Nothing Special   »   [go: up one dir, main page]

JPWO2002042507A1 - Hydrogen storage alloy and method for producing the same - Google Patents

Hydrogen storage alloy and method for producing the same Download PDF

Info

Publication number
JPWO2002042507A1
JPWO2002042507A1 JP2002545208A JP2002545208A JPWO2002042507A1 JP WO2002042507 A1 JPWO2002042507 A1 JP WO2002042507A1 JP 2002545208 A JP2002545208 A JP 2002545208A JP 2002545208 A JP2002545208 A JP 2002545208A JP WO2002042507 A1 JPWO2002042507 A1 JP WO2002042507A1
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
hydrogen
amount
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002545208A
Other languages
Japanese (ja)
Other versions
JP4102429B2 (en
Inventor
岡 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Publication of JPWO2002042507A1 publication Critical patent/JPWO2002042507A1/en
Application granted granted Critical
Publication of JP4102429B2 publication Critical patent/JP4102429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

圧力0.001〜10MPaにおける有効水素量が非常に高く、汎用性に富む水素吸蔵合金及び該合金を容易に得る製造方法であって、前記水素吸蔵合金は、組成式CraTibVcFedMeXf(M:Al等、X:La等。30≦a≦70、20≦b≦50、5≦c≦20、0<d≦10、0≦e≦0.1、0≦f≦0.1、a+b+c+d+e+f=100)で表され、O2を0.005〜0.150重量%含み、かつ温度0〜100℃、圧力0.001〜10MPaにおいて、2.2%以上の水素吸蔵・放出能を有する主にBCCを有し、前記製造方法は、合金原料の溶融工程(a)と、合金溶湯中にArを吹き込む工程(b1)等の脱酸素工程(b)と、鋳造工程(c)とを含む。A hydrogen storage alloy having a very high effective hydrogen amount at a pressure of 0.001 to 10 MPa and a versatile hydrogen storage alloy and a method for easily obtaining the alloy, wherein the hydrogen storage alloy has a composition formula of CraTibVcFedMeXf (M: Al, etc. X: La etc. 30 ≦ a ≦ 70, 20 ≦ b ≦ 50, 5 ≦ c ≦ 20, 0 <d ≦ 10, 0 ≦ e ≦ 0.1, 0 ≦ f ≦ 0.1, a + b + c + d + e + f = 100) It mainly contains BCC containing 0.005 to 0.150% by weight of O2 and having a hydrogen storage / release capacity of 2.2% or more at a temperature of 0 to 100 ° C and a pressure of 0.001 to 10 MPa. The manufacturing method includes a melting step (a) of the alloy raw material, a deoxidizing step (b) such as a step (b1) of blowing Ar into the molten alloy, and a casting step (c).

Description

技術分野
本発明は、室温から100℃の温度範囲で水素の吸蔵・放出を行なうための水素吸蔵合金及びその製造方法に関し、特に、車載或は定置式水素貯蔵の用途に有用な水素吸蔵合金及びその製造方法に関する。
背景技術
水素は、酸素と反応して水を生成し他に有害な物質を生成しないため、クリーンなエネルギーとして注目されている。水素は、一定割合の酸素と爆発的に反応するため取り扱いが困難とされているが、水素を金属に吸蔵させる吸蔵合金は、ボンベに比べてより多くの水素が貯蔵でき、安全であることから注目されている。
近年、水素吸蔵合金は、二次電池の負極に用いられ、生産量が飛躍的に伸びている。また、自動車の排気ガス規制が2004年から強化されるため、主要な自動車メーカーでは、二次電池を用いた電気自動車、或はメタノール改質により水素を取り出し、その水素と空気中の酸素とを反応させて電気を取り出す、固体高分子型燃料電池を用いた電気自動車の開発を行なっている。これらの電気自動車は、初期起動及び負荷変動に対処するために、水素を供給する水素ボンベ又は水素吸蔵合金が積載される。
現在、ガソリンエンジンとモーターとを積載したハイブリッドカーが市販されている。該ハイブリッドカーには、AB型水素吸蔵合金が利用されているが、一回の充電による走行距離をより長くし、車体を軽量化するために、より多くの水素吸蔵量を有する合金の改良及び開発が強く要望されている。
現在汎用されているAB型水素吸蔵合金の水素吸蔵量は、合金総重量に対して1.4%程度である。このAB型水素吸蔵合金の水素吸蔵量を上回る水素吸蔵合金としては、Fe−Ti系合金が古くから知られている。Fe−Ti系合金は、比較的安価で、プラトー圧が室温で0.4〜0.6MPaと優れているが、活性化が困難であるという欠点を持つ。しかし、該合金の水素吸蔵量は、合金総重量に対して1.7%と多い点で有望視されている。
水素吸蔵量が多い合金としては、MgNi合金が知られているが、その作用温度は300℃と高く、一般家庭及び家電での使用には温度が高すぎて適さない。
最近、室温から100℃の温度域で使用できる水素吸蔵合金として、体心立方構造(以下、BCCという)を有する水素吸蔵合金が注目されている。BCCは、四面体及び八面体の中心に空隙があり、この空隙に水素が吸蔵される。そして、BCCの合金の理論的な水素吸蔵量は、合金総重量に対して4.0%であると報告されている。
BCCの水素吸蔵合金としては、特開平10−110225号公報に、TiCr(x+y+z=100)の組成を有し、ラーベス相を除き、BCC相が出現し、かつスピノーダル分解が起こる範囲にあり、組織はスピノーダル分解により形成された規則的な周期構造からなり、見かけ上の格子定数が0.2950nm以上、0.3060nm以下である水素吸蔵合金が、特開平10−310833号公報には、Ti−V−Cr系の水素吸蔵合金が、特開平10−121180号公報には、Mo又はWを添加したBCCを有する合金として、Ti(100−a−b)−Cr−X(40<a<70、0<b<20)の合金が、特開平11−106859号公報には、Ti−V−Cr系合金に、Mn、Co、Ni、Zr、Nb、Hf、Ta、Alの1種又は2種以上の第4元素を添加し、その割合が原子%で、14<Ti<60、14<Cr<60、9<V<60、0<第4元素<8の範囲で合計100%とし、且つ金属組織をBCCにすることによりプラトー平坦性を改善した合金がそれぞれ開示されている。これらに提案された合金はBCCを有しているが、これら合金における水素吸蔵量は2.5%未満に過ぎない。
また、BCCを有する水素吸蔵合金においてFeを含むものとして、特開平9−49034号公報には、出発材料としてFe−V合金を用いて、少なくともV及びFeを含む3種以上の元素からなるBCCを有する水素吸蔵合金の製造方法が開示されている。しかし、この方法により得られる合金も水素吸蔵量は2.5%に達していない。一方、特許第2743123号には、Ti−Cr−V−Feの水素吸蔵合金が開示されているが、該合金の水素吸蔵量も2.5%以下である。
更に、水素吸蔵合金の吸蔵量は、合金中の酸素量の影響を受けることが報告されている(J.Alloys Comp.265(1998),p257−263)。そして、MH利用開発研究会・特別公開シンポジウム’99(1999.12.17)のテキストには、V−14原子%Ni−1原子%Nbのテルミット合金粗材を基に、その他構成元素及び5原子%のミッシュメタル(以下、Mmという)を減圧アルゴン雰囲気下でアーク溶解法により合金化した結果、酸素濃度を1%から0.06%に低減させることができ、これにより、水素吸蔵量が著しく向上したことが報告されている。しかし、この合金系においても水素吸蔵量は2.0%未満である。
ところで、従来における水素吸蔵合金の性能は、ある温度で吸蔵・放出を繰り返したときの最大水素吸蔵量、若しくは真空原点法に基づく水素吸蔵量により評価されている。しかし、実際に水素吸蔵合金を燃料電池に用いる場合、最大水素吸蔵量が重要ではなく、圧力範囲が0.001〜10MPaにおいて、吸蔵・放出に関与する水素量、即ち、利用可能な水素量(以下、有効水素量という)が重要となる。
従来、例えば、Vを含むBCC合金の最大水素吸蔵量又は第1サイクル目の吸蔵量の測定は、BCC合金の特徴である二段プラトーのうち、実際には利用できない一段目の低圧プラトーの水素量も測定しているため、上記有効水素量とはかけ離れた値となっている。また、従来の真空原点法における測定においても実用的でない低圧力範囲の水素までも測定しているため、上記有効水素量よりも大きな値となっている。
要するに、現在までに開発されているBCC型水素吸蔵合金の水素吸蔵量は、2.5%を超えると報告されているが、これらはいずれも最大水素吸蔵量での評価であり、有効水素量の評価ではない。従って、従来提案されているV量が20原子%以下の合金の水素吸蔵量を有効水素量で測定した場合、圧力範囲0.001〜10MPa、使用温度が室温から100℃の間の条件においては、2.2%を超える合金は知られていない。
BCCの水素吸蔵合金は、使用温度域でBCCとするために、その製造は、高温のBCC域から急冷される。従って、水素吸蔵合金の製造性の点では、状態図的に高温のBCC域が広い合金であることが有利である。このような高温のBCC域を広くするために、合金組成としてVが利用され、その代表例がTi−Cr−V系合金であり、Vの量に比例してBCCの存在範囲が広くなる。しかし、Vを主要成分として用いる場合には二つの問題がある。一つは金属Vの価格が高いことである。Vの含有量が多いと、水素吸蔵合金は高価となり汎用性を失う。もう一つの問題は、Vの融点が1910℃と高いことである。金属Vを溶解するために高温にすると、Ti−Cr−V系合金の主要元素であるTiが耐火物を還元し、溶融炉等の耐火物の寿命が短くなると共に、合金中の酸素量が高くなる。従って、Ti−Cr−V系合金の製造では、高価なVの添加量の低減と溶融温度の低下とが重要な課題となっている。
また、水素吸蔵合金の原料として、金属Vの代わりに、安価なフェロバナジウム(Fe−V)を使用することが考えられるが、Fe−Vの酸素含有量は0.5〜1.5%と非常に高いため、得られる水素吸蔵合金の酸素量が高くなり、水素吸蔵特性が低下する。
発明の開示
本発明の目的は、圧力0.001〜10MPaにおける有効水素量が非常に高く、汎用性に富む水素吸蔵合金及びその製造方法を提供することにある。
本発明の別の目的は、圧力0.001〜10MPaにおける有効水素量が非常に高く、汎用性に富む水素吸蔵合金を、Vの溶融温度よりも低い温度で容易に得ることができる水素吸蔵合金の製造方法を提供することにある。
本発明によれば、主たる結晶構造がBCCであって、組成式CrTiFeで表され、Oを0.005〜0.150重量%含み、かつ温度0〜100℃、圧力0.001〜10MPaにおいて、合金総重量に対して2.2%以上の水素吸蔵・放出能を有する水素吸蔵合金が提供される。
(組成式中、MはAl、Mo及びWからなる群より選択される1種又は2種以上を示し、XはLa、Mm、Ca及びMgからなる群より選択される1種又は2種以上を示す。a、b、c、d、e及びfは原子%であって、30≦a≦70、20≦b≦50、5≦c≦20、0<d≦10、0≦e≦10、0≦f≦10であり、a+b+c+d+e+f=100である。)
また本発明によれば、上記水素吸蔵合金の合金原料を溶融する溶融工程(a)と、合金溶湯中にアルゴンガスを吹き込む脱酸素工程(b1)、溶融した合金溶湯を0.1Pa以下の真空度に保持する脱酸素工程(b2)、及び合金溶湯中にLa、Mm、Ca及びMgからなる群より選択される1種又は2種以上を含有させ保持する脱酸素工程(b3)からなる少なくとも1つの脱酸素工程(b)と、合金溶湯を凝固させる鋳造工程(c)とを含み、必要により凝固させた合金を1150〜1450℃の温度域で1〜180分間保持した後、100℃/秒以上の冷却速度で400℃以下に冷却する工程(d)等を含む上記水素吸蔵合金の製造方法が提供される。
発明の好ましい実施の態様
以下に本発明を更に詳細に説明する。
本発明の水素吸蔵合金は、主たる結晶構造がBCCである。ここで、「主たる」とは、X線回折装置でBCC以外の第2相が明瞭に識別されない程度を意味する。
本発明の水素吸蔵合金は、組成式CrTiFeで表され、Oを特定量含有する。式中、MはAl、Mo及びWからなる群より選択される1種又は2種以上を示し、XはLa、Mm、Ca及びMgからなる群より選択される1種又は2種以上を示す。a、b、c、d、e及びfは原子%であって、30≦a≦70、20≦b≦50、5≦c≦20、0<d≦10、0≦e≦10、0≦f≦10であり、a+b+c+d+e+f=100である。
前記組成式において、Ti、Cr及びFeは、合金の結晶構造をBCCにするのに不可欠な元素であり、前記割合で含まれる必要がある。
前記組成式のVは高価な材料であり、20原子%を超えると水素吸蔵合金の価格が高くなりすぎて商品の市場性が失われ、5原子%未満ではBCCが得れら難い。Feが10原子%を超えると水素吸蔵量が急激に低下する。Feの含有割合を示す組成式のdは、1≦d≦10が好ましい。
前記組成式において、M中のMが10原子%を超えると、水素吸蔵量に悪影響を及ぼす。また、M中のMo又はWは、Ti−Crに20原子%以下添加することによりBCCとすることできるが、本発明のCr−Ti−V−Fe合金では、V及びFeが少量添加されているため、Mo及び/又はWの添加量が10原子%を超えるとBCCが得られず、水素吸蔵量も減少する。
前記組成式において、X中のLa、Mm、Ca及びMgからなる群より選択される1種又は2種以上は、本発明の水素吸蔵合金を製造する際に脱酸剤として添加さた場合に含有される。通常、合金原料中の酸素量の1.5倍以上添加されるが、得られる水素吸蔵合金中に10原子%を超えて含有される場合には、有効水素量が2.2%未満となる。
本発明の水素吸蔵合金においては、上記組成式のM及び/又はXが0の場合であっても所望の有効水素量が得られる。本発明の水素吸蔵合金がM及び/又はXを含む場合、即ち、それぞれ独立に0<e≦10、0<f≦10である場合の組成式におけるe及びfは、それぞれ独立に1≦e≦10、1≦f≦10が好ましい。以上の点から本発明の水素吸蔵合金は、組成式におけるM及びXの両方を含まない場合、M又はXの一方のみを含む場合、M及びXの両方を含む場合がある。
本発明の水素吸蔵合金は、上記組成式で示され、且つOを0.005重量%以上、0.150重量%以下、好ましくは0.04重量%以上、0.100重量%以下含む。O量が0.150重量%を超える場合には、所望の有効水素量が得られ難い。また、O量が0.005重量%未満では製造が困難である。
本発明の水素吸蔵合金においては、上記各成分の他に、本発明の所望の目的を損なわない範囲で不可避成分が含有されていても良い。
本発明の水素吸蔵合金は、温度0〜100℃、圧力0.001〜10MPaにおいて、合金総重量に対して2.2%以上、好ましくは2.4%以上の水素吸蔵・放出能を有する。該水素吸蔵・放出能の上限は特に限定されないが、3.0%程度である。
本発明の水素吸蔵合金を調製するには、以下の工程(a)〜(c)を必須の工程とし、必要により工程(d)等を行う本発明の製造方法が好ましく挙げられる。
即ち、本発明の製造方法では、本発明の水素吸蔵合金の合金原料を溶融する溶融工程(a)と、合金溶湯中にアルゴンガスを吹き込む脱酸素工程(b1)、溶融した合金溶湯を0.1Pa以下の真空度に保持する脱酸素工程(b2)、及び合金溶湯中にLa、Mm、Ca及びMgからなる群より選択される1種又は2種以上を含有させ保持する脱酸素工程(b3)からなる少なくとも1つの脱酸素工程(b)と、合金溶湯を凝固させる鋳造工程(c)と、必要により凝固させた合金を1150〜1450℃の温度域で1〜180分間保持した後、100℃/秒以上の冷却速度で400℃以下に冷却する工程(d)とを含む。
前記工程(a)において、水素吸蔵合金の合金原料は、Cr、Ti、V及びFeを含み、必要により、Al、Mo及びWからなる群より選択される1種又は2種以上のM成分、及び/又は、La、Mm、Ca及びMgからなる群より選択される1種又は2種以上のX成分等が挙げられる。各成分の配合割合は、上記所望組成となるように適宜選択することができる。
前記各原料は、金属単体でも、合金でも良く、例えば、合金としては、V金属よりも融点が低いFe−V合金や、Cr−Ti合金、Cr−V合金等が用いられる。また、金属V中の酸素量を低減するためにテルミット法で調製されたVは、通常Alを含むので、この残留Al量を上記所望組成の含有割合として考慮する必要がある。各原料の溶融順序は特に限定されず、同時に行っても、数回に分けて行っても良い。また、後述する脱酸素工程(b)の際に溶融させることもできる。
合金原料を溶融するには、例えば、各原料成分をアークメルト法、高周波炉中で溶融させる方法が採用できる。溶融雰囲気は、アルゴン雰囲気が好ましい。また、溶融温度は、原料溶融温度以上であって、その上限は1700℃が好ましい。この溶融温度を低くするために、V金属よりも融点の低いFe−V合金の使用が好ましい。該Fe−V合金は、水素吸蔵・放出能を低下させる酸素量が多く、高水素吸蔵・放出能を有する合金の製造には不向きであるが、本発明の製造方法では、得られる合金の酸素量を低減させる工程を含むのでこのような原料合金を有効に使用できる。
前記工程(b)は、前記脱酸素工程(b1)、(b2)及び(b3)からなる少なくとも1つを行う工程であって、2以上の工程を行うこともできる。
前記脱酸素工程(b1)は、前記工程(a)において溶融した合金溶湯に、アルゴンガスを吹込んで脱酸を行う工程であるが、脱酸を効率的に行うために、合金溶湯中にアルゴンガスを10秒間以上、5分間以下吹き込むことが有効である。この際吹き込むアルゴンガス量は、合金溶湯の容積や量を考慮して適宜選択決定することができる。
前記脱酸素工程(b2)は、前記工程(a)において溶融した合金溶湯を0.1Pa以下の真空度に保持して脱酸する工程である。真空度が0.1Paより高い場合、高率よく脱酸できない。脱酸時間は1〜5分間が好ましい。この際、合金溶湯と坩堝との反応性の点から、必要最小限の時間とすることが好ましい。
前記脱酸素工程(b3)は、合金溶湯中にLa、Mm、Ca及びMgからなる群より選択される1種又は2種以上を含有させ保持する工程である。従って、前記工程(a)における合金原料としてLa、Mm、Ca及びMgからなる群より選択される1種又は2種以上を含有させた場合には、溶融後、脱酸しうる所望時間、好ましくは1〜5分間保持することにより工程(b3)を行うことができる。また、合金溶湯を得た後に、所望量のLa、Mm、Ca及びMgからなる群より選択される1種又は2種以上を脱酸剤として投入、溶融し、上記所望時間保持することにより工程(b3)を行うこともできる。この際、脱酸剤として添加するLa、Mm、Ca、Mg又はこれらの混合物は、得られる合金組成に含まれる場合と、含まれない場合が生じる。含まれない場合には、前記組成式において、X=0の合金が得られる。また、含まれる場合には、前記Xの組成範囲となるようにその添加量を調整する必要がある。
上記脱酸剤を後から投入して溶融させる工程(b3)を採用する場合には、上記工程(b1)及び/又は(b2)を行なった後に行うことが脱酸剤を有効に作用させうる点から好ましい。
前記鋳造工程(c)は、上記合金溶湯を凝固させる工程であり、例えば、金型鋳造法、ストリップキャスト法等の公知の鋳造法に従って行うことができる。冷却条件は、適宜選択できるが、該条件の制御が容易な、若しくは粉砕が容易な2mm厚以下の薄片が得られるストリップキャスト法が好ましい。例えば、冷却条件は、冷却速度を制御して高温域でBCCを生成させる条件が好ましいが、後述する工程(d)を実施する場合には必ずしもこのような条件を設定する必要はなく、冷却速度が遅い条件を設定しても良い。
鋳造工程(c)の後、必要により工程(d)を実施する場合には、工程(c)で得られた合金をそのまま工程(d)に供することもできるが、鋳造工程(c)により得られた鋳造合金に対して、必要により、粉砕工程、均質化熱処理工程、時効熱処理工程等を適宜行った後に工程(d)に供することもできる。また、鋳造工程(c)において、後述する工程(d)を行なう場合には、必ずしも工程(c)で得られる鋳造合金がBCCを有している必要はなく、工程(d)においてBCCを生成させることもできる。
前記工程(d)は、工程(c)で鋳造した合金、若しくは必要により粉砕、各種熱処理を経た合金を、1150〜1450℃の温度域で1〜180分間、好ましくは1200〜1400℃で5〜20分間保持した後、100℃/秒以上、好ましくは500〜1000℃/秒の冷却速度で400℃以下、好ましくは室温程度まで冷却する工程である。工程(d)は、特に、工程(c)の凝固条件によってBCCが得られなかった場合等に実施して、本発明の水素吸蔵合金における所望のBCCを得ることができる。
本発明の製造方法は、その目的を損なわない範囲で、所望により上記工程以外の他の工程を含んでいても良い。
本発明の水素吸蔵合金は、BCCを有する特定組成で、且つ特定量のOが含有されるので、有効水素量が、従来では達成されていない高水素量とすることができる。従って、特に、電気自動車、ハイブリッドカー等の車載用として、更には定置式水素貯蔵用として極めて有用である。また、本発明の製造方法では、特定な合金原料を用いて、脱酸工程(b)及び鋳造や、必要により、特定の熱処理及び冷却を行う工程(d)を行うので、汎用性に富む本発明の水素吸蔵合金を、Vの溶融温度よりも低い温度で容易に得ることができる。
実施例
以下、実施例及び比較例により本発明を更に詳細に説明するが、本発明はこれらに限定されない。
実施例1〜8及び比較例1,2
テルミット法で製造した酸素量が0.55重量%のVを用いて、アークメルト法によりCr−Ti−V−Fe合金又はCr−Ti−V−Fe−Al合金を製造した。これらの合金を基本成分とし、表1に示すLa、Mm、Ca又はMgを目標成分となるように秤量し、これら合金及び金属を水冷銅金型に総量20g投入した。次いで、アルゴン雰囲気中アーク溶解した後、鋳造した材料を上下反転し、再度溶解するという作業を3回繰り返し、La、Mm、Ca又はMgを合金溶湯に含有させ保持する工程(b3)を行って鋳造合金を得た。
得られた鋳造合金をそれぞれ3g採取し、PCT装置(鈴木商館製、PCT−4SWIN)を用い、40℃において、0.01〜5MPaの水素圧で水素の吸蔵放出を繰り返し、3サイクル目の吸蔵放出曲線から有効水素量を求めた。結果を表1に示す。
次いで、得られたそれぞれの合金を、1400℃で10分間保持し、次いで、550〜1000℃/秒の冷却速度で300℃まで冷却し、その後、室温まで自然冷却させた。得られた合金組成を、合金中の酸素量は赤外吸収法で、それ以外の元素はICP発光分光分析法により測定した。更に、得られた合金をそれぞれ3g採取し、PCT装置(鈴木商館製、PCT−4SWIN)を用い、40℃において、0.01〜5MPaの水素圧で水素の吸蔵放出を繰り返し、3サイクル目の吸蔵放出曲線から有効水素量を求めた。また合金中のBCC相の割合は、X線回折法により測定した。これらの結果を表1に示す。
表1より、本発明による合金は、鋳造合金の有効水素量が低い場合であっても2.2%以上であった。これに対し、従来組成からなる比較例の合金はいずれも有効水素量が2.2%を下回った。

Figure 2002042507
実施例9〜15及び比較例3,4
テルミット法で製造した酸素量が0.55重量%のFe−VとCr−Ti合金とをMgOの坩堝に初期装荷し、1650℃で溶解した後、0.08MPaの真空下で3分間保持した。次いで、アルゴン雰囲気に切り替え、ランスで純アルゴンを溶湯中に吹込み、再び0.08MPaの真空下で3分間保持した。その後、成分の微調整とLa、Mm、Ca又はMgを添加した。溶湯が1680℃になった時点で溶湯を回転速度1m/秒又は15m/秒の速度の銅ロール上に注湯し、ストリップキャスト法により薄片合金を製造した。得られた合金をそれぞれ3g採取し、PCT装置(鈴木商館製、PCT−4SWIN)を用い、40℃において、0.01〜5MPaの水素圧で水素の吸蔵放出を繰り返し、3サイクル目の吸蔵放出曲線から有効水素量を求めた。結果を表2に示す。
次いで、得られた薄片を1400℃で10分間保持した後、室温まで1000℃/秒の冷却速度で水冷し合金を得た。得られた合金のそれぞれの基本合金組成と、合金中のLa、Mm、Ca又はMgの量、並びにO量を実施例1〜8と同様に測定した。更に、得られた合金をそれぞれ3g採取し、PCT装置(鈴木商館製、PCT−4SWIN)を用い、40℃において、0.01〜5MPaの水素圧で水素の吸蔵放出を繰り返し、3サイクル目の吸蔵放出曲線から有効水素量を求めた。これらの結果を表2に示す。
表2の結果より、実施例で得られた合金はいずれも酸素量が0.1重量%未満であり、PCT曲線から求めた有効水素量は、たとえ鋳造後の合金の有効水素量が2.2%を下回っていても本発明の合金は、その後の熱処理により、有効水素量が2.2%を上回った。
Figure 2002042507
比較例5
テルミット法で製造した酸素量が0.65重量%のFe−V合金と、Cr−V合金と、金属Tiとを主原料として用い高周波炉で溶融した後、Cr49Ti3115FeLaの合金を溶製した。即ち、前記原料をMgOの坩堝に初期装荷し、1650℃で溶解した後、1m/秒の速度で回転中の銅ロール上に注湯し、薄片合金を鋳造した。続いて、得られた合金を1300℃で10分間保持した後、室温まで急冷して合金を得た。得られたそれぞれの合金について、酸素量及びPCT曲線を実施例1〜8と同様に測定した。結果を表3に示す。
実施例16
比較例5と同じ原料を1650℃に溶融した後、0.06MPaの真空下で5分間保持した。次いで、アルゴン雰囲気に切り替え、ランスで純アルゴンを溶湯中に吹込んだ後、再び0.06MPaの真空下で3分間保持した。次いで、合金溶湯を、1m/秒の速度で回転中の銅ロール上に注湯し、薄片合金を鋳造した。続いて、得られた合金を1300℃で10分間保持した後、室温まで急冷して合金を得た。得られたそれぞれの合金について、酸素量及びPCT曲線を実施例1〜8と同様に測定した。結果を表3に示す。
表3より、本発明の合金組成と同じ組成でも、従来法に準じて製造された比較例5の合金は、本発明の合金に比して酸素量が高く、有効水素量も少ないことが判る。
Figure 2002042507
TECHNICAL FIELD The present invention relates to a hydrogen storage alloy for storing and releasing hydrogen in a temperature range from room temperature to 100 ° C. and a method for producing the same, and is particularly useful for use in vehicles or stationary hydrogen storage. The present invention relates to a hydrogen storage alloy and a method for producing the same.
BACKGROUND ART Hydrogen is attracting attention as clean energy because it reacts with oxygen to produce water and does not produce other harmful substances. It is considered difficult to handle hydrogen because it reacts explosively with a certain percentage of oxygen.However, storage alloys that store hydrogen in metal can store more hydrogen than cylinders and are safer. Attention has been paid.
In recent years, hydrogen storage alloys have been used for negative electrodes of secondary batteries, and their production has been dramatically increased. In addition, since automobile exhaust gas regulations have been tightened since 2004, major automakers take out hydrogen from electric vehicles using secondary batteries or methanol reforming, and convert the hydrogen with oxygen in the air. We are developing an electric vehicle that uses a polymer electrolyte fuel cell to extract electricity by reacting. These electric vehicles are loaded with a hydrogen cylinder or a hydrogen storage alloy for supplying hydrogen in order to cope with initial startup and load fluctuation.
Currently, hybrid cars loaded with a gasoline engine and a motor are commercially available. The hybrid car uses an AB 5 type hydrogen storage alloy, but in order to extend the mileage per charge and reduce the weight of the body, an alloy with a larger amount of hydrogen storage is improved. And development is strongly desired.
Current hydrogen storage capacity of AB 5 -type hydrogen absorbing alloy which is widely is about 1.4% of the alloy the total weight. As a hydrogen storage alloy exceeding the hydrogen storage capacity of the AB 5- type hydrogen storage alloy, an Fe-Ti alloy has been known for a long time. Fe-Ti alloys are relatively inexpensive and have an excellent plateau pressure of 0.4 to 0.6 MPa at room temperature, but have the drawback that activation is difficult. However, the hydrogen storage capacity of the alloy is considered promising in that it is as high as 1.7% with respect to the total weight of the alloy.
MgNi 2 alloy is known as an alloy having a large amount of hydrogen storage, but its operating temperature is as high as 300 ° C., and it is not suitable for use in general households and home appliances because it is too hot.
Recently, a hydrogen storage alloy having a body-centered cubic structure (hereinafter, referred to as BCC) has attracted attention as a hydrogen storage alloy that can be used in a temperature range from room temperature to 100 ° C. The BCC has a void at the center of the tetrahedron and the octahedron, and hydrogen is occluded in this void. The theoretical hydrogen storage capacity of the BCC alloy is reported to be 4.0% based on the total weight of the alloy.
The BCC of the hydrogen storage alloy, in JP-A-10-110225 has a composition of Ti x Cr y V z (x + y + z = 100), except for the Laves phase, BCC phase appeared, and the spinodal decomposition occurs In the range, the structure is composed of a regular periodic structure formed by spinodal decomposition, and a hydrogen storage alloy having an apparent lattice constant of 0.2950 nm or more and 0.3060 nm or less is disclosed in JP-A-10-310833. is, Ti-V-Cr-based hydrogen storage alloy, JP-a-10-121180, an alloy having a BCC added with Mo or W, Ti (100-a- b) -Cr a -X b (40 <a <70, 0 <b <20) are disclosed in Japanese Patent Application Laid-Open No. H11-106589, in which Mn, Co, Ni, Zr, and Nb are added to Ti-V-Cr alloys. One or more fourth elements of Hf, Ta, and Al are added, and the ratio is atomic%, 14 <Ti <60, 14 <Cr <60, 9 <V <60, 0 <fourth element Disclosed are alloys each having a total of 100% in the range of <8 and improving the plateau flatness by making the metal structure BCC. These proposed alloys have a BCC, but the hydrogen storage in these alloys is less than 2.5%.
Japanese Patent Application Laid-Open No. 9-49034 discloses a hydrogen storage alloy containing BCC containing Fe as a starting material and using a BCC comprising at least three elements containing at least V and Fe. A method for producing a hydrogen storage alloy having However, the alloy obtained by this method also has a hydrogen storage amount of less than 2.5%. On the other hand, Patent No. 2743123 discloses a hydrogen storage alloy of Ti-Cr-V-Fe, and the hydrogen storage amount of the alloy is 2.5% or less.
Furthermore, it has been reported that the amount of occluded hydrogen storage alloy is affected by the amount of oxygen in the alloy (J. Alloys Comp. 265 (1998), p257-263). The text of the MH Utilization Development Research Group Special Open Symposium '99 (1999.12.17) contains, based on thermite alloy coarse material of V-14 atomic% Ni-1 atomic% Nb, other constituent elements and 5 Atomic% of misch metal (hereinafter, referred to as Mm) is alloyed by arc melting under a reduced pressure argon atmosphere. As a result, the oxygen concentration can be reduced from 1% to 0.06%, thereby reducing the hydrogen storage capacity. Significant improvements have been reported. However, even in this alloy system, the hydrogen storage amount is less than 2.0%.
By the way, the performance of a conventional hydrogen storage alloy is evaluated based on the maximum hydrogen storage amount when storage and release are repeated at a certain temperature or the hydrogen storage amount based on the vacuum origin method. However, when a hydrogen storage alloy is actually used in a fuel cell, the maximum amount of hydrogen storage is not important, and when the pressure range is 0.001 to 10 MPa, the amount of hydrogen involved in storage and release, that is, the amount of available hydrogen ( Hereinafter, the amount of effective hydrogen is important.
Conventionally, for example, the measurement of the maximum hydrogen storage amount or the first cycle storage amount of a BCC alloy containing V is based on the hydrogen of a first-stage low-pressure plateau that cannot be actually used among the two-stage plateaus characteristic of the BCC alloy. Since the amount is also measured, the value is far from the effective hydrogen amount. In addition, even in the conventional vacuum origin method, hydrogen is measured in a low pressure range that is not practical, so that the value is larger than the effective hydrogen amount.
In short, the hydrogen storage capacity of BCC type hydrogen storage alloys developed to date has been reported to exceed 2.5%, but these are all evaluations at the maximum hydrogen storage capacity, and the effective hydrogen storage capacity is Not an evaluation. Therefore, when the hydrogen storage amount of the conventionally proposed alloy having a V content of 20 atomic% or less is measured in terms of the effective hydrogen content, under the conditions where the pressure range is 0.001 to 10 MPa and the operating temperature is between room temperature and 100 ° C. No alloys exceeding 2.2% are known.
The production of the hydrogen storage alloy of BCC is quenched from the high-temperature BCC region in order to obtain BCC in the operating temperature range. Therefore, from the viewpoint of manufacturability of the hydrogen storage alloy, it is advantageous that the alloy has a wide high-temperature BCC region in a phase diagram. In order to widen such a high-temperature BCC region, V is used as an alloy composition. A typical example thereof is a Ti-Cr-V-based alloy, and the existence range of BCC increases in proportion to the amount of V. However, when V is used as a main component, there are two problems. One is that the price of metal V is high. If the content of V is large, the hydrogen storage alloy becomes expensive and loses versatility. Another problem is that the melting point of V is as high as 1910 ° C. When the temperature is raised to dissolve the metal V, Ti, which is a main element of the Ti-Cr-V-based alloy, reduces the refractory, shortens the life of the refractory such as a melting furnace, and reduces the amount of oxygen in the alloy. Get higher. Therefore, in the production of a Ti—Cr—V alloy, reduction of the amount of expensive V and reduction of the melting temperature are important issues.
It is conceivable to use inexpensive ferrovanadium (Fe-V) instead of metal V as a raw material of the hydrogen storage alloy, but the oxygen content of Fe-V is 0.5 to 1.5%. Since it is very high, the amount of oxygen in the obtained hydrogen storage alloy is high, and the hydrogen storage properties are reduced.
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a highly versatile hydrogen storage alloy having a very high effective hydrogen amount at a pressure of 0.001 to 10 MPa and a method for producing the same.
Another object of the present invention is to provide a hydrogen storage alloy which has a very high effective hydrogen amount at a pressure of 0.001 to 10 MPa and can easily obtain a versatile hydrogen storage alloy at a temperature lower than the melting temperature of V. It is to provide a manufacturing method of.
According to the present invention, there is provided a main crystal structure is BCC, expressed by a composition formula Cr a Ti b V c Fe d M e X f, wherein the O 2 0.005 to 0.150 wt%, and the temperature 0 Provided is a hydrogen storage alloy having a hydrogen storage / release capability of 2.2% or more based on the total weight of the alloy at -100 ° C and a pressure of 0.001-10 MPa.
(In the formula, M represents one or more selected from the group consisting of Al, Mo, and W, and X represents one or more selected from the group consisting of La, Mm, Ca, and Mg.) A, b, c, d, e, and f are atomic%, and 30 ≦ a ≦ 70, 20 ≦ b ≦ 50, 5 ≦ c ≦ 20, 0 <d ≦ 10, and 0 ≦ e ≦ 10. , 0 ≦ f ≦ 10, and a + b + c + d + e + f = 100.)
Further, according to the present invention, a melting step (a) for melting the alloy raw material of the hydrogen storage alloy, a deoxidizing step (b1) of blowing argon gas into the molten alloy, and a vacuum of 0.1 Pa or less are applied to the molten molten alloy. At least one of a deoxidizing step (b2) of holding the molten alloy and one or more selected from the group consisting of La, Mm, Ca and Mg in the molten alloy (b3). The method includes one deoxidizing step (b) and a casting step (c) of solidifying the molten alloy. If necessary, the solidified alloy is held in a temperature range of 1150 to 1450 ° C. for 1 to 180 minutes, and then heated at 100 ° C. / A method for producing the above hydrogen storage alloy is provided, which includes a step (d) of cooling to 400 ° C. or less at a cooling rate of at least seconds.
A preferred embodiment of the invention <br/> below present invention will be described in more detail.
The main crystal structure of the hydrogen storage alloy of the present invention is BCC. Here, "main" means the degree to which the second phase other than BCC is not clearly identified by the X-ray diffractometer.
The hydrogen storage alloy of the present invention are represented by the composition formula Cr a Ti b V c Fe d M e X f, specifies the amount containing O 2. In the formula, M represents one or more selected from the group consisting of Al, Mo, and W, and X represents one or more selected from the group consisting of La, Mm, Ca, and Mg. . a, b, c, d, e and f are atomic%, and 30 ≦ a ≦ 70, 20 ≦ b ≦ 50, 5 ≦ c ≦ 20, 0 <d ≦ 10, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, and a + b + c + d + e + f = 100.
In the above composition formula, Ti, Cr and Fe are indispensable elements for making the crystal structure of the alloy into BCC, and need to be contained in the above ratio.
V in the above composition formula is an expensive material. If it exceeds 20 atomic%, the price of the hydrogen storage alloy becomes too high, and the marketability of the product is lost. If it is less than 5 atomic%, it is difficult to obtain BCC. If Fe exceeds 10 atomic%, the amount of hydrogen occlusion drops sharply. D in the composition formula indicating the Fe content ratio is preferably 1 ≦ d ≦ 10.
In the above composition formula, if M in M exceeds 10 atomic%, it has a bad influence on the hydrogen storage amount. Further, Mo or W in M can be made into BCC by adding 20 atomic% or less to Ti-Cr, but in the Cr-Ti-V-Fe alloy of the present invention, V and Fe are added in small amounts. Therefore, when the addition amount of Mo and / or W exceeds 10 atomic%, BCC cannot be obtained, and the hydrogen storage amount decreases.
In the above composition formula, one or two or more selected from the group consisting of La, Mm, Ca and Mg in X, when added as a deoxidizing agent when producing the hydrogen storage alloy of the present invention. Contained. Usually, it is added at least 1.5 times the amount of oxygen in the alloy raw material, but when it is contained in the obtained hydrogen storage alloy in excess of 10 atomic%, the effective hydrogen amount is less than 2.2%. .
In the hydrogen storage alloy of the present invention, a desired effective hydrogen amount can be obtained even when M and / or X in the above composition formula is 0. When the hydrogen storage alloy of the present invention contains M and / or X, that is, when independently 0 <e ≦ 10 and 0 <f ≦ 10, e and f are independently 1 ≦ e ≦ 10 and 1 ≦ f ≦ 10 are preferred. From the above points, the hydrogen storage alloy of the present invention may contain neither M nor X in the composition formula, contain only M or X, or contain both M and X in the composition formula.
The hydrogen storage alloy of the present invention are represented by the above composition formula, and O 2 0.005 wt% or more, 0.150 wt% or less, preferably 0.04 wt% or more, 0.100% by weight or less. If the O 2 content exceeds 0.150% by weight, it is difficult to obtain a desired effective hydrogen content. If the O 2 content is less than 0.005% by weight, the production is difficult.
The hydrogen storage alloy of the present invention may contain, in addition to the above components, unavoidable components as long as the desired object of the present invention is not impaired.
The hydrogen storage alloy of the present invention has a hydrogen storage / release capacity of 2.2% or more, preferably 2.4% or more, based on the total weight of the alloy, at a temperature of 0 to 100 ° C and a pressure of 0.001 to 10 MPa. The upper limit of the hydrogen storage / release capacity is not particularly limited, but is about 3.0%.
In order to prepare the hydrogen storage alloy of the present invention, the following steps (a) to (c) are essential steps, and the production method of the present invention in which step (d) and the like are performed as necessary is preferably mentioned.
That is, in the production method of the present invention, a melting step (a) of melting the alloy raw material of the hydrogen storage alloy of the present invention, a deoxidizing step (b1) of blowing an argon gas into the molten alloy, and the melting of the molten alloy to 0. A deoxidation step (b2) of maintaining a degree of vacuum of 1 Pa or less, and a deoxidation step (b3) of containing and maintaining one or more selected from the group consisting of La, Mm, Ca and Mg in a molten alloy. ), A casting step (c) of solidifying the molten alloy, and, if necessary, holding the solidified alloy in a temperature range of 1150 to 1450 ° C for 1 to 180 minutes. (D) cooling to 400 ° C. or lower at a cooling rate of not lower than 400 ° C./sec.
In the step (a), the alloy raw material of the hydrogen storage alloy contains Cr, Ti, V, and Fe, and, if necessary, one or more M components selected from the group consisting of Al, Mo, and W; And / or one or more X components selected from the group consisting of La, Mm, Ca and Mg. The mixing ratio of each component can be appropriately selected so as to obtain the desired composition.
Each of the raw materials may be a simple metal or an alloy. For example, as the alloy, an Fe-V alloy, a Cr-Ti alloy, a Cr-V alloy, or the like having a melting point lower than that of V metal is used. In addition, V prepared by thermit method in order to reduce the amount of oxygen in the metal V usually contains Al, so it is necessary to consider this residual Al amount as the content ratio of the desired composition. The order of melting the raw materials is not particularly limited, and they may be performed simultaneously or may be performed several times. Further, it can be melted at the time of the deoxidation step (b) described later.
In order to melt the alloy raw materials, for example, a method in which each raw material component is melted in an arc melt method or a high-frequency furnace can be adopted. The melting atmosphere is preferably an argon atmosphere. The melting temperature is equal to or higher than the raw material melting temperature, and the upper limit is preferably 1700 ° C. In order to lower the melting temperature, it is preferable to use an Fe-V alloy having a lower melting point than V metal. The Fe-V alloy has a large amount of oxygen that reduces the ability to store and release hydrogen, and is not suitable for producing an alloy having a high ability to store and release hydrogen. Since the step of reducing the amount is included, such a raw material alloy can be used effectively.
The step (b) is a step of performing at least one of the deoxidizing steps (b1), (b2), and (b3), and may include two or more steps.
The deoxidation step (b1) is a step in which argon gas is blown into the molten alloy melted in the step (a) to perform deoxidation. In order to perform deoxidation efficiently, argon is added to the molten alloy. It is effective to blow gas for 10 seconds or more and 5 minutes or less. At this time, the amount of argon gas to be blown can be appropriately selected and determined in consideration of the volume and amount of the molten alloy.
The deoxidizing step (b2) is a step of deoxidizing the molten alloy melted in the step (a) while maintaining the degree of vacuum at 0.1 Pa or less. When the degree of vacuum is higher than 0.1 Pa, deoxidation cannot be performed at a high rate. The deacidification time is preferably 1 to 5 minutes. At this time, it is preferable to set the time to the minimum necessary in view of the reactivity between the molten alloy and the crucible.
The deoxidation step (b3) is a step of containing one or more selected from the group consisting of La, Mm, Ca and Mg in the molten alloy and holding the same. Therefore, when one or more selected from the group consisting of La, Mm, Ca and Mg are contained as the alloy raw material in the step (a), a desired time for deoxidation after melting is preferable. The step (b3) can be performed by holding for 1 to 5 minutes. Further, after obtaining the molten alloy, a desired amount of one or more selected from the group consisting of La, Mm, Ca and Mg is charged as a deoxidizing agent, melted, and maintained for the desired time. (B3) can also be performed. At this time, La, Mm, Ca, Mg or a mixture thereof added as a deoxidizer may or may not be included in the obtained alloy composition. If not included, an alloy having X = 0 in the above composition formula is obtained. In addition, when it is included, it is necessary to adjust the addition amount so as to be within the composition range of X.
In the case where the step (b3) of introducing and melting the deoxidizing agent later is performed, the step (b1) and / or (b2) may be performed after the step (b1) to effectively act the deoxidizing agent. Preferred from the point.
The casting step (c) is a step of solidifying the molten alloy and can be performed according to a known casting method such as a die casting method and a strip casting method. The cooling conditions can be selected as appropriate, but a strip casting method is preferred, in which the conditions can be easily controlled, or a flake having a thickness of 2 mm or less can be easily obtained. For example, the cooling condition is preferably such that the cooling rate is controlled to generate BCC in a high temperature range. However, when performing the step (d) described below, it is not always necessary to set such a condition. May be set as a slow condition.
When the step (d) is performed after the casting step (c) if necessary, the alloy obtained in the step (c) can be directly used in the step (d). The cast alloy thus obtained may be subjected to a step (d) after appropriately performing a pulverizing step, a homogenizing heat treatment step, an aging heat treatment step, and the like, if necessary. In the case where the step (d) described later is performed in the casting step (c), the cast alloy obtained in the step (c) does not necessarily have to have BCC, and the BCC is generated in the step (d). It can also be done.
In the step (d), the alloy cast in the step (c) or the alloy that has been subjected to pulverization and various heat treatments as necessary is subjected to a temperature range of 1150 to 1450 ° C. for 1 to 180 minutes, preferably 1200 to 1400 ° C. for 5 to 1 minute. After holding for 20 minutes, the cooling step is performed at a cooling rate of 100 ° C./sec or more, preferably 500 to 1000 ° C./sec, and 400 ° C. or less, preferably about room temperature. The step (d) is performed particularly when the BCC cannot be obtained due to the solidification conditions in the step (c), and the desired BCC in the hydrogen storage alloy of the present invention can be obtained.
The production method of the present invention may include, if desired, other steps other than the above steps as long as the object is not impaired.
Since the hydrogen storage alloy of the present invention has a specific composition having BCC and contains a specific amount of O 2 , the effective hydrogen amount can be a high hydrogen amount which has not been achieved conventionally. Therefore, it is particularly useful for in-vehicle use such as electric vehicles and hybrid cars, and for stationary hydrogen storage. Further, in the production method of the present invention, the deoxidizing step (b) and the casting and, if necessary, the step (d) of performing a specific heat treatment and cooling are performed by using a specific alloy raw material. The hydrogen storage alloy of the invention can be easily obtained at a temperature lower than the melting temperature of V.
Examples Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
Examples 1 to 8 and Comparative Examples 1 and 2
A Cr-Ti-V-Fe alloy or a Cr-Ti-V-Fe-Al alloy was produced by an arc melt method using V having an oxygen amount of 0.55% by weight produced by a thermite method. Using these alloys as basic components, La, Mm, Ca or Mg shown in Table 1 were weighed so as to be target components, and a total of 20 g of these alloys and metals were put into a water-cooled copper mold. Next, after performing arc melting in an argon atmosphere, the operation of turning the cast material upside down and melting again is repeated three times, and a step (b3) of containing and holding La, Mm, Ca or Mg in the molten alloy is performed. A cast alloy was obtained.
3 g of each of the obtained cast alloys was sampled, and storage and release of hydrogen were repeated at 40 ° C. and a hydrogen pressure of 0.01 to 5 MPa using a PCT apparatus (manufactured by Suzuki Shokan Co., Ltd., PCT-4SWIN). The effective hydrogen amount was determined from the release curve. Table 1 shows the results.
Next, each of the obtained alloys was held at 1400 ° C. for 10 minutes, then cooled to 300 ° C. at a cooling rate of 550 to 1000 ° C./sec, and then naturally cooled to room temperature. In the obtained alloy composition, the oxygen content in the alloy was measured by an infrared absorption method, and the other elements were measured by ICP emission spectroscopy. Further, 3 g of each of the obtained alloys was sampled, and storage and release of hydrogen were repeated at 40 ° C. and a hydrogen pressure of 0.01 to 5 MPa using a PCT apparatus (manufactured by Suzuki Shokan, PCT-4SWIN) at the third cycle. The effective hydrogen amount was determined from the storage / release curve. The proportion of the BCC phase in the alloy was measured by an X-ray diffraction method. Table 1 shows the results.
Table 1 shows that the alloy according to the present invention was 2.2% or more even when the effective hydrogen content of the cast alloy was low. In contrast, the alloys of the comparative examples having the conventional composition all had an effective hydrogen amount of less than 2.2%.
Figure 2002042507
Examples 9 to 15 and Comparative Examples 3 and 4
An initial amount of Fe—V and a Cr—Ti alloy having an oxygen content of 0.55% by weight manufactured by the thermite method was initially loaded in a crucible of MgO, melted at 1650 ° C., and then held under a vacuum of 0.08 MPa for 3 minutes. . Next, the atmosphere was switched to an argon atmosphere, and pure argon was blown into the molten metal with a lance, and again maintained under a vacuum of 0.08 MPa for 3 minutes. Thereafter, fine adjustment of the components and addition of La, Mm, Ca or Mg were performed. When the temperature of the molten metal reached 1680 ° C., the molten metal was poured onto a copper roll having a rotation speed of 1 m / sec or 15 m / sec, and a flake alloy was produced by strip casting. 3 g of each of the obtained alloys was sampled, and storage and release of hydrogen were repeated at 40 ° C. and a hydrogen pressure of 0.01 to 5 MPa using a PCT device (manufactured by Suzuki Shokan, PCT-4SWIN) at the third cycle. The effective hydrogen amount was determined from the curve. Table 2 shows the results.
Next, the obtained flake was kept at 1400 ° C. for 10 minutes, and then water-cooled to room temperature at a cooling rate of 1000 ° C./sec to obtain an alloy. The respective basic alloy compositions of the obtained alloys, the amounts of La, Mm, Ca or Mg in the alloys, and the amount of O 2 were measured in the same manner as in Examples 1 to 8. Further, 3 g of each of the obtained alloys was sampled, and storage and release of hydrogen were repeated at 40 ° C. and a hydrogen pressure of 0.01 to 5 MPa using a PCT apparatus (manufactured by Suzuki Shokan, PCT-4SWIN) at the third cycle. The effective hydrogen amount was determined from the storage / release curve. Table 2 shows the results.
From the results shown in Table 2, all the alloys obtained in the examples have an oxygen content of less than 0.1% by weight, and the effective hydrogen content obtained from the PCT curve is, as shown in FIG. Even if less than 2%, the alloy of the present invention had an effective hydrogen content exceeding 2.2% by the subsequent heat treatment.
Figure 2002042507
Comparative Example 5
After melting in a high frequency furnace using a Fe-V alloy, a Cr-V alloy, and metal Ti as main raw materials having an oxygen amount of 0.65% by weight manufactured by a thermite method, Cr 49 Ti 31 V 15 FeLa 4 was used. The alloy was melted. That is, the raw material was initially loaded into a MgO crucible, melted at 1650 ° C., and then poured onto a rotating copper roll at a speed of 1 m / sec to cast a flake alloy. Subsequently, the obtained alloy was kept at 1300 ° C. for 10 minutes, and then rapidly cooled to room temperature to obtain an alloy. About each obtained alloy, the oxygen content and the PCT curve were measured similarly to Examples 1-8. Table 3 shows the results.
Example 16
After melting the same raw material as in Comparative Example 5 at 1650 ° C., it was kept under a vacuum of 0.06 MPa for 5 minutes. Next, the atmosphere was switched to an argon atmosphere, and pure argon was blown into the molten metal with a lance, and then held again under a vacuum of 0.06 MPa for 3 minutes. Next, the molten alloy was poured onto a rotating copper roll at a speed of 1 m / sec to cast a flake alloy. Subsequently, the obtained alloy was kept at 1300 ° C. for 10 minutes, and then rapidly cooled to room temperature to obtain an alloy. About each obtained alloy, the oxygen content and the PCT curve were measured similarly to Examples 1-8. Table 3 shows the results.
From Table 3, it can be seen that even with the same composition as the alloy of the present invention, the alloy of Comparative Example 5 manufactured according to the conventional method has a higher oxygen content and a smaller effective hydrogen content than the alloy of the present invention. .
Figure 2002042507

Claims (8)

主たる結晶構造が体心立方構造であって、組成式CrTiFeで表され、Oを0.005〜0.150重量%含み、かつ温度0〜100℃、圧力0.001〜10MPaにおいて、合金総重量に対して2.2%以上の水素吸蔵・放出能を有する水素吸蔵合金。
(組成式中、MはAl、Mo及びWからなる群より選択される1種又は2種以上を示し、XはLa、ミッシュメタル(Mm)、Ca及びMgからなる群より選択される1種又は2種以上を示す。a、b、c、d、e及びfは原子%であって、30≦a≦70、20≦b≦50、5≦c≦20、0<d≦10、0≦e≦10、0≦f≦10であり、a+b+c+d+e+f=100である。)
A main crystal structure is body-centered cubic structure, expressed by a composition formula Cr a Ti b V c Fe d M e X f, wherein the O 2 0.005 to 0.150 wt%, and the temperature 0 to 100 ° C. A hydrogen storage alloy having a hydrogen storage / release capacity of 2.2% or more based on the total weight of the alloy at a pressure of 0.001 to 10 MPa.
(In the formula, M represents one or more selected from the group consisting of Al, Mo, and W, and X represents one selected from the group consisting of La, misch metal (Mm), Ca, and Mg.) And a, b, c, d, e and f are atomic%, and 30 ≦ a ≦ 70, 20 ≦ b ≦ 50, 5 ≦ c ≦ 20, 0 <d ≦ 10, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, and a + b + c + d + e + f = 100.)
組成式のeが0<e≦10である請求の範囲1の水素吸蔵合金。2. The hydrogen storage alloy according to claim 1, wherein e in the composition formula satisfies 0 <e ≦ 10. 組成式のfが0<f≦10である請求の範囲1の水素吸蔵合金。2. The hydrogen storage alloy according to claim 1, wherein f in the composition formula satisfies 0 <f ≦ 10. 組成式のeが0<e≦10であり、且つfが0<f≦10である請求の範囲1の水素吸蔵合金。2. The hydrogen storage alloy according to claim 1, wherein e in the composition formula is 0 <e ≦ 10, and f is 0 <f ≦ 10. 請求の範囲1の水素吸蔵合金の合金原料を溶融する溶融工程(a)と、合金溶湯中にアルゴンガスを吹き込む脱酸素工程(b1)、溶融した合金溶湯を0.1Pa以下の真空度に保持する脱酸素工程(b2)、及び合金溶湯中にLa、Mm、Ca及びMgからなる群より選択される1種又は2種以上を含有させ保持する脱酸素工程(b3)からなる少なくとも1つの脱酸素工程(b)と、合金溶湯を凝固させる鋳造工程(c)とを含む請求の範囲1の水素吸蔵合金の製造方法。A melting step (a) for melting the alloy raw material of the hydrogen storage alloy according to claim 1, a deoxidizing step (b1) of blowing an argon gas into the molten alloy, and maintaining the molten molten alloy at a degree of vacuum of 0.1 Pa or less. At least one of a deoxidizing step (b2) and a deoxidizing step (b3) in which one or more selected from the group consisting of La, Mm, Ca and Mg are contained and retained in the molten alloy. 2. The method for producing a hydrogen storage alloy according to claim 1, comprising an oxygen step (b) and a casting step (c) for solidifying the molten alloy. 工程(c)の後、合金を1150〜1450℃の温度域で1〜180分間保持した後、100℃/秒以上の冷却速度で400℃以下に冷却する工程(d)を更に含む請求の範囲5の製造方法。After the step (c), the method further comprises a step (d) of holding the alloy in a temperature range of 1150 to 1450 ° C. for 1 to 180 minutes and then cooling the alloy to 400 ° C. or lower at a cooling rate of 100 ° C./sec or higher. Manufacturing method of 5. 溶融工程(a)の溶融温度が1700℃以下である請求の範囲5の製造方法。The method according to claim 5, wherein the melting temperature in the melting step (a) is 1700 ° C or lower. 溶融工程(a)に用いる合金原料が、Fe−V合金、Cr−Ti合金、Cr−V合金及びテルミット法で調製されたAlを含む金属Vの少なくとも1つを含む請求の範囲5の製造方法。6. The method according to claim 5, wherein the alloy raw material used in the melting step (a) includes at least one of a Fe-V alloy, a Cr-Ti alloy, a Cr-V alloy, and a metal V containing Al prepared by a thermite method. .
JP2002545208A 2000-11-27 2001-11-20 Hydrogen storage alloy and method for producing the same Expired - Lifetime JP4102429B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000359152 2000-11-27
JP2000359152 2000-11-27
PCT/JP2001/010120 WO2002042507A1 (en) 2000-11-27 2001-11-20 Hydrogen-occluding alloy and method for production thereof

Publications (2)

Publication Number Publication Date
JPWO2002042507A1 true JPWO2002042507A1 (en) 2004-03-25
JP4102429B2 JP4102429B2 (en) 2008-06-18

Family

ID=18830955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002545208A Expired - Lifetime JP4102429B2 (en) 2000-11-27 2001-11-20 Hydrogen storage alloy and method for producing the same

Country Status (5)

Country Link
US (1) US20040037733A1 (en)
JP (1) JP4102429B2 (en)
CN (1) CN1234893C (en)
AU (1) AU2002223128A1 (en)
WO (1) WO2002042507A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175721B2 (en) * 2001-04-27 2007-02-13 Santoku Corporation Method for preparing Cr-Ti-V type hydrogen occlusion alloy
US7344676B2 (en) * 2003-12-19 2008-03-18 Ovonic Hydrogen Systems Llc Hydrogen storage materials having excellent kinetics, capacity, and cycle stability
US8966018B2 (en) * 2006-05-19 2015-02-24 Trapeze Networks, Inc. Automated network device configuration and network deployment
CN104894376B (en) * 2015-06-17 2017-02-22 西安建筑科技大学 Electrothermal reduction method for preparing V-Ti-Fe base hydrogen storage alloy
US11168385B2 (en) 2016-11-01 2021-11-09 Ohio State Innovation Foundation High-entropy AlCrTiV alloys
CN114427045B (en) * 2021-12-10 2022-10-21 厚普清洁能源(集团)股份有限公司 High-uniformity vanadium-titanium-based hydrogen storage alloy and preparation method thereof
CN119082581B (en) * 2024-11-08 2025-02-11 中国科学院赣江创新研究院 Low-vanadium iron BCC type hydrogen storage alloy and preparation method thereof
CN119571135A (en) * 2025-02-06 2025-03-07 中国科学院江西稀土研究院 High-capacity hydrogen storage alloy and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2935806B2 (en) * 1994-03-14 1999-08-16 株式会社日本製鋼所 Hydrogen storage material
JP3626298B2 (en) * 1996-10-03 2005-03-02 トヨタ自動車株式会社 Hydrogen storage alloy and manufacturing method
US6048644A (en) * 1997-03-24 2000-04-11 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode
JPH1180865A (en) * 1997-09-05 1999-03-26 Sumitomo Metal Ind Ltd Hydrogen storage alloy with excellent durability and method for producing the same
JPH11106847A (en) * 1997-10-02 1999-04-20 Imura Zairyo Kaihatsu Kenkyusho:Kk Method for producing hydrogen storage alloy, alloy and electrode using the alloy
JP3528599B2 (en) * 1998-05-21 2004-05-17 トヨタ自動車株式会社 Hydrogen storage alloy
JP2000243386A (en) * 1999-02-17 2000-09-08 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode and method for producing the same
US6270719B1 (en) * 1999-04-12 2001-08-07 Ovonic Battery Company, Inc. Modified electrochemical hydrogen storage alloy having increased capacity, rate capability and catalytic activity
DE60022629T2 (en) * 1999-12-17 2006-07-13 Tohoku Techno Arch Co., Ltd., Sendai METHOD FOR PRODUCING A HYDROGEN STORAGE ALLOY
JP2002030374A (en) * 2000-07-11 2002-01-31 Masuo Okada Hydrogen storage alloy and its production method

Also Published As

Publication number Publication date
CN1488005A (en) 2004-04-07
AU2002223128A1 (en) 2002-06-03
CN1234893C (en) 2006-01-04
WO2002042507A1 (en) 2002-05-30
JP4102429B2 (en) 2008-06-18
US20040037733A1 (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP4838963B2 (en) Method for producing hydrogen storage alloy
JP3737163B2 (en) Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery
JPH10110225A (en) Hydrogen storage alloy and its production
Varin et al. Overview of processing of nanocrystalline hydrogen storage intermetallics by mechanical alloying/milling
JP4102429B2 (en) Hydrogen storage alloy and method for producing the same
WO2007023901A1 (en) Hydrogen storing alloy, process for producing the same and secondary battery
JP5449989B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage device
JP5001809B2 (en) Hydrogen storage alloy
JP5367296B2 (en) Hydrogen storage alloy
JP2001040442A (en) Hydrogen storage alloy
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
JP3953138B2 (en) Hydrogen storage alloy
JP3984802B2 (en) Hydrogen storage alloy
JP4524384B2 (en) Quasicrystal-containing titanium alloy and method for producing the same
JP3930638B2 (en) Hydrogen storage alloy and method for producing the same
JP2896433B2 (en) Magnesium hydrogen storage alloy
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
JPH11106847A (en) Method for producing hydrogen storage alloy, alloy and electrode using the alloy
JPH09184040A (en) Yttrium-magnesium hydrogen storage alloy
JPH05163511A (en) Production of alloy powder
JP2001279361A (en) V-based solid solution type hydrogen storage alloy
JP2003064435A (en) Hydrogen storage alloy
JP2023082648A (en) LOW-Co HYDROGEN STORAGE ALLOYS
JP2004183076A (en) Hydrogen storage alloy and hydrogen storage system using the same
JP2000219928A (en) Hydrogen storage alloy and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250