Nothing Special   »   [go: up one dir, main page]

JP3114677B2 - Hydrogen storage alloy and method for producing the same - Google Patents

Hydrogen storage alloy and method for producing the same

Info

Publication number
JP3114677B2
JP3114677B2 JP09318760A JP31876097A JP3114677B2 JP 3114677 B2 JP3114677 B2 JP 3114677B2 JP 09318760 A JP09318760 A JP 09318760A JP 31876097 A JP31876097 A JP 31876097A JP 3114677 B2 JP3114677 B2 JP 3114677B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
producing
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09318760A
Other languages
Japanese (ja)
Other versions
JPH11152533A (en
Inventor
清隆 安田
成生 平山
実 酒井
朗 内山
善樹 坂口
茂樹 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP09318760A priority Critical patent/JP3114677B2/en
Publication of JPH11152533A publication Critical patent/JPH11152533A/en
Application granted granted Critical
Publication of JP3114677B2 publication Critical patent/JP3114677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金及び
その製造方法に関し、詳しくは合金中のコバルトの含有
割合を極めて少なくしつつ、微粉化特性及び水素吸蔵特
性(PCT特性)に優れ、しかも初期活性が良好な水素
吸蔵合金及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy and a method for producing the same, and more particularly, to an alloy having a very small content of cobalt, excellent pulverization characteristics and hydrogen storage characteristics (PCT characteristics), and The present invention relates to a hydrogen storage alloy having good initial activity and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
ニッケル−カドミウム蓄電池に代わる高容量アルカリ蓄
電池として、水素吸蔵合金を負極に用いたニッケル−水
素蓄電池が注目されている。この水素吸蔵合金は、現在
では希土類系の混合物であるMm(ミッシュメタル)と
Ni、Al、Mn、Coとの5元素の水素吸蔵合金が汎
用されている。
2. Description of the Related Art In recent years,
As a high-capacity alkaline storage battery that replaces a nickel-cadmium storage battery, a nickel-hydrogen storage battery using a hydrogen storage alloy for a negative electrode has attracted attention. At present, as the hydrogen storage alloy, a five-element hydrogen storage alloy of Mm (mish metal), which is a rare earth-based mixture, and Ni, Al, Mn, and Co is widely used.

【0003】このMm−Ni−Mn−Al−Co合金
は、La系のそれに比べて比較的安価な材料で負極を構
成でき、サイクル寿命が長く、過充電時の発生ガスによ
る内圧上昇が少ない密閉形ニッケル水素蓄電池を得るこ
とができることから、電極材料として広く用いられてい
る。
[0003] This Mm-Ni-Mn-Al-Co alloy can form a negative electrode with a relatively inexpensive material as compared with the La-based alloy, has a long cycle life, and has a small internal pressure rise due to gas generated during overcharge. Since a nickel-metal hydride storage battery can be obtained, it is widely used as an electrode material.

【0004】現在用いられているMm−Ni−Mn−A
l−Co合金は、合金の微粉化を抑制してサイクル寿命
を長くしているが、一般的にこの微粉化抑制のためには
10重量%程度のCo(原子比で0.6〜1.0)を必
要とすることが知られている。また、優れた水素吸蔵特
性及び耐食性を得るためにも一定量のCoの含有は必要
とされている。
[0004] Currently used Mm-Ni-Mn-A
The l-Co alloy suppresses the pulverization of the alloy and prolongs the cycle life. Generally, however, to suppress the pulverization, about 10% by weight of Co (at an atomic ratio of 0.6 to 1. 0) is known. Further, in order to obtain excellent hydrogen storage characteristics and corrosion resistance, a certain amount of Co is required.

【0005】しかしながら、Coの含有率が高いとそれ
だけ原料コストが高くなり、原料コストの面から問題視
されている。特に、電気自動車用電源(EV:Electric
vihicle)等の大型電池への適用やニッケル−水素蓄電
池のさらなる市場の増大に対しては、原料コストは、電
極負極材料の選定において大きな割合を占め、このこと
が問題となっていた。
However, the higher the Co content, the higher the raw material cost, and this is regarded as a problem from the viewpoint of raw material cost. In particular, power supplies for electric vehicles (EV: Electric
For the application to large batteries such as vihicles) and the further increase in the market for nickel-hydrogen storage batteries, the raw material cost accounts for a large proportion in the selection of the electrode negative electrode material, which has been a problem.

【0006】このような問題を解決するために、特開平
9−213319号公報には、Mm−Ni−Mn−Al
−Co系合金の組成を変化させ、これにさらに少量の1
元素を加えることが提案されている。同公報に記載の水
素吸蔵合金粉末を負極に用いることによって、Coが少
量にもかかわらず、合金の微粉化による負極の劣化を一
定限度抑制し、電池のサイクル寿命が長くすることがで
きる。
[0006] To solve such a problem, Japanese Patent Application Laid-Open No. 9-213319 discloses Mm-Ni-Mn-Al.
-The composition of the Co-based alloy was changed, and
It has been proposed to add elements. By using the hydrogen storage alloy powder described in the publication for the negative electrode, the deterioration of the negative electrode due to the pulverization of the alloy can be suppressed to a certain extent and the cycle life of the battery can be prolonged despite the small amount of Co.

【0007】しかるに、同公報に開示の水素吸蔵合金を
用いた場合には、安定した良好な初期特性が得られない
という問題がある。また、微粉化特性及び水素吸蔵特性
も必ずしも満足し得るものではない。
However, when the hydrogen storage alloy disclosed in the above publication is used, there is a problem that stable and good initial characteristics cannot be obtained. Further, the pulverization characteristics and the hydrogen storage characteristics are not always satisfactory.

【0008】従って、本発明の目的は、コバルトの含有
割合を極めて少なくすることによって製造コストを低減
し、かつ微粉化特性及び水素吸蔵特性に優れると共に、
良好な初期特性を有する水素吸蔵合金及びその製造方法
を提供することを目的とする。
[0008] Accordingly, an object of the present invention is to reduce the production cost by extremely reducing the content of cobalt, and to excel in pulverization and hydrogen storage properties.
An object of the present invention is to provide a hydrogen storage alloy having good initial characteristics and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明者等は種々の研究
を重ねた結果、AB5 型合金組成を特定の非化学量論組
成(Bサイトリッチ)とし、かつc軸が一定範囲にある
水素吸蔵合金によって、上記目的を達成し得ることを知
見した。また、このような水素吸蔵合金は、上記特定の
組成において、鋳造温度と熱処理条件とが一定の関係に
ある場合に得られることを見い出した。
The present inventors have SUMMARY OF THE INVENTION The result of various studies, and the AB 5 type alloy composition certain non-stoichiometric composition (B site rich), and the c-axis is in a predetermined range It has been found that the above object can be achieved by a hydrogen storage alloy. In addition, it has been found that such a hydrogen storage alloy can be obtained when the casting temperature and the heat treatment conditions have a certain relationship in the above specific composition.

【0010】本発明は、上記知見に基づきなされたもの
で、一般式 MmNia Mnb Alc Cod Cue (式中、Mmはミッシュメタル、3.9≦a≦4.0、
0.35≦b≦0.50、0.25≦c≦0.4、0.
3≦d≦0.5、0.05≦e≦0.3、5.15≦a
+b+c+d+e≦5.35) で表されるCaCu5 型の結晶構造を有するAB5 型水
素吸蔵合金であって、c軸の格子長が406.2〜40
6.9pmであることを特徴とする水素吸蔵合金を提供
するものである。
[0010] The present invention has been made based on the above findings, the general formula MmNi a Mn b Al c Co d Cu e ( wherein, Mm is the mischmetal, 3.9 ≦ a ≦ 4.0,
0.35 ≦ b ≦ 0.50, 0.25 ≦ c ≦ 0.4, 0.
3 ≦ d ≦ 0.5, 0.05 ≦ e ≦ 0.3, 5.15 ≦ a
+ B + c + d + e ≦ 5.35) An AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented by the formula: wherein the c-axis lattice length is 406.2 to 40.
An object of the present invention is to provide a hydrogen storage alloy having a hydrogen absorption rate of 6.9 pm.

【0011】また、本発明は、本発明の水素吸蔵合金の
好ましい製造方法として、水素吸蔵合金原料を加熱溶解
し、これを鋳造した後、不活性ガス雰囲気中で熱処理
し、下記一般式で表されるCaCu5 型の結晶構造を有
するAB5 型水素吸蔵合金を製造する方法であって、該
鋳造温度が1350〜1550℃、該熱処理条件が10
20〜1100℃、3〜6時間であることを特徴とする
水素吸蔵合金の製造方法を提供するものである。 一般式 MmNia Mnb Alc Cod Cue (式中、Mmはミッシュメタル、3.9≦a≦4.0、
0.35≦b≦0.50、0.25≦c≦0.4、0.
3≦d≦0.5、0.05≦e≦0.3、5.15≦a
+b+c+d+e≦5.35)
Further, the present invention provides a preferred method for producing the hydrogen storage alloy of the present invention, in which a hydrogen storage alloy material is heated and melted, cast, and then heat-treated in an inert gas atmosphere. A method of producing an AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure, wherein the casting temperature is 1350 to 1550 ° C. and the heat treatment condition is 10
It is intended to provide a method for producing a hydrogen storage alloy, which is performed at 20 to 1100 ° C. for 3 to 6 hours. Formula MmNi a Mn b Al c Co d Cu e ( wherein, Mm is the mischmetal, 3.9 ≦ a ≦ 4.0,
0.35 ≦ b ≦ 0.50, 0.25 ≦ c ≦ 0.4, 0.
3 ≦ d ≦ 0.5, 0.05 ≦ e ≦ 0.3, 5.15 ≦ a
+ B + c + d + e ≦ 5.35)

【0012】[0012]

【発明の実施の形態】本発明の水素吸蔵合金は、一般式 MmNia Mnb Alc Cod Cue (式中、Mmはミッシュメタル、3.9≦a≦4.0、
0.35≦b≦0.50、0.25≦c≦0.4、0.
3≦d≦0.5、0.05≦e≦0.3、5.15≦a
+b+c+d+e≦5.35) で表されるCaCu5 型の結晶構造を有するAB5 型水
素吸蔵合金である。
Hydrogen storage alloy of the embodiment of the present invention have the general formula MmNi a Mn b Al c Co d Cu e ( wherein, Mm is the mischmetal, 3.9 ≦ a ≦ 4.0,
0.35 ≦ b ≦ 0.50, 0.25 ≦ c ≦ 0.4, 0.
3 ≦ d ≦ 0.5, 0.05 ≦ e ≦ 0.3, 5.15 ≦ a
+ B + c + d + e ≦ 5.35) An AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following formula:

【0013】ここで、MmはLa、Ce、Pr、Nd、
Sm等の希土類系の混合物であるミッシュメタルであ
る。また、この水素吸蔵合金は、CaCu5 型の結晶構
造を有するAB5 型水素吸蔵合金で、AB5.15〜AB
5.35 のBサイトリッチの非化学量論組成である。
Here, Mm is La, Ce, Pr, Nd,
It is a misch metal that is a rare earth-based mixture such as Sm. Further, this hydrogen storage alloy is an AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure, and AB 5.15 to AB
5.35 B-site rich non-stoichiometric composition.

【0014】この水素吸蔵合金において、Nia Mnb
Alc Cod Cue の組成割合(原子比)は、下記の関
係を有するものである。すなわち、Niの割合は3.9
≦a≦4.0であり、Mnの割合は0.35≦b≦0.
50であり、Alの割合は0.25≦c≦0.4であ
り、Coの割合は0.3≦d≦0.5であり、Cuの割
合は0.05≦e≦0.3であり、かつa+b+c+d
+eが5.15〜5.35の範囲にある。
In this hydrogen storage alloy, Ni a Mn b
The composition ratio (atomic ratio) of Al c Co d C e has the following relationship. That is, the ratio of Ni is 3.9.
≦ a ≦ 4.0, and the ratio of Mn is 0.35 ≦ b ≦ 0.
50, the proportion of Al is 0.25 ≦ c ≦ 0.4, the proportion of Co is 0.3 ≦ d ≦ 0.5, and the proportion of Cu is 0.05 ≦ e ≦ 0.3. Yes, and a + b + c + d
+ E is in the range of 5.15 to 5.35.

【0015】上記のように、Niの割合aは3.9〜
4.0であり、aが3.9未満では水素吸蔵量が損なわ
れ、4.0を超えると単相化せず微粉化や寿命特性劣化
が認められる。
As described above, the ratio a of Ni is 3.9 to 3.9.
When a is less than 3.9, the amount of hydrogen occlusion is impaired, and when it exceeds 4.0, a single phase is not formed and pulverization and deterioration in life characteristics are observed.

【0016】Mnの割合bは0.35〜0.50であ
り、bが0.35未満ではプラトー圧力が高くなり、か
つ水素吸蔵量が損なわれ、0.50を超えると合金の腐
食が激しくなり、合金の早期劣化が認められる。
The ratio b of Mn is 0.35 to 0.50. If b is less than 0.35, the plateau pressure increases and the hydrogen storage capacity is impaired. If it exceeds 0.50, corrosion of the alloy becomes severe. And early deterioration of the alloy is observed.

【0017】Alの割合cは0.25〜0.4であり、
cが0.25未満では水素吸蔵合金放出圧力であるプラ
トー圧力が高くなり、充放電のエネルギー効率が悪くな
り、0.4を超えると水素吸蔵量が少なくなる。
The proportion c of Al is 0.25 to 0.4,
If c is less than 0.25, the plateau pressure, which is the pressure at which the hydrogen storage alloy is released, increases, and the energy efficiency of charging and discharging deteriorates. If c exceeds 0.4, the hydrogen storage amount decreases.

【0018】Coの割合dは0.3〜0.5であり、d
が0.3未満では水素吸蔵特性や微粉化特性に劣り、
0.5を超えるとCoの割合が多くなり、コストの低減
が図れない。
The ratio d of Co is 0.3 to 0.5,
Is less than 0.3, it is inferior in hydrogen storage properties and pulverization properties,
If it exceeds 0.5, the proportion of Co increases, and the cost cannot be reduced.

【0019】Cuの割合eは0.05〜0.3であり、
eが0.05未満では微粉化特性の向上は見られず、
0.3を超えると水素吸蔵特性が損なわれ、またCuが
析出する場合が生じる。
The proportion e of Cu is 0.05-0.3,
When e is less than 0.05, no improvement in the pulverization properties is observed,
If it exceeds 0.3, the hydrogen storage properties may be impaired, and Cu may precipitate.

【0020】a+b+c+d+e(以下、場合によって
xと総称する)は5.15〜5.35であり、xが5.
15未満では電池寿命や微粉化特性が損なわれ、5.3
5を超えた場合には、水素吸蔵特性が損なわれる。
A + b + c + d + e (hereinafter sometimes collectively referred to as x) is 5.15 to 5.35, and x is 5.
If it is less than 15, the battery life and pulverization characteristics are impaired, and 5.3
If it exceeds 5, the hydrogen storage properties will be impaired.

【0021】本発明の水素吸蔵合金は、c軸の格子長が
406.2pm以上、好ましくは406.2〜406.
9pmである。c軸の格子長が406.2pm未満で
は、微粉化特性に劣るのみならず、初期特性(相対磁化
率)も低下する。また、406.9pmを超えるような
水素吸蔵合金は、製造において困難性が伴うし、水素吸
蔵量の大幅な減少を伴う。
The hydrogen storage alloy of the present invention has a c-axis lattice length of 406.2 pm or more, preferably 406.2 to 406.
9 pm. When the lattice length of the c-axis is less than 406.2 pm, not only the pulverization characteristics are inferior, but also the initial characteristics (relative susceptibility) are reduced. Further, a hydrogen storage alloy having a diameter exceeding 406.9 pm involves difficulty in production and involves a significant decrease in the amount of hydrogen storage.

【0022】この水素吸蔵合金のc軸の格子長は、a+
b+c+d+e(x)の値によって好ましい値が存在
し、xが5.15〜5.25未満の時は、c軸の格子長
は好ましくは406.2〜406.5pm未満であり、
xが5.25〜5.35の時は、c軸の格子長は好まし
くは406.5〜406.9pmである。
The lattice length of the c-axis of this hydrogen storage alloy is a +
There is a preferred value depending on the value of b + c + d + e (x), and when x is less than 5.15 to 5.25, the lattice length of c axis is preferably less than 406.2 to 406.5 pm;
When x is 5.25 to 5.35, the lattice length of the c-axis is preferably 406.5 to 406.9 pm.

【0023】さらに、本発明の水素吸蔵合金のa軸の格
子長は、特に限定されないが、一般には500.3〜5
01.0pmである。
Further, the lattice length of the a-axis of the hydrogen storage alloy of the present invention is not particularly limited, but generally ranges from 500.3 to 50.3.
01.0 pm.

【0024】次に、本発明の水素吸蔵合金の製造方法に
ついて説明する。先ず、上記で示したような合金組成と
なるように、水素吸蔵合金原料を秤量、混合し、例えば
誘導加熱による高周波加熱溶解炉を用いて、上記水素吸
蔵合金原料を溶解して溶湯となす、これを鋳型、例えば
水冷型の鋳型に流し込んで水素吸蔵合金を1350〜1
550℃で鋳造する。
Next, a method for producing the hydrogen storage alloy of the present invention will be described. First, the hydrogen storage alloy raw material is weighed and mixed so as to have the alloy composition as shown above, for example, using a high-frequency heating melting furnace by induction heating, melting the hydrogen storage alloy raw material to form a molten metal, This is poured into a mold, for example, a water-cooled mold, and the hydrogen-absorbing alloy is added to 1350-1.
Cast at 550 ° C.

【0025】次に、得られた水素吸蔵合金を不活性ガス
雰囲気中、例えばアルゴンガス中で熱処理する。熱処理
条件は1020〜1100℃、3〜6時間である。この
ような熱処理を行うのは、鋳造された合金の組織には通
常Mn主体の微細な粒界偏析が認められるが、これを加
熱することによって均質化するためである。
Next, the obtained hydrogen storage alloy is heat-treated in an inert gas atmosphere, for example, an argon gas. The heat treatment conditions are 1020 to 1100 ° C for 3 to 6 hours. Such heat treatment is performed because the structure of the cast alloy usually has fine grain boundary segregation mainly composed of Mn, but is homogenized by heating.

【0026】これら鋳造温度及び熱処理温度も、a+b
+c+d+e(x)の値によって好ましい値が存在し、
xが5.15〜5.25未満の時は、鋳造温度は好まし
くは1350〜1530℃、熱処理温度は好ましくは1
040〜1080℃であり、xが5.25〜5.35の
時は、鋳造温度は好ましくは1430〜1550℃、熱
処理温度は好ましくは1060〜1100℃である。
The casting temperature and the heat treatment temperature are also a + b
There is a preferred value depending on the value of + c + d + e (x),
When x is less than 5.15 to 5.25, the casting temperature is preferably 1350 to 1530 ° C, and the heat treatment temperature is preferably 1
040 to 1080C, and when x is 5.25 to 5.35, the casting temperature is preferably 1430 to 1550C, and the heat treatment temperature is preferably 1060 to 1100C.

【0027】このようにして、コバルトの含有割合を低
減したにも拘わらず、微粉化特性及び水素吸蔵特性に優
れると共に、良好な初期特性を有する水素吸蔵合金が得
られる。
In this way, a hydrogen storage alloy having excellent pulverization characteristics and hydrogen storage characteristics and excellent initial characteristics can be obtained despite the reduced content of cobalt.

【0028】この水素吸蔵合金は、粗粉砕、微粉砕後、
アルカリ蓄電池の負極として好適に用いられる。かかる
アルカリ蓄電池は、初期特性が良好で、合金の微粉化に
よる負極の劣化が抑制され、サイクル寿命が長いものと
なる。
This hydrogen storage alloy is subjected to coarse pulverization and fine pulverization.
It is suitably used as a negative electrode of an alkaline storage battery. Such an alkaline storage battery has good initial characteristics, suppresses deterioration of the negative electrode due to pulverization of the alloy, and has a long cycle life.

【0029】[0029]

【実施例】以下、本発明を実施例等に基づき具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments and the like.

【0030】[実施例1−1〜1−3及び比較例1−1
〜1−4]Mm、Al、Mn、Co、Ni及びCuを合
金組成でMmAl0.3 Mn0.45Co0.4 Ni3.95Cu
0.1 (x=5.20)になるように、各水素吸蔵合金原
料を秤量、混合し、その混合物をルツボに入れて高周波
溶解炉に固定し、10-4〜10-5Torrまで真空状態
にした後、アルゴンガス雰囲気中で加熱溶解した後、水
冷式銅鋳型に流し込み、1520℃で鋳造を行い、合金
を得た。更に、この合金をアルゴンガス雰囲気中で、表
1に示す条件で熱処理を行い、水素吸蔵合金を得た。な
お、比較例1−1は熱処理を行わなかった。
[Examples 1-1 to 1-3 and Comparative Example 1-1]
1-4] Mm, Al, Mn, Co, Ni and Cu in alloy composition of MmAl 0.3 Mn 0.45 Co 0.4 Ni 3.95 Cu
Each hydrogen storage alloy material is weighed and mixed so that 0.1 (x = 5.20), and the mixture is put in a crucible and fixed in a high-frequency melting furnace, and evacuated to 10 -4 to 10 -5 Torr. Then, after heating and melting in an argon gas atmosphere, it was poured into a water-cooled copper mold and cast at 1520 ° C. to obtain an alloy. Further, this alloy was heat-treated in an argon gas atmosphere under the conditions shown in Table 1 to obtain a hydrogen storage alloy. In Comparative Example 1-1, no heat treatment was performed.

【0031】[実施例2−1〜2−4及び比較例2−1
〜2−3]鋳造温度を1430℃とし、かつ表1に示す
条件で熱処理を行った以外は、実施例1−1と同様にし
て水素吸蔵合金を得た。なお、比較例2−1は熱処理を
行わなかった。
[Examples 2-1 to 2-4 and Comparative Example 2-1]
~ 2-3] A hydrogen storage alloy was obtained in the same manner as in Example 1-1, except that the casting temperature was 1430 ° C and the heat treatment was performed under the conditions shown in Table 1. In Comparative Example 2-1, no heat treatment was performed.

【0032】[実施例3−1〜3−4及び比較例3−1
〜3−3]鋳造温度を1350℃とし、かつ表1に示す
条件で熱処理を行った以外は、実施例1−1と同様にし
て水素吸蔵合金を得た。なお、比較例3−1は熱処理を
行わなかった。
[Examples 3-1 to 3-4 and Comparative Example 3-1]
~ 3-3] A hydrogen storage alloy was obtained in the same manner as in Example 1-1, except that the casting temperature was 1350 ° C and the heat treatment was performed under the conditions shown in Table 1. In Comparative Example 3-1, no heat treatment was performed.

【0033】[比較例4〜6]鋳造温度を表1に示す温
度とし、かつ熱処理条件を1060℃、3時間とした以
外は、実施例1−1と同様にして水素吸蔵合金を得た。
Comparative Examples 4 to 6 Hydrogen storage alloys were obtained in the same manner as in Example 1-1, except that the casting temperature was set to the temperature shown in Table 1 and the heat treatment conditions were changed to 1060 ° C. for 3 hours.

【0034】[実施例7−1〜7−3及び比較例7−
1]Mm、Al、Mn、Co、Ni及びCuを合金組成
でMm(Al0.3 Mn0.45Co0.4 Ni3.95Cu0.1
y (y=1.03、x=5.35)になるように、各水
素吸蔵合金原料を秤量、混合し、その混合物をルツボに
入れて高周波溶解炉に固定し、10-4〜10-5Torr
まで真空状態にした後、アルゴンガス雰囲気中で加熱溶
解した後、水冷式銅鋳型に流し込み、1380℃で鋳造
を行い、合金を得た。更に、この合金をアルゴンガス雰
囲気中で、表2に示す条件で熱処理を行い、水素吸蔵合
金を得た。
[Examples 7-1 to 7-3 and Comparative Example 7-
1] Mm, Al, Mn, Co, Ni and Cu in alloy composition of Mm (Al 0.3 Mn 0.45 Co 0.4 Ni 3.95 Cu 0.1 )
Each hydrogen storage alloy raw material is weighed and mixed so that y (y = 1.03, x = 5.35), and the mixture is placed in a crucible and fixed in a high-frequency melting furnace, and 10 −4 to 10 −. 5 Torr
After vacuuming until then, the mixture was heated and melted in an argon gas atmosphere, poured into a water-cooled copper mold, and cast at 1380 ° C. to obtain an alloy. Further, this alloy was heat-treated in an argon gas atmosphere under the conditions shown in Table 2 to obtain a hydrogen storage alloy.

【0035】[実施例8−1〜8−4及び比較例8−
1]鋳造温度を1460℃とし、かつ表2に示す条件で
熱処理を行った以外は、実施例7−1と同様にして水素
吸蔵合金を得た。
Examples 8-1 to 8-4 and Comparative Example 8-
1] A hydrogen storage alloy was obtained in the same manner as in Example 7-1 except that the casting temperature was 1460 ° C and the heat treatment was performed under the conditions shown in Table 2.

【0036】[実施例9〜12及び比較例9〜10]合
金組成を、それぞれMm(Al0.3 Mn0.45Co0.4
3.95Cu0.1 y(y=0.97、x=5.05)
(比較例9)、Mm(Al0.3 Mn0.45Co0. 4 Ni
3.95Cu0.1 y (y=0.98、x=5.10)(比
較例10)、Mm(Al0.3 Mn0.45Co0.4 Ni3.95
Cu0.1 y (y=0.99、x=5.15)(実施例
9)、Mm(Al0.3 Mn0.45Co0.4 Ni3.95Cu
0.1 y (y=1.01、x=5.25)(実施例1
0)、Mm(Al0.3 Mn0.45Co0.4Ni3.95Cu
0.1 y (y=1.02、x=5.30)(実施例1
1)、Mm(Al0.3 Mn0.45Co0.4 Ni3.95Cu
0.1 y (y=1.03、x=5.35)(実施例1
2)とした以外は、実施例2−2と同様にして水素吸蔵
合金を得た。
Examples 9 to 12 and Comparative Examples 9 to 10 The alloy compositions were changed to Mm (Al 0.3 Mn 0.45 Co 0.4 N
i 3.95 Cu 0.1 ) y (y = 0.97, x = 5.05)
(Comparative Example 9), Mm (Al 0.3 Mn 0.45 Co 0. 4 Ni
3.95 Cu 0.1 ) y (y = 0.98, x = 5.10) (Comparative Example 10), Mm (Al 0.3 Mn 0.45 Co 0.4 Ni 3.95)
Cu 0.1 ) y (y = 0.99, x = 5.15) (Example 9), Mm (Al 0.3 Mn 0.45 Co 0.4 Ni 3.95 Cu
0.1 ) y (y = 1.01, x = 5.25) (Example 1)
0), Mm (Al 0.3 Mn 0.45 Co 0.4 Ni 3.95 Cu
0.1 ) y (y = 1.02, x = 5.30) (Example 1)
1), Mm (Al 0.3 Mn 0.45 Co 0.4 Ni 3.95 Cu
0.1 ) y (y = 1.03, x = 5.35) (Example 1)
A hydrogen storage alloy was obtained in the same manner as in Example 2-2, except that 2) was used.

【0037】[特性評価]実施例及び比較例で得られた
水素吸蔵合金について、下記に示す方法によってPCT
容量、相対磁化率及び微粉化残存率を測定した。そし
て、これら実施例及び比較例の評価は、従来のCo10
重量%含有水素吸蔵合金のPCT容量が0.82〜0.
83、微粉化残存率が0.90〜0.91であるので、
この値を基に判断した。結果を表1〜2示す。
[Characteristics Evaluation] The hydrogen storage alloys obtained in Examples and Comparative Examples were subjected to PCT by the following method.
The capacity, relative susceptibility, and residual ratio of pulverized powder were measured. The evaluations of these examples and comparative examples are based on the conventional Co10
The PCT capacity of the hydrogen storage alloy containing 0.8% by weight is 0.82 to 0.5%.
83, since the residual ratio of pulverization is 0.90 to 0.91,
Judgment was made based on this value. Tables 1 and 2 show the results.

【0038】<PCT容量>45℃で測定した吸蔵特性
から計算した。H/M:0〜0.5MPa
<PCT capacity> Calculated from the storage characteristics measured at 45 ° C. H / M: 0 to 0.5 MPa

【0039】<相対磁化率>水素吸蔵合金を粉砕して粉
末とし、このものを表面処理して残Ni、Coに起因す
る磁化を測定し、上記Co10重量%含有水素吸蔵合金
粉末の磁化に対する比で計算した。
<Relative magnetic susceptibility> The hydrogen storage alloy was pulverized into a powder, and the powder was subjected to a surface treatment to measure the magnetization caused by the remaining Ni and Co. The ratio to the magnetization of the hydrogen storage alloy powder containing 10% by weight of Co was determined. Was calculated.

【0040】<微粉化残存率>PCT装置で、30ba
rの水素ガスを粒度22〜35ミクロンに調整した水素
吸蔵合金に導入し、その後脱蔵廃棄する処理を10回繰
り返した後、サイクル試験前の平均粒度に対するサイク
ル試験後の平均粒度の比で計算した。
<Remaining rate of pulverization>
After introducing the hydrogen gas of r into a hydrogen storage alloy adjusted to a particle size of 22 to 35 microns and then devolatilizing and discarding 10 times, calculate the ratio of the average particle size after the cycle test to the average particle size before the cycle test. did.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】表1〜2の結果から明らかなように、実施
例は比較例よりもPCT容量、微粉化残存率が高く、従
来のCo10重量%含有水素吸蔵合金とほぼ同一水準に
ある。また、実施例は比較例よりも相対磁化率が高いた
め、初期特性に優れることが判る。
As is clear from the results of Tables 1 and 2, the PCT capacity and the pulverization residual ratio of the examples are higher than those of the comparative examples, and are almost the same level as the conventional hydrogen storage alloy containing 10% by weight of Co. In addition, since the examples have higher relative susceptibility than the comparative examples, it can be seen that the examples have excellent initial characteristics.

【0044】[0044]

【発明の効果】以上説明したように、本発明の水素吸蔵
合金は、コバルトの含有割合が極めて少ないため製造コ
ストが低減され、かつ微粉化特性及び水素吸蔵特性に優
れると共に、良好な初期特性を有する。また、本発明の
製造方法によって、上記水素吸蔵合金が安定して、かつ
効率よく得られる。
As described above, the hydrogen storage alloy of the present invention has a very low cobalt content, so that the production cost is reduced, and the hydrogen storage alloy is excellent in pulverization characteristics and hydrogen storage characteristics, and has good initial characteristics. Have. In addition, the production method of the present invention enables the hydrogen storage alloy to be obtained stably and efficiently.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 691 C22F 1/00 691C 1/10 1/10 Z H01M 4/38 H01M 4/38 A (72)発明者 内山 朗 広島県竹原市塩町1丁目5番1号 三井 金属鉱業株式会社 電池材料研究所内 (72)発明者 坂口 善樹 広島県竹原市塩町1丁目5番1号 三井 金属鉱業株式会社 電池材料研究所内 (72)発明者 中山 茂樹 埼玉県上尾市原市1333−2 三井金属鉱 業株式会社 総合研究所内 (56)参考文献 特開 平7−286225(JP,A) 特開 平9−213319(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 19/00 C22C 1/00 H01M 4/38 ────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C22F 1/00 691 C22F 1/00 691C 1/10 1/10 Z H01M 4/38 H01M 4/38 A (72) Inventor Uchiyama Aro 1-5-1, Shiomachi, Takehara-shi, Hiroshima Mitsui Metal Mining Co., Ltd. Battery Materials Research Laboratory (72) Inventor Yoshiki Sakaguchi 1-5-1, Shiomachi, Takehara-shi, Hiroshima Pref. Mitsui Metal Mining Co., Ltd. Battery Materials Research Laboratory (72 ) Inventor: Shigeki Nakayama 1333-2, Hara-shi, Ageo-shi, Saitama Mitsui Mining & Smelting Co., Ltd. (56) References JP-A-7-286225 (JP, A) JP-A-9-213319 (JP, A) ( 58) Field surveyed (Int. Cl. 7 , DB name) C22C 19/00 C22C 1/00 H01M 4/38

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式 MmNia Mnb Alc Cod Cue (式中、Mmはミッシュメタル、3.9≦a≦4.0、
0.35≦b≦0.50、0.25≦c≦0.4、0.
3≦d≦0.5、0.05≦e≦0.3、5.15≦a
+b+c+d+e≦5.35) で表されるCaCu5 型の結晶構造を有するAB5 型水
素吸蔵合金であって、 c軸の格子長が406.2pm以上であることを特徴と
する水素吸蔵合金。
1. A general formula MmNi a Mn b Al c Co d Cu e ( wherein, Mm is the mischmetal, 3.9 ≦ a ≦ 4.0,
0.35 ≦ b ≦ 0.50, 0.25 ≦ c ≦ 0.4, 0.
3 ≦ d ≦ 0.5, 0.05 ≦ e ≦ 0.3, 5.15 ≦ a
+ B + c + d + e ≦ 5.35) An AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following formula, wherein the c-axis lattice length is 406.2 pm or more.
【請求項2】 上記c軸の格子長が406.2〜40
6.9pmである請求項1に記載の水素吸蔵合金。
2. The lattice length of the c-axis is 406.2 to 40.
The hydrogen storage alloy according to claim 1, wherein the hydrogen storage alloy is 6.9 pm.
【請求項3】 上記一般式において、a+b+c+d+
eが5.15〜5.25未満であり、上記c軸の格子長
が406.2〜406.5pm未満である請求項1に記
載の水素吸蔵合金。
3. In the above general formula, a + b + c + d +
The hydrogen storage alloy according to claim 1, wherein e is less than 5.15 to 5.25, and the lattice length of the c-axis is less than 406.2 to 406.5 pm.
【請求項4】 上記一般式において、a+b+c+d+
eが5.25〜5.35であり、上記c軸の格子長が4
06.5〜406.9pmである請求項1に記載の水素
吸蔵合金。
4. In the above general formula, a + b + c + d +
e is 5.25 to 5.35 and the c-axis lattice length is 4
The hydrogen storage alloy according to claim 1, wherein the hydrogen storage alloy has a particle diameter of 06.5 to 406.9 pm.
【請求項5】 水素吸蔵合金原料を加熱溶解し、これを
鋳造した後、不活性ガス雰囲気中で熱処理し、下記一般
式で表されるCaCu5 型の結晶構造を有するAB5
水素吸蔵合金を製造する方法であって、該鋳造温度が1
350〜1550℃、該熱処理条件が1020〜110
0℃、3〜6時間であることを特徴とする水素吸蔵合金
の製造方法。 一般式 MmNia Mnb Alc Cod Cue (式中、Mmはミッシュメタル、3.9≦a≦4.0、
0.35≦b≦0.50、0.25≦c≦0.4、0.
3≦d≦0.5、0.05≦e≦0.3、5.15≦a
+b+c+d+e≦5.35)
5. An AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following general formula, wherein a hydrogen storage alloy material is heated and melted, cast, and heat-treated in an inert gas atmosphere. Wherein the casting temperature is 1
350 to 1550 ° C, the heat treatment condition is 1020 to 110
A method for producing a hydrogen storage alloy, which is performed at 0 ° C. for 3 to 6 hours. Formula MmNi a Mn b Al c Co d Cu e ( wherein, Mm is the mischmetal, 3.9 ≦ a ≦ 4.0,
0.35 ≦ b ≦ 0.50, 0.25 ≦ c ≦ 0.4, 0.
3 ≦ d ≦ 0.5, 0.05 ≦ e ≦ 0.3, 5.15 ≦ a
+ B + c + d + e ≦ 5.35)
【請求項6】 上記一般式において、a+b+c+d+
eが5.15〜5.25未満であり、上記鋳造温度が1
350〜1530℃、該熱処理条件が1040〜108
0℃、3〜6時間である請求項5に記載の水素吸蔵合金
の製造方法。
6. In the above general formula, a + b + c + d +
e is less than 5.15 to 5.25, and the casting temperature is 1
350 to 1530 ° C, the heat treatment condition is 1040 to 108
The method for producing a hydrogen storage alloy according to claim 5, wherein the temperature is 0 ° C for 3 to 6 hours.
【請求項7】 上記一般式において、a+b+c+d+
eが5.25〜5.35であり、上記鋳造温度が143
0〜1550℃、該熱処理条件が1060〜1100
℃、3〜6時間である請求項5に記載の水素吸蔵合金の
製造方法。
7. In the above general formula, a + b + c + d +
e is 5.25 to 5.35 and the casting temperature is 143
0 to 1550 ° C., and the heat treatment condition is 1060 to 1100
The method for producing a hydrogen storage alloy according to claim 5, wherein the temperature is 3 ° C for 3 to 6 hours.
JP09318760A 1997-11-19 1997-11-19 Hydrogen storage alloy and method for producing the same Expired - Fee Related JP3114677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09318760A JP3114677B2 (en) 1997-11-19 1997-11-19 Hydrogen storage alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09318760A JP3114677B2 (en) 1997-11-19 1997-11-19 Hydrogen storage alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11152533A JPH11152533A (en) 1999-06-08
JP3114677B2 true JP3114677B2 (en) 2000-12-04

Family

ID=18102641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09318760A Expired - Fee Related JP3114677B2 (en) 1997-11-19 1997-11-19 Hydrogen storage alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3114677B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4504507B2 (en) 2000-04-10 2010-07-14 三井金属鉱業株式会社 Hydrogen storage alloy and method for producing the same
JP3881823B2 (en) * 2000-06-09 2007-02-14 三井金属鉱業株式会社 Hydrogen storage alloy and method for producing the same
KR100445709B1 (en) * 2002-02-23 2004-08-25 주식회사 알덱스 Material with high performance and large capacity for secondary battery

Also Published As

Publication number Publication date
JPH11152533A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
CN111471895A (en) Hydrogen storage alloy containing gadolinium and nickel, cathode, battery and preparation method
JP3828922B2 (en) Low Co hydrogen storage alloy
JP3881823B2 (en) Hydrogen storage alloy and method for producing the same
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
JP2001040442A (en) Hydrogen storage alloy
JP5001809B2 (en) Hydrogen storage alloy
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
US6083327A (en) Hydrogen occluding alloy
JP3930638B2 (en) Hydrogen storage alloy and method for producing the same
JP4091704B2 (en) Hydrogen storage alloy and method for producing the same
JP2004218017A (en) Hydrogen storage alloy
JP2000144278A (en) Hydrogen occlusion alloy and its production
JP2001181763A (en) Hydrogen storage alloy
WO2001069700A1 (en) Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JP4573421B2 (en) Hydrogen storage alloy
JP4462909B2 (en) Hydrogen storage alloy
JPH11323468A (en) Hydrogen storage alloy and its production
JP2000038630A (en) Hydrogen storage alloy and its production
JP2002535495A (en) AB5-type rare earth-transition intermetallic compound for secondary battery negative electrode
JP4486210B2 (en) Hydrogen storage alloy for secondary battery
JPH11323467A (en) Hydrogen storage alloy and its production
JP2000192177A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JPH11310861A (en) Manufacture of hydrogen storage alloy
JP2003247037A (en) Hydrogen-storage alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140929

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees