導光板の形状が、発光素子Lから発光された光が入射する側面から対向面に向かって厚さが次第に減少する側面を備えた平板体(側面がテーパー状の形態や楔状四角形板)であると、線光を面光に変換することができるため液晶パネル10内に光を入射しやすくなる。その他、公知の手段で発光素子Lから発光された線光を面光に変換してもよい。
また、前記導光部102は、液晶パネル10と導光版との間に光拡散板を備えることが導光板からでた光を均一に散乱させることができる点から好ましい(後述に実施形態として記載する)。
図2は、本実施形態で用いられる液晶表示素子の他の一例の全体を示す斜視図であり、説明のために便宜上各構成要素を離間して記載している。本発明に係る液晶表示素子は、平板状のバックライトユニット100と、液晶パネル10とを備えている。図1では、複数の発光素子Lが平板状の導光部102の一側面に配置されている形態であったが、図2の形態は、複数の発光素子Lが平板状の導光部102に対して平面状に配置されている形態である。本実施形態では、液晶パネル10に対して背面直下に光源部101を設けた直下型バックライト構造を採用している。この構造では、液晶パネル10の背面のほぼ全体に対してほぼ均等に発光素子Lが配列されている。
この場合、発光素子Lからの光は面光であるため、前記導光板の形状は、図1とは異なりテーパー状にしなくてもよい。
図2においても、前記導光部102は、液晶パネル10と導光版との間に光拡散板を備えることが好ましい(後述に実施形態として記載する)。
図2における液晶パネル10は、第一の電極層3を備えた第一の基板2と、第二の電極層3’(例えば、共通電極)を具備した第二の基板7と、前記第一の基板2と第二の基板7との間に挟持された液晶組成物(または液晶層5)を有し、前記第一の基板2と前記液晶層5との間に前記液晶層5と当接するように設けられた配向層4と、前記第二の基板7と前記液晶層5との間に前記液晶層5と当接するように設けられた配向層4と、を備えている。また、前記第二の基板7と第二の電極層3’との間にカラーフィルタ6が設けられており、前記第一の基板2および前記第二の基板8は、一対の偏光板1、8により挟持されている。
すなわち、本発明に係る液晶表示素子1000は、第一の偏光板1と、第二の基板20と、薄膜トランジスタを含む電極層(又は薄膜トランジスタ層とも称する)3と、光配向層4と、液晶組成物を含む層5と、光配向層4と、第二の電極層3’と、カラーフィルタ6と、第一の基板7と、第一の偏光板8と、が順次積層された構成である。
本発明に係る光変換部は、第一の基板又は第二の基板の何れかで発光素子側の基板と前記発光素子との間に設けられることが好ましい。以下に本発明に係る液晶表示素子の好ましい実施形態および好ましいバックライトユニットを図3〜図10を用いて説明する。
図3は、複数の発光素子Lが、液晶パネル10の一側面側に一列に並べられ、かつ、光変換部103を導光部102の一部に備えたバックライトユニットを持つ液晶表示素子において、図1のI−I線方向に液晶表示素子を切断した断面図であり、本実施形態で用いられる液晶表示素子の構成を示すための一例の図である。
図3におけるバックライトユニット100は、液晶パネル10の外部の一側面側に取り付けられた発光素子Lを備えた光源部101と、前記光源部101と接続した導光部102によって構成されており、該導光部102は、光変換部103および導光板104とを備えている。ここで、光変換部103は、発光素子Lからの入射光を赤色(R)、緑色(G)、青色(B)の内少なくとも一色の光に変換して発光する発光用ナノ結晶NCを含有する。そのため、本発明に係る液晶表示素子は、発光素子Lを備えた光源部101と、前記光源部101に接続された光変換部103および導光板104と、前記導光板104の一方の面上に、第一の偏光板1、第一の表示基板SUB1、液晶層5、第二の表示基板SUB2及び第二の偏光板8が順に積層された構造である。このように、本実施形態では、導光部102内の一部に前記光変換部103を有するものとなる。
本発明に係る液晶表示素子および光変換部の好ましい形態の一例を、図3と併せて、図4、図5および図6を用いて説明する。
図4は、本発明に係る光変換部103の一例である。図4で示すように、本発明に係る光変換部103は、透明な長尺状の中空体の充填容器111(図4では管状の充填容器111)の内部(前記中空体の中空部)に発光用ナノ結晶NCが収容(または充填)されている。必要により、発光用ナノ結晶NCの他に蛍光物質や紫外線硬化性の樹脂を収容(または充填)してもよい。また、図4では、充填容器111の長軸方向に対して垂直に切断した面の形状は、“0”型形状であるが断面の形状は、特に限定されることは無い。
具体的な製造方法については後述で詳説するが、ガラス、石英またはアクリルなどの透明な管状の充填容器111の一方の端の開口部を封止し、発光用ナノ結晶NC、例えば量子ドットと、紫外線硬化性の樹脂とを混練した混合物を、管体111の内部に注入し、紫外線を照射して樹脂を硬化させ、必要により前記管体の他方の開口部を封止することで、充填容器111内に発光用ナノ結晶NCを封止した光変換部103を形成することができる。
図5は、本発明に係る光変換部(特にバックライトユニット)の一例であり、より詳細には、光源部101と、図4で示すような透明な長尺状の中空体の内部に発光用ナノ結晶NCを収容した部材(光変換部103)と、導光板104とを示す図である。ここで、図5の実施態様では、光変換部103と導光板104とにより導光部102を形成している。
光源部101の発光素子Lは点光源であり、具体的に光源部101は、発光ダイオード105(LED)を含む発光素子Lにより構成されている。例えば、発光ダイオード105が、例えば、凹部容器113(図5には図示せず、図7を参照。)内に封止されると共に光源基板110に実装され、導光板104の光入射面(図5では、例えば左端の側面)に対向配置されている。また、図5で示すように、発光素子Lを含む光源部101と導光板104との間には、内部に発光用ナノ結晶NCが収容されている管体(光変換部103)が配置されている。
光源部101において、光源基板110は長尺状の直方体の形状を有し、光源基板110の長手方向に発光素子Lが一列に並べられている(図1、図5参照)。また、当該光源部101と接続された光変換部103は、光源基板110と同様に長尺状の中空体であり、当該透明な長尺状の中空体の内部に発光用ナノ結晶NCが収容された構成である。さらに、導光板104は、当該光変換部103と接続されているため、光源部101からの光は、光変換部103で赤色(R)、緑色(G)、青色(B)の内少なくとも一色の光に変換され、導光板104へ導かれ液晶パネル10内へ入射する。なお、ここで前記導光板104と第一の偏光板1との間には光拡散板を設けてもよい。これにより導光板104を通過する光を散乱させて面光として、液晶パネル10、例えば第一の偏光板1に光を供給する(図3、図5参照)。従って、この場合、導光部102は、光変換部103、導光板104、及び光拡散版により構成されることとなる。
本発明に係る発光素子L(または発光ダイオード105)は、波長領域については光変換部に含まれる発光用ナノ結晶に吸収される波長領域であれば特に制限されることはないが、青色領域に主発光ピークを有することが好ましい。例えば、420nm以上480nm以下の波長領域に主発光ピークを有する発光ダイオード(420nm以上480nm以下の波長領域に主発光ピークを有する青色発光ダイオードなど)を好適に使用できる。当該青色領域に主発光ピークを有する発光ダイオードは、公知のものを使用することができる。青色領域に主発光ピークを有する発光ダイオードとしては、例えば、サファイア基板の上に形成されるAlNからなるシード層と、シード層上に形成される下地層と、GaNを主体とする積層半導体層とを少なくとも備えたものなどが例示として挙げられる。また、積層半導体層は、基板(例えば、図5などの光源基板110側から下地層、n型半導体層、発光層およびp型半導体層の順に積層されて構成されたものが挙げられる。
紫外線の光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、無電極ランプ、メタルハライドランプ、キセノンアークランプ、LED等が挙げられるが、本発明に係る発光素子Lは、上記の420nm以上480nm以下の波長領域に主発光ピークを有するLED以外として、紫外光を発生するLEDが好ましい。
なお、本明細書において、420〜480nmの波長帯域に発光中心波長を有する光を青色光と称し、500〜560nmの波長帯域に発光中心波長を有する光を緑色光と称し、605〜665nmの波長帯域に発光中心波長を有する光を赤色光と称する。また、本明細書の紫外光とは、300nm以上420nm未満の波長帯域に発光中心波長を有する光をいう。さらに本明細書において、「半値幅」とは、ピーク高さ1/2でのピークの幅のことを言う。
前記光変換部103は、発光素子Lからの光を波長変換するものであり、発光素子Lからの光の波長変換する発光用ナノ結晶NCを含む。発光用ナノ結晶は、離散的エネルギー準位を有し、ナノ結晶の一次粒子の粒子径を変えることによって発光波長を自由に選択可能である。そのため、従来の白色LEDおよび蛍光物質を組み合わせた発光装置より、色再現領域が拡大される。
前記光変換部103は、透明な中空状の管体と、当該中空状管体の中空部に発光ダイオード105が発する光を吸収してより長波長の光を発する一種類以上、好ましくは2種以上の発光用ナノ結晶NCと、当該発光用ナノ結晶NCを均一に分散させた状態で含有する透明樹脂とを含むことが好ましい(図4、図5参照)。この場合において、発光用ナノ結晶NCは、発光ダイオード105が発する光(例えば、青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、発光ダイオード105が発する光(例えば、青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび発光ダイオード105が発する光(例えば、青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される少なくとも1種の発光用ナノ結晶NCを含んでいることが好ましく、発光ダイオード105が発する光(例えば、青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、発光ダイオード105が発する光(例えば、青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび発光ダイオード105が発する光(例えば、青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される2種の発光用ナノ結晶NCを含んでいることがより好ましく、発光ダイオード105が発する光(例えば、青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCと、発光ダイオード105が発する光(例えば、青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCとを含んでいることが特に好ましい。
これにより、光変換部を介して得られた赤色光および緑色光のスペクトルは、半値幅が狭く、急峻なピークを有している。そのため、赤色光および緑色光の色純度が高くなり、発光ダイオード105が発する青色光と、緑色発光用ナノ結晶NCに含まれる緑色蛍光体が発する緑色光と、同じく赤色発光用ナノ結晶NCに含まれる赤色蛍光体が発する赤色光とによって、青、緑、赤の3原色が揃い、これらの合成光の色域が広くなるため、従来の白色LEDおよび蛍光物質を組み合わせた発光装置より、色再現領域が拡大される。
また、必要により、本発明に係る光変換部103は、発光用ナノ結晶NCおよび当該発光用ナノ結晶NCを均一に分散させた状態で含有する透明樹脂以外に、例えば蛍光物質を含んでも良い。具体的には、光源101は、450nmにピークを持つ青色光を含む光が好ましく、青色光源がより好ましい。光変換部103は、光源部101からの青色光を赤色光または緑色光に波長変換する蛍光物質を必要により含むことが好ましい。これにより、バックライトユニットは、光変換部103により波長変換された赤色光および緑色光を合成することによりさまざまな色調の光を生成することが可能となる。
図6は、本発明に係る好適なバックライトの他の一形態を示す図であり、より詳細には、図5のバックライトユニットの変形例である。
発光ダイオード105が、例えば、凹部容器113(図6には図示せず、図7を参照。)内に封止されると共に光源基板110に実装され、導光板104の光入射面(図6では、例えば左端の側面)に対向配置されている。また、図6で示すように、発光素子Lと導光板104との間に、固定部材112a,112bを介することにより内部に発光用ナノ結晶NCが収容されている管体111(光変換部103)が光源部101と接続される。
これにより、本発明に係る液晶表示素子は、発光用ナノ結晶NCを含有する光変換部103が発光素子Lからの光を液晶パネルに供給するまでの光路において設けられているため、前記光変換部103により発光素子Lからの入射光を赤色(R)、緑色(G)、青色(B)の内少なくとも一色の光に変換した光を放出することができる。
図7(a)は、複数の発光素子Lが、液晶パネル10の一側面側に一列に並べられ、かつ、光源部101の一部に光変換部103を備えたバックライトユニットを持つ液晶表示素子において、図1のI−I線方向に図1に示す液晶表示素子を切断した断面図である。ここで、光源部101に液晶パネル10の外部の一側面に取り付けられた光変換部103と発光素子Lとが設けられている。そのため、図7における本発明の好適なバックライトユニット100は、光変換部103を備えた発光素子Lを含む光源部101と、導光板104と、必要により光拡散板(図示せず)を含む導光部(図示せず)とから構成される。そのため、本実施形態では、光変換部103は光源部101に含まれる。光拡散板(図示せず)を必要により導光板104と液晶パネル10(例えば偏光板1)との間に導光板104と当接するように設けてもよい。
また、発光素子Lは、光変換部103としての発光用ナノ結晶NC(例えば量子ドット)および樹脂(図示せず)を含む光変換部材103と、発光ダイオード105とを必須の構成要素としていることが好ましい。換言すると、発光ダイオード105を光変換部103が覆っている形態の発光素子Lである。
そのため、本実施態様に係る液晶表示素子は、発光ダイオード105および光変換部103を備えた発光素子Lを有する光源部101と、導光板104を備えた光導光部102と、前記導光板104の一方の面上に、第一の偏光板1、第一の表示基板SUB1、液晶層5、第二の表示基板SUB2及び第二の偏光板8が順に積層された構造である。また、当該液晶表示素子において、光変換部103を備えた発光素子Lを有する光源部101と、導光板104を含む導光部とは接続されており、前記光源部101は、液晶パネル10の外部の一側面に取り付けられている。
また、発光素子Lは、発光ダイオード105(LED)により構成されており、点光源である。より詳細には、発光ダイオード105を光変換部103が覆っている形態である。発光素子Lの一例として図7(b)の拡大部分を用いて説明すると、上部側に凹部が形成された発光体を収納する凹部容器113(透明充填容器)と、当該容器と一体化した光源基板110(リードフレームを含むアノード用リード部(図示せず)およびカソード用リード部(図示せず))と、前記凹部の底面に取り付けられた発光ダイオード105と、凹部を覆うように設けられた発光用ナノ結晶NCを含む樹脂層とを備えている。
発光ダイオード105は、凹部の底面に露出するカソード用リード部上に接着、固定されている。また、当該発光ダイオード105は、n型電極およびp型電極を有しており、ボンディングワイヤを介して、p型電極がアノード用リード部に接続され、n型電極がカソード用リード部に接続されている。なお、本実施形態で用いた光源部101では、発光ダイオード105が、底面のほぼ中央部に取り付けられているが、特に制限されることは無い。また、光源基板110(アノード用リード部およびカソード用リード部、換言するとリードフレーム)は、金属板であり、表面に銀メッキ層が形成された銅合金等の金属導体であるため、透明充填容器の凹部の底面は、金属導体であるアノード用リード部の一部(導体部)およびカソード用リード部の一部(導体部)の銀メッキ層が露出している。
本発明に係る発光ダイオード105は、波長領域について特に制限されることはないが、青色領域に主発光ピークを有することが好ましい。例えば、420nm以上480nm以下の波長領域に主発光ピークを有する発光ダイオード105を好適に使用できる。
当該青色領域に主発光ピークを有する発光ダイオード105は、公知のものを使用することができる。青色領域に主発光ピークを有する発光ダイオード105としては、例えば、サファイア基板の上に形成されるAlNからなるシード層と、シード層上に形成される下地層と、GaNを主体とする積層半導体層とを少なくとも備えたものなどが例示として挙げられる。また、積層半導体層は、基板(例えば、図5などの光源基板110側から下地層、n型半導体層、発光層およびp型半導体層の順に積層されて構成されたものが挙げられる。
光変換部103としては、発光ダイオード105が発する光を吸収してより長波長の光を発する一種類以上、好ましくは2種以上の発光用ナノ結晶NCと、発光用ナノ結晶NCを均一に分散させた状態で含有する透明樹脂とから構成されている。この場合において、発光用ナノ結晶NCは、発光ダイオード105が発する光(例えば、青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、発光ダイオード105が発する光(例えば、青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび発光ダイオード105が発する光(例えば、青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される少なくとも1種の発光用ナノ結晶NCを含んでいることが好ましく、発光ダイオード105が発する光(例えば、青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、発光ダイオード105が発する光(例えば、青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび発光ダイオード105が発する光(例えば、青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される2種の発光用ナノ結晶NCを含んでいることがより好ましく、発光ダイオード105が発する光(例えば、青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCと、発光ダイオード105が発する光(例えば、青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCとを含んでいることが特に好ましい。なお、赤色発光用ナノ結晶NCは、緑色発光用ナノ結晶NCが発する光でも励起されるので、緑および赤の発光用ナノ結晶NCの比率により、光源部101から出力される光の色度の動きは非常に複雑に変化する。このような色度の調節には、発光ダイオード105の発光波長と、緑および赤の発光用ナノ結晶NCの比率と、光変換部103における発光用ナノ結晶NCの含有量と、光変換部103から光が出射される光射出面の形状とが関係する。
発光ダイオード105が発する青色光と、緑色発光用ナノ結晶NCに含まれる緑色蛍光体が発する緑色光と、同じく赤色発光用ナノ結晶NCに含まれる赤色蛍光体が発する赤色光とによって、青、緑、赤の3原色が揃う。このため、光変換部103の光射出面からは、白色光が出射される。液晶表示素子のバックライトとしてこの白色光を使った色再現範囲は、発光ダイオード105の主発光ピークの波長および半値幅と、発光用ナノ結晶NCの発光ピークの波長および半値幅とに依存する。
図8は、複数の発光素子Lが液晶パネル10の一側面側に一列に並べられ、かつ、シート状の光変換部103を導光部102の一部に備えたバックライトユニットを持つ液晶表示素子において、図1のI−I線方向に液晶表示素子を切断した断面図である。
図8に示すように、本実施形態の液晶表示素子は、導光板104および当該導光板104の一方の面上に形成された発光用ナノ結晶NCを含む光変換部103を備えた導光部102と、第一の偏光板1と、第一の表示基板SUB1と、液晶層5と、第二の表示基板SUB2と、第二の偏光板8とが順に積層され、前記導光板104の一側面側に光源部101が取り付けられた構造である。そのため、本実施形態では、光変換部103は導光部102に含まれる。また、必要により、光拡散板を光導光板104と液晶パネル10(例えば偏光板1)との間に導光板104と当接するように設けてもよい。
さらに、発光素子Lを有する光源部101は、導光板104と接続されている。
図8で示すように、発光用ナノ結晶NCを含む光変換部103は、シート状であり、この構造では、液晶パネル10の背面のほぼ全体に対して当接するように光変換部103が配置されている。また、当該発光用ナノ結晶NCを含む光変換部103は、コロイド状の発光用ナノ結晶をフィルム中に分散させ、それを保護フィルムで挟み込んだ構造となっている。また、光変換部103としては、発光ダイオード105が発する光を吸収してより長波長の光を発する一種類以上、好ましくは2種以上の発光用ナノ結晶NCと、発光用ナノ結晶NCを均一に分散させた状態で含有する透明樹脂とから構成されている。この場合において、本発明に係る発光ダイオード105は、他の実施形態と同様に、波長領域について特に制限されることはないが、青色領域に主発光ピークを有することが好ましい。例えば、420nm以上480nm以下の波長領域に主発光ピークを有する発光ダイオード105を好適に使用できる。
発光用ナノ結晶NCは、発光ダイオード105が発する光(例えば、青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、発光ダイオード105が発する光(例えば、青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび発光ダイオード105が発する光(例えば、青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される少なくとも1種の発光用ナノ結晶NCを含んでいることが好ましく、発光ダイオード105が発する光(例えば、青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、発光ダイオード105が発する光(例えば、青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび発光ダイオード105が発する光(例えば、青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される2種の発光用ナノ結晶NCを含んでいることがより好ましく、発光ダイオード105が発する光(例えば、青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCと、発光ダイオード105が発する光(例えば、青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCとを含んでいることが特に好ましい。
図8に示すように、発光素子Lから導光板104を通過した面状の青色光が、発光用ナノ結晶NCを含む光変換部103において、緑色発光用ナノ結晶NCで緑色の光に変換され、赤色発光用ナノ結晶NCで赤色の光に変換され、青色の光はそのまま透過されることが好ましい。そのため、本発明に係る液晶表示素子は、赤色、緑色および青色の鋭いピークを持った面状光源になることにより色再現領域が拡大して、画像に鮮やかな色彩を与えることができる。
図9は、複数の発光素子Lが液晶パネルに対して背面直下に平面状に配置された平板状のバックライトユニット100を持ち、かつ、シート状の光変換部103を導光部102の一部に備えたバックライトユニットを持つ液晶表示素子において、図2のI−I線方向に液晶表示素子を切断した断面図の一例である。
本実施態様におけるバックライトユニット100は、複数の発光素子Lが光拡散板106(または液晶パネル10)に対して平面状に配置された光源部101と、当該光拡散板106および当該光拡散板106と当接するように設けられた発光用ナノ結晶NCを含む光変換部103を含む導光部102とを含む形態である。そのため、本実施形態では、光変換部103は導光部102に含む。本実施態様における液晶表示素子は、複数の発光素子Lが平面状に配列された光源部101上に光拡散板106を備え、当該光拡散板106上に、図8で示した光変換部103と同様のシート状の発光用ナノ結晶NCを含む光変換部103が設けられたバックライトユニット100を有する。そのため、本実施態様における液晶表示素子は、複数の発光素子Lが平面状に配列された光源部101、光拡散板106および光拡散板106上に設けられた発光用ナノ結晶NCを含む光変換部103を備えた導光部102、第一の偏光板1、第一の表示基板SUB1、液晶層5、第二の表示基板SUB2及び第二の偏光板8が順に積層された構造である。
光拡散板106は、発光素子Lからでた光を均一に散乱させる役割を備えている。
図9で示すように、発光用ナノ結晶NCを含む光変換部103は、シート状であり、この構造は、図8と同様に液晶パネル10の背面のほぼ全体に対して当接するように光変換部103が配置されている。
本実施形態における光変換部103としては、発光ダイオード105が発する光を吸収してより長波長の光を発する一種類以上、好ましくは2種以上の発光用ナノ結晶NCと、発光用ナノ結晶NCを均一に分散させた状態で含有する透明樹脂とから構成されている。この場合において、本発明に係る発光ダイオード105は、他の実施形態と同様に、波長領域について特に制限されることはないが、青色領域に主発光ピークを有することが好ましい。例えば、420nm以上480nm以下の波長領域に主発光ピークを有する発光ダイオード105を好適に使用できる。
発光用ナノ結晶NCは、発光ダイオード105が発する光(例えば青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、発光ダイオード105が発する(例えば青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび発光ダイオード105が発する光(例えば青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される少なくとも1種の発光用ナノ結晶NCを含んでいることが好ましく、発光ダイオード105が発する光(例えば青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、発光ダイオード105が発する光(例えば青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび発光ダイオード105が発する光(例えば青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される2種の発光用ナノ結晶NCを含んでいることがより好ましく、発光ダイオード105が発する光(例えば青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCと、発光ダイオード105が発する光(例えば青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCとを含んでいることが特に好ましい。
図9に示すように、複数の発光素子Lから光拡散板106で拡散された面状の光(例えば青色光)が、発光用ナノ結晶NCを含むシート状の光変換部103において、緑色発光用ナノ結晶NCで緑色の光に変換され、赤色発光用ナノ結晶NCで赤色の光に変換され、光(例えば青色光)はそのまま透過される。そのため、本発明に係る液晶表示素子は、赤色、緑色および青色の鋭いピークを持った面状光源になることにより色再現領域が拡大して、画像に鮮やかな色彩を与えることができる。
図10は、複数の発光素子Lが液晶パネルに対して背面直下に平面状に配置された平板状のバックライトユニット100を持ち、かつ、光源部101の一部に光変換部103を備えたバックライトユニットを持つ液晶表示素子において、図2のI−I線方向に図1に示す液晶表示素子を切断した断面図の他の一例である。
本実施態様におけるバックライトユニット100は、発光用ナノ結晶NCを含む光変換部103を有する発光素子Lが、光拡散板106(または液晶パネル10)に対して平面状に配置された光源部101と、当該光拡散板106を含む導光部102とを備えた形態である。そのため、本実施形態では、光変換部103は光源部101に含まれる。本実施態様における液晶表示素子は、発光用ナノ結晶NCを含む光変換部103を備えた発光素子Lを複数有し、かつ当該複数の発光素子Lが、平面状に配列された光源部101と、前記光源部101上に光拡散板106と、を備えたバックライトユニット100を有する。また、発光用ナノ結晶NCを含む光変換部103を有する発光素子Lは、図7で示した発光素子Lと同様の構造であり、すなわち光変換部103として発光用ナノ結晶NC、例えば量子ドットと樹脂とを含む光変換部材および発光ダイオード105から構成されている。
そのため、本発明に係る液晶表示素子は、発光用ナノ結晶NCを含む光変換部103を備えた発光素子Lを複数有し、かつ当該複数の発光素子Lが平面状に配列された光源部101と、光拡散板106を備えた導光部102と、第一の偏光板1と、第一の表示基板SUB1と、液晶層5と、第二の表示基板SUB2と、第二の偏光板8と、が順に積層された構造である。
本実施態様における発光ダイオード105は、図7で示した実施形態と同様に、波長領域について特に制限されることはないが、青色領域に主発光ピークを有することが好ましい。例えば、420nm以上480nm以下の波長領域に主発光ピークを有する発光ダイオード105を好適に使用できる。
光変換部103としては、発光ダイオード105が発する光を吸収してより長波長の光を発する一種類以上、好ましくは2種以上の発光用ナノ結晶NCと、発光用ナノ結晶NCを均一に分散させた状態で含有する透明樹脂とから構成されている。この場合において、発光用ナノ結晶NCは、発光ダイオード105が発する光(例えば青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、発光ダイオード105が発する光(例えば、青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび発光ダイオード105が発する光(例えば、青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される少なくとも1種の発光用ナノ結晶NCを含んでいることが好ましく、発光ダイオード105が発する光(例えば、青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、発光ダイオード105が発する光(例えば、青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび発光ダイオード105が発する光(例えば、青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される2種の発光用ナノ結晶NCを含んでいることがより好ましく、発光ダイオード105が発する光(例えば、青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCと、発光ダイオード105が発する光(例えば、青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCとを含んでいることが特に好ましい。なお、赤色発光用ナノ結晶NCは、緑色発光用ナノ結晶NCが発する光でも励起されるので、緑および赤の発光用ナノ結晶NCの比率により、光源部101から出力される光の色度の動きは非常に複雑に変化する。このような色度の調節には、発光ダイオード105の発光波長と、緑および赤の発光用ナノ結晶NCの比率と、光変換部103における発光用ナノ結晶NCの含有量と、光変換部103から光が出射される光射出面の形状とが関係する。
発光ダイオード105が発する青色光と、緑色発光用ナノ結晶NCに含まれる緑色蛍光体が発する緑色光と、同じく赤色発光用ナノ結晶NCに含まれる赤色蛍光体が発する赤色光とによって、青、緑、赤の3原色が揃う。このため、光変換部103の光射出面からは、白色光が出射される。液晶表示素子のバックライトとしてこの白色光を使った色再現範囲は、発光ダイオード105の主発光ピークの波長および半値幅と、発光用ナノ結晶NCの発光ピークの波長および半値幅とに依存する。
「液晶パネル」
上述した通り、バックライトユニット側の基板上に形成されている層(図1では電極層3、配向層4)およびバックライトユニット側の基板(第一の基板2)を第一の表示基板SUB1と称し、前記バックライトユニット側の基板と対向する基板上に形成されている層(図1では、配向層4、カラーフィルター6)および前記バックライトユニット側の基板と対向する基板(第二の基板7)を第二の表示基板SUB2と称しており、実施形態によって、バックライトユニット側の基板上に形成されている層や前記バックライトユニット側の基板と対向する基板上に形成されている層を構成するものが異なる場合がある。以下に、本発明に係る液晶表示素子における好ましい第一の表示基板SUB1(バックライトユニット側の基板上に形成されている層およびバックライトユニット側の基板(第一の基板2))および第二の表示基板SUB2(バックライトユニット側の基板と対向する基板上に形成されている層および前記バックライトユニット側の基板と対向する基板(第二の基板7))の実施形態、すなわち液晶表示素子の電極構造について説明する。
液晶パネル10の好ましい実施形態を、図11〜18を用いて説明する。図11は、液晶表示部の電極層3の構造図の模式図を表し、より詳細には図11は、画素部分を等価回路で示した模式図であり、図12および13は画素電極の形状の一例を示す模式図である。また、図12〜図13は、本実施形態の一例として、FFS型の液晶表示素子の電極構造を示す模式図である。また、図14は、本実施形態の一例として、IPS型の液晶表示素子の電極構造を示す模式図である。さらに、図17は、本実施形態の一例として、VA型の液晶表示素子の電極構造を示す模式図である。図1や図2に示すように、液晶パネル10に対して背面側から照明する照明手段として上記バックライトユニットを設けることで液晶表示素子として駆動する。
当該図11において、本発明に係る電極層3は、共通電極および複数の画素電極を備えている。画素電極は、絶縁層(例えば、窒化シリコン(SiN)など)を介して共通電極上に配置されている。画素電極は表示画素毎に配置され、スリット状の開口部が形成されている。共通電極と画素電極とは、例えばITO(Indium Tin Oxide)によって形成された透明電極であり、電極層3は、表示部において、複数の表示画素が配列する行に沿って延びるゲートバスラインGBL(GBL1、GBL2・・・GBLm)と、複数の表示画素が配列する列に沿って延びるソースバスラインSBL(SBL1、SBL2・・・SBLm)と、ゲートバスラインとソースバスラインとが交差する位置近傍に画素スイッチとして薄膜トランジスタを備えている。また、当該薄膜トランジスタのゲート電極は対応するゲートバスラインGBLと電気的に接続されており、当該薄膜トランジスタのソース電極は対応する信号線SBLと電気的に接続されている。さらに、薄膜トランジスタのドレイン電極は、対応する画素電極と電気的に接続されている。
電極層3は、複数の表示画素を駆動する駆動手段として、ゲートドライバとソースドライバとを備えており、前記ゲートドライバおよび前記ソースドライバは、液晶表示部の周囲に配置されている。また、複数のゲートバスラインはゲートドライバの出力端子と電気的に接続され、複数のソースバスラインはソースドライバの出力端子と電気的に接続されている。
ゲートドライバは複数のゲートバスラインにオン電圧を順次印加して、選択されたゲートバスラインに電気的に接続された薄膜トランジスタのゲート電極にオン電圧を供給する。ゲート電極にオン電圧が供給された薄膜トランジスタのソース−ドレイン電極間が導通する。ソースドライバは、複数のソースバスラインのそれぞれに対応する出力信号を供給する。ソースバスラインに供給された信号は、ソース−ドレイン電極間が導通した薄膜トランジスタを介して対応する画素電極に印加される。ゲートドライバおよびソースドライバは、液晶表示素子の外部に配置された表示処理部(制御回路とも称する)により動作を制御される。
本発明に係る表示処理部は、通常駆動のほかに駆動電力低減のために低周波駆動の機能と間欠駆動の機能とを備えてもよく、TFT液晶パネルのゲートバスラインを駆動するためのLSIであるゲートドライバの動作およびTFT液晶パネルのソースバスラインを駆動するためのLSIであるソースドライバの動作を制御するものである。また、共通電極に共通電圧VCOMを供給し、バックライトの動作も制御している。例えば、本発明に係る表示処理部は、表示画面全体を複数の区画に分けて、それぞれの区画に映す画像の明るさに合わせてバックライトの光の強度を調整するローカルディミング手段を有してもよい。
図12は、画素電極の形状の一例として櫛形の画素電極を示した図であり、図1における基板2上に形成された電極層3のII線で囲まれた領域を拡大した平面図である。図12に示すように、第1の基板2の表面に形成されている薄膜トランジスタを含む電極層3は、走査信号を供給するための複数のゲートバスライン26と表示信号を供給するための複数のソースバスライン25とが、互いに交差してマトリクス状に配置されている。当該複数のゲートバスライン26と当該複数のソースバスライン25とにより囲まれた領域により、液晶表示装置の単位画素が形成され、該単位画素内には、画素電極21及び共通電極22が形成されている。ゲートバスライン26とソースバスライン25が互いに交差している交差部近傍には、ソース電極27、ドレイン電極24およびゲート電極28を含む薄膜トランジスタが設けられている。この薄膜トランジスタは、画素電極21に表示信号を供給するスイッチ素子として、画素電極21と連結している。また、ゲートバスライン26と並行して、共通ライン29が設けられる。この共通ライン29は、共通電極22に共通信号を供給するために、共通電極22と連結している。
画素電極21の背面には絶縁層18(図示せず)を介して共通電極22が一面に形成されている。そして、隣接する共通電極と画素電極との最短離間距離は配向層同士の最短離間距離(セルギャップ)より短い。前記画素電極の表面には保護絶縁膜及び配向膜層によって被覆されていることが好ましい。なお、前記複数のゲートバスライン26と複数のソースバスライン25とに囲まれた領域にはソースバスライン25を介して供給される表示信号を保存するストレイジキャパシタ23を設けてもよい。
また、図13は、図12の変形例であり、画素電極の形状の一例としてスリット状の画素電極を示した図である。当該図13に示す画素電極21は、略長方形の平板体の電極を、当該平板体の中央部および両端部が三角形状の切欠き部でくり抜かれ、その他の部分は略矩形枠状の切欠き部でくり抜かれた形状である。なお、切欠き部の形状は特に制限されるものではなく、楕円、円形、長方形状、菱形、三角形、または平行四辺形など公知の形状の切欠き部を使用できる。
なお、図12および図13には、一画素における一対のゲートバスライン26及び一対のソースバスライン25のみが示されている。
図15は、図12または図13におけるIII−III線方向に図1に示す液晶表示素子を切断した断面図の例の一つである。配向層4および薄膜トランジスタを含む電極層3が表面に形成された第1の基板2と、配向層4が表面に形成された第2の基板7とが所定の間隔Gで配向層同士向かい合うよう離間しており、この空間に液晶組成物を含む液晶層5が充填されている。第1の基板2の表面の一部にゲート絶縁膜12、共通電極22、パッシベーション膜18、平坦膜33、共通電極22、絶縁膜35、画素電極21および配向層4の順で積層されている。図15では、パッシベーション膜18と平坦膜33との2層を別々に設けた例を記載しているが、パッシベーション膜18と平坦膜33との機能を併せ持つ平坦化膜を一層設けてもよい。
薄膜トランジスタの構造の好適な一態様は、例えば、図15で示すように、基板2表面に形成されたゲート電極11と、当該ゲート電極11を覆い、且つ前記基板2の略全面を覆うように設けられたゲート絶縁層12と、前記ゲート電極11と対向するよう前記ゲート絶縁層12の表面に形成された半導体層13と、前記半導体層13の表面の一部を覆うように設けられた保護膜14と、前記保護層14および前記半導体層13の一方の側端部を覆い、かつ前記基板2表面に形成された前記ゲート絶縁層12と接触するように設けられたドレイン電極16と、前記保護膜14および前記半導体層13の他方の側端部を覆い、かつ前記基板2表面に形成された前記ゲート絶縁層12と接触するように設けられたソース電極17と、前記ドレイン電極16および前記ソース電極17を覆うように設けられた絶縁保護層18と、を有している。ゲート電極11の表面にゲート電極との段差を無くす等の理由により陽極酸化被膜(図示せず)を形成してもよい。
図3及び図4に示す実施の形態では、共通電極22はゲート絶縁層12上のほぼ全面に形成された平板状の電極であり、一方、画素電極21は共通電極22を覆う絶縁保護層18上に形成された櫛形の電極である。すなわち、共通電極22は画素電極21よりも第1の基板2に近い位置に配置され、これらの電極は絶縁保護層18を介して互いに重なりあって配置される。画素電極21と共通電極22は、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IZTO(Indium Zinc Tin Oxide)等の透明導電性材料により形成される。画素電極21と共通電極22が透明導電性材料により形成されるため、単位画素面積で開口される面積が大きくなり、開口率及び透過率が増加する。
また、画素電極21と共通電極22とは、これらの電極間にフリンジ電界を形成するために、画素電極21と共通電極22との間の電極間距離(最小離間距離とも称する)Rが、第1の基板2と第2の基板7との間の液晶層5の厚さGより小さくなるように形成される。ここで、電極間距離Rは各電極間の基板に水平方向の距離を表す。図12では、平板状の共通電極22と櫛形の画素電極21とが重なり合っているため、最小離間距離(または電極間距離):R=0となる例が示されており、最小離間距離Rが第1の基板2と第2の基板7との間の液晶層の厚さ(セルギャップとも称される):Gよりも小さくなるため、フリンジの電界Eが形成される。したがって、FFS型の液晶表示素子は、画素電極21の櫛形を形成するラインに対して垂直な方向に形成される水平方向の電界と、放物線状の電界を利用することができる。画素電極21の櫛状部分の電極幅:l、及び、画素電極21の櫛状部分の間隙の幅:mは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に形成することが好ましい。また、画素電極と共通電極との最小離間距離Rは、ゲート絶縁膜12の(平均)膜厚として調整することができる。
本発明に係る液晶表示素子の液晶パネルのFFS型の変形例であるIPS型の液晶表示素子の例を図14および図16を用いて説明する。IPS型の液晶表示素子の液晶パネル10の構成は、上記図1のFFS型と同様に片側の基板上に電極層3(共通電極と画素電極とTFTを含む)が設けられた構造であり、第1の偏光板1と、第1の基板2と、電極層3と、配向層4と、液晶組成物を含む液晶層5と、配向層4と、カラーフィルタ6と、第2の基板7と、第2の偏光板8と、が順次積層された構成である。
図13は、IPS型の液晶表示部における図1の第1の基板2上に形成された電極層3のII線で囲まれた領域の一部を拡大した平面図である。図13に示すように、走査信号を供給するための複数のゲートバスライン26と表示信号を供給するための複数のソースバスライン25とにより囲まれた領域内(単位画素内)で、櫛歯形の第1の電極(例えば、画素電極)21と櫛歯型の第2の電極(例えば、共通電極)22とが互いに遊嵌した状態(両電極が一定距離を保った状態で離間して噛合した状態)で設けられている。該単位画素内には、ゲートバスライン26とソースバスライン25が互いに交差している交差部近傍には、ソース電極27、ドレイン電極24およびゲート電極28を含む薄膜トランジスタが設けられている。この薄膜トランジスタは、第1の電極21に表示信号を供給するスイッチ素子として、第1の電極21と連結している。また、ゲートバスライン26と並行して、共通ライン(Vcom)29が設けられる。この共通ライン29は、第2の電極22に共通信号を供給するために、第2の電極22と連結している。
図16は、図13におけるIII−III線方向にIPS型の液晶パネルを切断した断面図である。第1の基板2上には、ゲートバスライン26(図示せず)を覆い、且つ第1の基板2の略全面を覆うように設けられたゲート絶縁層32と、ゲート絶縁層32の表面に形成された絶縁保護層31とが設けられ、絶縁保護膜31上に、第1の電極(画素電極)21及び第2の電極(共通電極)22が離間して設けられる。絶縁保護層31は、絶縁機能を有する層であり、窒化ケイ素、二酸化ケイ素、ケイ素酸窒化膜等で形成される。
図14及び図16に示すような実施の形態では、第1の電極21及び第2の電極22は、絶縁保護層31上に、すなわち同一の層上に形成された櫛形の電極であり、互いに離間して噛合した状態で設けられている。IPS型の液晶表示部では、第1の電極21と第2の電極22との間の電極間距離Gと、第1の基板2と第2の基板7との間の液晶層の厚さ(セルギャップ):Hは、G≧Hの関係を満たす。電極間距離:Gとは、第1の電極21と第2の電極22との間の、基板に水平方向の最短距離を表し、図13及び図16で示す例においては、第1の電極21と第2の電極22とが遊嵌して交互に形成されたラインに対して、垂直方向の距離を表す。第1の基板2と第2の基板7との距離:Hとは、第1の基板2と第2の基板7との間の液晶層の厚さを表し、具体的には、第1の基板2及び第2の基板7のそれぞれに設けられた配向層4(最表面)間の距離(すなわちセルギャップ)、液晶層の厚みを表す。
一方、先述のFFS型の液晶表示部では、第1の基板2と第二の基板7との間の液晶層の厚さが、第1の電極21と第2の電極22との間の、基板に水平方向の最短距離未満であり、IPS型の液晶表示部は、第1の基板2と第二の基板7との間の液晶層の厚さが、第1の電極21と第2の電極22との間の、基板に水平方向の最短距離以上である。したがって、IPSとFFSの違いは、第1の電極21及び第2の電極22の厚み方向の位置関係に依存しない。
IPS型の液晶表示素子は、第1の電極21及び第2の電極22間に形成される基板面に対して水平方向の電界を利用して液晶分子を駆動させる。第1の電極21の電極幅:Q、及び第2の電極22の電極幅:Rは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に形成することが好ましい。
本発明の好ましい液晶パネルの他の実施形態は、垂直配向型の液晶表示素子である。図17は、当該図2における基板上に形成された薄膜トランジスタを含む電極層3(または薄膜トランジスタ層3とも称する。)のII線で囲まれた領域を拡大した平面図である。図18は、図17におけるIII−III線方向に図2に示す液晶表示素子を切断した断面図である。以下、図2および図17〜18を参照して、本発明に係る垂直配向型の液晶表示部を説明する。
本発明に係る液晶表示素子における液晶パネル10の構成は、図2に記載するように透明導電性材料からなる透明電極(層)3’(または共通電極3’とも称する。共通電極22に対応)を具備した第2の基板7と、画素電極および各画素に具備した前記画素電極を制御する薄膜トランジスタを形成した電極層3を含む第1の基板2と、前記第1の基板2と第2の基板7との間に挟持された液晶組成物(または液晶層5)を有し、該液晶組成物中の液晶分子の電圧無印加時の配向が前記基板2,7に対して略垂直である液晶表示素子であって、該液晶組成物として前記本発明の液晶組成物を用いたことに特徴を有するものである。また図18に示すように、前記第1の基板2および前記第2の基板7は、一対の偏光板1,8により挟持されてもよい。さらに、図18では、前記第2の基板7と共通電極3’との間にカラーフィルタ6が設けられている。またさらに、本発明に係る液晶層5と隣接し、かつ当該液晶層5を構成する液晶組成物と直接当接するよう一対の配向層4を透明電極(層)3,3’表面に形成してもよい。
図17は、画素電極の形状の一例として逆L字型の画素電極を示した図であり、図2における基板2上に形成された電極層3(画素電極21に対応)のII線で囲まれた領域を拡大した平面図である。前記画素電極は、上記図12、13および14と同様に、ゲートバスライン26とソースバスライン25とに囲まれた領域の略全面に逆L字型に形成されているが、画素電極の形状は限定されるものではない。
垂直配向型の液晶表示素子の液晶表示部は、上記のIPS型やFFS型とは異なり、共通電極22(図示せず)が画素電極21と対向離間して形成されている。換言すると、画素電極21と、共通電極22とは別の基板上に形成されている。一方、先述のFFSやIPS型の液晶表示素子は、画素電極21および共通電極22が同一基板上に形成されている。
また、当該カラーフィルタ6は、光の漏れを防止する観点で、薄膜トランジスタおよびストレイジキャパシタ23に対応する部分にブラックマトリックス(図示せず)を形成することが好ましい。
図18は、図17おけるIII−III線方向に図2に示す液晶表示素子を切断した断面図である。すなわち、本発明に係る液晶表示素子の液晶パネル10は、第1の偏光板1と、第1の基板2と、薄膜トランジスタを含む電極層(又は薄膜トランジスタ層とも称する)3と、配向層4と、液晶組成物を含む層5と、配向層4と、共通電極3’と、カラーフィルタ6と、第2の基板7と、第1の偏光板8と、が順次積層された構成である。本発明に係る液晶表示素子の薄膜トランジスタの構造(図18のIVの領域)の好適な一態様は、上述した通りであるためここでは省略する。
本発明に係る液晶表示素子は、バックライトユニット100を液晶の画素数より少ない複数の区画毎に輝度を制御することで、コントラストを向上させるローカルディミングの手法を有していても良い。
ローカルディミングの手法としては、複数存在する発光素子Lを液晶パネル上の特定の領域の光源として使用し、各発光素子Lを表示領域の輝度に応じて制御することが可能である。この場合、当該複数の発光素子Lが、平面状に配列された形態であっても、液晶パネル10の一側面側に一列に並べられた形態であっても良い。
上記ローカルディミングの手法としてバックライトユニット100の導光部102と液晶パネル10とを有する構造になっている場合において、導光板(および/または光拡散板)と液晶パネルの光源側の基板との間に当該導光部102として、液晶の画素数より少ない特定領域毎にバックライトの光量を制御する制御層を有していても良い。
バックライトの光量を制御する手法としては、液晶の画素数より少ない液晶素子を更に有していても良く、液晶素子としては既存の様々手法を用いることができるが、ポリマーネットワークが形成された液晶を含むLCD層が透過率の点で好ましい。当該ポリマーネットワークが形成された(ネマチック)液晶を含む層(必要により一対の透明電極で挟持されたポリマーネットワークが形成された(ネマチック)液晶を含む層)は、電圧OFF時は光を散乱し、電圧ON時は光を透過するため、表示画面全体を複数の区画に分けるように区画されたポリマーネットワークが形成された液晶を含むLCD層を、導光板(および/または光拡散板)と液晶パネルの光源側の基板との間に設けることでローカルディミングを実現できる。
以下、本発明に係る液晶表示素子の構成要素である光変換部、液晶層および配向層について説明する。
本発明に係る光変換部は、発光用ナノ結晶を含有する。本明細書における用語「ナノ結晶」は、好ましくは、100nm以下の少なくとも1つの長さを有する、粒子を指す。ナノ結晶の形状は、任意の幾何学的形状を有してもよく、対称または不対称であってよい。当該ナノ結晶の形状の具体例としては、細長、ロッド状の形状、円形(球状)、楕円形、角錐の形状、ディスク状、枝状、網状または任意の不規則な形状等を含む。一部の実施形態では、発光用ナノ結晶は、量子ドットまたは量子ロッドであることが好ましい。
当該発光用ナノ結晶は、少なくとも1種の第一の半導体材料を含むコアと、前記コアを被覆し、かつ前記コアと同一または異なる第二の半導体材料を含むシェルとを有することが好ましい。
そのため、本発明に係る発光用ナノ結晶は、少なくとも第一半導体材料を含むコアと、第二半導体材料を含むシェルからなり、前記第一半導体材料と、前記第二半導体材料とは同じでも異なっていても良い。また、コアおよび/またはシェル共に第一半導体および/または第二半導体以外の第三の半導体材料を含んでも良い。なお、ここでいうコアを被覆とは、コアの少なくとも一部を被覆していればよい。
さらに、当該発光用ナノ結晶は、少なくとも1種の第一の半導体材料を含むコアと、前記コアを被覆し、かつ前記コアと同一または異なる第二の半導体材料を含む第一のシェルと、必要により、前記第一のシェルを被覆し、かつ前記第一のシェルと同一または異なる第三の半導体材料を含む第二のシェルと、を有することが好ましい。
したがって、本発明に係る発光用ナノ結晶は、第一の半導体材料を含むコアおよび前記コアを被覆し、かつ前記コアと同一の第二の半導体材料を含むシェルを有する形態、すなわち1種類又は2種以上の半導体材料から構成される態様(=コアのみの構造(コア構造とも称する))と、第一の半導体材料を含むコアおよび前記コアを被覆し、かつ前記コアと異なる第二の半導体材料を含むシェルを有する形態等の、すなわちコア/シェル構造と、第一の半導体材料を含むコアおよび前記コアを被覆し、かつ前記コアと異なる第二の半導体材料を含む第一のシェルと、前記第一のシェルを被覆し、かつ前記第一のシェルと異なる第三の半導体材料を含む第二のシェルを有する形態の、すなわちコア/シェル/シェル構造との3つの構造のうち少なくとも一つを有することが好ましい。
また、本発明に係る発光用ナノ結晶は、上記の通り、コア構造、コア/シェル構造、コア/シェル/シェル構造の3つの形態を含むことが好ましく、この場合、コアは2種以上の半導体材料を含む混晶であってもよい(例えば、CdSe+CdS、CIS+ZnS等)。またさらに、シェルも同様に2種以上の半導体材料を含む混晶であってもよい。
本発明に係る光変換部において、発光用ナノ結晶は、当該発光用ナノ結晶に対して親和性のある分子が発光用ナノ結晶と接触していてもよい。
上記親和性のある分子とは、発光用ナノ結晶に対して親和性のある官能基を有する低分子および高分子であり、親和性のある官能基としては特に限定されるものでは無いが、窒素、酸素、硫黄およびリンからなる群から選択される1種の元素を含む基である事が好ましい。例えば、有機系硫黄基、有機系リン酸基ピロリドン基、ピリジン基、アミノ基、アミド基、イソシアネート基、カルボニル基、および水酸基等を挙げる事が出来る。
発光用ナノ結晶が凝集すると、発光用ナノ結晶の局所的不存在などにより特定の領域(スポット)に高エネルギー光線が暴露されやすくなる。
本発明に係る半導体材料は、II−VI族半導体、III−V族半導体、I−III−VI族半導体、IV族半導体及びI−II−IV−VI族半導体からなる群から選択される1種又は2種以上であることが好ましい。本発明に係る第一の半導体材料、第一の半導体材料および第三の半導体材料の好ましい例は、上記の半導体材料と同様である。
本発明に係る半導体材料は、具体的には、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe;Si、Ge、SiC、SiGe、AgInSe2、CuGaSe2、CuInS2、CuGaS2、CuInSe2、AgInS2、AgGaSe2、AgGaS2、C、SiおよびGeからなる群から選択される少なくとも1つ以上選ばれ、これらの化合物半導体は単独で使用されても、または2つ以上が混合されていても良く、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS、AgInSe、AgInTe、AgGaS 、AgGaSe、AgGaTe、CuInS、CuInSe、CuInTe、CuGaS、CuGaSe、CuGaTe、Si、C、GeおよびCuZnSnSからなる群から選択される少なくとも1つ以上選ばれることがより好ましく、これらの化合物半導体は単独で使用されても、または2つ以上が混合されていても良い。
本発明に係る発光用ナノ結晶は、赤色光を発光する赤色発光用ナノ結晶、緑色光を発光する緑色発光用ナノ結晶および青色光を発光する青色発光用ナノ結晶からなる群から選択される少なくとも1種のナノ結晶を含むことが好ましい。一般に、発光用ナノ結晶の発光色は、井戸型ポテンシャルモデルのシュレディンガー波動方程式の解によれば粒子径に依存するが、発光用ナノ結晶が有するエネルギーギャップにも依存するため、使用する発光用ナノ結晶とその粒子径を調整することにより、発光色を選択する。
本発明において赤色光を発光する赤色発光用ナノ結晶の蛍光スペクトルの波長ピークの上限は、665nm、663nm、660nm、658nm、655nm、653nm、651nm、650nm、647nm、645nm、643nm、640nm、637nm、635nm、632nmまたは630nmであることが好ましく、前記波長ピークの下限は、628nm、625nm、623nm、620nm、615nm、610nm、607nmまたは605nmであることが好ましい。
本発明において緑色光を発光する緑色発光用ナノ結晶の蛍光スペクトルの波長ピークの上限は、560nm、557nm、555nm、550nm、547nm、545nm、543nm、540nm、537nm、535nm、532nmまたは530nmであることが好ましく、前記波長ピークの下限は、528nm、525nm、523nm、520nm、515nm、510nm、507nm、505nm、503nmまたは500nmであることが好ましい。
本発明において青色光を発光する青色発光用ナノ結晶の蛍光スペクトルの波長ピークの上限は、480nm、477nm、475nm、470nm、467nm、465nm、463nm、460nm、457nm、455nm、452nmまたは450nmであることが好ましく、前記波長ピークの下限は、450nm、445nm、440nm、435nm、430nm、428nm、425nm、422nmまたは420nmであることが好ましい。
本発明において赤色光を発光する赤色発光用ナノ結晶に使用される半導体材料は、発光のピーク波長が635nm±30nmの範囲に入っている事が望ましい。同じく、緑色光を発光する緑色発光用ナノ結晶に使用される半導体材料は、発光のピーク波長が530nm±30nmの範囲に入っている事が望ましく、青色光を発光する青色発光用ナノ結晶に使用される半導体材料は、発光のピーク波長が450nm±30nmの範囲に入っている事が望ましい。
本発明に係る発光用ナノ結晶の蛍光量子収率の下限値は、40%以上、30%以上、20%以上、10%以上の順で好ましい。
本発明に係る発光用ナノ結晶の蛍光スペクトルの半値幅の上限値は、60nm以下、55nm以下、50nm以下、45nm以下の順で好ましい。
本発明に係る発光用ナノ結晶の粒子径(1次粒子)の上限値は、50nm以下、40nm以下、30nm以下、20nm以下の順で好ましい
本発明に係る赤色発光用ナノ結晶の発光のピーク波長の上限値は665nm、下限値は605nmであり、このピーク波長に合う様に化合物およびその粒径を選択する。同じく、緑色発光用ナノ結晶の発光のピーク波長の上限値は560nm、下限値は500nm、青色発光用ナノ結晶の発光のピーク波長の上限値は480nm、下限値は420nmであり、それぞれこのピーク波長に合う様に化合物およびその粒径を選択する。
本発明に係る光変換部は、発光用ナノ結晶を含み、当該発光用ナノ結晶は、赤色光を発光する赤色発光用ナノ結晶、緑色光を発光する緑色発光用ナノ結晶および青色光を発光する青色発光用ナノ結晶からなる群から選択される少なくとも1種のナノ結晶を含むことが好ましい。具体的には、赤色(例えば、CdSeの発光用ナノ結晶、CdSeのロッド状発光用ナノ結晶、コアシェル構造を備えたロッド状発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がCdSe、コアシェル構造を備えたロッド状発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がZnSe、コアシェル構造を備えた発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がCdSe、コアシェル構造を備えた発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がZnSe、CdSeとZnSとの混晶の発光用ナノ結晶、CdSeとZnSとの混晶のロッド状発光用ナノ結晶、InPの発光用ナノ結晶、InPの発光用ナノ結晶、InPのロッド状発光用ナノ結晶、CdSeとCdSとの混晶の発光用ナノ結晶、CdSeとCdSとの混晶のロッド状発光用ナノ結晶、ZnSeとCdSとの混晶の発光用ナノ結晶、ZnSeとCdSとの混晶のロッド状発光用ナノ結晶など)、緑色(CdSeの発光用ナノ結晶、CdSeのロッド状の発光用ナノ結晶、CdSeとZnSとの混晶の発光用ナノ結晶、CdSeとZnSとの混晶のロッド状発光用ナノ結晶など)および青色(ZnSeの発光用ナノ結晶、ZnSeのロッド状発光用ナノ結晶、ZnSの発光用ナノ結晶、ZnSのロッド状発光用ナノ結晶、コアシェル構造を備えた発光用ナノ結晶であり、当該シェル部分がZnSeであって内側のコア部がZnS、コアシェル構造を備えたロッド状発光用ナノ結晶であり、当該シェル部分がZnSeであって内側のコア部がZnS、CdSの発光用ナノ結晶、CdSのロッド状発光用ナノ結晶)で発光する異なるナノ結晶を含む。他の色(例えば、黄色についても、必要に応じて光変換部に含有してもよい。
本明細書における本発明に係る発光用ナノ結晶の粒子径(1次粒子)はTEM観察によって測定できる。一般的に、ナノ結晶の平均粒子径の測定方法としては、光散乱法、溶媒を用いた沈降式粒度測定法、電子顕微鏡により粒子を直接観察して平均粒子径を実測する方法が挙げられる。発光用ナノ結晶は水分などにより劣化しやすいため、本発明では、透過型電子顕微鏡(TEM)または走査型電子顕微鏡(SEM)により任意の複数個の結晶を直接観察し、投影二次元映像よる長短径比からそれぞれの粒子径を算出し、その平均を求める方法が好適である。そのため、本発明では上記方法を適用して平均粒子径を算出している。発光用ナノ結晶の1次粒子とは、構成する数〜数十nmの大きさの単結晶またはそれに近い結晶子のことであり、発光用ナノ結晶の一次粒子の大きさや形は、当該一次粒子の化学組成、構造、製造方法や製造条件などによって依存すると考えられる。
本発明に係る光変換部は、上記で示した発光用ナノ結晶と、必要により樹脂とを混合してもよい。
本発明に係る光変換部が、図3の実施形態で示すような、光源部と接続され、第一の基板又は第二の基板の側面部に設置された場合、より詳細には、本発明に係る光変換部が、光源部と接続され、中空管体と当該中空管体の内部収容された発光用ナノ結晶を有する場合、必要により発光用ナノ結晶は透明樹脂と混合してもよい。この場合の透明樹脂は公知のものを使用することができ、例えばアクリル樹脂、シリコーン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリチオエーテル樹脂、ポリアクリロニトリル樹脂、ポリエーテルエーテルケトン樹脂、直鎖構造および環状構造ノポリオレフィン樹脂等が挙げられる。また、上記透明樹脂は、可視光領域(360nm〜830nm)において全光線透過率が80%以上の透明樹脂が好ましい。
さらに、本発明に係る光変換部において、必要により、上記透明樹脂、上記発光用ナノ結晶の他に、蛍光体、重合開始剤、触媒、アルミナ、シリカ、酸化チタンビーズ、ゼオライトまたはジルコニアなどの散乱剤といった、公知の添加剤を含んでもよい。
本発明に係る光変換部が、光源部と接続され、中空管体と当該中空管体の内部収容された発光用ナノ結晶を有する場合における透明樹脂に対する発光用ナノ結晶の含有量の上限は、透明樹脂100質量部に対して、20質量部であることが好ましく、17質量部であることが好ましく、15質量部であることが好ましく、13質量部であることが好ましく、12質量部であることが好ましく、10質量部であることが好ましく、8質量部であることが好ましく、6質量部であることが好ましく、5質量部であることが好ましく、4.5質量部であることが好ましく、4質量部であることが好ましく、3.5質量部であることが好ましく、3質量部であることが好ましい。前記発光用ナノ結晶の含有量の下限は、透明樹脂100質量部に対して、0.05質量部であることが好ましく、0.07質量部であることが好ましく、0.1質量部であることが好ましく、0.15質量部であることが好ましく、0.2質量部であることが好ましく、0.3質量部、0.5質量部であることが好ましく、0.7質量部であることが好ましく、1質量部であることが好ましく、1.2質量部であることが好ましく、1.5質量部であることが好ましく、1.7質量部であることが好ましく、2質量部であることが好ましく、2.5質量部であることが好ましく、2.7質量部であることが好ましく、3質量部であることが好ましい。なお、光変換部に複数種の発光用ナノ結晶が含まれる場合において、上記含有量は合計量を表す。
本発明に係る光変換部が、図7および図10の実施形態で示すような、発光素子と一体の場合、より詳細には、本発明に係る光変換部が、発光素子および発光用ナノ結晶を含有する光変換部を備える場合、必要により発光用ナノ結晶は透明樹脂と混合して使用してもよい。この場合の透明樹脂は公知のものを使用することができ、上記実施形態1の透明樹脂と同様の樹脂を使用することができるのでここでは省略する。また、本発明に係る光変換部において、必要により添加される添加剤も同様であるためここでは省略する。
上記発光素子および発光用ナノ結晶を含有する光変換部を備える場合の透明樹脂に対する発光用ナノ結晶の含有量の上限は、透明樹脂100質量部に対して、25質量部であることが好ましく、23質量部であることが好ましく、20質量部であることが好ましく、17質量部であることが好ましく、15質量部であることが好ましく、13質量部であることが好ましく、12質量部であることが好ましく、10質量部であることが好ましく、8質量部であることが好ましく、6質量部であることが好ましく、5質量部であることが好ましく、4.5質量部であることが好ましく、4質量部であることが好ましく、3.5質量部であることが好ましく、3質量部であることが好ましい。前記発光用ナノ結晶の含有量の下限は、透明樹脂100質量部に対して、0.05質量部であることが好ましく、0.07質量部であることが好ましく、0.1質量部であることが好ましく、0.15質量部であることが好ましく、0.2質量部であることが好ましく、0.3質量部であることが好ましく、0.5質量部であることが好ましく、0.7質量部であることが好ましく、1質量部であることが好ましく、1.2質量部であることが好ましく、1.5質量部であることが好ましく、1.7質量部であることが好ましく、2質量部であることが好ましく、2.5質量部であることが好ましく、2.7質量部であることが好ましく、3質量部であることが好ましく、3.5質量部であることが好ましく、4質量部であることが好ましい。光変換部に複数種の発光用ナノ結晶が含まれる場合において、上記含有量は合計量を表す。
本発明に係る光変換部が、図8および図9の実施形態で示すような、光源部と接続され、第一の基板又は第二の基板に対して全面に設置された場合、より詳細には、本発明に係る光変換部が、シート状であり、前記第一の基板又は第二の基板の何れかで光源部側の基板に対して全面に配置した場合、必要により発光用ナノ結晶は透明樹脂と混合して使用してもよい。この場合の透明樹脂は公知のものを使用することができ、上記実施形態1の透明樹脂と同様の樹脂を使用することができるのでここでは省略する。また、本発明に係る光変換部において、必要により添加される添加剤も同様であるためここでは省略する。
本発明に係る光変換部が、光源部と接続され、第一の基板又は第二の基板に対して全面に設置された場合における透明樹脂に対する発光用ナノ結晶の含有量の上限は、透明樹脂100質量部に対して、19質量部であることが好ましく、17質量部であることが好ましく、15質量部であることが好ましく、13質量部であることが好ましく、12質量部であることが好ましく、10質量部であることが好ましく、8質量部であることが好ましく、6質量部であることが好ましく、5質量部であることが好ましく、4.5質量部であることが好ましく、4質量部であることが好ましく、3.5質量部であることが好ましく、3質量部であることが好ましい。前記発光用ナノ結晶の含有量の下限は、透明樹脂100質量部に対して、0.05質量部であることが好ましく、0.07質量部であることが好ましく、0.1質量部であることが好ましく、0.15質量部、0.2質量部であることが好ましく、0.3質量部であることが好ましく、0.5質量部であることが好ましく、0.7質量部であることが好ましく、1質量部であることが好ましく、1.2質量部であることが好ましく、1.5質量部であることが好ましく、1.7質量部であることが好ましく、2質量部であることが好ましく、2.5質量部、2.7質量部であることが好ましく、3質量部であることが好ましく、3.5質量部であることが好ましい。光変換部に複数種の発光用ナノ結晶が含まれる場合において、上記含有量は合計量を表す。
さらに、本発明に係る光変換部において、必要により、上記透明樹脂、上記発光用ナノ結晶の他に、蛍光体、色素(顔料、染料)、重合開始剤、触媒、アルミナ、シリカ、酸化チタンビーズ、ゼオライトまたはジルコニアなどの散乱剤といった、公知の添加剤を含んでもよい。
以下、本発明に係る液晶表示素子の液晶パネル部の構成要素である、液晶層、配向膜などについて説明する。
本発明に係る液晶層は、一般式(i):
Figure 2018079528
(式中、Ri1及びRi2はそれぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、Ai1は1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基を表し、ni1は0又は1を表す。)で表される化合物を10〜50重量%含有する液晶組成物を有する。
上記一般式(i)で表される化合物は一般式(i−1)〜(i−2)で表される化合物群から選ばれる化合物であることが好ましい。
一般式(i−1)で表される化合物は下記の化合物である。
Figure 2018079528
(式中、Ri11及びRi12はそれぞれ独立して、一般式(i)におけるRL1及びR L2と同じ意味を表す。)
i11及びRi12は、直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び直鎖状の炭素原子数2〜5のアルケニル基が好ましい。
一般式(i−1)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
好ましい含有量の下限値は、本発明の組成物の総量に対して、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、15質量%であり、20質量%であり、25質量%であり、30質量%であり、35質量%であり、40質量%であり、45質量%であり、50質量%であり、55質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、95質量%であり、90質量%であり、85質量%であり、80質量%であり、75質量%であり、70質量%であり、65質量%であり、60質量%であり、55質量%であり、50質量%であり、45質量%であり、40質量%であり、35質量%であり、30質量%であり、25質量%である。
本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。さらに、本発明の組成物のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が中庸で上限値が中庸であることが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値が低く上限値が低いことが好ましい。
一般式(i−1)で表される化合物は一般式(i−1−1)で表される化合物群から選ばれる化合物であることが好ましい。
Figure 2018079528
(式中Ri12は一般式(i−1)における意味と同じ意味を表す。)
一般式(i−1−1)で表される化合物は、式(i−1−1.1)から式(i−1−1.3)で表される化合物群から選ばれる化合物であることが好ましく、式(i−1−1.2)又は式(i−1−1.3)で表される化合物であることが好ましく、特に、式(i−1−1.3)で表される化合物であることが好ましい。
Figure 2018079528
本発明の組成物の総量に対しての式(i−1−1.3)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。
一般式(i−1)で表される化合物は一般式(i−1−2)で表される化合物群から選ばれる化合物であることが好ましい。
Figure 2018079528
(式中Ri12は一般式(i−1)における意味と同じ意味を表す。)
本発明の組成物の総量に対しての式(i−1−2)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、35質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、42質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%である。
さらに、一般式(i−1−2)で表される化合物は、式(i−1−2.1)から式(i−1−2.4)で表される化合物群から選ばれる化合物であることが好ましく、式(i−1−2.2)から式(i−1−2.4)で表される化合物であることが好ましい。特に、式(i−1−2.2)で表される化合物は本発明の組成物の応答速度を特に改善するため好ましい。また、応答速度よりも高いTNIを求めるときは、式(i−1−2.3)又は式(i−1−2.4)で表される化合物を用いることが好ましい。式(i−1−2.3)及び式(i−1−2.4)で表される化合物の含有量は、低温での溶解度を良くするために30質量%以上にすることは好ましくない。
Figure 2018079528
本発明の組成物の総量に対しての式(i−1−2.2)で表される化合物の好ましい含有量の下限値は、10質量%であり、15質量%であり、18質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、33質量%であり、35質量%であり、38質量%であり、40質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、43質量%であり、40質量%であり、38質量%であり、35質量%であり、32質量%であり、30質量%であり、27質量%であり、25質量%であり、22質量%である。
本発明の組成物の総量に対しての式(i−1−1.3)で表される化合物及び式(i−1−2.2)で表される化合物の合計の好ましい含有量の下限値は、10質量%であり、15質量%であり、20質量%であり、25質量%であり、27質量%であり、30質量%であり、35質量%であり、40質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、43質量%であり、40質量%であり、38質量%であり、35質量%であり、32質量%であり、30質量%であり、27質量%であり、25質量%であり、22質量%である。
一般式(i−1)で表される化合物は一般式(i−1−3)で表される化合物群から選ばれる化合物であることが好ましい。
Figure 2018079528
(式中Ri13及びRi14はそれぞれ独立して炭素原子数1〜8のアルキル基又は炭素原子数1〜8のアルコキシ基を表す。)
i13及びRi14は、直鎖状の炭素原子数1〜5のアルキル基及び直鎖状の炭素原子数1〜4のアルコキシ基が好ましい。
本発明の組成物の総量に対しての式(i−1−3)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、30質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、40質量%であり、37質量%であり、35質量%であり、33質量%であり、30質量%であり、27質量%であり、25質量%であり、23質量%であり、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%である。
さらに、一般式(i−1−3)で表される化合物は、式(i−1−3.1)から式(i−1−3.12)で表される化合物群から選ばれる化合物であることが好ましく、式(i−1−3.1)、式(i−1−3.3)又は式(i−1−3.4)で表される化合物であることが好ましい。特に、式(i−1−3.1)で表される化合物は本発明の組成物の応答速度を特に改善するため好ましい。また、応答速度よりも高いTNIを求めるときは、式(i−1−3.3)、式(i−1−3.4)、式(L−1−3.11)及び式(i−1−3.12)で表される化合物を用いることが好ましい。式(i−1−3.3)、式(i−1−3.4)、式(i−1−3.11)及び式(i−1−3.12)で表される化合物の合計の含有量は、低温での溶解度を良くするために20質量%以上にすることは好ましくない。
Figure 2018079528
本発明の組成物の総量に対しての式(i−1−3.1)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、18質量%であり、20質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%である。
一般式(i−1)で表される化合物は一般式(i−1−4)及び/又は(i−1−5)で表される化合物群から選ばれる化合物であることが好ましい。
Figure 2018079528
(式中Ri15及びRi16はそれぞれ独立して炭素原子数1〜8のアルキル基又は炭素原子数1〜8のアルコキシ基を表す。)
i15及びRi16は、直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び直鎖状の炭素原子数2〜5のアルケニル基が好ましい。
本発明の組成物の総量に対しての式(i−1−4)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、25質量%であり、23質量%であり、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%である。
本発明の組成物の総量に対しての式(i−1−5)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、25質量%であり、23質量%であり、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%である。
さらに、一般式(i−1−4)及び(i−1−5)で表される化合物は、式(i−1−4.1)から式(i−1−5.3)で表される化合物群から選ばれる化合物であることが好ましく、式(i−1−4.2)又は式(i−1−5.2)で表される化合物であることが好ましい。
Figure 2018079528
本発明の組成物の総量に対しての式(i−1−4.2)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、18質量%であり、20質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%である。
式(i−1−1.3)、式(i−1−2.2)、式(i−1−3.1)、式(i−1−3.3)、式(i−1−3.4)、式(i−1−3.11)及び式(i−1−3.12)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、式(i−1−1.3)、式(i−1−2.2)、式(i−1−3.1)、式(i−1−3.3)、式(i−1−3.4)及び式(i−1−4.2)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、これら化合物の合計の含有量の好ましい含有量の下限値は、本発明の組成物の総量に対して、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、18質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、33質量%であり、35質量%であり、上限値は、本発明の組成物の総量に対して、80質量%であり、70質量%であり、60質量%であり、50質量%であり、45質量%であり、40質量%であり、37質量%であり、35質量%であり、33質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%である。組成物の信頼性を重視する場合には、式(i−1−3.1)、式(i−1−3.3)及び式(i−1−3.4))で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、組成物の応答速度を重視する場合には、式(i−1−1.3)、式(i−1−2.2)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましい。
一般式(i−1)で表される化合物は一般式(i−1−6)で表される化合物群から選ばれる化合物であることが好ましい。
Figure 2018079528
(式中Ri17及びRi18はそれぞれ独立してメチル基又は水素原子を表す。)
本発明の組成物の総量に対しての式(i−1−6)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、35質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、42質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%である。
さらに、一般式(i−1−6)で表される化合物は、式(i−1−6.1)から式(i−1−6.3)で表される化合物群から選ばれる化合物であることが好ましい。
Figure 2018079528
一般式(i−2)で表される化合物は下記の化合物である。
Figure 2018079528
(式中、Ri21及びRi22はそれぞれ独立して、一般式(i)におけるRi1及びR i2と同じ意味を表す。)
i21は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、RL22は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましい。
一般式(i−2)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、反対に、応答速度を重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明の組成物の総量に対しての式(i−2)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。
さらに、一般式(i−2)で表される化合物は、式(i−2.1)から式(i−2.6)で表される化合物群から選ばれる化合物であることが好ましく、式(L−2.1)、式(i−2.3)、式(i−2.4)及び式(i−2.6)で表される化合物であることが好ましい。
Figure 2018079528
本発明の組成物は、一般式(N−1)、(N−2)、(N−3)および(N−4)で表される化合物から選ばれる化合物を1種類又は2種類以上さらに含有することが好ましい。これら化合物は誘電的に負の化合物(Δεの符号が負で、その絶対値が2より大きい)に該当する。
Figure 2018079528
[前記一般式(N−1)、(N−2)、(N−3)及び(N−4)中、RN11、R 12、RN21、RN22、RN31、RN32、RN41及びRN42はそれぞれ独立して炭素原子数1〜8のアルキル基、又は炭素原子数2〜8のアルキル鎖中の1個又は非隣接の2個以上の−CH−が、それぞれ独立して−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−によって置換された化学構造を持つ構造部位、
N11、AN12、AN21、AN22、AN31、AN32、AN41及びAN4 はそれぞれ独立して
(a) 1,4−シクロヘキシレン基(この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−O−に置き換えられてもよい。)及び
(b) 1,4−フェニレン基(この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられてもよい。)
(c) ナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基又はデカヒドロナフタレン−2,6−ジイル基(ナフタレン−2,6−ジイル基又は1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられても良い。)
(d) 1,4−シクロヘキセニレン基
からなる群より選ばれる基を表し、上記の基(a)、基(b)、基(c)及び基(d)は、その構造中の水素原子が、それぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
N11、ZN12、ZN21、ZN22、ZN31、ZN32、ZN41及びZN4 は、それぞれ独立して、単結合、−CHCH−、−(CH−、−OCH−、−CHO−、−COO−、−OCO−、−OCF−、−CFO−、−CH=N−N=CH−、−CH=CH−、−CF=CF−又は−C≡C−を表し、
N21は水素原子又はフッ素原子を表し、TN31は−CH−又は酸素原子を表し、XN41は、酸素原子、窒素原子、又は−CH−を表し、YN41は、単結合、又は−CH−を表し、nN11、nN12、nN21、nN22、nN31、nN32、n N41、及びnN42は、それぞれ独立して0〜3の整数を表すが、nN11+nN12、nN21+nN22及びnN31+nN32はそれぞれ独立して1、2又は3であり、AN11〜AN32、ZN11〜ZN32が複数存在する場合は、それらは同一であっても異なっていても良く、nN41+nN42は0〜3の整数を表すが、AN41及びA 42、ZN41及びZN42が複数存在する場合は、それらは同一であっても異なっていても良い。]
一般式(N−1)、(N−2)、(N−3)及び(N−4)で表される化合物は、Δεが負でその絶対値が2よりも大きな化合物であることが好ましい。
一般式(N−1)、(N−2)、(N−3)および(N−4)中、RN11、RN12、RN21、RN22、RN31、RN32、RN41及びRN42はそれぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数1〜8のアルコキシ基、炭素原子数2〜8のアルケニル基又は炭素原子数2〜8のアルケニルオキシ基が好ましく、炭素原子数1〜5のアルキル基、炭素原子数1〜5のアルコキシ基、炭素原子数2〜5のアルケニル基又は炭素原子数2〜5のアルケニルオキシ基が好ましく、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が更に好ましく、炭素原子数2〜5のアルキル基又は炭素原子数2〜3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。
また、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び炭素原子数4〜5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び直鎖状の炭素原子数2〜5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点は環構造中の炭素原子を表す。)
Figure 2018079528
N11、AN12、AN21、AN22、AN31及びAN32はそれぞれ独立してΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、トランス−1,4−シクロへキシレン基、1,4−フェニレン基、2−フルオロ−1,4−フェニレン基、3−フルオロ−1,4−フェニレン基、3,5−ジフルオロ−1,4−フェニレン基、2,3−ジフルオロ−1,4−フェニレン基、1,4−シクロヘキセニレン基、1,4−ビシクロ[2.2.2]オクチレン基、ピペリジン−1,4−ジイル基、ナフタレン−2,6−ジイル基、デカヒドロナフタレン−2,6−ジイル基又は1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、
Figure 2018079528
トランス−1,4−シクロへキシレン基、1,4−シクロヘキセニレン基又は1,4−フェニレン基を表すことがより好ましい。
N11、ZN12、ZN21、ZN22、ZN31及びZN32はそれぞれ独立して−CHO−、−CFO−、−CHCH−、−CFCF−又は単結合を表すことが好ましく、−CHO−、−CHCH−又は単結合が更に好ましく、−CHO−又は単結合が特に好ましい。
N21はフッ素原子が好ましい。
N31は酸素原子が好ましい。
N11+nN12、nN21+nN22及びnN31+nN32は1又は2が好ましく、nN11が1でありnN12が0である組み合わせ、nN11が2でありnN12が0である組み合わせ、nN11が1でありnN12が1である組み合わせ、nN11が2でありnN12が1である組み合わせ、nN21が1でありnN22が0である組み合わせ、nN21が2でありnN22が0である組み合わせ、nN31が1でありnN32が0である組み合わせ、nN31が2でありnN32が0である組み合わせ、が好ましい。nN41+nN42は、0、1又は2が好ましく、nN41+nN42は、0がより好ましい。
本発明の組成物の総量に対しての式(N−1)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%である。
本発明の組成物の総量に対しての式(N−2)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%である。
本発明の組成物の総量に対しての式(N−3)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%である。
本発明の組成物の総量に対しての式(N−4)で表される化合物の好ましい含有量の下限値は、0.5質量%であり、0.7質量%であり、1質量%であり、1.5質量%であり、2質量%であり、2.5質量%であり、3質量%であり、3.5質量%であり、4質量%であり、4.5質量%であり、5質量%であり、6質量%であり、8質量%であり、10質量%である。好ましい含有量の上限値は、50質量%であり、45質量%であり、35質量%であり、25質量%であり、15質量%であり、13質量%であり、12質量%であり、10質量%であり、8質量%である。
本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が低く上限値が低いことが好ましい。さらに、本発明の組成物のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が低く上限値が低いことが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を高く上限値が高いことが好ましい。
本発明に係る液晶組成物は、一般式(N−1)で表される化合物、一般式(N−1)で表される化合物および一般式(N−1)で表される化合物のうち、一般式(N−1)で表される化合物を有することが好ましい。
一般式(N−1)で表される化合物として、下記の一般式(N−1a)〜(N−1h)で表される化合物群を挙げることができる。
Figure 2018079528
(式中、RN11及びRN12は一般式(N−1)におけるRN11及びRN12と同じ意味を表し、nNa11は0又は1を表し、nNb11は1又は2を表し、nNc11は0又は1を表し、nNd11は1又は2を表し、nNe11は1又は2を表し、nNf1 は1又は2を表し、nNg11は1又は2を表し、ANe11はトランス−1,4−シクロへキシレン基又は1,4−フェニレン基を表し、ANg11はトランス−1,4−シクロへキシレン基、1,4−シクロヘキセニレン基又は1,4−フェニレン基を表すが少なくとも1つは1,4−シクロヘキセニレン基を表し、ZNe11は単結合又はエチレンを表すが少なくとも1つはエチレンを表す。)
より具体的には、一般式(N−1)で表される化合物は一般式(N−1−1)〜(N−1−21)で表される化合物群から選ばれる化合物であることが好ましい。
本発明の組成物は、一般式(J)で表される化合物を1種類又は2種類以上さらに含有することが好ましい。これら化合物は誘電的に正の化合物(Δεが2より大きい。)に該当する。
Figure 2018079528
(式中、RJ1は炭素原子数1〜8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の−CH−はそれぞれ独立して−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−によって置換されていてもよく、
J1は、0、1、2、3又は4を表し、
J1、AJ2及びAJ3はそれぞれ独立して、
(a) 1,4−シクロヘキシレン基(この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−O−に置き換えられてもよい。)
(b) 1,4−フェニレン基(この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられてもよい。)及び
(c) ナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基又はデカヒドロナフタレン−2,6−ジイル基(ナフタレン−2,6−ジイル基又は1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子、塩素原子、メチル基、トリフルオロメチル基又はトリフルオロメトキシ基で置換されていても良く、
J1及びZJ2はそれぞれ独立して単結合、−CHCH−、−(CH−、−OCH−、−CHO−、−OCF−、−CFO−、−COO−、−OCO−又は−C≡C−を表し、
J1が2、3又は4であってAJ2が複数存在する場合は、それらは同一であっても異なっていても良く、nJ1が2、3又は4であってZJ1が複数存在する場合は、それらは同一であっても異なっていても良く、
J1は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2−トリフルオロエチル基を表す。)
一般式(J)中、RJ1は、炭素原子数1〜8のアルキル基、炭素原子数1〜8のアルコキシ基、炭素原子数2〜8のアルケニル基又は炭素原子数2〜8のアルケニルオキシ基が好ましく、炭素原子数1〜5のアルキル基、炭素原子数1〜5のアルコキシ基、炭素原子数2〜5のアルケニル基又は炭素原子数2〜5のアルケニルオキシ基が好ましく、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が更に好ましく、炭素原子数2〜5のアルキル基又は炭素原子数2〜3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。
信頼性を重視する場合にはRJ1はアルキル基であることが好ましく、粘性の低下を重視する場合にはアルケニル基であることが好ましい。
また、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び炭素原子数4〜5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び直鎖状の炭素原子数2〜5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点はアルケニル基が結合している環構造中の炭素原子を表す。)
Figure 2018079528
J1、AJ2及びAJ3はそれぞれ独立してΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、トランス−1,4−シクロへキシレン基、1,4−フェニレン基、1,4−シクロヘキセニレン基、1,4−ビシクロ[2.2.2]オクチレン基、ピペリジン−1,4−ジイル基、ナフタレン−2,6−ジイル基、デカヒドロナフタレン−2,6−ジイル基又は1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基を表すことが好ましく、それらはフッ素原子により置換されていてもよく、下記の構造を表すことがより好ましく、
Figure 2018079528
下記の構造を表すことがより好ましい。
Figure 2018079528
J1及びZJ2はそれぞれ独立して−CHO−、−OCH−、−CFO−、−CHCH−、−CFCF−又は単結合を表すことが好ましく、−OCH−、−CFO−、−CHCH−又は単結合が更に好ましく、−OCH−、−CFO−又は単結合が特に好ましい。
J1はフッ素原子又はトリフルオロメトキシ基が好ましく、フッ素原子が好ましい。
J1は、0、1、2又は3が好ましく、0、1又は2が好ましく、Δεの改善に重点を置く場合には0又は1が好ましく、TNIを重視する場合には1又は2が好ましい。
組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの所望の性能に応じて組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類である。またさらに、本発明の別の実施形態では4種類であり、5種類であり、6種類であり、7種類以上である。
本発明の組成物において、一般式(J)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
本発明の組成物の総量に対しての一般式(J)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、例えば本発明の一つの形態では95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%である。
本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。さらに、本発明の組成物のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を高めに、上限値を高めにすることが好ましい。
信頼性を重視する場合にはRJ1はアルキル基であることが好ましく、粘性の低下を重視する場合にはアルケニル基であることが好ましい。
一般式(J)で表される化合物としては一般式(M)で表される化合物及び一般式(K)で表される化合物が好ましい。
Figure 2018079528
(式中、RM1は炭素原子数1〜8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の−CH−はそれぞれ独立して−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−によって置換されていてもよく、
M1は、0、1、2、3又は4を表し、
M1及びAM2はそれぞれ独立して、
(a) 1,4−シクロヘキシレン基(この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−O−又は−S−に置き換えられてもよい。)及び
(b) 1,4−フェニレン基(この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられてもよい。)
からなる群より選ばれる基を表し、上記の基(a)及び基(b)上の水素原子はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
M1及びZM2はそれぞれ独立して単結合、−CHCH−、−(CH−、−OCH−、−CHO−、−OCF−、−CFO−、−COO−、−OCO−又は−C≡C−を表し、
M1が2、3又は4であってAM2が複数存在する場合は、それらは同一であっても異なっていても良く、nM1が2、3又は4であってZM1が複数存在する場合は、それらは同一であっても異なっていても良く、
M1及びXM3はそれぞれ独立して水素原子、塩素原子又はフッ素原子を表し、
M2は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2−トリフルオロエチル基を表す。)
Figure 2018079528
(式中、RK1は炭素原子数1〜8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の−CH−はそれぞれ独立して−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−によって置換されていてもよく、
K1は、0、1、2、3又は4を表し、
K1及びAK2はそれぞれ独立して、
(a) 1,4−シクロヘキシレン基(この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−O−又は−S−に置き換えられてもよい。)及び
(b) 1,4−フェニレン基(この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられてもよい。)
からなる群より選ばれる基を表し、上記の基(a)及び基(b)上の水素原子はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
K1及びZK2はそれぞれ独立して単結合、−CHCH−、−(CH−、−OCH−、−CHO−、−OCF−、−CFO−、−COO−、−OCO−又は−C≡C−を表し、
K1が2、3又は4であってAK2が複数存在する場合は、それらは同一であっても異なっていても良く、nK1が2、3又は4であってZK1が複数存在する場合は、それらは同一であっても異なっていても良く、
K1及びXK3はそれぞれ独立して水素原子、塩素原子又はフッ素原子を表し、
K2は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2−トリフルオロエチル基を表す。)
本発明の組成物は、一般式(M)で表される化合物を1種類又は2種類以上さらに含有することが好ましい。これら化合物は誘電的に正の化合物(Δεが2より大きい。)に該当する。
一般式(M)中、RM1は、炭素原子数1〜8のアルキル基、炭素原子数1〜8のアルコキシ基、炭素原子数2〜8のアルケニル基又は炭素原子数2〜8のアルケニルオキシ基が好ましく、炭素原子数1〜5のアルキル基、炭素原子数1〜5のアルコキシ基、炭素原子数2〜5のアルケニル基又は炭素原子数2〜5のアルケニルオキシ基が好ましく、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が更に好ましく、炭素原子数2〜5のアルキル基又は炭素原子数2〜3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。
信頼性を重視する場合にはRM1はアルキル基であることが好ましく、粘性の低下を重視する場合にはアルケニル基であることが好ましい。
また、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び炭素原子数4〜5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び直鎖状の炭素原子数2〜5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点はアルケニル基が結合している環構造中の炭素原子を表す。)
Figure 2018079528
M1及びAM2はそれぞれ独立してΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、トランス−1,4−シクロへキシレン基、1,4−フェニレン基、2−フルオロ−1,4−フェニレン基、3−フルオロ−1,4−フェニレン基、3,5−ジフルオロ−1,4−フェニレン基、2,3−ジフルオロ−1,4−フェニレン基、1,4−シクロヘキセニレン基、1,4−ビシクロ[2.2.2]オクチレン基、ピペリジン−1,4−ジイル基、ナフタレン−2,6−ジイル基、デカヒドロナフタレン−2,6−ジイル基又は1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、
Figure 2018079528
下記の構造を表すことがより好ましい。
Figure 2018079528
M1及びZM2はそれぞれ独立して−CHO−、−CFO−、−CHCH−、−CFCF−又は単結合を表すことが好ましく、−CFO−、−CHCH−又は単結合が更に好ましく、−CFO−又は単結合が特に好ましい。
M1は、0、1、2又は3が好ましく、0、1又は2が好ましく、Δεの改善に重点を置く場合には0又は1が好ましく、TNIを重視する場合には1又は2が好ましい。
組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの所望の性能に応じて組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類である。またさらに、本発明の別の実施形態では4種類であり、5種類であり、6種類であり、7種類以上である。
本発明の組成物において、一般式(M)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
本発明の組成物の総量に対しての式(M)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、例えば本発明の一つの形態では95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%である。
本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。さらに、本発明の組成物のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を高めに、上限値を高めにすることが好ましい。
本発明の液晶組成物は、一般式(L)で表される化合物を1種類又は2種類以上さらに含有することが好ましい。一般式(L)で表される化合物は誘電的にほぼ中性の化合物(Δεの値が−2〜2)に該当する。
Figure 2018079528
(式中、RL1及びRL2はそれぞれ独立して炭素原子数1〜8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の−CH−はそれぞれ独立して−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−によって置換されていてもよく、
L1は0、1、2又は3を表し、
L1、AL2及びAL3はそれぞれ独立して
(a) 1,4−シクロヘキシレン基(この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−O−に置き換えられてもよい。)及び
(b) 1,4−フェニレン基(この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられてもよい。)
(c) ナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基又はデカヒドロナフタレン−2,6−ジイル基(ナフタレン−2,6−ジイル基又は1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
L1及びZL2はそれぞれ独立して単結合、−CHCH−、−(CH−、−OCH−、−CHO−、−COO−、−OCO−、−OCF−、−CFO−、−CH=N−N=CH−、−CH=CH−、−CF=CF−又は−C≡C−を表し、
L1が2又は3であってAL2が複数存在する場合は、それらは同一であっても異なっていても良く、nL1が2又は3であってZL2が複数存在する場合は、それらは同一であっても異なっていても良いが、一般式(N−1)、(N−2)、(N−3)、(J)及び(i)で表される化合物を除く。)
一般式(L)で表される化合物は単独で用いてもよいが、組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの所望の性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類である。あるいは本発明の別の実施形態では2種類であり、3種類であり、4種類であり、5種類であり、6種類であり、7種類であり、8種類であり、9種類であり、10種類以上である。
本発明の組成物において、一般式(L)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
本発明の組成物の総量に対しての式(L)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%である。
本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。さらに、本発明の組成物のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を低く上限値が低いことが好ましい。
信頼性を重視する場合にはRL1及びRL2はともにアルキル基であることが好ましく、化合物の揮発性を低減させることを重視する場合にはアルコキシ基であることが好ましく、粘性の低下を重視する場合には少なくとも一方はアルケニル基であることが好ましい。
分子内に存在するハロゲン原子は0、1、2又は3個が好ましく、0又は1が好ましく、他の液晶分子との相溶性を重視する場合には1が好ましい。
L1及びRL2は、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び炭素原子数4〜5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び直鎖状の炭素原子数2〜5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点は環構造中の炭素原子を表す。)
Figure 2018079528
L1は応答速度を重視する場合には0が好ましく、ネマチック相の上限温度を改善するためには2又は3が好ましく、これらのバランスをとるためには1が好ましい。また、組成物として求められる特性を満たすためには異なる値の化合物を組み合わせることが好ましい。
L1、AL2及びAL3はΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、それぞれ独立してトランス−1,4−シクロへキシレン基、1,4−フェニレン基、2−フルオロ−1,4−フェニレン基、3−フルオロ−1,4−フェニレン基、3,5−ジフルオロ−1,4−フェニレン基、1,4−シクロヘキセニレン基、1,4−ビシクロ[2.2.2]オクチレン基、ピペリジン−1,4−ジイル基、ナフタレン−2,6−ジイル基、デカヒドロナフタレン−2,6−ジイル基又は1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、
Figure 2018079528
トランス−1,4−シクロへキシレン基又は1,4−フェニレン基を表すことがより好ましい。
L1及びZL2は応答速度を重視する場合には単結合であることが好ましい。
一般式(L)で表される化合物は分子内のハロゲン原子数が0個又は1個であることが好ましい。
一般式(L)で表される化合物は一般式(L−3)〜(L−8)で表される化合物群から選ばれる化合物であることが好ましい。
一般式(L−3)で表される化合物は下記の化合物である。
Figure 2018079528
(式中、RL31及びRL32はそれぞれ独立して、一般式(L)におけるRL1及びR L2と同じ意味を表す。)
L31及びRL32はそれぞれ独立して炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましい。
一般式(L−3)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
本発明の組成物の総量に対しての式(L−3)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。
高い複屈折率を得る場合は含有量を多めに設定すると効果が高く、反対に、高いTNIを重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
一般式(L−4)で表される化合物は下記の化合物である。
Figure 2018079528
(式中、RL41及びRL42はそれぞれ独立して、一般式(L)におけるRL1及びR L2と同じ意味を表す。)
L41は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、RL42は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましい。)
一般式(L−4)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
本発明の組成物において、一般式(L−4)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
本発明の組成物の総量に対しての式(L−4)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%であり、23質量%であり、26質量%であり、30質量%であり、35質量%であり、40質量%である。本発明の組成物の総量に対しての式(L−4)で表される化合物の好ましい含有量の上限値は、50質量%であり、40質量%であり、35質量%であり、30質量%であり、20質量%であり、15質量%であり、10質量%であり、5質量%である。
一般式(L−5)で表される化合物は下記の化合物である。
Figure 2018079528
(式中、RL51及びRL52はそれぞれ独立して、一般式(L)におけるRL1及びR L2と同じ意味を表す。)
L51は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、RL52は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましい。
一般式(L−5)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
本発明の組成物において、一般式(L−5)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
本発明の組成物の総量に対しての式(L−5)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%であり、23質量%であり、26質量%であり、30質量%であり、35質量%であり、40質量%である。本発明の組成物の総量に対しての式(L−5)で表される化合物の好ましい含有量の上限値は、50質量%であり、40質量%であり、35質量%であり、30質量%であり、20質量%であり、15質量%であり、10質量%であり、5質量%である
一般式(L−6)で表される化合物は下記の化合物である。
Figure 2018079528
(式中、RL61及びRL62はそれぞれ独立して、一般式(L)におけるRL1及びR L2と同じ意味を表し、XL61及びXL62はそれぞれ独立して水素原子又はフッ素原子を表す。)
L61及びRL62はそれぞれ独立して炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、XL61及びXL62のうち一方がフッ素原子他方が水素原子であることが好ましい。
一般式(L−6)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
本発明の組成物の総量に対しての式(L−6)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%であり、23質量%であり、26質量%であり、30質量%であり、35質量%であり、40質量%である。本発明の組成物の総量に対しての式(L−6)で表される化合物の好ましい含有量の上限値は、50質量%であり、40質量%であり、35質量%であり、30質量%であり、20質量%であり、15質量%であり、10質量%であり、5質量%である。Δnを大きくすることに重点を置く場合には含有量を多くした方が好ましく、低温での析出に重点を置いた場合には含有量は少ない方が好ましい。
一般式(L−7)で表される化合物は下記の化合物である。
Figure 2018079528
(式中、RL71及びRL72はそれぞれ独立して一般式(L)におけるRL1及びR と同じ意味を表し、AL71及びAL72はそれぞれ独立して一般式(L)におけるA L2及びAL3と同じ意味を表すが、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、ZL71は一般式(L)におけるZL2と同じ意味を表し、XL71及びXL72はそれぞれ独立してフッ素原子又は水素原子を表す。)
式中、RL71及びRL72はそれぞれ独立して炭素原子数1〜5のアルキル基、炭素原子数2〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、AL71及びAL72はそれぞれ独立して1,4−シクロヘキシレン基又は1,4−フェニレン基が好ましく、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、ZL71は単結合又はCOO−が好ましく、単結合が好ましく、XL71及びXL72は水素原子が好ましい。
組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて組み合わせる。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類である。
本発明の組成物において、一般式(L−7)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
本発明の組成物の総量に対しての式(L−7)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%である。本発明の組成物の総量に対しての式(L−7)で表される化合物の好ましい含有量の上限値は、30質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、10質量%であり、5質量%である。
本発明の組成物が高いTNIの実施形態が望まれる場合は式(L−7)で表される化合物の含有量を多めにすることが好ましく、低粘度の実施形態が望まれる場合は含有量を少なめにすることが好ましい。
一般式(L−8)で表される化合物は下記の化合物である。
Figure 2018079528
(式中、RL81及びRL82はそれぞれ独立して一般式(L)におけるRL1及びR と同じ意味を表し、AL81は一般式(L)におけるAL1と同じ意味又は単結合を表すが、AL81上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、XL81〜XL86はそれぞれ独立してフッ素原子又は水素原子を表す。)
式中、RL81及びRL82はそれぞれ独立して炭素原子数1〜5のアルキル基、炭素原子数2〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、AL81は1,4−シクロヘキシレン基又は1,4−フェニレン基が好ましく、AL71及びA 72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、一般式(L−8)中の同一の環構造上にフッ素原子は0個又は1個が好ましく、分子内にフッ素原子は0個又は1個であることが好ましい。
組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて組み合わせる。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類である。
本発明の組成物において、一般式(L−8)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
本発明の組成物の総量に対しての式(L−8)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%である。本発明の組成物の総量に対しての式(L−8)で表される化合物の好ましい含有量の上限値は、30質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、10質量%であり、5質量%である。
本発明の組成物が高いTNIの実施形態が望まれる場合は式(L−8)で表される化合物の含有量を多めにすることが好ましく、低粘度の実施形態が望まれる場合は含有量を少なめにすることが好ましい。
本発明の組成物の総量に対しての一般式(i)、一般式(L)、(N−1)、(N−2)、(N−3)及び(J)で表される化合物の合計の好ましい含有量の下限値は、80質量%であり、85質量%であり、88質量%であり、90質量%であり、92質量%であり、93質量%であり、94質量%であり、95質量%であり、96質量%であり、97質量%であり、98質量%であり、99質量%であり、100質量%である。好ましい含有量の上限値は、100質量%であり、99質量%であり、98質量%であり、95質量%である。ただし、Δεの絶対値が大きい組成物を得る観点からは、一般式(N−1)、(N−2)、(N−3)又は(J)で表される化合物のいずれか一方は0質量%であることが好ましい。
本発明の組成物が負の誘電率異方性を有する液晶組成物である場合、液晶組成物の総量に対して、一般式(i)で表される化合物と、一般式(L−3)〜(L−5)で表される化合物と、一般式(N−1a)、(N−1b)、(N−1c)、(N−1d)および(N−1h)で表される化合物との群から選択される少なくとも1種の化合物の合計の好ましい含有量の下限値は、85質量%であり、88質量%であり、90質量%であり、92質量%であり、93質量%であり、94質量%であり、95質量%であり、96質量%であり、97質量%であり、98質量%であり、99質量%であり、100質量%である。好ましい含有量の上限値は、100質量%であり、99質量%であり、98質量%であり、97質量%であり、95質量%であり、93質量%であり、90質量%である。
本願発明の組成物は、分子内に過酸(−CO−OO−)構造等の酸素原子同士が結合した構造を持つ化合物を含有しないことが好ましい。
本願発明の組成物において、組成物の信頼性及び長期安定性を重視する場合にはカルボニル基を有する化合物の含有量を前記組成物の総質量に対して5質量%以下とすることが好ましく、3質量%以下とすることがより好ましく、1質量%以下とすることが更に好ましく、実質的に含有しないことが最も好ましい。
本願発明の組成物において、UV照射による安定性を重視する場合、塩素原子が置換している化合物の含有量を前記組成物の総質量に対して15質量%以下とすることが好ましく、10質量%以下とすることが好ましく、8質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、3質量%以下とすることが好ましく、実質的に含有しないことが更に好ましい。
本願発明の誘電率異方性が負の液晶組成物において、分子内の環構造に縮合環を有する場合、当該縮合環以外の環構造は1個以下が好ましく、当該縮合環以外の環構造は0個以下がより好ましい。
本願発明の組成物において、分子内の環構造がすべて6員環である化合物の含有量を多くすることが好ましく、分子内の環構造がすべて6員環である化合物の含有量を前記組成物の総質量に対して80質量%以上とすることが好ましく、90質量%以上とすることがより好ましく、95質量%以上とすることが更に好ましく、実質的に分子内の環構造がすべて6員環である化合物のみで組成物を構成することが最も好ましい。
本願発明の組成物において、組成物の酸化による劣化を抑えるためには、環構造としてシクロヘキセニレン基を有する化合物の含有量を少なくすることが好ましく、シクロヘキセニレン基を有する化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、8質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、3質量%以下とすることが好ましく、実質的に含有しないことが更に好ましい。
本願発明の組成物において、粘度の改善及びTNIの改善を重視する場合には、水素原子がハロゲンに置換されていてもよい2−メチルベンゼン−1,4−ジイル基を分子内に持つ化合物の含有量を少なくすることが好ましく、前記2−メチルベンゼン−1,4−ジイル基を分子内に持つ化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、8質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、3質量%以下とすることが好ましく、実質的に含有しないことが更に好ましい。
本願発明の組成物において、信頼性を特に重視する場合、液晶組成物の総量に対してのアルケニル基を有する化合物の含有量は、50質量%以下が好ましく、40質量%以下が好ましく、30質量%以下が好ましく、25質量%以下が好ましく、20質量%以下が好ましく、17質量%以下が好ましく、15質量%以下が好ましく、12質量%以下が好ましく、10質量%以下が好ましく、8質量%以下が好ましく、5質量%以下が好ましく、3質量%以下が好ましく、2質量%以下が好ましい。
本願発明の組成物において、信頼性を特に重視する場合、液晶組成物の誘電率異方性が中性(−2〜2)の成分の総量に対してのアルケニル基を有する化合物の含有量は、90質量%以下、70質量%以下、60質量%以下が好ましく、50質量%以下が好ましく、40質量%以下が好ましく、30質量%以下が好ましく、20質量%以下が好ましく、15質量%以下が好ましく、10質量%以下が好ましく、8質量%以下が好ましく、5質量%以下が好ましく、4質量%以下が好ましく、3質量%以下が好ましく、2質量%以下が好ましく、1質量%以下が好ましい。
本願において実質的に含有しないとは、意図せずに含有する物を除いて含有しないという意味である。
本発明の第一実施形態の組成物に含有される化合物が、側鎖としてアルケニル基を有する場合、前記アルケニル基がシクロヘキサンに結合している場合には当該アルケニル基の炭素原子数は2〜5であることが好ましく、前記アルケニル基がベンゼンに結合している場合には当該アルケニル基の炭素原子数は4〜5であることが好ましく、前記アルケニル基の不飽和結合とベンゼンは直接結合していないことが好ましい。
本発明に使用される液晶組成物の平均弾性定数(KAVG)は10から25が好ましいが、その下限値としては、10が好ましく、10.5が好ましく、11が好ましく、11.5が好ましく、12が好ましく、12.3が好ましく、12.5が好ましく、12.8が好ましく、13が好ましく、13.3が好ましく、13.5が好ましく、13.8が好ましく、14が好ましく、14.3が好ましく、14.5が好ましく、14.8が好ましく、15が好ましく、15.3が好ましく、15.5が好ましく、15.8が好ましく、16が好ましく、16.3が好ましく、16.5が好ましく、16.8が好ましく、17が好ましく、17.3が好ましく、17.5が好ましく、17.8が好ましく、18が好ましく、その上限値としては、25が好ましく、24.5が好ましく、24が好ましく、23.5が好ましく、23が好ましく、22.8が好ましく、22.5が好ましく、22.3が好ましく、22が好ましく、21.8が好ましく、21.5が好ましく、21.3が好ましく、21が好ましく、20.8が好ましく、20.5が好ましく、20.3が好ましく、20が好ましく、19.8が好ましく、19.5が好ましく、19.3が好ましく、19が好ましく、18.8が好ましく、18.5が好ましく、18.3が好ましく、18が好ましく、17.8が好ましく、17.5が好ましく、17.3が好ましく、17が好ましい。消費電力削減を重視する場合にはバックライトの光量を抑えることが有効であり、液晶表示素子は光の透過率を向上させることが好ましく、そのためにはKAVGの値を低めに設定することが好ましい。応答速度の改善を重視する場合にはKAVGの値を高めに設定することが好ましい。
本発明の組成物には、PSモード、横電界型PSAモード又は横電界型PSVAモードなどの液晶表示素子を作製するために、重合性化合物を含有することができる。使用できる重合性化合物として、光などのエネルギー線により重合が進行する光重合性モノマーなどが挙げられ、構造として、例えば、ビフェニル誘導体、ターフェニル誘導体などの六員環が複数連結した液晶骨格を有する重合性化合物などが挙げられる。更に具体的には、一般式(XX)
Figure 2018079528
(式中、X201及びX202はそれぞれ独立して、水素原子又はメチル基を表し、
Sp201及びSp202はそれぞれ独立して、単結合、炭素原子数1〜8のアルキレン基又は−O−(CH−(式中、sは2から7の整数を表し、酸素原子は芳香環に結合するものとする。)が好ましく、
201は−OCH−、−CHO−、−COO−、−OCO−、−CFO−、−OCF−、−CHCH−、−CFCF−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−COO−CHCH−、−OCO−CHCH−、−CHCH−COO−、−CHCH−OCO−、−COO−CH−、−OCO−CH−、−CH−COO−、−CH−OCO−、−CY=CY−(式中、Y及びYはそれぞれ独立して、フッ素原子又は水素原子を表す。)、−C≡C−又は単結合を表し、
201およびL202はそれぞれ独立して、フッ素原子、炭素原子数1〜8のアルキル基または炭素原子数1〜8のアルコキシ基であり、
201は1,4−フェニレン基、トランス−1,4−シクロヘキシレン基又は単結合を表し、式中の全ての1,4−フェニレン基は、任意の水素原子がフッ素原子、炭素原子数1〜8のアルキル基または炭素原子数1〜8のアルコキシ基により置換されていても良く、n201およびn202はそれぞれ独立して、0〜4の整数である。)で表される二官能モノマーが好ましい。
201及びX202は、何れも水素原子を表すジアクリレート誘導体、何れもメチル基を有するジメタクリレート誘導体の何れも好ましく、一方が水素原子を表しもう一方がメチル基を表す化合物も好ましい。これらの化合物の重合速度は、ジアクリレート誘導体が最も早く、ジメタクリレート誘導体が遅く、非対称化合物がその中間であり、その用途により好ましい態様を用いることができる。PSA表示素子においては、ジメタクリレート誘導体が特に好ましい。
Sp201及びSp202はそれぞれ独立して、単結合、炭素原子数1〜8のアルキレン基又は−O−(CH−を表すが、PSA表示素子においては少なくとも一方が単結合であることが好ましく、共に単結合を表す化合物又は一方が単結合でもう一方が炭素原子数1〜8のアルキレン基又は−O−(CH−を表す態様が好ましい。この場合1〜4のアルキル基が好ましく、sは1〜4が好ましい。
201は、−OCH−、−CHO−、−COO−、−OCO−、−CFO−、−OCF−、−CHCH−、−CFCF−又は単結合が好ましく、−COO−、−OCO−又は単結合がより好ましく、単結合が特に好ましい。
201は任意の水素原子がフッ素原子、炭素原子数1〜8のアルキル基または炭素原子数1〜8のアルコキシ基により置換されていても良い1,4−フェニレン基、トランス−1,4−シクロヘキシレン基又は単結合を表すが、1,4−フェニレン基又は単結合が好ましい。Cが単結合以外の環構造を表す場合、Z201は単結合以外の連結基も好ましく、M201が単結合の場合、Z201は単結合が好ましい。
これらの点から、一般式(XX)において、Sp201及びSp202の間の環構造は、具体的には次に記載する構造が好ましい。
一般式(XX)において、M201が単結合を表し、環構造が二つの環で形成される場合において、次の式(XXa−1)から式(XXa−5)を表すことが好ましく、式(XXa−1)から式(XXa−3)を表すことがより好ましく、式(XXa−1)を表すことが特に好ましい。
Figure 2018079528
(式中、両端はSp201又はSp202に結合するものとする。)
これらの骨格を含む重合性化合物は重合後の配向規制力がPSA型液晶表示素子に最適であり、良好な配向状態が得られることから、表示ムラが抑制されるか、又は、全く発生しない。
以上のことから、重合性モノマーとしては、一般式(XX−1)〜一般式(XX−4)が特に好ましく、中でも一般式(XX−2)が最も好ましい。
Figure 2018079528
(式中、ベンゼンはフッ素原子により置換されていても良く、Sp20は炭素原子数2から5のアルキレン基を表す。)
本発明の組成物に重合性化合物を含有する場合の含有量は、0.01質量%〜0.5質量%であることが好ましく、0.05質量%〜0.45質量%であることが好ましく、0.07質量%〜0.4質量%であることが好ましく、0.08質量%〜0.35質量%であることが好ましく、0.1質量%以上0.3質量%未満であることが好ましい。
本発明の組成物にモノマーを添加する場合において、重合開始剤が存在しない場合でも重合は進行するが、重合を促進するために重合開始剤を含有していてもよい。重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド類等が挙げられる。
本発明に係る液晶組成物は、自発配向剤を含むことが好ましい。当該自発配向剤は、液晶層を構成する液晶組成物に含まれる液晶分子の配向方向を制御することができる。液晶層の界面に自発配向剤の成分が集積する、または当該界面に吸着することで液晶分子の配向方向を制御することができると考えられる。これにより、液晶組成物中に自発配向剤を含む場合は、液晶パネルの配向層を無くすことができる。
本発明に係る液晶組成物における自発配向剤の含有量は、液晶組成物の全体のうち0.1〜10質量%含むことが好ましい。また、本発明に係る液晶組成物における自発配向剤は、上記の重合性化合物と併用して使用してもよい。
当該自発配向剤は極性基およびメソゲン性基を有し、必要により重合性基を有することが好ましい。
上記メソゲン性基とは、液晶相の挙動を誘発できる基を意味するが、メソゲン性基を含む表面修飾化合物は、必ずしもそれ自体が液晶相を示す必要はない。換言すると、「メソゲン性基」は、構造的秩序を誘導しやすい基であり、典型的には、芳香族環などの環式基といった強固な部分を含むものである。さらに、ここでいう「液晶相」とは、液体の流動性と結晶の異方性とを合わせ持つ相を言い、ネマチック液晶、スメクチック液晶またはコレステリック液晶などが挙げられる。
本発明に係る表面修飾化合物におけるメソゲン性基の形状や表面修飾化合物の分子の形状は、特に制限されることはなく、棒状、円盤状、バナナ型、L字型、T字型、またはシクロデキストリン、カリックスアレーンもしくはククルビツリルなどの包摂型など挙げられるが、液晶相挙動を誘発できる形状がより好ましい。
上記重合性基は、後述の一般式(P−1)〜一般式(P−15)で表されることが好ましい。
上記極性基は、ヘテロ原子を有する極性要素(電荷が分離した状態)の原子団であることが好ましく、N、O、S、P、BおよびSi等のヘテロ原子をその構造中に含む極性要素の原子団であることがより好ましい。また、本発明に係る極性基は、ヘテロ原子を有する極性要素を含む環状構造原子団またはヘテロ原子を有する極性要素を含む直鎖状若しくは分岐状構造原子団のいずれでもよい。
本発明に係る極性基において、当該ヘテロ原子を有する極性要素の価数は、一価、二価、三価など特に制限されず、また当該ヘテロ原子を有する極性要素の個数も特に制限されることは無い。当該ヘテロ原子を有する極性要素は、具体的には、含窒素基;シアノ基(−CN)、1級アミノ基(−NH)、2級アミノ基(−NH−)、3級アミノ基(−NRR’;但し、R,R’はアルキル基)、ピリジル基、含酸素基;水酸基(−OH)、アルコキシ基(−OR;但し、Rはアルキル基)、ホルミル基(−CHO)、カルボキシル基(−COOH)、エーテル基(−R’OR’’−;但し、R’、R’’はアルキレン基またはアルケニレン基)、ケトン基(−R’C(=O)R’’−;但し、R ’、R’’はアルキレン基またはアルケニレン基)、カーボネート基(−O−C(=O)−O−)、アルコキシ(アルケニルオキシ)カルボニル基(−COOR’’−;但しR’’はアルキレン基またはアルケニレン基)、カルバモイル基(−CONH)、ウレイド基(−NHCONH)、含リン基;ホスフィニル基(−P(=O)H)、リン酸基(−OP(=O)(OH))、含ホウ素基;ホウ酸基(−B(OH))、含硫黄基;メルカプト基(−SH)、スルフィド基(−S−)、スルフィニル基(−S(=O)−)、スルホニル基(−SO−)、スルホンアミド基(−SONH)、スルホ酸基(−SOH)またはスルフィノ基(−S(=O)OH)で表される部分構造であることが好ましい。
当該自発配向剤としては、以下の一般式(al−1)および/または一般式(al−2)であることが好ましい。
Figure 2018079528
(式中、Ral1、Ral2、Zal1、Zal2、Lal1、Lal2、Lal3、Spal1、Spal2、Spal3、Xal1、Xal2、Xal3、mal1、m l2、mal3、nal1、nal2、nal3、pal1、pal2およびpal3はそれぞれ互いに独立して、
al1は、水素原子、ハロゲン、1〜20個の炭素原子を有する直鎖状、分枝状もしくは環状アルキルを示し、ここで当該アルキル基において、1または2つ以上の隣接していないCH基は、−O−、−S−、−CO−、−CO−O−、−O−CO−、−O−CO−O−によって、Oおよび/またはS原子が互いに直接結合しないように置換されてもよく、さらに1個または2個以上の水素原子は、FまたはClによって置き換えられていてもよい、
al2は、以下のいずれかの部分構造を備えた基を表し、
Figure 2018079528
Figure 2018079528
Spal1、Spal2およびSpal3はそれぞれ互いに独立して、炭素原子数1〜12個のアルキル基または単結合を表し、
al1、Xal2およびXal3はそれぞれ互いに独立して、アルキル基、アクリル基、メタクリル基またはビニル基を示し、
al1は、−O−、−S−、−CO−、−CO−O−、−OCO−、−O−CO−O−、−OCH−、−CHO−、−SCH−、−CHS−、−CFO−、−OCF−、−CFS−、−SCF−、−(CH al−、−CFCH−、−CHCF−、−(CF al−、−CH=CH−、−CF=CF−、−C≡C−、−CH=CH−COO−、−OCO−CH=CH−、−(CRal3al4 a1−、−CH(−Spal1−Xal1)−、−CHCH(−Spal1−Xal1)−、−CH(−Spal1−Xal1)CH(−Spal1−Xal1)−を示し、
al2はそれぞれ互いに独立して、単結合、−O−、−S−、−CO−、−CO−O−、−OCO−、−O−CO−O−、−OCH−、−CHO−、−SCH−、−CHS−、−CFO−、−OCF−、−CFS−、−SCF−、−(CH)n1−、−CFCH−、−CHCF−、−(CF al−、−CH=CH−、−CF=CF−、−C≡C−、−CH=CH−COO−、−OCO−CH=CH−、−(CRal3al4na1−、−CH(−Spal1−Xal1)−、−CHCH(−Spal1−Xal1)−、−CH(−Spal1−Xal1)CH(−Spal1−Xal1)−を示し、
al1、Lal2、Lal3はそれぞれ互いに独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、−CN、−NO、−NCO、−NCS、−OCN、−SCN、−C(=O)N(Ral3、−C(=O)Ral3、3〜15個の炭素原子を有する任意に置換されたシリル基、任意に置換されたアリール基もしくはシクロアルキル基または1〜25個の炭素原子を表すが、ここで、1個もしくは2個以上の水素原子がハロゲン原子(フッ素原子、塩素原子)によって置き換えられていてもよく、
上記Ral3は、1〜12個の炭素原子を有するアルキル基を表し、上記Ral4は、水素原子または1〜12個の炭素原子を有するアルキル基を表し、上記nalは、1〜4の整数を表し、
al1、pal2およびpal3はそれぞれ互いに独立して、0または1を表し、m al1、mal2およびmal3はそれぞれ互いに独立して、0〜3の整数を表し、n l1、nal2およびnal3はそれぞれ互いに独立して、0〜3の整数を表す。)
一般式(Al−2):
Figure 2018079528
(式中、Zi1およびZi2はそれぞれ独立して、単結合、−CH=CH−、−CF=CF−、−C≡C−、−COO−、−OCO−、−OCOO−、−OOCO−、−CFO−、−OCF−、−CH=CHCOO−、−OCOCH=CH−、−CH−CHCOO−、−OCOCH―CH−、−CH=C(CH)COO−、−OCOC(CH )=CH−、−CH−CH(CH)COO−、−OCOCH(CH)―CH−、−OCHCHO−、又は炭素原子数2〜20のアルキレン基を表し、このアルキレン基中の1個又は隣接しない2個以上の−CH−は−O−、−COO−又は−OCO−で置換されてもよく、ただしKi1が(K−11)の場合はメソゲン基に少なくとも−CH−CHCOO−、−OCOCH―CH−、−CH=C(CH)COO−、−OCOC(CH)=CH−、−CH−CH(CH)COO−、−OCOCH(CH )―CH−、−OCHCHO−の何れか一つを含み、
al21およびAa122はそれぞれ独立して、2価の6員環芳香族基又は2価の6員環脂肪族基を表すが、2価の無置換の6員環芳香族基、2価の無置換の6員環脂肪族基又はこれらの環構造中の水素原子は、置換されていないか炭素原子数1〜6のアルキル基、炭素原子数1〜6のアルコキシ基、ハロゲン原子で置換されていていることが好ましく、2価の無置換の6員環芳香族基若しくはこの環構造中の水素原子がフッ素原子で置換された基、又は2価の無置換の6員環脂肪族基が好ましく、置換基上の水素原子が、ハロゲン原子、アルキル基又はアルコキシ基によって置換されていても良い1,4−フェニレン基、2,6−ナフタレン基又は1,4−シクロヘキシル基が好ましいが、少なくとも一つの置換基はPi1−Spi1−で置換されており、
i1、Aal21およびAa122がそれぞれ複数存在する場合は、それぞれ互いに同一であっても異なっていてもよく、
Spi1は、好ましくは炭素原子数1〜18の直鎖状アルキレン基又は単結合を表し、より好ましくは炭素原子数2〜15の直鎖状アルキレン基又は単結合を表し、更に好ましくは炭素原子数3〜12の直鎖状アルキレン基又は単結合を表し、
al21は、水素原子、炭素原子数1〜20の直鎖又は分岐のアルキル基、ハロゲン化アルキル基、又はPi1−Spi1−を表し、該アルキル基中の−CH−は、−O−、−OCO−、又は−COO−が好ましく(ただし−O−は連続にはならない)、より好ましくは、水素原子、炭素原子数1〜18の直鎖又は分岐のアルキル基、又はPi1−Spi1−を表し、該アルキル基中の−CH−は、−O−、−OCO−(ただし−O−は連続にはならない)を表す。
i1は、以下の一般式(K−1)〜一般式(K−11)で表される置換基を表し、
Figure 2018079528
i1は、重合性基を表し、以下の一般式(P−1)〜一般式(P−15)で表される群より選ばれる置換基を表し(式中、右端の黒点は結合手を表す。)、
Figure 2018079528
i1、Zi2、Aal21、miii1及び/又はAal22がそれぞれ複数存在する場合は、それぞれ互いに同一であっても異なっていてもよく、ただしAi1及びAi2の何れか一つは少なくとも一つのPi1−Spi1−で置換されており、Ki1が(K−11)の場合は、Zii1は少なくとも−CH−CHCOO−、−OCOCH―CH−、−CH−CH(CH)COO−、−OCOCH(CH)―CH−、−OCHCHO−の何れか一つを含み、
iii1は、1〜5の整数を表し、
iii2は、1〜5の整数を表し、
i1は、2価、3価、4価のいずれかの分岐構造、または2価、3価、4価のいずれかの脂肪族または芳香族の環構造を表し、
iii3は、Gi1の価数より1小さい整数を表す。)
本発明に係る自発配向剤は、以下の一般式(al−1−1)で表される化合物がより好ましい。
Figure 2018079528
(上記式中、Rbl1は、1〜12個の炭素原子を有する直鎖状のアルキル基を表し、R bl2はおよびRbl3はそれぞれ独立して、水素原子または1〜3個の炭素原子を有する直鎖状のアルキル基を表し、Lbl1およびLbl1はそれぞれ独立して、水素原子または1〜7個の炭素原子を有する直鎖状のアルキル基を表す。)
その他、液晶パネルの配向層を無くす手段としては、重合性化合物を含有する液晶組成物を第1の基板および第2の基板間に充填する際に、当該晶組成物をTni以上の状態で充填し、重合性化合物を含有する液晶組成物に対してUV照射を行い重合性化合物を硬化させる方法などが挙げられる。
本発明における組成物は、さらに、一般式(Q)で表される化合物を含有することができる。
Figure 2018079528
(式中、Rは炭素原子数1から22の直鎖アルキル基又は分岐鎖アルキル基を表し、該アルキル基中の1つ又は2つ以上のCH基は、酸素原子が直接隣接しないように、−O−、−CH=CH−、−CO−、−OCO−、−COO−、−C≡C−、−CFO−、−OCF−で置換されてよく、Mはトランス−1,4−シクロへキシレン基、1,4−フェニレン基又は単結合を表す。)
は炭素原子数1から22の直鎖アルキル基又は分岐鎖アルキル基を表し、該アルキル基中の1つ又は2つ以上のCH基は、酸素原子が直接隣接しないように、−O−、−CH=CH−、−CO−、−OCO−、−COO−、−C≡C−、−CFO−、−OCF−で置換されてよいが、炭素原子数1から10の直鎖アルキル基、直鎖アルコキシ基、1つのCH基が−OCO−又は−COO−に置換された直鎖アルキル基、分岐鎖アルキル基、分岐アルコキシ基、1つのCH基が−OCO−又は−COO−に置換された分岐鎖アルキル基が好ましく、炭素原子数1から20の直鎖アルキル基、1つのCH基が−OCO−又は−COO−に置換された直鎖アルキル基、分岐鎖アルキル基、分岐アルコキシ基、1つのCH基が−OCO−又は−COO−に置換された分岐鎖アルキル基が更に好ましい。Mはトランス−1,4−シクロへキシレン基、1,4−フェニレン基又は単結合を表すが、トランス−1,4−シクロへキシレン基又は1,4−フェニレン基が好ましい。
一般式(Q)で表される化合物は、より具体的には、下記の一般式(Q−a)から一般式(Q−d)で表される化合物が好ましい。
Figure 2018079528
式中、RQ1は炭素原子数1から10の直鎖アルキル基又は分岐鎖アルキル基が好ましく、RQ2は炭素原子数1から20の直鎖アルキル基又は分岐鎖アルキル基が好ましく、R Q3は炭素原子数1から8の直鎖アルキル基、分岐鎖アルキル基、直鎖アルコキシ基又は分岐鎖アルコキシ基が好ましく、Lは炭素原子数1から8の直鎖アルキレン基又は分岐鎖アルキレン基が好ましい。一般式(Q−a)から一般式(Q−d)で表される化合物中、一般式(Q−c)及び一般式(Q−d)で表される化合物が更に好ましい。
本願発明の組成物において、一般式(Q)で表される化合物を1種又は2種を含有することが好ましく、1種から5種含有することが更に好ましく、その含有量は0.001から1質量%であることが好ましく、0.001から0.1質量%が更に好ましく、0.001から0.05質量%が特に好ましい。
また、本発明に使用できる酸化防止剤又は光安定剤としてより具体的には以下の(III−1)〜(III−38)で表される化合物が好ましい。
Figure 2018079528
Figure 2018079528
Figure 2018079528
Figure 2018079528
Figure 2018079528
Figure 2018079528
Figure 2018079528
Figure 2018079528
Figure 2018079528
(式中、nは0から20の整数を表す。)
本願発明の組成物において、一般式(Q)で表される化合物又は一般式(III−1)〜(III−38)から選ばれる化合物を1種又は2種以上含有することが好ましく、1種から5種含有することが更に好ましく、その含有量は0.001から1質量%であることが好ましく、0.001から0.1質量%が更に好ましく、0.001から0.05質量%が特に好ましい。
本発明の重合性化合物を含有した組成物は、これに含まれる重合性化合物が紫外線照射により重合することで液晶配向能が付与され、組成物の複屈折を利用して光の透過光量を制御する液晶表示素子に使用される。
本発明の液晶組成物が重合性化合物を含有する場合、重合性化合物を重合させる方法としては、液晶の良好な配向性能を得るためには、適度な重合速度が望ましいので、紫外線又は電子線等の活性エネルギー線を単一又は併用又は順番に照射することによって重合させる方法が好ましい。紫外線を使用する場合、偏光光源を用いても良いし、非偏光光源を用いても良い。また、重合性化合物含有組成物を2枚の基板間に挟持させて状態で重合を行う場合には、少なくとも照射面側の基板は活性エネルギー線に対して適当な透明性が与えられていなければならない。また、光照射時にマスクを用いて特定の部分のみを重合させた後、電場や磁場又は温度等の条件を変化させることにより、未重合部分の配向状態を変化させて、更に活性エネルギー線を照射して重合させるという手段を用いても良い。特に紫外線露光する際には、重合性化合物含有組成物に交流電界を印加しながら紫外線露光することが好ましい。印加する交流電界は、周波数10Hzから10kHzの交流が好ましく、周波数60Hzから10kHzがより好ましく、電圧は液晶表示素子の所望のプレチルト角に依存して選ばれる。つまり、印加する電圧により液晶表示素子のプレチルト角を制御することができる。横電界型MVAモードの液晶表示素子においては、配向安定性及びコントラストの観点からプレチルト角を80度から89.9度に制御することが好ましい。
照射時の温度は、本発明の組成物の液晶状態が保持される温度範囲内であることが好ましい。室温に近い温度、即ち、典型的には15〜35℃での温度で重合させることが好ましい。紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ等を用いることができる。また、照射する紫外線の波長としては、組成物の吸収波長域でない波長領域の紫外線を照射することが好ましく、必要に応じて、紫外線をカットして使用することが好ましい。照射する紫外線の強度は、0.1mW/cm2〜100W/cm2が好ましく、2mW/cm2〜50W/cm2がより好ましい。照射する紫外線のエネルギー量は、適宜調整することができるが、10mJ/cm2から500J/cm2が好ましく、100mJ/cm2から200J/cm2がより好ましい。紫外線を照射する際に、強度を変化させても良い。紫外線を照射する時間は照射する紫外線強度により適宜選択されるが、10秒から3600秒が好ましく、10秒から600秒がより好ましい。
重合性化合物を重合させる方法としては、液晶の良好な配向性能を得るためには、適度な重合速度が望ましいので、紫外線又は電子線等の活性エネルギー線を単一又は併用又は順番に照射することによって重合させる方法が好ましい。紫外線を使用する場合、偏光光源を用いても良いし、非偏光光源を用いても良い。また、重合性化合物含有組成物を2枚の基板間に挟持させて状態で重合を行う場合には、少なくとも照射面側の基板は活性エネルギー線に対して適当な透明性が与えられていなければならない。また、光照射時にマスクを用いて特定の部分のみを重合させた後、電場や磁場又は温度等の条件を変化させることにより、未重合部分の配向状態を変化させて、更に活性エネルギー線を照射して重合させるという手段を用いても良い。特に紫外線露光する際には、重合性化合物含有組成物に交流電界を印加しながら紫外線露光することが好ましい。印加する交流電界は、周波数10Hzから10kHzの交流が好ましく、周波数60Hzから10kHzがより好ましく、電圧は液晶表示素子の所望のプレチルト角に依存して選ばれる。つまり、印加する電圧により液晶表示素子のプレチルト角を制御することができる。横電界型MVAモードの液晶表示素子においては、配向安定性及びコントラストの観点からプレチルト角を80度から89.9度に制御することが好ましい。
照射時の温度は、本発明の組成物の液晶状態が保持される温度範囲内であることが好ましい。室温に近い温度、即ち、典型的には15〜35℃での温度で重合させることが好ましい。紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ等を用いることができる。また、照射する紫外線の波長としては、組成物の吸収波長域でない波長領域の紫外線を照射することが好ましく、必要に応じて、紫外線をカットして使用することが好ましい。照射する紫外線の強度は、0.1mW/cm〜100W/cmが好ましく、2mW/cm〜50W/cmがより好ましい。照射する紫外線のエネルギー量は、適宜調整することができるが、10mJ/cmから500J/cmが好ましく、100mJ/cmから200J/cm2がより好ましい。紫外線を照射する際に、強度を変化させても良い。紫外線を照射する時間は照射する紫外線強度により適宜選択されるが、10秒から3600秒が好ましく、10秒から600秒がより好ましい。
「配向層」
本発明の好適な液晶表示素子において、第一の基板と、第二の基板との間の液晶組成物と接する面には液晶層5の液晶分子を配向させるため、必要に応じて配向層を設けてもよい。配向層を必要とする液晶表示素子においては、光変換部と液晶層と間に配置するものであるが、配向層の膜厚が厚いものでも100nm以下と薄く、光変換部を構成する発光用ナノ結晶、顔料等の色素と液晶層を構成する液晶化合物との相互作用を完全に遮断するものでは無い。
また、配向層を用いない液晶表示素子においては、光変換部を構成する発光用ナノ結晶、顔料等の色素と液晶層を構成する液晶化合物との相互作用はより大きくなる。
本発明に係る配向層は、ラビング配向層および光配向層からなる群から選択される少なくとも1種であることが好ましい。ラビング配向層の場合は、特に制限されることは無く、公知のポリイミド系の配向膜を好適に使用することができる。
当該ラビング配向膜材料としては、ポリイミド、ポリアミド、BCB(ペンゾシクロブテンポリマー)、ポリビニルアルコールなどの透明性有機材料を用いることができ、特に、p−フェニレンジアミン、4,4’−ジアミノジフエニルメタンなどの脂肪族または脂環族ジアミン等のジアミン及びブタンテトラカルボン酸無水物や2,3,5−トリカルボキシシクロペンチル酢酸無水物等の脂肪族又は脂環式テトラカルボン酸無水物、ピロメリット酸二無水物等の芳香族テトラカルボン酸無水物から合成されるポリアミック酸をイミド化した、ポリイミド配向膜が好ましい。垂直配向膜等に使用する場合は配向を付与しないで使用することもできる。
本発明に係る配向層が光配向層の場合は、光応答性分子を1種以上含むものであればよい。前記光応答性分子は、光に応答して二量化により架橋構造を形成する光応答性二量化型分子、光に応答して異性化し偏光軸に対して略垂直または平行に配向する光応答性異性化型分子、および光に応答して高分子鎖が切断する光応答性分解型高分子からなる群から選択される少なくとも1種が好ましく、光応答性異性化型分子が感度、配向規制力の点から特に好ましい。
前記光応答性異性化型高分子において、光に応答して異性化し偏光軸に対して略垂直に配向する際に使用される光は、200〜500nmであることが好ましく、300〜500nmであることがより好ましく、300〜400nmであることがさらに好ましい。
本発明に係る光応答性異性化型高分子の重量平均分子量は、10000〜800000であることが好ましく、10000〜400000であることがより好ましく、50000〜400000であることがさらに好ましく、50000〜300000であることが特に好ましい。
前記重量平均分子量(Mw)は、GPC(ゲル浸透クロマトグラフィー,Gel Permeation Chromatography)測定の結果得られたものである。
以下、例を挙げて本願発明を更に詳述するが、本願発明はこれらによって限定されるものではない。実施例において化合物の記載について以下の略号を用いる。なお、nは自然数を表す。
(側鎖)
−n −C2n+1 炭素原子数nの直鎖状のアルキル基
n− C2n+1− 炭素原子数nの直鎖状のアルキル基
−On −OC2n+1 炭素原子数nの直鎖状のアルコキシル基
nO− C2n+1O− 炭素原子数nの直鎖状のアルコキシル基
−V −CH=CH
V− CH=CH−
−V1 −CH=CH−CH
1V− CH−CH=CH−
−2V −CH−CH−CH=CH
V2− CH=CH−CH−CH
−2V1 −CH−CH−CH=CH−CH
1V2− CH−CH=CH−CH−CH
(連結基)
−n− −C2n
−nO− −C2n−O−
−On− −O−C2n
−COO− −C(=O)−O−
−OCO− −O−C(=O)−
−CF2O− −CF−O−
−OCF2− −O−CF
(環構造)
Figure 2018079528
実施例中、測定した特性は以下の通りである。
NI :ネマチック相−等方性液体相転移温度(℃)
Δn :25℃における屈折率異方性
Δε :25℃における誘電率異方性
η :25℃における粘度(mPa・s)
γ :25℃における回転粘度(mPa・s)
「VHR測定」
(周波数60Hz,印加電圧1Vの条件下で333Kにおける電圧保持率(%))
450nmに主発光ピークを有する青色LED光源耐光試験:
450nmにピークをもつ青色単色LED光源を液晶パネルに対して14時間450nmの波長で68J照射する前と後のVHRを測定した。
385nmに主発光ピークを有するLED耐光試験:
385nmをピークにもつ単色LEDを液晶パネルに対して60秒385nmの波長で10J照射する前と後のVHRを測定した。
「液晶パネル、バックライトユニットおよび液晶表示素子の作製方法」
(1)液晶パネルの作製
(VA型液晶パネル)
第1基板に形成されたスリットを有する透明電極の上に、配向膜溶液をスピンコート法により形成し、乾燥厚さ0.1μmの配向膜を形成した。カラーフィルタが形成された第2基板にも同様にして配向膜を形成した。透明電極および配向膜が形成された第1基板と、カラーフィルタが形成されたスリットを有する第2電極基板を、それぞれの配向膜が対向し、かつ直線偏光を照射した、またはラビングした方向がアンチパラレル方向(180°)となるように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により貼り合わせた。次に、配向膜表面及びシール剤により区画されたセルギャップ内に、下記の液晶組成物(液晶組成物1〜9)を、真空注入法により、充填し、一対の偏光板を第1基板および第2基板上に貼りあわせることでVA型の液晶パネルを作製した。このように作製した液晶パネルを評価用素子とし、450nmに主発光ピークを有する青色光による耐光試験および385nmに主発光ピークを有する光による耐光試験の評価を行った。
その結果を以下の表1〜9に示す。
Figure 2018079528
Figure 2018079528
Figure 2018079528
Figure 2018079528
Figure 2018079528
上記表1〜5において、450nmに主発光ピークにおける低下率は、「初期(=14時間耐光試験前)のVHR値/14時間耐光試験後のVHR値」であり、385nmに主発光ピークにおける低下率は、「初期(=60秒耐光試験前)のVHR値/60秒耐光試験後のVHR値」である。したがって、低下率が1に近いほど、450nmに主発光ピークを有する青色光または385nmに主発光ピークを有する光に対して安定であることを示す。上記実験結果によれば上記液晶表示素子は、耐光性に優れており、発光用ナノ結晶の劣化や部分的な高エネルギー光線の照射スポットによる液晶層の劣化を抑制または防止できると考えられる。
385nmに主発光ピークを有する光を照射した場合、組成例2を備えた液晶表示素子が最もVHR値の低下率が低いことが確認される。一方、液晶表示素子の高速応答性に関係するγ1をみると、組成例3が最も高いことが確認される。前者の原因としては、縮合環(ナフタレン)を含む2環以上の液晶化合物を含むため、光を吸収しやすいことに関係すると考えられる。また、後者の原因としては、クロマン環を含む2環以上液晶化合物であるため、粘性が高くなることが考えられる。
また、上記組成例8については組成例8の液晶組成物100質量部に対して、以下の式(III−22)の酸化防止剤を0.05質量部添加して、上記組成例8と同様に、VA型の液晶パネルを作製して、450nmに主発光ピークを有する青色光による耐光試験および385nmに主発光ピークを有する光による耐光試験の評価を行ってもよい。
Figure 2018079528
なお、上記の450nmに主発光ピークを有する光による耐光試験および385nmに主発光ピークを有する光による耐光試験を組成例1〜9以外の以下の表6および表7に記載の組成物例12〜22で行った場合でも、450nmに主発光ピークを有する青色光または385nmに主発光ピークを有する光に対して安定である効果が発揮されると考えられる。なお、組成物例22は、特許第5122086号の例30を使用した。
Figure 2018079528
Figure 2018079528
Figure 2018079528
(PSVA型液晶パネル)
以下の重合性化合物
Figure 2018079528
0.3質量部と、組成例5を99.7質量部とを混合した重合性化合物含有液晶組成物1をセルギャップ4μmで垂直配向を誘起するポリイミド配向膜を塗布した後、フィッシュボーン構造のITO付き基板を含む液晶パネルに真空注入法で注入した。垂直配向膜形成材料として、JSR社製のJALS2096を用いた。
その後、重合性化合物を含有する液晶組成物を注入した液晶パネルに周波数100Hzで電圧を10V印加した状態で高圧水銀灯を用い、325nm以下の紫外線をカットするフィルターを介して紫外線を照射した。このとき、中心波長365nmの条件で測定した照度が100mW/cmになるように調整し、積算光量10J/cmの紫外線を照射した。次に、蛍光UVランプを用いて、中心波長313nmの条件で測定した照度が3mW/cmになるように調整し、積算光量10J/cmの紫外線を更に照射し、PSVA型液晶パネル1を得た。上記組成例5と同様に、450nmに主発光ピークを有する青色光による耐光試験および385nmに主発光ピークを有する光による耐光試験の評価を行った。その結果、450nmに主発光ピークを有する青色光および385nmに主発光ピークを有する光のいずれの場合も、表示不良は観察されなかった。
以下の重合性化合物(XX−5)と、
Figure 2018079528
組成物例1を99.7質量部と、を混合した重合性化合物含有液晶組成物2をセルギャップ4μmで垂直配向を誘起するポリイミド配向膜を塗布した後、フィッシュボーン構造のITO付き基板を含む液晶パネルに真空注入法で注入した。垂直配向膜形成材料として、JSR社製のJALS2096を用いた。
その後、重合性化合物を含有する液晶組成物を注入した液晶パネルに周波数100Hzで電圧を10V印加した状態で高圧水銀灯を用い、325nm以下の紫外線をカットするフィルターを介して紫外線を照射した。このとき、中心波長365nmの条件で測定した照度が100mW/cmになるように調整し、積算光量10J/cmの紫外線を照射した。次に、蛍光UVランプを用いて、中心波長313nmの条件で測定した照度が3mW/cmになるように調整し、積算光量10J/cmの紫外線を更に照射し、PSVA型液晶パネル2を得て、上記組成例1と同様に、450nmに主発光ピークを有する青色LEDによる耐光試験および385nmに主発光ピークを有するLEDによる耐光試験の評価を行った。その結果、450nmに主発光ピークを有する青色LEDおよび385nmに主発光ピークを有するLEDのいずれの場合も、表示不良は観察されなかった。
(自発配向型のVA型液晶パネル)
以下の自発配向剤(以下の式(SA−1))2質量部と、上記重合性化合物(XX−2)0.5質量部と、上記組成例7を99.7質量部と、
Figure 2018079528
を混合した液晶組成物3をセルギャップ4μmで配向膜なしのITO付き基板を含む液晶パネルに真空注入法で注入した。
その後、重合性化合物を含有する液晶組成物を注入した液晶パネルに周波数100Hzで電圧を10V印加した状態で高圧水銀灯を用い、325nm以下の紫外線をカットするフィルターを介して紫外線を照射した。このとき、中心波長365nmの条件で測定した照度が100mW/cmになるように調整し、積算光量10J/cmの紫外線を照射した。次に、蛍光UVランプを用いて、中心波長313nmの条件で測定した照度が3mW/cmになるように調整し、積算光量10J/cmの紫外線を更に照射し、自発配向型VA液晶パネル3を得て、上記組成例7と同様に、450nmに主発光ピークを有する青色光による耐光試験および385nmに主発光ピークを有する光による耐光試験の評価を行った。その結果、450nmに主発光ピークを有する青色光および385nmに主発光ピークを有する光のいずれの場合も、初期のVHR値、耐光試験後のVHR値は、上記組成例7とほぼ同様の結果になった。
以下の自発配向剤(以下の式(SA−2))2質量部と、上記重合性化合物(XX−5)0.5質量部と、上記組成物例4を99.7質量部と、
Figure 2018079528
を混合した液晶組成物をセルギャップ3.5μmで配向膜なしのITO付き基板を含む液晶パネルに真空注入法で注入した。
その後、重合性化合物を含有する液晶組成物を注入した液晶パネルに周波数100Hzで電圧を10V印加した状態で高圧水銀灯を用い、325nm以下の紫外線をカットするフィルターを介して紫外線を照射した。このとき、中心波長365nmの条件で測定した照度が100mW/cmになるように調整し、積算光量10J/cmの紫外線を照射した。次に、蛍光UVランプを用いて、中心波長313nmの条件で測定した照度が3mW/cmになるように調整し、積算光量10J/cmの紫外線を更に照射し、自発配向型VA液晶パネル4を得て、上記組成例4と同様に、450nmに主発光ピークを有する青色光による耐光試験および385nmに主発光ピークを有する光による耐光試験の評価を行った。その結果、450nmに主発光ピークを有する青色光および385nmに主発光ピークを有する光のいずれの場合も、初期のVHR値、耐光試験後のVHR値は、上記組成例4とほぼ同様の結果になった。
(IPS型液晶パネル)
第1基板に形成された一対の櫛歯電極の上に、配向膜溶液をスピンコート法により形成し、配向膜を形成した。カラーフィルタおよびカラーフィルタ上に平坦化膜が形成された第2基板にも同様にして配向膜を形成した。櫛形透明電極および配向膜が形成された第1基板と、カラーフィルタおよびカラーフィルタ上に平坦化膜が形成された第2基板を、それぞれの配向膜が対向し、かつ直線偏光を照射した、または水平方向にラビングした方向がアンチパラレル方向(180°)となるように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により貼り合わせた。次に、配向膜表面及びシール剤により区画されたセルギャップ内に、下記の液晶組成物(液晶組成物1〜8)を、真空注入法により充填し、その後一対の偏光板を第1基板および第2基板上に貼りあわせIPS型の液晶パネルを作製した。
(FFS型液晶パネル)
第1の透明基板に平板状の共通電極を形成した後、絶縁層膜を形成し、さらに当該絶縁層膜上に透明櫛歯電極を形成した後、当該透明櫛歯電極上に配向膜溶液をスピンコート法により形成し、電極基板を形成した。カラーフィルタおよびカラーフィルタ上に平坦化膜が形成された第2基板にも同様にして配向膜を形成した。次いで、櫛形透明電極および配向膜が形成された第1基板と、カラーフィルタおよびカラーフィルタ上に平坦化膜が形成された第2基板を、それぞれの配向膜が対向し、かつ直線偏光を照射した、またはラビングした方向がアンチパラレル方向(180°)となるように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により張り合わせた。次に、配向膜表面及びシール剤により区画されたセルギャップ内に、下記の液晶組成物(液晶組成物9〜21)を、滴下法により、透明点をちょうど超える温度で充填し、その後、室温まで冷却することでFFS型の液晶パネルを作製した。
(2)バックライトユニットの作製
(発光用ナノ結晶フィルムの作製)
不揮発成分を100質量%にした際の発光用ナノ結晶(InP/ZnSコアシェルナノ結晶(赤色発光性)、InP/ZnSコアシェルナノ結晶(緑色発光性) いずれもオレイン酸リガンド)固形分が3質量部、光硬化性アクリル樹脂が93質量部、光開始剤が4質量部となる様、緑色および赤色の発光用ナノ結晶それぞれのトルエン分散体と光硬化性アクリル樹脂および光開始剤を混合し、エバポレータによりトルエンを抜く事で発光用ナノ結晶含有樹脂組成物を調製する。PETフィルム上に膜厚100umと成る様、この樹脂組成物を塗工した後、さらにPETフィルムを積層した。積算のUV照射量が5000mJまでUV照射を実施する事で光変換部(発光用ナノ結晶フィルム)を得た。
(バックライトユニット1の作製)
青色LED光源を導光板の一辺の端部に設置し、反射シートで照射面を除く部分を覆い、導光板の照射面に上記発光用ナノ結晶フィルムシートを配置しさらにその照射側に拡散シートを配置してバックライトユニット1を作製した。
(バックライトユニット2の作製)
光を散乱反射する下側反射板上に格子状に青色LEDが配置され、さらにその照射側直上には拡散板を配置し、その拡散板上に上記発光用ナノ結晶フィルムシートを配置しさらにその照射側に拡散シートを配置しバックライトユニット2を作製した。
(発光用ナノ結晶を含む発光素子の作製)
不揮発成分を100質量%にした際の発光用ナノ結晶(InP/ZnSコアシェルナノ結晶(赤色発光性)、InP/ZnSコアシェルナノ結晶(緑色発光性) いずれもオレイン酸リガンド)固形分が8質量部、エポキシ樹脂硬化剤および硬化触媒混合物が92質量部となる様、緑色および赤色の発光用ナノ結晶それぞれのトルエン分散体とエポキシ樹脂を混合し、エバポレータによりトルエンを抜く事で発光用ナノ結晶含有樹脂組成物を調整する。これに硬化剤および硬化触媒を混合した後、LED素子上に厚さが1mm程度となる様に上記組成物を塗工した。110℃×3時間の条件で樹脂を硬化させる事で光変換部を備えたLED素子を得た。
(バックライトユニット3の作製)
上記発光用ナノ結晶を含む青色LED素子を導光板の一辺の端部に設置し、反射シートで照射面を除く部分を覆い、導光板の照射面に上側に拡散シートを配置してバックライトユニット3を作製した。
(バックライトユニット4の作製)
光を散乱反射する下側反射板上に格子状に上記発光用ナノ結晶を含む青色LED素子を配置し、さらにその照射側直上には拡散板と拡散板上に拡散シートを配置しバックライトユニット4を作製した。
(発光用ナノ結晶含有透明管体の作製)
不揮発成分を100質量%にした際の発光用ナノ結晶(InP/ZnSコアシェルナノ結晶(赤色発光性)、InP/ZnSコアシェルナノ結晶(緑色発光性) いずれもオレイン酸リガンド)固形分が1質量部、エポキシ樹脂、硬化剤および硬化触媒混合物が99質量部となる様、緑色および赤色の発光用ナノ結晶それぞれのトルエン分散体とエポキシ樹脂を混合し、エバポレータによりトルエンを抜く事で発光用ナノ結晶含有樹脂組成物を調製した。その後、片方の端部を封止したガラス管に上記樹脂組成物を充填し、110℃×3時間の条件でエポキシ樹脂を硬化させて、最後に未封止の端部を封止することで発光用ナノ結晶含有透明管体を得た。
(バックライトユニット5の作製)
青色LED光源を導光板の一辺の端部に設置し、青色LED光源と導光板間には上記ナノ結晶含有透明管体を配置する。さらに反射シートで照射面を除く部分を覆い、導光板の照射面に拡散シートを配置してバックライトユニット5を作製した。
(3)液晶表示素子の作製と色再現領域の測定
上記得られたVA型液晶パネルおよび自発配向型VA液晶パネルに対して、上記で作製したバックライトユニット1〜5をそれぞれ取り付けて色再現領域を測定した。その結果、いずれも光変換部を備えた液晶表示素子と光変換部を備えていない従来の液晶表示素子とでは、前者の方が色再現領域の拡大が確認された。
同様に、上記で得られたIPS型液晶パネルに対して、上記で作製したバックライトユニット1〜5をそれぞれ取り付けて色再現領域を測定した。その結果、いずれも光変換部を備えた液晶表示素子と光変換部を備えていない従来の液晶表示素子とでは、前者の方が色再現領域の拡大が確認された。
上記得られたFFS型液晶パネルに対して、上記で作製したバックライトユニット1〜5をそれぞれ取り付けて色再現領域を測定した。その結果、いずれも光変換部を備えた液晶表示素子と光変換部を備えていない従来の液晶表示素子とでは、前者の方が色再現領域の拡大が確認された。
1000:液晶表示素子
100:バックライトユニット(101:光源部、102:導光部、103:光変換部)101:光源部(L:発光素子(105:発光ダイオード、110:光源基板)、112a、b:固定部材)
102:導光部(106:拡散板、104:導光板)
103:光変換部
110:光源基板
111:透明充填容器
112a、b:固定部材
113:凹部容器
SUB1:(透明)電極基板
SUB2:(透明)基板(電極を備えている場合も含む)
SUB3:(透明)基板
NC:発光用ナノ結晶(化合物半導体)
1、8:偏光層
2、7:透明基板
3:第一の電極層
3’:第二の電極層
4:配向膜
5:液晶層
6:カラーフィルタ(樹脂に色素が含まれて場合も含む)
11:ゲート電極
12:ゲート絶縁膜
13:半導体層
14:保護層
16:ドレイン電極
17:ソース電極
18:パッシベーション膜
21:画素電極
22:共通電極
33:平坦膜
35:絶縁膜

Claims (13)

  1. 第一の基板および第二の基板が対向して設けられる一対の基板と、
    前記第一の基板と第二の基板と間に挟持された液晶層と、
    前記第一の基板または第二の基板の少なくとも一方に設けられた画素電極と、
    前記第一の基板または第二の基板の少なくとも一方に設けられた共通電極と、
    ブラックマトリックスおよび赤色(R)、緑色(G)、青色(B)の三原色画素部から構成されるカラーフィルタと、
    紫外または可視光を発光する発光素子と、
    前記発光素子からの入射光を赤色(R)、緑色(G)、青色(B)の内少なくとも一色の光に変換して発光する発光用ナノ結晶を含有する光変換部と、を備え、
    前記液晶層が一般式(i):
    Figure 2018079528
    (式中、Ri1及びRi2はそれぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、Ai1は1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基を表し、ni1は0又は1を表す。)で表される化合物を10〜50重量%含有する液晶組成物を含有することを特徴とする液晶表示素子。
  2. 前記光変換部は、赤色(R)及び緑色(G)域に発光スペクトルを有し、前記発光素子が青色領域に発光スペクトルをする請求項1記載の液晶表示素子。
  3. 前記光変換部は、赤色(R)、緑色(G)及び青色(B)域に発光スペクトルを有し、前記発光素子が紫外領域に発光スペクトルをする請求項1記載の液晶表示素子。
  4. 赤色(R)、緑色(G)及び青色(B)域の少なくとも一つの発光スペクトルの半値幅が20から60nmである請求項2または3に記載の液晶表示素子。
  5. 前記光変換部は、前記第一の基板又は第二の基板の何れかで光源部側の基板と前記発光素子との間に設けられる、請求項1〜4のいずれか1項に記載の液晶表示素子。
  6. 前記光変換部は、シート状であり、前記第一の基板又は第二の基板の何れかで前記発光素子側の基板に対して全面に配置した請求項1〜5のいずれか1項に記載の液晶表示素子。
  7. 前記光変換部は、前記第一の基板又は第二の基板の側面部に設置された請求項1〜5のいずれか1項に記載の液晶表示素子。
  8. 前記発光素子および前記発光用ナノ結晶を含有する光変換部を備えた光源部を有する、請求項1〜5のいずれか1項に記載の液晶表示素子。
  9. 前記発光用ナノ結晶は、少なくとも1種の第一の半導体材料を含むコアと、
    前記コアを被覆し、かつ前記コアと同一または異なる第二の半導体材料を含むシェルとを有する、請求項1〜8のいずれか1項に記載の液晶表示素子。
  10. 前記第一の半導体材料は、II−VI族半導体、III−V族半導体、I−III−VI族半導体、IV族半導体及びI−II−IV−VI族半導体からなる群から選択される1種又は2種以上である、請求項9に記載の液晶表示素子。
  11. 前記液晶組成物が、一般式(N−1)
    Figure 2018079528
    (式中、RN11及びRN12はそれぞれ独立して、炭素原子数1〜8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の−CH−はそれぞれ独立して−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−によって置換されていてもよく、
    N11及びAN12はそれぞれ独立して
    (a) 1,4−シクロヘキシレン基(この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−O−に置き換えられてもよい。)及び
    (b) 1,4−フェニレン基(この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられてもよい。)
    (c) ナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基又はデカヒドロナフタレン−2,6−ジイル基(ナフタレン−2,6−ジイル基又は1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられても良い。)
    (d) 1,4−シクロヘキセニレン基
    からなる群より選ばれる基を表し、上記の基(a)、基(b)、基(c)及び基(d)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
    N11及びZN12はそれぞれ独立して、単結合、−CHCH−、−(CH −、−OCH−、−CHO−、−COO−、−OCO−、−OCF−、−CFO−、−CH=N−N=CH−、−CH=CH−、−CF=CF−又は−C≡C−を表し、
    N11及びnN12はそれぞれ独立して、0〜3の整数を表すが、nN11+nN1 はそれぞれ独立して1、2又は3であり、AN11〜AN12、ZN11〜ZN12が複数存在する場合は、それらは同一であっても異なっていても良い。)で表される化合物を20〜80重量%含有し誘電率異方性(Δε)が−1以下の液晶組成物を含む請求項1〜10のいずれか1項に記載の液晶表示素子。
  12. 前記液晶組成物は、一般式(J)
    Figure 2018079528
    (式中、RJ1は炭素原子数1〜8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の−CH−はそれぞれ独立して−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−によって置換されていてもよく、
    J1は、0、1、2、3又は4を表し、
    J1、AJ2及びAJ3はそれぞれ独立して、
    (a) 1,4−シクロヘキシレン基(この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−O−に置き換えられてもよい。)
    (b) 1,4−フェニレン基(この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられてもよい。)及び
    (c) ナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基又はデカヒドロナフタレン−2,6−ジイル基(ナフタレン−2,6−ジイル基又は1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられても良い。)
    からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子、塩素原子、メチル基、トリフルオロメチル基又はトリフルオロメトキシ基で置換されていても良く、
    J1及びZJ2はそれぞれ独立して単結合、−CHCH−、−(CH−、−OCH−、−CHO−、−OCF−、−CFO−、−COO−、−OCO−又は−C≡C−を表し、
    J1が2、3又は4であってAJ2が複数存在する場合は、それらは同一であっても異なっていても良く、nJ1が2、3又は4であってZJ1が複数存在する場合は、それらは同一であっても異なっていても良く、
    J1は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2−トリフルオロエチル基を表す。)で表される化合物を5〜60重量%含有し、誘電率異方性(Δε)が1以上の液晶組成物を含む請求項1から10のいずれか1項に記載の液晶表示素子。
  13. 前記液晶層における液晶組成物のΔnが0.05〜0.15である、請求項1〜12のいずれか1項に記載の液晶表示素子。
JP2018547678A 2016-10-27 2017-10-24 液晶表示素子 Pending JPWO2018079528A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016210620 2016-10-27
JP2016210620 2016-10-27
PCT/JP2017/038290 WO2018079528A1 (ja) 2016-10-27 2017-10-24 液晶表示素子

Publications (1)

Publication Number Publication Date
JPWO2018079528A1 true JPWO2018079528A1 (ja) 2019-09-19

Family

ID=62023516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018547678A Pending JPWO2018079528A1 (ja) 2016-10-27 2017-10-24 液晶表示素子

Country Status (3)

Country Link
JP (1) JPWO2018079528A1 (ja)
TW (1) TW201833301A (ja)
WO (1) WO2018079528A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018230322A1 (ja) * 2017-06-12 2019-11-14 Dic株式会社 重合性化合物及び液晶組成物
JP6725893B2 (ja) 2017-11-17 2020-07-22 Dic株式会社 重合性化合物、並びにそれを使用した液晶組成物及び液晶表示素子
JP6729815B2 (ja) 2018-03-01 2020-07-22 Dic株式会社 重合性化合物並びにそれを使用した液晶組成物及び液晶表示素子
WO2019235233A1 (ja) * 2018-06-05 2019-12-12 Dic株式会社 液晶表示素子
TWI814843B (zh) * 2018-07-03 2023-09-11 日商Dic股份有限公司 液晶顯示元件之製造方法
TWI809128B (zh) * 2018-07-03 2023-07-21 日商Dic股份有限公司 配向助劑、液晶組成物及液晶顯示元件
TWI791853B (zh) * 2018-07-03 2023-02-11 日商Dic股份有限公司 基板及液晶顯示元件
JP2020076826A (ja) * 2018-11-06 2020-05-21 Dic株式会社 液晶表示素子

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017125A2 (en) * 2004-07-08 2006-02-16 Evident Technologies Micronized semiconductor nanocrystal complexes and methods of making and using same
JP2012502322A (ja) * 2008-09-10 2012-01-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 偏光を発する蛍光バックライトを有する液晶ディスプレイ
JP2015157915A (ja) * 2014-02-25 2015-09-03 Jnc株式会社 液晶組成物および液晶表示素子
JP2015215577A (ja) * 2014-05-13 2015-12-03 富士フイルム株式会社 液晶表示装置
WO2016021333A1 (ja) * 2014-08-04 2016-02-11 Jnc株式会社 液晶表示素子
JP2016033203A (ja) * 2014-07-29 2016-03-10 Jnc株式会社 液晶組成物および液晶表示素子
WO2016047249A1 (ja) * 2014-09-22 2016-03-31 Jnc株式会社 液晶組成物および液晶表示素子
WO2016136344A1 (ja) * 2015-02-25 2016-09-01 Jnc株式会社 液晶組成物および液晶表示素子
WO2016152340A1 (ja) * 2015-03-24 2016-09-29 Jnc株式会社 液晶組成物および液晶表示素子
JP6011904B1 (ja) * 2014-12-12 2016-10-25 Dic株式会社 液晶表示素子及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017125A2 (en) * 2004-07-08 2006-02-16 Evident Technologies Micronized semiconductor nanocrystal complexes and methods of making and using same
JP2012502322A (ja) * 2008-09-10 2012-01-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 偏光を発する蛍光バックライトを有する液晶ディスプレイ
JP2015157915A (ja) * 2014-02-25 2015-09-03 Jnc株式会社 液晶組成物および液晶表示素子
JP2015215577A (ja) * 2014-05-13 2015-12-03 富士フイルム株式会社 液晶表示装置
JP2016033203A (ja) * 2014-07-29 2016-03-10 Jnc株式会社 液晶組成物および液晶表示素子
WO2016021333A1 (ja) * 2014-08-04 2016-02-11 Jnc株式会社 液晶表示素子
WO2016047249A1 (ja) * 2014-09-22 2016-03-31 Jnc株式会社 液晶組成物および液晶表示素子
JP6011904B1 (ja) * 2014-12-12 2016-10-25 Dic株式会社 液晶表示素子及びその製造方法
WO2016136344A1 (ja) * 2015-02-25 2016-09-01 Jnc株式会社 液晶組成物および液晶表示素子
WO2016152340A1 (ja) * 2015-03-24 2016-09-29 Jnc株式会社 液晶組成物および液晶表示素子

Also Published As

Publication number Publication date
TW201833301A (zh) 2018-09-16
WO2018079528A1 (ja) 2018-05-03

Similar Documents

Publication Publication Date Title
WO2018079528A1 (ja) 液晶表示素子
WO2018105545A1 (ja) 液晶表示素子
JP6628012B2 (ja) 光変換フィルム及びそれを用いた画像表示素子
KR102470362B1 (ko) 분산체 및 그것을 사용한 잉크젯용 잉크 조성물, 광변환층, 및 액정 표시 소자
JP6501134B2 (ja) 液晶表示素子
WO2018105439A1 (ja) 液晶表示素子
KR20200022374A (ko) 액정 조성물용 자발 배향 조제
CN109669290B (zh) 液晶显示器和液晶介质
TW201718834A (zh) 液晶顯示元件
JP2020177071A (ja) 液晶表示素子
JP6814924B2 (ja) 配向助剤を使用した液晶組成物及び液晶表示素子、およびその製造方法
JP6797361B2 (ja) 液晶表示素子
TWI836006B (zh) 液晶複合體、液晶調光元件、調光窗及智慧型窗戶
KR102360774B1 (ko) 액정 표시 장치 및 그 제조 방법
CN108020973B (zh) 液晶显示元件、显示装置
TWI859148B (zh) 液晶組成物
TWI794515B (zh) 液晶顯示元件及液晶顯示元件之製造方法
TWI791853B (zh) 基板及液晶顯示元件
JP2020204726A (ja) 液晶表示素子

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221011