Nothing Special   »   [go: up one dir, main page]

JP2016040036A - Dechlorination method and dechlorination device for chlorinated ethylene - Google Patents

Dechlorination method and dechlorination device for chlorinated ethylene Download PDF

Info

Publication number
JP2016040036A
JP2016040036A JP2015198099A JP2015198099A JP2016040036A JP 2016040036 A JP2016040036 A JP 2016040036A JP 2015198099 A JP2015198099 A JP 2015198099A JP 2015198099 A JP2015198099 A JP 2015198099A JP 2016040036 A JP2016040036 A JP 2016040036A
Authority
JP
Japan
Prior art keywords
dechlorination
cathode
chlorinated
treatment
chlorinated ethylenes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015198099A
Other languages
Japanese (ja)
Other versions
JP6061315B2 (en
Inventor
佐藤 有司
Yuji Sato
有司 佐藤
久承 高城
Hisaaki Takagi
久承 高城
正幸 竹田
Masayuki Takeda
正幸 竹田
達夫 下村
Tatsuo Shimomura
達夫 下村
智一 関根
Tomokazu Sekine
智一 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Ebara Industrial Cleaning Co Ltd
Original Assignee
Japan Atomic Energy Agency
Ebara Industrial Cleaning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency, Ebara Industrial Cleaning Co Ltd filed Critical Japan Atomic Energy Agency
Priority to JP2015198099A priority Critical patent/JP6061315B2/en
Publication of JP2016040036A publication Critical patent/JP2016040036A/en
Application granted granted Critical
Publication of JP6061315B2 publication Critical patent/JP6061315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device of dechlorinating a large quantity of the objects to be treated including high concentration chlorinated ethylene in a short time.SOLUTION: Provided is a method and a device where the objects to be treated including chlorinated ethylene are, in an electrolytic tank 1 including a cathode 2 (except for a carbon electrode) and an anode 3 installed separately with a diaphragm, contacted only with the cathode 2, and electrochemical dechlorinating treatment is performed in such a manner that the pH of the objects to be treated is 7 to 12. In the dechlorinating method for chlorinated ethylene, the material of the cathode 2 is copper or a copper alloy or a monel alloy.SELECTED DRAWING: Figure 1

Description

本発明は、原子力施設内で発生するテトラクロロエチレン廃液、工場排水等の塩素化エチレン類を含む被処理物の脱塩素方法と脱塩素装置に関する。   The present invention relates to a dechlorination method and a dechlorination apparatus for an object to be treated containing chlorinated ethylenes such as tetrachlorethylene waste liquid and factory effluent generated in a nuclear facility.

テトラクロロエチレンが原子力施設内のアスファルト固化装置点検時の洗浄剤として使用されている。発生するテトラクロロエチレン廃液は、アスファルト及びアスファルト中に取り込まれている放射性物質を含む不溶性固形物、水分、低沸点溶剤等の不純物を含有しているので、当該テトラクロロエチレン廃液は通常の産業廃棄物処理に付されない。そこで、放射性物質を含有するテトラクロロエチレン廃液が蒸留されて得られるテトラクロロエチレンと純水及び鉄複合粒子が混合され、テトラクロロエチレンが分解されるテトラクロロエチレン廃液の処理方法が検討された(例えば、特許文献1参照)。しかしながら特許文献1に記載の方法では、鉄複合粒子の酸化とテトラクロロエチレンの還元とが当量反応として生じることから、大量のテトラクロロエチレンを本方法単独で処理しようとすると、大量の鉄複合粒子を必要とし、また廃棄物である酸化鉄が大量に発生する問題があった。   Tetrachlorethylene is used as a cleaning agent when checking asphalt solidification equipment in nuclear facilities. The generated tetrachlorethylene waste liquor contains impurities such as asphalt and insoluble solids containing radioactive materials incorporated into the asphalt, moisture, low boiling point solvents, etc., so the tetrachlorethylene waste liquor is subjected to normal industrial waste treatment. Not. Then, the processing method of the tetrachloroethylene waste liquid by which the tetrachloroethylene obtained by distilling the tetrachloroethylene waste liquid containing a radioactive substance, pure water, and iron composite particle | grains is mixed, and tetrachloroethylene is decomposed | disassembled was examined (for example, refer patent document 1). However, in the method described in Patent Document 1, since oxidation of iron composite particles and reduction of tetrachloroethylene occur as an equivalent reaction, an attempt to treat a large amount of tetrachloroethylene by this method alone requires a large amount of iron composite particles. Moreover, there was a problem that a large amount of iron oxide as waste was generated.

一方、有機化合物含有水の電解処理が、導電性ダイヤモンドを用いた陰極を備える陰極室と導電性ダイヤモンドを用いた陽極を備える陽極室とがイオン交換体によって区画された電解装置によって行われると共に、前記陰極室と陽極室との間で前記有機化合物含有水を循環処理する有機化合物含有水の処理方法(例えば、特許文献2参照)、カーボンクロス陰極区画と陽極区画に分けられた電解槽で塩素化有機化合物の脱塩素方法(例えば、非特許文献1参照)が検討された。
しかしながら特許文献2に記載の方法では、大量の有機塩素化合物を分解させようとすると、系内に脱塩素された塩素イオンが蓄積するに伴い、陽極で次亜塩素酸イオンの発生、陰極で次亜塩素酸イオンの塩素イオンへの還元反応が優勢となり、有機塩素化合物の分解が停滞する問題があった。
また、非特許文献1に記載の方法では、カーボンクロスで脱塩素を生じさせるために非常に高い容積当たり電流密度(5.6〜58mA/mL、本願の実施例と同様の500mL容の反応容器を想定すると2800〜29000mA)が必要となり、実用的でないという問題があった。
On the other hand, the electrolytic treatment of the organic compound-containing water is performed by an electrolytic device in which a cathode chamber having a cathode using conductive diamond and an anode chamber having an anode using conductive diamond are partitioned by an ion exchanger, A method for treating organic compound-containing water that circulates the organic compound-containing water between the cathode chamber and the anode chamber (see, for example, Patent Document 2), chlorine in an electrolytic cell divided into a carbon cloth cathode compartment and an anode compartment A method for dechlorination of chlorinated organic compounds (for example, see Non-Patent Document 1) has been studied.
However, in the method described in Patent Document 2, when a large amount of organochlorine compound is decomposed, as dechlorinated chlorine ions accumulate in the system, hypochlorite ions are generated at the anode, and next at the cathode. There was a problem that the reduction reaction of chlorite ion to chlorine ion became dominant and the decomposition of the organic chlorine compound was stagnant.
Further, in the method described in Non-Patent Document 1, a very high current density per volume (5.6 to 58 mA / mL for producing dechlorination with carbon cloth, a 500 mL capacity reaction vessel similar to the example of the present application is assumed. Then, 2800-29000 mA) was required, and there was a problem that it was not practical.

更に、(i)電解質を含む水の電気分解によって生成する機能水とハロゲン化脂肪族炭化水素化合物または芳香族化合物とを光照射下で接触させる工程、および(ii)該工程(i)によって得られる液体を中和する工程、とを有するハロゲン化脂肪族炭化水素化合物または芳香族化合物の分解方法が検討された(例えば、特許文献3参照)。
しかし、特許文献3に記載の方法では、ハロゲン化脂肪族炭化水素化合物または芳香族化合物は陽極で発生する機能水とのみ光照射下で接触するように構成されており、還元脱塩素化反応ではなく酸化反応が生じる。そのためジクロロ酢酸などの有害な分解生成物が生じる問題があり、後処理として微生物処理を組み込む必要があるなどという問題があった。すなわち、高濃度の塩素化脂肪族炭化水素化合物を含む多量の被処理物を、低い電流量で、短時間で脱塩素する有効な方法が望まれていた
Furthermore, (i) a step of contacting functional water generated by electrolysis of water containing an electrolyte with a halogenated aliphatic hydrocarbon compound or an aromatic compound, and (ii) obtained by the step (i). And a method for decomposing a halogenated aliphatic hydrocarbon compound or an aromatic compound having a step of neutralizing a liquid to be produced (see, for example, Patent Document 3).
However, in the method described in Patent Document 3, the halogenated aliphatic hydrocarbon compound or the aromatic compound is configured to come into contact only with functional water generated at the anode under light irradiation. In the reductive dechlorination reaction, Oxidation reaction occurs. Therefore, there is a problem that harmful decomposition products such as dichloroacetic acid are generated, and there is a problem that it is necessary to incorporate a microbial treatment as a post-treatment. That is, an effective method for dechlorinating a large amount of an object containing a high concentration of chlorinated aliphatic hydrocarbon compound in a short time with a low current amount has been desired.

特開2010−203930号公報JP 2010-203930 A 特開2004−202283号公報JP 2004-202283 A 特開2000−225336号公報JP 2000-225336 A

S. M. Kulikov 外4名、Electrochimica Acta, Volume 41, Issue 4, March 1996, Pages 527-531S. M. Kulikov and 4 others, Electrochimica Acta, Volume 41, Issue 4, March 1996, Pages 527-531

近年、高濃度の塩素化エチレン類を含む多量の被処理物を短時間で脱塩素する方法が望まれていたが、このような脱塩素方法は提供されていなかった。
本発明が解決しようとする課題は、高濃度の塩素化エチレン類を含む多量の被処理物を短時間で脱塩素する方法及び当該方法の実施のための装置の提供である。
In recent years, there has been a demand for a method of dechlorinating a large amount of an object to be treated containing a high concentration of chlorinated ethylenes in a short time, but such a dechlorination method has not been provided.
The problem to be solved by the present invention is to provide a method for dechlorinating a large amount of an object containing a high concentration of chlorinated ethylenes in a short time and an apparatus for carrying out the method.

本発明の発明者らは、上記課題を解決するために鋭意検討した結果、高濃度の塩素化エチレン類を含む被処理物が、陰極(但し、炭素電極を除く)及び陽極を備える電解槽中で当該陰極とのみ接触させられ、電気化学的脱塩素処理に付されると塩素化エチレン類が脱塩素されることを見出し、本発明を完成させた。   As a result of intensive investigations to solve the above problems, the inventors of the present invention have found that an object to be treated containing a high concentration of chlorinated ethylenes is in an electrolytic cell comprising a cathode (however, excluding a carbon electrode) and an anode. Thus, the present inventors have found that chlorinated ethylenes can be dechlorinated when brought into contact with only the cathode and subjected to an electrochemical dechlorination treatment.

本発明の塩素化エチレン類の脱塩素方法は、塩素化エチレン類を含む被処理物が、陰極(但し、炭素電極を除く)及び陽極を備える電解槽中で当該陰極とのみ接触させられ、当該被処理物のpHが7〜12で電気化学的脱塩素処理が実施される。当該被処理物の電気化学的脱塩素処理時の好ましいpHは10〜12である。上記陰極の好ましい材質は銅又は銅合金である。上記陰極の更に好ましい材質はモネル合金である。   In the method of dechlorinating chlorinated ethylenes of the present invention, an object to be treated containing chlorinated ethylenes is brought into contact only with the cathode in an electrolytic cell including a cathode (excluding a carbon electrode) and an anode, The electrochemical dechlorination treatment is performed at a pH of 7 to 12 to be treated. A preferable pH at the time of electrochemical dechlorination treatment of the workpiece is 10-12. A preferable material of the cathode is copper or a copper alloy. A more preferable material for the cathode is a Monel alloy.

上記電気化学的脱塩素処理に付されている被処理物は、好ましくは上記電解槽の下部に形成される傾斜部下端から吸引されると共に電解槽上部に戻されて循環される。
上記電気化学的脱塩素処理により得られた被処理物は、好ましくは、純水及び鉄複合粒子と混合され、脱塩素処理が実施される。
The workpiece to be subjected to the electrochemical dechlorination treatment is preferably sucked from the lower end of the inclined portion formed at the lower part of the electrolytic cell and returned to the upper part of the electrolytic cell for circulation.
The object to be treated obtained by the electrochemical dechlorination treatment is preferably mixed with pure water and iron composite particles, and the dechlorination treatment is performed.

本発明の塩素化エチレン類の脱塩素装置は、陰極(但し、炭素電極を除く)と陽極が隔膜で離隔されて設置されている電解槽、塩素化エチレン類を含み、pHが7〜12に調製された被処理物を上記陰極を含む陰極区画の下部に形成される傾斜部下端から吸引すると共に陰極区画上部に戻す被処理物循環手段を備える。
好ましい上記被処理物循環手段は渦巻きポンプであり、好ましい上記隔膜は陽イオン交換膜である。
The dechlorination apparatus for chlorinated ethylenes of the present invention includes an electrolytic cell in which a cathode (excluding a carbon electrode) and an anode are separated by a diaphragm, chlorinated ethylenes, and has a pH of 7-12. A processing object circulation means is provided for sucking the prepared object to be processed from the lower end of the inclined part formed at the lower part of the cathode compartment including the cathode and returning it to the upper part of the cathode part.
The preferable treatment object circulation means is a centrifugal pump, and the preferable diaphragm is a cation exchange membrane.

本発明の塩素化エチレン類の脱塩素方法及び本発明の塩素化エチレン類の脱塩素装置は、高濃度の塩素化エチレン類を含む多量の被処理物を短時間で脱塩素できる。   The dechlorination method for chlorinated ethylenes of the present invention and the dechlorination apparatus for chlorinated ethylenes of the present invention can dechlorinate a large amount of an object containing a high concentration of chlorinated ethylenes in a short time.

塩素化エチレン類の脱塩素装置の概略を示す図Schematic diagram of chlorinated ethylene dechlorination equipment

以下、本発明の好ましい実施態様を表す図面を示し、本発明を詳細に説明する。
図1は、本発明の塩素化エチレン類の脱塩素装置の概略を示す図である。電解槽1は陰極2及び陽極3を備えている。陰極2及び陽極3は電源4に接続されている。陽極3は隔膜で被覆されており、電解槽1に注入された被処理物は陰極2と接触するが、陽極3と接触しない。陽極3と隔膜の間に形成される陽極区画を満たすアノード液は、電気分解の際、熱交換器5で冷却されてアノード液槽6に送液され、更にアノード液槽6から陽極3と分離膜の間に形成される空隙への循環される。
Hereinafter, the present invention will be described in detail with reference to the drawings showing preferred embodiments of the present invention.
FIG. 1 is a diagram showing an outline of a dechlorination apparatus for chlorinated ethylenes of the present invention. The electrolytic cell 1 includes a cathode 2 and an anode 3. The cathode 2 and the anode 3 are connected to a power source 4. The anode 3 is covered with a diaphragm, and the workpiece injected into the electrolytic cell 1 is in contact with the cathode 2 but not in contact with the anode 3. The anolyte filling the anode compartment formed between the anode 3 and the diaphragm is cooled by the heat exchanger 5 and sent to the anolyte tank 6 during electrolysis, and further separated from the anolyte tank 6 from the anode 3. Circulated to voids formed between the membranes.

陰極2は、銅、銅合金、モネル合金(ニッケルと銅の合金)、ニッケル、ステンレス、鉄等の材料から構成される。ただし、陰極2の材料は炭素ではない。陰極2の好ましい構成材料は銅、銅合金であり、特にモネル合金が好ましく用いられる。
陽極3は、アルミニウム、チタン、白金族金属、白金族コート金属等の材料から構成される。陽極3として、例えば、酸化イリジウムコートチタン電極を用いることができる。
The cathode 2 is made of a material such as copper, copper alloy, monel alloy (nickel-copper alloy), nickel, stainless steel, or iron. However, the material of the cathode 2 is not carbon. Preferred constituent materials of the cathode 2 are copper and a copper alloy, and a monel alloy is particularly preferably used.
The anode 3 is made of a material such as aluminum, titanium, a platinum group metal, or a platinum group coat metal. As the anode 3, for example, an iridium oxide-coated titanium electrode can be used.

上記隔膜の原料の具体例は、陽イオン交換膜;官能基を有しないMF(マイクロフィルタ)膜、UF(ウルトラフィルタ)膜、セラミックなどの多孔質濾材;ナイロン、ポリエチレン、ポリプロピレン製の織布;マニラ麻;ガラス繊維;多孔性プラスチックフィルム等である。これらの官能基を有しない隔膜として、孔径が5μm以下で、非加圧条件でガスを透過しないものが好ましい。上記隔膜の市販品の具体例は、Schweiz Seidengazefabrik製PE-10膜、Flon Industry製NY1-HD膜などである。上記隔膜の好ましい原料は陽イオン交換膜である。
必要に応じて濾過、蒸留等の前処理に付された塩素化エチレン類を含む廃液は、無水硫酸ナトリウム、塩化ナトリウム等の電解質が溶解されている、水、エタノール、メタノール、アセトニトリル、DMSO等の極性溶媒に分散または溶解され、塩素化エチレン類を含む被処理物が得られる。当該廃液の極性溶媒への分散または溶解は、電解槽1への注入前に実施されていてもよく、電解槽1中で実施されてもよい。
Specific examples of the raw material of the membrane include cation exchange membranes; MF (microfilter) membranes having no functional groups, UF (ultrafilter) membranes, porous filter media such as ceramics; woven fabrics made of nylon, polyethylene, and polypropylene; Manila hemp; glass fiber; porous plastic film. As the diaphragm not having these functional groups, those having a pore diameter of 5 μm or less and not allowing gas to pass under non-pressurized conditions are preferable. Specific examples of the above-mentioned commercial products of the diaphragm include PE-10 membrane manufactured by Schweiz Seidengazefabrik, NY1-HD membrane manufactured by Flon Industry, and the like. A preferred raw material for the diaphragm is a cation exchange membrane.
The waste liquid containing chlorinated ethylenes that has been subjected to pretreatment such as filtration and distillation as needed is water, ethanol, methanol, acetonitrile, DMSO, etc. in which electrolytes such as anhydrous sodium sulfate and sodium chloride are dissolved. An object to be treated containing chlorinated ethylenes is obtained by being dispersed or dissolved in a polar solvent. The dispersion or dissolution of the waste liquid in the polar solvent may be performed before injection into the electrolytic cell 1 or may be performed in the electrolytic cell 1.

塩素化エチレン類を含む被処理物が電解槽1の陰極区画に注入され、アノード液が陽極区画に注入された後、塩素化エチレン類の電気化学的脱塩素処理が実施される。アノード液は、陰極区画に注入される塩素化エチレン類を含む被処理物の調製時に使用された電解液と同一組成のもの又は別組成の電解液である。   An object to be treated containing chlorinated ethylenes is injected into the cathode compartment of the electrolytic cell 1, and after the anolyte is injected into the anode compartment, an electrochemical dechlorination treatment of the chlorinated ethylenes is performed. The anolyte is an electrolyte having the same composition as or different from the electrolyte used when preparing the object to be treated containing chlorinated ethylenes to be injected into the cathode compartment.

電気分解の際、当該被処理物のpHは7〜12であり、好ましい当該pHは10〜12である。当該pHが低すぎると、被処理物中の水素イオン濃度が上昇して陰極2表面の水素イオンの還元反応(水素ガスの発生)が容易になり、陰極電位が上昇して塩素化エチレンの還元脱塩素化反応が起こりにくくなる結果、塩素化エチレン類の分解速度が低下するか、塩素化エチレン類の分解が起きなくなる。隔膜が陽イオン交換膜である場合、当該pHが高すぎると、陽イオン交換膜の通電時電圧が上昇し、イオン交換能が低下して電気抵抗が増加する。   At the time of electrolysis, the pH of the object to be treated is 7 to 12, and the preferable pH is 10 to 12. If the pH is too low, the hydrogen ion concentration in the object to be treated increases, and the reduction reaction of hydrogen ions on the surface of the cathode 2 (generation of hydrogen gas) becomes easy, and the cathode potential rises to reduce chlorinated ethylene. As a result of the difficulty of dechlorination, the decomposition rate of chlorinated ethylenes decreases or the chlorinated ethylenes do not decompose. When the diaphragm is a cation exchange membrane, if the pH is too high, the voltage during energization of the cation exchange membrane increases, the ion exchange capacity decreases, and the electrical resistance increases.

電気分解の際、電解槽1中の被処理物は攪拌され得る。被処理物の攪拌手段は特定のものに限定されない。被処理物は電解槽1下部に形成される傾斜部下端から被処理物循環手段であるポンプ7により吸引されると共に電解槽1上部に戻されて循環され、攪拌され得る。ポンプ7の具体例は、ダイヤフラムポンプ、渦巻きポンプである。好ましいポンプ7は渦巻きポンプである。   During the electrolysis, the object to be processed in the electrolytic cell 1 can be stirred. The stirring means for the workpiece is not limited to a specific one. The workpiece can be sucked from the lower end of the inclined portion formed in the lower portion of the electrolytic cell 1 by the pump 7 which is the workpiece circulation means, and returned to the upper portion of the electrolytic cell 1 to be circulated and stirred. Specific examples of the pump 7 are a diaphragm pump and a spiral pump. A preferred pump 7 is a centrifugal pump.

本発明の塩素化エチレン類の脱塩素方法及び脱塩素装置で脱塩素される塩素化エチレン類の具体例は、テトラクロロエチレン、トリクロロエチレン、ジクロロエチレン、塩化ビニルである。   Specific examples of the chlorinated ethylenes to be dechlorinated by the chlorinated ethylene dechlorination method and dechlorination apparatus of the present invention are tetrachloroethylene, trichlorethylene, dichloroethylene, and vinyl chloride.

上記電気化学的脱塩素処理後、被処理物、純水及び鉄複合粒子が混合され、塩素化エチレン類の脱塩素処理が実施され得る。当該脱塩素処理は、例えば、特許文献1に記載されている図1の分解槽ユニット16で示される装置で実施される。
上記一連の操作は、回分式でも連続式でもよい。
After the electrochemical dechlorination treatment, the object to be treated, pure water and iron composite particles are mixed, and dechlorination treatment of chlorinated ethylenes can be performed. The dechlorination treatment is performed by, for example, an apparatus shown by the decomposition tank unit 16 of FIG.
The series of operations may be batch or continuous.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されない。各種測定方法は次のとおりである。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Various measurement methods are as follows.

(1)エチレンの1〜4塩素置換体濃度の測定方法
陰極区画から採取された5mLの試料液がバイアル瓶に入れられ、直ちにテフロン(登録商標)ライナー付きブチルゴム栓とアルミシールで密栓され、30分以上振とうされ、気液の塩素化エチレン濃度を平衡化させた。次いで、200μLの気相がガスタイトシリンジで採取されサンプルガスとされた。PIDガスクロマトグラフ装置(hnu社製GC−311)が使用され、注入口及び検出器温度110℃、カラム温度70℃でカラム(hnu社製NBW−311)にサンプルガスが注入され、エチレンの1〜4塩素置換体濃度が測定された。
(1) Measuring method of 1 to 4 chlorine substitution concentration of ethylene 5 mL sample solution collected from the cathode compartment is put into a vial, and immediately sealed with a butyl rubber stopper with a Teflon (registered trademark) liner and an aluminum seal, 30 Shake for more than a minute to equilibrate the gas-liquid chlorinated ethylene concentration. Next, 200 μL of a gas phase was collected with a gas tight syringe and used as a sample gas. A PID gas chromatograph (GC-311 manufactured by hnu) was used, and the sample gas was injected into the column (NBW-311 manufactured by hnu) at an inlet and detector temperature of 110 ° C. and a column temperature of 70 ° C. The 4-chlorine substitute concentration was measured.

(2)塩素イオン濃度の測定方法
10mLの1N硝酸及び5g/Lの硝酸銀溶液1mLが、100mL共栓付きメスシリンダーに採取された適量の試料(塩素イオンとして0.1mg以下)に加えられ、更に純水が加えられて100mLの溶液が調製され、十分に振り混ぜられて10分間放置された。調製された溶液の一部が50mm吸収セルに移され、塩素イオン濃度が420nmの波長で分光光度計((株)日立製作所製U−1800)により検量線法で測定された。
(2) Chlorine ion concentration measuring method 10 mL of 1N nitric acid and 1 mL of 5 g / L silver nitrate solution are added to an appropriate amount of sample (0.1 mg or less as chloride ion) collected in a 100 mL stoppered measuring cylinder, and further Pure water was added to prepare a 100 mL solution, shaken well and left for 10 minutes. A part of the prepared solution was transferred to a 50 mm absorption cell, and the chlorine ion concentration was measured by a calibration curve method with a spectrophotometer (U-1800 manufactured by Hitachi, Ltd.) at a wavelength of 420 nm.

(3)陰極電位の測定方法
比較電極(TOA/DKK社製HC−151A)が電解槽の陰極区画に浸漬され、陰極と比較電極の間の電位差が北斗電工(株)製ポテンショスタットHA−151Aにより測定された。測定値は以下の式により水素標準電極電位に換算された。
水素標準電極電位(VvsSHE)=比較電極測定値(VvsAg/AgCl)+0.199
(3) Cathode potential measurement method The reference electrode (HC-151A manufactured by TOA / DKK) is immersed in the cathode compartment of the electrolytic cell, and the potential difference between the cathode and the reference electrode is a potentiostat HA-151A manufactured by Hokuto Denko Corporation. Measured by. The measured value was converted into a hydrogen standard electrode potential by the following formula.
Hydrogen standard electrode potential (VvsSHE) = Comparative electrode measured value (VvsAg / AgCl) + 0.199

実施例1及び2
水酸化ナトリム溶液が500mL容セパラブルフラスコ中の40g/Lの無水硫酸ナトリウム溶液に添加され、pHが12に調製された。なお、塩素イオン濃度の測定感度を向上させるため、無水硫酸ナトリム溶液が電解液として使用されたが、10g/L塩化ナトリウム溶液が電解液として使用され得る。
袋状に成形された陽イオン交換膜(デュポン(株)製N424)に入れられた陽極(ペルメレック電極(株)製DSE電極)と陰極としての30メッシュステンレス金網((有)福沢金網製作所製)が上記セパラブルフラスコに配置され、テトラクロロエチレン又はトリクロロエチレンが陰極区画に初期濃度7100mg/Lとなるように添加され、0.15Aの低電流が直流電源装置((株)高砂製作所製LX018−2A)で通電され、上記セパラブルフラスコ内の電解液の回転線速度が内周の3/4の地点で230mm/秒となるようにマグネチックスターラーの回転速度が設定され、電気分解が行われた。被処理物中の塩素イオン濃度が経時的に測定された。塩素イオンはテトラクロロエチレン又はトリクロロエチレンが還元脱塩素化されて生じるから、塩素イオン濃度の増加速度からテトラクロロエチレン又はトリクロロエチレンの分解速度が計算された。結果が表1に示されている。
Examples 1 and 2
The sodium hydroxide solution was added to 40 g / L anhydrous sodium sulfate solution in a 500 mL separable flask to adjust the pH to 12. In addition, in order to improve the measurement sensitivity of the chlorine ion concentration, anhydrous sodium sulfate solution was used as the electrolytic solution, but a 10 g / L sodium chloride solution can be used as the electrolytic solution.
Anode (DSE electrode manufactured by Permerek Electrode Co., Ltd.) placed in a cation exchange membrane (DuPont Co., Ltd. N424) molded in a bag shape and 30 mesh stainless steel wire mesh (manufactured by Fukuzawa Wire Mesh Co., Ltd.) as a cathode Is placed in the separable flask, tetrachloroethylene or trichlorethylene is added to the cathode compartment so as to have an initial concentration of 7100 mg / L, and a low current of 0.15 A is applied to the DC power supply (LX018-2A manufactured by Takasago Seisakusho Co., Ltd.). The magnetic stirrer was set at a rotational speed of 230 mm / sec at a point where the rotational speed of the electrolyte in the separable flask was 3/4 of the inner circumference, and electrolysis was performed. The chlorine ion concentration in the workpiece was measured over time. Since chloride ions are generated by reductive dechlorination of tetrachlorethylene or trichlorethylene, the decomposition rate of tetrachloroethylene or trichlorethylene was calculated from the rate of increase of the chloride ion concentration. The results are shown in Table 1.

Figure 2016040036
Figure 2016040036

この結果より、本処理方法はテトラクロロエチレン、トリクロロエチレンの分解に有効であることが示された。
また、PIDガスクロマトグラフィーを用いた測定により、テトラクロロエチレン、トリクロロエチレンの中間分解産物として1,1−ジクロロエチレン、t−1,2−ジクロロエチレン、塩化ビニルモノマーが微量発生し、それらが経時的にエチレンにまで分解されて減少、消滅していく現象が観察されたことから、本処理方法は広く塩素化エチレン類全般に適用性があることが認められた。
From this result, it was shown that this treatment method is effective for the decomposition of tetrachlorethylene and trichlorethylene.
In addition, as a result of measurement using PID gas chromatography, trace amounts of 1,1-dichloroethylene, t-1,2-dichloroethylene, and vinyl chloride monomers are generated as intermediate decomposition products of tetrachloroethylene and trichlorethylene, and these become ethylene over time. It was confirmed that this treatment method has wide applicability to chlorinated ethylenes in general because the phenomenon of degradation and decrease and disappearance was observed.

PIDガスクロマトグラフィーの分析結果から、微量の1,1−ジクロロエチレン、t−1,2−ジクロロエチレン及び塩化ビニルが、テトラクロロエチレン又はトリクロロエチレンの電気化学的分解反応の中間分解産物として発生し、それらがエチレンに変化していくことが観察された。従って、この脱塩素方法が塩素化エチレン類全般に適用し得ると認められた。   From the analysis results of PID gas chromatography, trace amounts of 1,1-dichloroethylene, t-1,2-dichloroethylene and vinyl chloride are generated as intermediate decomposition products of the electrochemical decomposition reaction of tetrachloroethylene or trichlorethylene, and these are converted into ethylene. It was observed to change. Therefore, it was recognized that this dechlorination method can be applied to chlorinated ethylenes in general.

実施例3、4及び参考例1、2
実施例1及び2で使用された装置が用いられ、テトラクロロエチレンが初期濃度7100mg/Lとなるように無水硫酸ナトリウム溶液に添加されて電気化学的脱塩素処理が実施された。被処理物のpHが12、7、5、4のときの被処理物中の塩素イオン濃度が測定され、塩素化エチレンの分解速度が計算された。結果が表2に示されている。
Examples 3 and 4 and Reference Examples 1 and 2
The apparatus used in Examples 1 and 2 was used, and tetrachlorethylene was added to anhydrous sodium sulfate solution to an initial concentration of 7100 mg / L, and electrochemical dechlorination treatment was performed. When the pH of the workpiece was 12, 7, 5, and 4, the chlorine ion concentration in the workpiece was measured, and the decomposition rate of chlorinated ethylene was calculated. The results are shown in Table 2.

Figure 2016040036
Figure 2016040036

表2より、pH12〜7の範囲内では陰極電位、分解速度ともに大きな変化が見られないが、pHが5まで低下すると陰極電位が上昇して分解速度が低下し、さらにpHが4まで低下すると全く分解が生じなくなってしまうとの知見が得られた。
これは、pHが低下して電解液中の水素イオン濃度が上昇することにより、陰極表面での水素イオンの還元(水素ガスの発生)反応が容易となり、電極電位が上昇することによって塩素化エチレンの還元脱塩素化反応が起こりにくくなるためと考えられた。
このことから、本発明の電解処理においてはpHは7以上に制御される。
また、pHが12.5を超える電解液に長期間浸漬すると、陽イオン交換膜の内外での通電時電圧が上昇する、すなわちイオン交換能が低下して電気抵抗が増すという知見が得られたことから、pHは12以下に制御される。
From Table 2, the cathodic potential and the decomposition rate are not significantly changed in the range of pH 12 to 7, but when the pH is lowered to 5, the cathodic potential is increased and the decomposition rate is lowered, and when the pH is further lowered to 4. It was found that no decomposition occurred at all.
This is because the pH decreases and the hydrogen ion concentration in the electrolyte increases, which facilitates the reduction reaction of hydrogen ions (hydrogen gas generation) on the cathode surface, and the electrode potential increases to increase chlorinated ethylene. This is thought to be because the reductive dechlorination reaction of sucrose hardly occurs.
From this, the pH is controlled to 7 or more in the electrolytic treatment of the present invention.
Further, it was found that, when immersed in an electrolyte solution having a pH exceeding 12.5 for a long period of time, the voltage during energization inside and outside of the cation exchange membrane increases, that is, the ion exchange ability decreases and the electrical resistance increases. Therefore, the pH is controlled to 12 or less.

実施例5〜8
陰極金網の材質が変更される以外、実施例1及び2で使用された装置と同一の装置が用いられ、テトラクロロエチレンが初期濃度7100mg/Lとなるように無水硫酸ナトリウム溶液に添加されて電気化学的脱塩素処理が実施された。被処理物のpHが10〜12である時の被処理物中の塩素イオン濃度が測定され、塩素化エチレンの分解速度が計算された。結果が表3に示されている。
Examples 5-8
Except for changing the material of the cathode wire mesh, the same apparatus as that used in Examples 1 and 2 was used, and tetrachlorethylene was added to the anhydrous sodium sulfate solution so as to have an initial concentration of 7100 mg / L. Dechlorination treatment was carried out. The chlorine ion concentration in the workpiece was measured when the pH of the workpiece was 10 to 12, and the decomposition rate of chlorinated ethylene was calculated. The results are shown in Table 3.

Figure 2016040036
Figure 2016040036

表3より、ステンレス、ニッケル電極と比較して、銅、および銅合金であるモネル合金電極は有意に高い分解速度を示した。モネル合金は銅とニッケルの合金であり、この2成分のうち銅は高い分解活性を示し、ニッケルは低い分解活性を示したことから、銅が電解還元処理反応に有効な成分であると考えられる。
一方、銅電極は繰り返し使用することにより次第に緑青(さび)の発生が認められ、金網の線径が細くなっていく傾向が認められたのに対し、モネル合金は表面がやや黒色に変化したものの、腐食が進行しなかった。これは、銅が塩素イオンによる腐食に弱いのに対し、モネル合金は塩素イオンに対する耐食性があることによると考えられた。
これらの知見から、陰極の材質としては銅および銅合金を用いることが望ましく、さらに望ましくはモネル合金を用いることが望ましいといえる。
From Table 3, compared with the stainless steel and nickel electrode, the Monel alloy electrode which is copper and a copper alloy showed the significantly high decomposition rate. The Monel alloy is an alloy of copper and nickel. Of these two components, copper has a high decomposition activity and nickel has a low decomposition activity. Therefore, it is considered that copper is an effective component for the electrolytic reduction treatment reaction. .
On the other hand, with the copper electrode being used repeatedly, the generation of patina was gradually observed, and the wire mesh wire diameter tended to become thinner, whereas the Monel alloy had a slightly blackened surface. Corrosion did not progress. This was thought to be due to the fact that copper is vulnerable to corrosion by chloride ions while Monel alloy has corrosion resistance to chloride ions.
From these findings, it can be said that it is desirable to use copper and a copper alloy as the material of the cathode, and it is more desirable to use a monel alloy.

実施例9〜12
500mL容セパラブルフラスコに代えて2L容セパラブルフラスコが使用され、攪拌手段が下記のとおり変更される以外、実施例1及び2で使用された装置と同一の装置が用いられ、テトラクロロエチレンが初期濃度7100mg/Lとなるように無水硫酸ナトリウム溶液に添加されて電気化学的脱塩素処理が実施された。被処理物のpHが10〜12である時の被処理物中の塩素イオン濃度が測定され、塩素化エチレンの分解速度が計算された。結果が表4に示されている。
(1)上記2L容セパラブルフラスコ内の電解液の回転線速度が内周の3/4の地点で140mm/秒となるようにマグネチックスターラーの回転速度が設定された(実施例9)。
(2)被処理物が上記2L容セパラブルフラスコ底部からダイヤフラムポンプにより吸引されると共に上記2L容セパラブルフラスコ上部に戻されて循環された(実施例10)。
(3)上記2L容セパラブルフラスコが傾斜されて、その底部に20度の勾配が作られ、被処理物が上記2L容セパラブルフラスコ最下部からダイヤフラムポンプにより吸引されると共に上記2L容セパラブルフラスコ上部に戻されて循環された(実施例11)。
(4)上記2L容セパラブルフラスコが傾斜されて、その底部に20度の勾配が作られ、被処理物が記2L容セパラブルフラスコ底部から渦巻きポンプにより吸引されると共に上記2L容セパラブルフラスコ上部に戻されて循環された(実施例12)。
Examples 9-12
A 2 L separable flask was used instead of the 500 mL separable flask, and the same apparatus as that used in Examples 1 and 2 was used except that the stirring means was changed as follows. It was added to anhydrous sodium sulfate solution to 7100 mg / L, and electrochemical dechlorination treatment was performed. The chlorine ion concentration in the workpiece was measured when the pH of the workpiece was 10 to 12, and the decomposition rate of chlorinated ethylene was calculated. The results are shown in Table 4.
(1) The rotational speed of the magnetic stirrer was set so that the rotational linear speed of the electrolyte in the 2 L separable flask was 140 mm / second at a point of 3/4 of the inner circumference (Example 9).
(2) The object to be treated was sucked by the diaphragm pump from the bottom of the 2L separable flask and returned to the top of the 2L separable flask and circulated (Example 10).
(3) The 2L separable flask is tilted to form a 20 degree gradient at the bottom thereof, and the workpiece is sucked from the bottom of the 2L separable flask by a diaphragm pump and the 2L separable flask. It was returned to the upper part of the flask and circulated (Example 11).
(4) The 2L separable flask is tilted to form a gradient of 20 degrees at the bottom thereof, and the object to be treated is sucked from the bottom of the 2L separable flask by a vortex pump and the 2L separable flask. Returned to the top and circulated (Example 12).

Figure 2016040036
Figure 2016040036

表4より、装置的に実施例9の機械攪拌よりも製作が容易である循環混合を採用した実施例10ないし12の系において、実施例10の底面に傾斜がない系ではテトラクロロエチレンの油滴がリアクタの底部に滞留する現象が認められ、混合が効率的に行われなかった結果、分解速度は実施例9の機械攪拌系の1/4未満となった。
これに対してリアクタの底部に傾斜を設け、その最下部から電解液を引き抜いた実施例11及び12の系では、テトラクロロエチレンの油滴が傾斜面を滑り落ちてポンプに吸引され、リアクタの上部に吐出される循環混合が行われ、分解速度が向上した。特に渦巻きポンプを用いた実施例12の系では、ポンプ内での旋回流によってテトラクロロエチレンの油滴がせん断され、水中に分散される現象が起こり、水中にほぼ均一にテトラクロロエチレンが分散された。その結果、実施例12の系の分解速度は実施例10の系の1.5倍以上に増加した。
これらの知見より、本発明の攪拌方法としては陰極区画の下部から液を吸引し、再び陰極区画に戻して液循環を行なうことが望ましく、さらに望ましくは陰極区画の底面に傾斜があってその最下部から液を吸引することがのぞましく、さらに望ましくは使用するポンプが旋回流を生じる渦巻きポンプであることが望ましい。
From Table 4, in the system of Examples 10 to 12, which employs circulating mixing that is easier to manufacture than the mechanical stirring of Example 9 in terms of apparatus, in the system in which the bottom surface of Example 10 is not inclined, tetrachloroethylene oil droplets appear. The phenomenon of staying at the bottom of the reactor was observed and mixing was not performed efficiently. As a result, the decomposition rate was less than ¼ that of the mechanical stirring system of Example 9.
On the other hand, in the systems of Examples 11 and 12 in which the bottom of the reactor is inclined and the electrolyte is extracted from the lowermost part, tetrachlorethylene oil droplets slide down the inclined surface and are sucked into the pump, Discharged circulation mixing was performed, and the decomposition rate was improved. In particular, in the system of Example 12 using a spiral pump, the phenomenon that the oil droplets of tetrachloroethylene were sheared by the swirling flow in the pump and dispersed in water occurred, and tetrachloroethylene was dispersed almost uniformly in water. As a result, the decomposition rate of the system of Example 12 increased to 1.5 times or more that of the system of Example 10.
From these findings, it is desirable for the stirring method of the present invention to suck the liquid from the lower part of the cathode compartment and return it to the cathode compartment again for liquid circulation. The liquid is preferably sucked from the lower part, and more preferably, the pump to be used is a spiral pump that generates a swirling flow.

実施例13
実施例12で使用された装置と同一の装置が用いられ、テトラクロロエチレンが初期濃度7100mg/lとなるように無水硫酸ナトリウム溶液に添加されて電気化学的脱塩素処理が実施され、被処理物中のテトラクロロエチレン濃度が経時的に測定された。結果が表5に示されている。
Example 13
The same apparatus as that used in Example 12 was used, and tetrachlorethylene was added to anhydrous sodium sulfate solution to an initial concentration of 7100 mg / l to perform electrochemical dechlorination treatment. Tetrachlorethylene concentration was measured over time. The results are shown in Table 5.

Figure 2016040036
Figure 2016040036

テトラクロロエチレン濃度は48時間で3000mg/L、98時間で22mg/Lまで低下したが、その後分解速度が低下し、194時間後(8日後)でも10mg/Lが残留していた。この知見より、本発明の電解還元処理単独では、低濃度のテトラクロロエチレン処理効率は低いことが示された。   The tetrachlorethylene concentration decreased to 3000 mg / L in 48 hours and to 22 mg / L in 98 hours, but then the decomposition rate decreased, and 10 mg / L remained even after 194 hours (after 8 days). From this finding, it was shown that the low-concentration tetrachlorethylene treatment efficiency is low in the electrolytic reduction treatment of the present invention alone.

実施例13の脱塩素開始から194時間経過後に、670mLの被処理物が2L容セパラブルフラスコから採取され、1質量%の鉄複合粒子(戸田工業(株)製RNIP)水分散液と混合され、全量が2Lとされた後、攪拌機(柴田科学製)で緩速攪拌(48rpm)され、被処理物中のテトラクロロエチレン濃度が経時的に測定された。結果が表6に示されている。   After 194 hours from the start of dechlorination in Example 13, 670 mL of the object to be treated was collected from the 2 L separable flask and mixed with 1% by mass of iron composite particles (RNIP manufactured by Toda Kogyo Co., Ltd.) in water dispersion. After the total amount was 2 L, the mixture was slowly stirred (48 rpm) with a stirrer (manufactured by Shibata Kagaku), and the tetrachlorethylene concentration in the workpiece was measured over time. The results are shown in Table 6.

Figure 2016040036
Figure 2016040036

トリクロロエチレン、ジクロロエチレン及び塩化ビニルは、鉄複合粒子による処理開始から168時間経過後の被処理物中に検出されなかった。この段階での被処理物中のテトラクロロエチレン濃度は排水基準値(0.1mg/L)以下であった。
また、電解処理と鉄複合粒子処理はいずれも還元処理であることから、前段の処理で形成された還元的雰囲気が後段の処理に悪影響を与えることがなく、組合せとして好都合である。
これらの結果から、電解処理を行なった処理液をさらに鉄複合粒子と混合することにより、テトラクロロエチレンの排水基準値を満たすことができる望ましい効果が得られることが知見された。
Trichlorethylene, dichloroethylene, and vinyl chloride were not detected in the object to be treated after 168 hours from the start of treatment with the iron composite particles. At this stage, the concentration of tetrachlorethylene in the object to be treated was below the wastewater standard value (0.1 mg / L).
In addition, since both the electrolytic treatment and the iron composite particle treatment are reduction treatments, the reducing atmosphere formed in the previous treatment does not adversely affect the subsequent treatment, and is advantageous as a combination.
From these results, it was found that a desirable effect of satisfying the wastewater standard value of tetrachloroethylene can be obtained by further mixing the treatment liquid subjected to electrolytic treatment with iron composite particles.

本発明の塩素化エチレン類の脱塩素方法及び塩素化エチレン類の脱塩素装置は、高濃度の塩素化エチレン類を含む被処理物の短時間で安価な脱塩素に好適にある。   The dechlorination method for chlorinated ethylenes and the dechlorination apparatus for chlorinated ethylenes of the present invention are suitable for inexpensive dechlorination of an object to be treated containing a high concentration of chlorinated ethylenes in a short time.

1…電解槽、2…陰極、3…陽極、4…電源、5…熱交換器、6…アノード液槽、7…ポンプ
DESCRIPTION OF SYMBOLS 1 ... Electrolytic cell, 2 ... Cathode, 3 ... Anode, 4 ... Power supply, 5 ... Heat exchanger, 6 ... Anode liquid tank, 7 ... Pump

Claims (9)

塩素化エチレン類を含む被処理物が、陰極(但し、炭素電極を除く)及び陽極を備える電解槽中で当該陰極とのみ接触させられ、当該被処理物のpHが7〜12で電気化学的脱塩素処理が実施される、塩素化エチレン類の脱塩素方法。   An object to be treated containing chlorinated ethylenes is brought into contact only with the cathode in an electrolytic cell equipped with a cathode (excluding a carbon electrode) and an anode, and the pH of the object to be treated is 7 to 12 electrochemical. A dechlorination method for chlorinated ethylenes, in which dechlorination is performed. 上記被処理物のpHが10〜12で電気化学的脱塩素処理が実施される、請求項1に記載された塩素化エチレン類の脱塩素方法。   The method for dechlorination of chlorinated ethylenes according to claim 1, wherein electrochemical dechlorination treatment is carried out at a pH of 10 to 12 of the object to be treated. 上記陰極の材質が銅又は銅合金である、請求項1又は2に記載された塩素化エチレン類の脱塩素方法。   The dechlorination method for chlorinated ethylenes according to claim 1 or 2, wherein the material of the cathode is copper or a copper alloy. 上記陰極の材質がモネル合金である、請求項3に記載された塩素化エチレン類の脱塩素方法。   The method for dechlorination of chlorinated ethylenes according to claim 3, wherein the material of the cathode is a Monel alloy. 上記電気化学的脱塩素処理に付されている被処理物が上記電解槽の下部に形成される傾斜部下端から吸引されると共に電解槽上部に戻されて循環される、請求項1〜4のいずれか1項に記載された塩素化エチレン類の脱塩素方法。   The workpiece to be subjected to the electrochemical dechlorination treatment is sucked from the lower end of the inclined portion formed in the lower part of the electrolytic cell and returned to the upper part of the electrolytic cell for circulation. A method for dechlorination of chlorinated ethylenes according to any one of the above items. 上記電気化学的脱塩素処理により得られた被処理物、純水及び鉄複合粒子が混合され、脱塩素処理が実施される、請求項1〜5のいずれか1項に記載された塩素化エチレン類の脱塩素方法。   The chlorinated ethylene according to any one of claims 1 to 5, wherein an object to be treated, pure water and iron composite particles obtained by the electrochemical dechlorination treatment are mixed and subjected to dechlorination treatment. Dechlorination method. 陰極(但し、炭素電極を除く)と陽極が隔膜で離隔されて設置されている電解槽、
塩素化エチレン類を含み、pHが7〜12に調製された被処理物を上記陰極を含む陰極区画の下部に形成される傾斜部下端から吸引すると共に陰極区画上部に戻す被処理物循環手段を備える、塩素化エチレン類の脱塩素装置。
An electrolytic cell in which the cathode (except the carbon electrode) and the anode are separated by a diaphragm,
A workpiece circulating means for sucking a workpiece containing chlorinated ethylenes and having a pH of 7 to 12 from the lower end of an inclined portion formed at the lower portion of the cathode compartment including the cathode and returning the workpiece to the upper portion of the cathode compartment Equipped with a chlorinated ethylene dechlorination system.
上記被処理物循環手段が渦巻きポンプである、請求項7に記載された塩素化エチレン類の脱塩素装置。   The dechlorination apparatus for chlorinated ethylenes according to claim 7, wherein the treatment object circulation means is a centrifugal pump. 上記隔膜が陽イオン交換膜である、請求項7又は8に記載された塩素化エチレン類の脱塩素装置。   The dechlorination apparatus for chlorinated ethylenes according to claim 7 or 8, wherein the diaphragm is a cation exchange membrane.
JP2015198099A 2015-10-06 2015-10-06 Method and apparatus for dechlorination of chlorinated ethylenes Active JP6061315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015198099A JP6061315B2 (en) 2015-10-06 2015-10-06 Method and apparatus for dechlorination of chlorinated ethylenes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015198099A JP6061315B2 (en) 2015-10-06 2015-10-06 Method and apparatus for dechlorination of chlorinated ethylenes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011178837A Division JP2013039270A (en) 2011-08-18 2011-08-18 Method for dechlorinating chlorinated aliphatic hydrocarbon compound and device for dechlorination

Publications (2)

Publication Number Publication Date
JP2016040036A true JP2016040036A (en) 2016-03-24
JP6061315B2 JP6061315B2 (en) 2017-01-18

Family

ID=55540626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015198099A Active JP6061315B2 (en) 2015-10-06 2015-10-06 Method and apparatus for dechlorination of chlorinated ethylenes

Country Status (1)

Country Link
JP (1) JP6061315B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128493A (en) * 1984-07-19 1986-02-08 Osaka Soda Co Ltd Decomposition of halogenated hydrocarbon
JPS61204082A (en) * 1985-03-07 1986-09-10 Tsutomu Kagitani Cleaning up method of water contaminated with organic halogen compound
JPS63166491A (en) * 1986-12-26 1988-07-09 Tome Sangyo Kk Pipeline sterilizing system
JPH0947257A (en) * 1995-08-09 1997-02-18 Yoichi Sakuta Removal of heavy metal contained in organism and device therefor
JPH09308823A (en) * 1996-05-20 1997-12-02 Naito Kankyo Kanri Kk Method for decomposing halogenated ethylene
JPH11179195A (en) * 1997-12-24 1999-07-06 Canon Inc Organic compound decomposition method, apparatus to be employed therefor, waste gas purification method, and apparatus to be employed therefor
JP2001062288A (en) * 1999-06-22 2001-03-13 Canon Inc Method and device for decomposing pollutant
JP2005118682A (en) * 2003-10-17 2005-05-12 Hitachi Maxell Ltd Electrochemical treatment method of trihalomethane-containing water
JP2007211315A (en) * 2006-02-10 2007-08-23 Ebara Corp Cleaning device for contaminated matter including heavy metal
JP2009537482A (en) * 2006-05-15 2009-10-29 アクゾ ノーベル ナムローゼ フェンノートシャップ Electrochemical preparation method of halogenated carbonyl group-containing compound
JP2010203930A (en) * 2009-03-04 2010-09-16 Japan Atomic Energy Agency Method and system for treating tetrachloroethylene waste liquid containing radioactive material
JP2013039270A (en) * 2011-08-18 2013-02-28 Japan Atomic Energy Agency Method for dechlorinating chlorinated aliphatic hydrocarbon compound and device for dechlorination

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128493A (en) * 1984-07-19 1986-02-08 Osaka Soda Co Ltd Decomposition of halogenated hydrocarbon
JPS61204082A (en) * 1985-03-07 1986-09-10 Tsutomu Kagitani Cleaning up method of water contaminated with organic halogen compound
JPS63166491A (en) * 1986-12-26 1988-07-09 Tome Sangyo Kk Pipeline sterilizing system
JPH0947257A (en) * 1995-08-09 1997-02-18 Yoichi Sakuta Removal of heavy metal contained in organism and device therefor
JPH09308823A (en) * 1996-05-20 1997-12-02 Naito Kankyo Kanri Kk Method for decomposing halogenated ethylene
JPH11179195A (en) * 1997-12-24 1999-07-06 Canon Inc Organic compound decomposition method, apparatus to be employed therefor, waste gas purification method, and apparatus to be employed therefor
JP2001062288A (en) * 1999-06-22 2001-03-13 Canon Inc Method and device for decomposing pollutant
JP2005118682A (en) * 2003-10-17 2005-05-12 Hitachi Maxell Ltd Electrochemical treatment method of trihalomethane-containing water
JP2007211315A (en) * 2006-02-10 2007-08-23 Ebara Corp Cleaning device for contaminated matter including heavy metal
JP2009537482A (en) * 2006-05-15 2009-10-29 アクゾ ノーベル ナムローゼ フェンノートシャップ Electrochemical preparation method of halogenated carbonyl group-containing compound
JP2010203930A (en) * 2009-03-04 2010-09-16 Japan Atomic Energy Agency Method and system for treating tetrachloroethylene waste liquid containing radioactive material
JP2013039270A (en) * 2011-08-18 2013-02-28 Japan Atomic Energy Agency Method for dechlorinating chlorinated aliphatic hydrocarbon compound and device for dechlorination

Also Published As

Publication number Publication date
JP6061315B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
Polatides et al. Electrochemical reduction of nitrate ion on various cathodes–reaction kinetics on bronze cathode
TWI478875B (en) Process for degrading organic substances in an aqueous composition
JP4116726B2 (en) Electrochemical treatment method and apparatus
KR100712389B1 (en) The process and the apparatus for cleansing the electronic part using functional water
JP3201781B2 (en) Ozone production method
JPH0336914B2 (en)
Chen et al. Effect of operating parameters on electrochemical degradation of estriol (E3)
KR20190039107A (en) Method for electrochemical purification of chloride-containing process solution
Cañizares et al. Electrochemical oxidation of wastewaters polluted with aromatics and heterocyclic compounds: A comparison with other AOPs
JP2013039270A (en) Method for dechlorinating chlorinated aliphatic hydrocarbon compound and device for dechlorination
Liu et al. Simultaneous removal of multiple PFAS from contaminated groundwater around a fluorochemical facility by the periodically reversing electrocoagulation technique
Coria et al. Electrooxidation of diclofenac in synthetic pharmaceutical wastewater using an electrochemical reactor equipped with a boron doped diamond electrode
Huang et al. Formal reduction potentials and redox chemistry of polyhalogenated biphenyls in a bicontinuous microemulsion
JP6061315B2 (en) Method and apparatus for dechlorination of chlorinated ethylenes
JP2007307502A (en) Method for generating electrolytic water and electrolytic water generator
JP6329392B2 (en) Method and apparatus for dehalogenation of organic halogen compounds using conductive diamond electrode
JPS6128493A (en) Decomposition of halogenated hydrocarbon
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
JP4896777B2 (en) Decomposition treatment method of ionic liquid
Wu et al. An efficiency analysis for the production of chlorine dioxide by the electrolysis of brine in seawater desalination plants
JP4053805B2 (en) Functional water, production method and production apparatus thereof
Tien et al. Electrochemical water treatment technology in Viet Nam: achievement &future development
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
US5965003A (en) Method of decomposing CMPO
CN1447867A (en) Process and method for recovery of halogens

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161207

R150 Certificate of patent or registration of utility model

Ref document number: 6061315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250