Nothing Special   »   [go: up one dir, main page]

JPS6128493A - Decomposition of halogenated hydrocarbon - Google Patents

Decomposition of halogenated hydrocarbon

Info

Publication number
JPS6128493A
JPS6128493A JP59150816A JP15081684A JPS6128493A JP S6128493 A JPS6128493 A JP S6128493A JP 59150816 A JP59150816 A JP 59150816A JP 15081684 A JP15081684 A JP 15081684A JP S6128493 A JPS6128493 A JP S6128493A
Authority
JP
Japan
Prior art keywords
solid electrolyte
halogenated hydrocarbon
water
electrode catalyst
catalyst layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59150816A
Other languages
Japanese (ja)
Other versions
JPS6311073B2 (en
Inventor
Shingo Tokuda
徳田 晋吾
Shigeo Asada
茂雄 麻田
Toshio Muranaga
村永 外志雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP59150816A priority Critical patent/JPS6128493A/en
Publication of JPS6128493A publication Critical patent/JPS6128493A/en
Publication of JPS6311073B2 publication Critical patent/JPS6311073B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To decompose a minute amount of halogenated hydrocarbon present in water in a relatively easy manner, by performing direct electrolysis by using an electrolytic apparatus wherein porous filmy electrode catalyst layers are provided to both surface of a solid electrolyte diaphragm. CONSTITUTION:Porous film like electrode catalyst layers 2 are respectively provided to both surfaces of a solid electrolyte diaphragm demarcating an anode chamber and a cathode chamber to constitute the electrolytic cell to which the catalyst layers 2, the anode collector 3 and the cathode collector 4 were connected and this electrolytic cell is used to electrolyze water containing a minute amount of halogenated hydrocarbon. That is, if the above mentioned electrlytic apparatus is used to perform direct electrolysis, it is unnecessary to add a support electrolyte and application of high current density is enabled and, therefore, a minute amount of halogenated hydrocarbon contained can be easily and rapidly decomposed by a relatively small apparatus without contaminating objective water.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はハロゲン化炭化水素の分解方法に関するもので
ある。更に詳しくは、固体電解質隔膜に多孔性膜状電極
触媒層を設けた電解装置を用いて、直接電解することに
より水中に微量に存在するハロゲン化炭化水素を分解す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for decomposing halogenated hydrocarbons. More specifically, the present invention relates to a method for decomposing trace amounts of halogenated hydrocarbons present in water by direct electrolysis using an electrolytic device in which a porous membrane electrode catalyst layer is provided on a solid electrolyte membrane.

(従来の技術及び問題点) 近年水道水の滅菌処理として塩素や次亜塩素酸ソーダ等
の塩素系薬剤による処理が広く行われている。その過程
で、天然水に含有するフミン質等が原因となって多くの
ハロゲン化炭化水素を主とする有機塩素化合物が生成す
ることは古くから知られており、クロロフェノール類の
□ 他、クロロホルム、ブロモジクロロメタン、クロロジブ
ロモメタン、ブロモホルム等のトリハロメタンやまれに
はトリクロルエチレン、テトラクロルエチレン、  1
,1.1− トリクロルエタン。
(Prior Art and Problems) In recent years, treatment with chlorine-based chemicals such as chlorine and sodium hypochlorite has been widely used to sterilize tap water. It has been known for a long time that in this process, many organic chlorine compounds, mainly halogenated hydrocarbons, are generated due to the humic substances contained in natural water. , trihalomethanes such as bromodichloromethane, chlorodibromomethane, bromoform, and rarely trichlorethylene, tetrachlorethylene, 1
,1.1-trichloroethane.

四塩化炭素等を含有することが報告されている。It has been reported that it contains carbon tetrachloride, etc.

特にトリハロメタンの発癌性の疑いが報告されて社会的
に問題となり、これらハロゲン化炭化水素の分解除去乃
至生成防止に関して種々の研究が行われている。
In particular, the suspicion of carcinogenicity of trihalomethanes has been reported and has become a social problem, and various studies are being conducted on ways to decompose and remove these halogenated hydrocarbons or prevent their formation.

(発明の目的) 本発明者らは、かかる状況に鑑み、水中に微量に存在す
るハロゲン化炭化水素を比較的容易に分解することを目
的として鋭意検討を行った。
(Object of the Invention) In view of this situation, the present inventors conducted extensive studies with the aim of relatively easily decomposing halogenated hydrocarbons present in trace amounts in water.

その結果、ある種の電解方法を用いれば、上記目的を十
分達成し得ることを見出し、本発明を完成するに至った
ものである。
As a result, the inventors discovered that the above object could be fully achieved by using a certain type of electrolytic method, leading to the completion of the present invention.

(発明の構成) 本発明は陽極室と陰極室を区画する固体電解質隔膜の両
面に、夫々多孔性膜状電極触媒層を設けて該触tsWを
各集電体と結合せしめた電解槽を使用し、ハロゲン化炭
化水素を微量に含む水を電解することを特徴とするハロ
ゲン化炭化水素の分解方法である。
(Structure of the Invention) The present invention uses an electrolytic cell in which a porous membrane electrode catalyst layer is provided on both sides of a solid electrolyte membrane that partitions an anode chamber and a cathode chamber, and the contact tsW is combined with each current collector. This method of decomposing halogenated hydrocarbons is characterized by electrolyzing water containing a trace amount of halogenated hydrocarbons.

本発明の電気分解において、陽極では酸化反応が進行し
、最終的には二酸化炭素とハロゲン化水素となり、陰極
では還元反応が進行し、最終的にはメタンとハロゲン化
水素になるものと考えられる。
In the electrolysis of the present invention, an oxidation reaction progresses at the anode, ultimately resulting in carbon dioxide and hydrogen halide, and a reduction reaction progresses at the cathode, ultimately resulting in methane and hydrogen halide. .

本発明の電解槽形式としては隔膜式が有効であり、隔膜
材料として固体電解質である有機乃至無機イオン交換膜
が有利に用いられる。
A diaphragm type is effective as the electrolytic cell type of the present invention, and an organic or inorganic ion exchange membrane, which is a solid electrolyte, is advantageously used as the diaphragm material.

固体電解質隔膜の両面に、夫々多孔性膜状電極触媒層を
熱圧着して結合することにより、電極触媒層で直接電解
が可能となり、外部から支持電解質を供給しな(でよい
By thermocompressing and bonding porous membrane electrode catalyst layers to both sides of the solid electrolyte diaphragm, direct electrolysis can be performed in the electrode catalyst layers, without the need to supply a supporting electrolyte from the outside.

これに反して、アスベスト隔膜、m製隔膜。On the other hand, asbestos diaphragms and m-made diaphragms.

多孔質ポリテトラフルオロエチレン隔膜等の固体電解質
としての作用をもたない素材を隔膜材料として使用する
場合には、支持電解質の添加が必要であり、処理対象の
水を汚染させることになる。例えば、水道水の処理に用
いる場合には、飲料用に適さな(なる。
When using a material that does not function as a solid electrolyte, such as a porous polytetrafluoroethylene diaphragm, as a diaphragm material, it is necessary to add a supporting electrolyte, which will contaminate the water to be treated. For example, when used to treat tap water, it becomes suitable for drinking.

本発明に用いられる固体電解質隔膜電解法は、大電流低
電圧で運転できるため、ガスリフトによる液循環が可能
となり、電極触媒層へのハロゲン化炭化水素の到達時間
が速く、従ってその分解速度が著しく速くなる。また、
ガスリフトは同時にエアレーション効果もあるので、ハ
ロゲン化炭化水素やその分解生成物の揮散速度も速くな
る。それ故、数+1)l)lのハロゲン化炭化水素を含
む水の処理に適用することができる。
Since the solid electrolyte diaphragm electrolysis method used in the present invention can be operated at high current and low voltage, liquid circulation by gas lift is possible, and the time for halogenated hydrocarbons to reach the electrode catalyst layer is fast, resulting in a remarkable decomposition rate. It gets faster. Also,
Since the gas lift also has an aeration effect, the rate of volatilization of halogenated hydrocarbons and their decomposition products becomes faster. Therefore, it can be applied to the treatment of water containing several +1)l) halogenated hydrocarbons.

これに対して、通常のイオン交換膜電槽では、処理対象
水の電導度を上げるために支持電解質を添加せねばなら
ず、対象の水を汚染させることになる。また、支持電解
質を少量添加しても電流は数ミリアンペア程度しか流せ
ず、ガスリフトによる水の循環が期待できないので、ハ
ロゲン化炭化水素と電極との接触は遅くなり、分解速度
が大幅に遅いものとなる。
In contrast, in conventional ion exchange membrane cells, a supporting electrolyte must be added to increase the conductivity of the water to be treated, resulting in contamination of the water. Furthermore, even if a small amount of supporting electrolyte is added, a current of only a few milliamps can flow, and water circulation cannot be expected due to gas lift, so the contact between the halogenated hydrocarbon and the electrode will be slow, and the decomposition rate will be significantly slower. Become.

本発明の固体電解質隔膜1用いられる有機イオン交換膜
としては、耐蝕性や寿命の点からパーフルオロカーボン
のスルホン酸型イオン交換膜が望ましく用いられる。
As the organic ion exchange membrane used in the solid electrolyte diaphragm 1 of the present invention, a perfluorocarbon sulfonic acid type ion exchange membrane is preferably used from the viewpoint of corrosion resistance and service life.

無機イオン交換膜としては、リン酸ジルコニウム、タン
グステン酸ジルコニウム、モリブデン酸アンモニウム、
モリブデン酸ジルコニウム。
Inorganic ion exchange membranes include zirconium phosphate, zirconium tungstate, ammonium molybdate,
Zirconium molybdate.

アルミノケイ酸塩、ポリアンチモン酸等を用いることが
できる。これらの粉末を1〜50μの所定の粒度範囲に
調製し、10〜50重量%の含弗素重合体粉末を所望に
より混合する。10重量%未満では成形性が悪くなり、
50重量%を超えると親水性が失われる。よく混合した
後、温度25G〜ll5(1’r’!   rX++ 
 1.りn1ay  / 、J /> /A & AT
) ?+ m −7+。
Aluminosilicate, polyantimonic acid, etc. can be used. These powders are prepared to have a predetermined particle size range of 1 to 50 microns, and are mixed with 10 to 50% by weight of fluorine-containing polymer powder, if desired. If it is less than 10% by weight, moldability will be poor;
When it exceeds 50% by weight, hydrophilicity is lost. After mixing well, the temperature is 25G~ll5(1'r'! rX++
1. Rin1ay / , J /> /A & AT
)? + m -7+.

スにより熱圧成形し、100〜500μの厚さ、好まし
くは200〜400μの厚さとする。
It is hot-pressed to a thickness of 100 to 500 microns, preferably 200 to 400 microns.

本発明の多孔質性膜状電極触媒層は電極活性成分に含弗
素重合体等を所望により混合し、熱圧成形により膜状に
して用いられる。
The porous membrane electrode catalyst layer of the present invention is used by mixing an electrode active component with a fluorine-containing polymer, etc., if desired, and forming the mixture into a membrane by hot-pressing.

電極活性成分としては、陽極には例えばルテニウム、白
金、パラジウム、イリジウム、ロジウム、コバルト或い
はこれらの酸化物等、陰極には例えばニッケル、コバル
ト、鉄、ルテニウム、レニウム、白金、ロジウム、パラ
ジウム。
Examples of active electrode components include ruthenium, platinum, palladium, iridium, rhodium, cobalt, or oxides thereof for the anode, and nickel, cobalt, iron, ruthenium, rhenium, platinum, rhodium, and palladium for the cathode.

オスミウム、イリジウム、バナジウム或いはこれらの酸
化物等を夫々1種或いは2種以上を適宜選択して用いる
ことができる。
One or more of osmium, iridium, vanadium, or their oxides can be selected and used as appropriate.

これらは使用に先立って調製するのが好ましい。例えば
、ルテニウムとイリジウムの酸化物より成る電極活性成
分を得るには、所望の重量比に混合した両者の塩化物に
過剰の硝酸ナトリウム又は同等のアルカリ金属塩を添加
し、シリカ皿中で500〜600℃、約4時間融解する
。残°留物は洗浄除去するーSられた酸イト物は10.
!’ll’1μの所望の粒度範囲に調製する。この熱分
解酸化物に10〜50重量%の含弗素重合体を混合する
Preferably, these are prepared prior to use. For example, to obtain an electrode active component consisting of oxides of ruthenium and iridium, add an excess of sodium nitrate or an equivalent alkali metal salt to both chlorides mixed in the desired weight ratio, Melt at 600°C for about 4 hours. Residues are washed and removed - Sedated acid compounds are removed in 10.
! Adjust to desired particle size range of 'll' 1μ. 10 to 50% by weight of a fluorine-containing polymer is mixed with this thermally decomposed oxide.

10重量%未満では成形性が悪くなり、50重量%を超
えると親水性が失われる。よく混合した後、温度250
〜350℃、1〜20均/cjGの所望の条件で熱プレ
スによりフィルム状に成形する。
If it is less than 10% by weight, moldability will be poor, and if it exceeds 50% by weight, hydrophilicity will be lost. After mixing well, temperature 250
It is formed into a film by hot pressing under the desired conditions of ~350°C and 1 to 20 yen/cjG.

該フィルムを前記固体電解質隔膜の所定の面に重ね、熱
プレスにより温度250〜350℃で1〜20kg /
 ad Qの条件で加熱圧着させて一体化し、一部膜面
に埋め込むようにするのが望ましい。
The film is stacked on a predetermined surface of the solid electrolyte diaphragm and heated at a temperature of 250 to 350°C with a weight of 1 to 20 kg/
It is preferable to heat and press the film under ad Q conditions to integrate it and partially embed it in the film surface.

該ガス、液透過性の触媒層を設けた固体電解質隔膜は、
通電するためにスプリングやねじを用いて集電体と密着
させ、フレームや押え板で両者を押しつける等の方法に
より組立てられる。
The solid electrolyte membrane provided with the gas- and liquid-permeable catalyst layer is
In order to conduct electricity, it is assembled by using a spring or a screw to bring it into close contact with a current collector, and then pressing the two together with a frame or presser plate.

集電体には微細な金網、パンチングメタル又はエキスバ
ンドメタル等が用いられる。構成材質としては、例えば
陽極側には、チタン、タンタル、ニオブ、ジルコニウム
等のバルブ金属の表面に白金族金属及びその合金、白金
族酸化物及びその混合物等を被覆したものが用いられ、
陰極側にはニッケル又はステンレス、鉄にニッケルめっ
きしたもの等が用いられる。
A fine wire mesh, punched metal, expanded metal, or the like is used as the current collector. As for the constituent material, for example, on the anode side, a valve metal such as titanium, tantalum, niobium, or zirconium whose surface is coated with platinum group metals and their alloys, platinum group oxides and mixtures thereof, etc. is used.
For the cathode side, nickel, stainless steel, iron plated with nickel, etc. are used.

以下図面を用いて実施態様を示す。第1図は、本発明の
固体電解質隔膜1の両面に多孔質性膜状電極触媒層2を
設けて、陽極集電体3及び陰極集電体4を結合せしめた
電解槽の隔膜及び電極部を示す概略説明図である。陽極
室及び陰極室に、ハロゲン化炭化水素を含む水を夫々供
給して電解を行うと陽極側の電極触媒層から二酸化炭素
ガスや酸素ガスが、陰極側の電極触媒層からメタンガス
や水素ガスが発生してガスリフトにより液循環を促し、
ハロゲン化炭化水素の電極触媒層への到達時間が速く、
従ってその分解速度が著しく速くなる。
Embodiments will be described below using the drawings. FIG. 1 shows the diaphragm and electrode portion of an electrolytic cell in which a porous membrane electrode catalyst layer 2 is provided on both sides of a solid electrolyte diaphragm 1 of the present invention, and an anode current collector 3 and a cathode current collector 4 are combined. FIG. When electrolysis is performed by supplying water containing halogenated hydrocarbons to the anode and cathode chambers, carbon dioxide gas and oxygen gas are released from the electrode catalyst layer on the anode side, and methane gas and hydrogen gas are released from the electrode catalyst layer on the cathode side. generated and promotes liquid circulation by gas lift,
The halogenated hydrocarbon reaches the electrode catalyst layer quickly,
Therefore, its decomposition rate becomes significantly faster.

次に本発明を実施例により更に詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 粒径10μ未満の粉末状ポリアンチモン酸5.01とポ
リテトラフルオロエチレン(以下PTFEという。) 
 1.09を混合したものを熱プレスでプレスして厚さ
300μのイオン交換膜を作製し、10X 10cmの
大きさに切断して固体電解質隔膜とした。
Example 1 Powdered polyantimonic acid 5.01 with a particle size of less than 10μ and polytetrafluoroethylene (hereinafter referred to as PTFE).
A mixture of 1.09 and 1.09 was pressed using a hot press to produce an ion exchange membrane with a thickness of 300 μm, and the membrane was cut into a size of 10×10 cm to obtain a solid electrolyte diaphragm.

この隔膜の陽極側に1d当り平均粒径が約30μの酸化
ルテニウム”9+酸化イリジウム3m+9を含むPTF
E薄膜(PTFE含量3含量3亢隔膜の陰極側に1d当
り平均粒径的30μの酸化ロジウム4町を含むPTFE
薄1!(、PTFE含聞35重閤%)を熱圧着により結
合せしめてガス、液透過性の該触媒層を設けた固体電解
質隔膜とした。
PTF containing ruthenium oxide "9 + iridium oxide 3m + 9 with an average particle size of about 30 μ per 1 d on the anode side of this diaphragm.
E thin film (PTFE content: 3) PTFE containing 4 parts of rhodium oxide with an average particle size of 30μ per 1 d on the cathode side of the diaphragm.
Thin 1! (PTFE containing 35% by weight) were bonded together by thermocompression bonding to form a solid electrolyte membrane provided with the gas- and liquid-permeable catalyst layer.

集電体として陽極側に酸化イリジウム被覆チタンメツシ
ュ、陰極側にニッケルめっき5LI8304メツシユを
使用した。
As a current collector, an iridium oxide-coated titanium mesh was used on the anode side, and a nickel-plated 5LI8304 mesh was used on the cathode side.

集電体と電極触媒層を設けた固体電解質隔膜の密着には
、陽極側にチタン製のスプリング。
A titanium spring is used on the anode side to ensure close contact between the current collector and the solid electrolyte membrane with the electrode catalyst layer.

陽極フレーム及び押え板を、陰極側に5US304製の
陰極フレーム及び押え板を使用した。
A cathode frame and a holding plate made of 5US304 were used on the cathode side.

陽極室及び陰極室に、0.2ミリモルのクロロホルムを
添加した500■eの蒸溜水を夫々供給して、電流10
Aで電解し、発生した酸素ガス、水゛素ガスで夫々液循
環した。摺電圧は2.9■であった。
500 μe of distilled water to which 0.2 mmol of chloroform was added was supplied to the anode chamber and the cathode chamber, and a current of 10
Electrolysis was carried out in A, and the generated oxygen gas and hydrogen gas were used to circulate the liquid. The sliding voltage was 2.9■.

電解液中のクロロホルム濃度はガスクロマトグラフィー
で測定した。
The chloroform concentration in the electrolyte was measured by gas chromatography.

電解10分経過後のクロロホルム分解率は陽極側で80
%,陰極側で90%に達しており、クロロホルムが非常
に速やかに分解されていることが分る。
The chloroform decomposition rate after 10 minutes of electrolysis was 80% on the anode side.
%, reaching 90% on the cathode side, indicating that chloroform is decomposed very quickly.

実施例2 大きさiox 110Clのイオン交換膜[ナフィオン
125J  (米国デュポン社製)の両面に、1d当り
平均粒径が約30μの酸化イリジウム4町を含むPTF
EIlml(PTFE含量30重量%)を熱圧着により
結合せしめて、ガス、液透過性の該触媒層を設けた隔膜
を作製した。
Example 2 An ion exchange membrane with a size of 110 Cl [Nafion 125J (manufactured by DuPont, USA) was coated with PTF containing 4 iridium oxide particles with an average particle size of about 30 μm per 1 d on both sides.
EIlml (PTFE content: 30% by weight) was bonded together by thermocompression bonding to produce a gas- and liquid-permeable diaphragm provided with the catalyst layer.

集電体として、陽極側に白金めつきチタンメツシュ、陰
極側にニッケルメツシュを使用した。
As current collectors, platinum-plated titanium mesh was used on the anode side, and nickel mesh was used on the cathode side.

集電体と触媒層を設けた固体電解質隔膜の密着は前記実
施例1と同じものを用いた。実施例1と全く同様の操作
で、0.2ミリモルのクロロホルムを添加した500■
eの蒸溜水を陽極室及び陰極室に夫々供給して、電流1
0Aで電解し、発生ガスリフトで液循環した。摺電圧は
2.3■であった。
The close contact between the current collector and the solid electrolyte membrane provided with the catalyst layer was the same as in Example 1 above. In exactly the same manner as in Example 1, 500 μm containing 0.2 mmol of chloroform was added.
Distilled water of e is supplied to the anode chamber and the cathode chamber respectively, and a current of 1
Electrolysis was carried out at 0A, and the liquid was circulated using a generated gas lift. The sliding voltage was 2.3■.

電解液中のクロロホルム濃度は、実施例1と同様にガス
クロマトグラフィーで測定した。
The chloroform concentration in the electrolyte was measured by gas chromatography in the same manner as in Example 1.

電解10分経過後のクロロホルム分解率は、陽極側で9
0%、陰極側で95%に達しており、クロロホルムが非
常に速やかに分解されていることが分る。
The chloroform decomposition rate after 10 minutes of electrolysis was 9 on the anode side.
0%, and reached 95% on the cathode side, indicating that chloroform was decomposed very quickly.

実施例3 前記実施例2と同様の電解槽を用いて、0.001ミリ
モルのクロロホルムを添加した5 00 mlの蒸溜水
を夫々用いた以外は実施例2と全く同様にして、電流2
0Aで電解した。摺電圧は2.4vであった。
Example 3 Electrolytic cells similar to those in Example 2 were used, and the current was 2.
Electrolysis was carried out at 0A. The sliding voltage was 2.4v.

電解30分経過後の電解液中クロロホルム濃度は陽極側
で0.00029ミリモル#(35μ5/り、陰極側で
o、oooiaミリモル/R(21μ971)に達して
おり、分解率に換算すると夫々85.5%。
After 30 minutes of electrolysis, the chloroform concentration in the electrolyte reached 0.00029 mmol/R (35μ5/R) on the anode side and 0.00029 mmol/R (21μ971) on the cathode side, which, when converted to decomposition rate, was 85. 5%.

91.0%であった。It was 91.0%.

実施例4 前記実施例2と同様の電解槽を用いて0.01ミリモル
のi、1.i−t−リクロルエタンを添加した500■
eの蒸溜水を夫々用いた以外は実施例2と全く同様にし
て、電流2OAで電解した。摺電圧2.4■であった。
Example 4 Using the same electrolytic cell as in Example 2, 0.01 mmol of i, 1. 500 ■ with addition of it-lichloroethane
Electrolysis was carried out in exactly the same manner as in Example 2, except that distilled water of e was used, and a current of 2 OA was used. The sliding voltage was 2.4■.

電解10分経過後の電解液中1.1.1−トリクロルエ
タン濃度は陽極側で0.0017ミリモル/β(227
μ9/1)、陰極側で0.0011ミリモル/1  (
147μ9/p)に達しており、分解率は夫々91.5
%、 94.5%であった。
The concentration of 1.1.1-trichloroethane in the electrolyte after 10 minutes of electrolysis was 0.0017 mmol/β (227
μ9/1), 0.0011 mmol/1 (
147 μ9/p), and the decomposition rate was 91.5 respectively.
%, 94.5%.

(発明の効果) 本発明の方法によって、固体電解質隔膜の両面に多孔質
性膜状電極触媒層を設けた電解装置を用いて直接電解を
行えば、支持電解質を添加する必要がなく、高電流密度
の印加が可能となるので、対象水を汚染させることなし
に比較的小型の装置で、容易に、含有する微量のハロゲ
ン化炭化水素を速やかに分解することができるので産業
上有用である。
(Effects of the Invention) If direct electrolysis is performed using the method of the present invention using an electrolysis device in which porous membrane electrode catalyst layers are provided on both sides of a solid electrolyte membrane, there is no need to add a supporting electrolyte, and a high current Since density can be applied, trace amounts of halogenated hydrocarbons contained can be easily and quickly decomposed using a relatively small device without contaminating the target water, which is industrially useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用される電解槽の隔膜及び電極部を
示す概略説明図である。
FIG. 1 is a schematic explanatory diagram showing a diaphragm and an electrode part of an electrolytic cell used in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 陽極室と陰極室を区画する固体電解質隔膜の両面に、夫
々多孔性膜状電極触媒層を設けて該触媒層を各集電体と
結合せしめた電解槽を使用し、ハロゲン化炭化水素を微
量に含む水を電解することを特徴とするハロゲン化炭化
水素の分解方法。
An electrolytic cell is used in which a porous membrane electrode catalyst layer is provided on both sides of a solid electrolyte membrane that partitions an anode chamber and a cathode chamber, and the catalyst layer is combined with each current collector. A method for decomposing halogenated hydrocarbons, the method comprising electrolyzing water contained in halogenated hydrocarbons.
JP59150816A 1984-07-19 1984-07-19 Decomposition of halogenated hydrocarbon Granted JPS6128493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59150816A JPS6128493A (en) 1984-07-19 1984-07-19 Decomposition of halogenated hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59150816A JPS6128493A (en) 1984-07-19 1984-07-19 Decomposition of halogenated hydrocarbon

Publications (2)

Publication Number Publication Date
JPS6128493A true JPS6128493A (en) 1986-02-08
JPS6311073B2 JPS6311073B2 (en) 1988-03-11

Family

ID=15505037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59150816A Granted JPS6128493A (en) 1984-07-19 1984-07-19 Decomposition of halogenated hydrocarbon

Country Status (1)

Country Link
JP (1) JPS6128493A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016911A (en) * 2002-06-14 2004-01-22 Ohbayashi Corp Method, apparatus and system for treatment of organic chlorine compound
JP2006150151A (en) * 2004-11-25 2006-06-15 Honda Motor Co Ltd Electrolytic cell of electrolytic water generator
US7513980B2 (en) 2004-11-25 2009-04-07 Honda Motor Co., Ltd. Electrolytic cell for electrolyzed water generator
JP2011527937A (en) * 2008-07-15 2011-11-10 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Industrial wastewater treatment
JP2013039270A (en) * 2011-08-18 2013-02-28 Japan Atomic Energy Agency Method for dechlorinating chlorinated aliphatic hydrocarbon compound and device for dechlorination
JP2016040036A (en) * 2015-10-06 2016-03-24 国立研究開発法人日本原子力研究開発機構 Dechlorination method and dechlorination device for chlorinated ethylene
JP2021112730A (en) * 2020-01-21 2021-08-05 株式会社バイオレドックス研究所 Electrolytic water production apparatus and method for producing electrolytic water using the same
WO2022195708A1 (en) * 2021-03-16 2022-09-22 株式会社バイオレドックス研究所 Electrolyzed water production apparatus, and electrolyzed water production method using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016911A (en) * 2002-06-14 2004-01-22 Ohbayashi Corp Method, apparatus and system for treatment of organic chlorine compound
JP2006150151A (en) * 2004-11-25 2006-06-15 Honda Motor Co Ltd Electrolytic cell of electrolytic water generator
US7513980B2 (en) 2004-11-25 2009-04-07 Honda Motor Co., Ltd. Electrolytic cell for electrolyzed water generator
JP2011527937A (en) * 2008-07-15 2011-11-10 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Industrial wastewater treatment
JP2013039270A (en) * 2011-08-18 2013-02-28 Japan Atomic Energy Agency Method for dechlorinating chlorinated aliphatic hydrocarbon compound and device for dechlorination
JP2016040036A (en) * 2015-10-06 2016-03-24 国立研究開発法人日本原子力研究開発機構 Dechlorination method and dechlorination device for chlorinated ethylene
JP2021112730A (en) * 2020-01-21 2021-08-05 株式会社バイオレドックス研究所 Electrolytic water production apparatus and method for producing electrolytic water using the same
WO2022195708A1 (en) * 2021-03-16 2022-09-22 株式会社バイオレドックス研究所 Electrolyzed water production apparatus, and electrolyzed water production method using same

Also Published As

Publication number Publication date
JPS6311073B2 (en) 1988-03-11

Similar Documents

Publication Publication Date Title
US4191618A (en) Production of halogens in an electrolysis cell with catalytic electrodes bonded to an ion transporting membrane and an oxygen depolarized cathode
US4457823A (en) Thermally stabilized reduced platinum oxide electrocatalyst
KR101932163B1 (en) Water treatment device generating hydrogen peroxide and hypochlorite ion
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
JP3025473B2 (en) Electrolytic ozone generator and method for making it
DE102009004031A1 (en) Structured gas diffusion electrode for electrolysis cells
EP2035599A2 (en) Electrode, method of manufacture and use thereof
JPH04500097A (en) Improved method for producing quaternary ammonium hydroxide
JPS6059996B2 (en) Alkali chloride electrolysis method
JPS5854611B2 (en) Manufacturing method of electrolytic catalyst
US7211177B2 (en) Electrode for electrolysis in acidic media
EP0255099B1 (en) Cathode bonded to ion exchange membrane for use in electrolyzers for electrochemical processes and relevant method for conducting electrolysis
AU2018232301A1 (en) Electrodes comprising metal introduced into a solid-state electrolyte
Chen et al. Synthesis and application of lead dioxide nanowires for a PEM ozone generator
JPS6128493A (en) Decomposition of halogenated hydrocarbon
EP0560740A1 (en) Apparatus and process for electrolytic ozone generation
US4956061A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US4772364A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
KR101071636B1 (en) Electrolysis vessel and apparatus for generating electrolyzed water
KR101910636B1 (en) Device for producing hydrogen peroxide using electrolysis
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
JP2009019278A (en) One-step electrosynthesis of borohydride
JPH046290A (en) Electrolytic synthesis of halide
SU1584752A3 (en) Method of producing chlorine and sodium hydroxide
US4569735A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane