Nothing Special   »   [go: up one dir, main page]

JPH03271507A - Compound generation plant - Google Patents

Compound generation plant

Info

Publication number
JPH03271507A
JPH03271507A JP6976890A JP6976890A JPH03271507A JP H03271507 A JPH03271507 A JP H03271507A JP 6976890 A JP6976890 A JP 6976890A JP 6976890 A JP6976890 A JP 6976890A JP H03271507 A JPH03271507 A JP H03271507A
Authority
JP
Japan
Prior art keywords
secondary medium
turbine
power plant
thermal power
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6976890A
Other languages
Japanese (ja)
Inventor
Makoto Adachi
足立 眞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6976890A priority Critical patent/JPH03271507A/en
Publication of JPH03271507A publication Critical patent/JPH03271507A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable high-speed turning of a superconductive generator by condensing a secondary medium of a secondary medium closed cycle generation plant by the use of LNG supplied to a thermal power plant. CONSTITUTION:A superconductive generator 11 is directly connected to a steam turbine 12 and a secondary medium turbine 13 of a thermal power plant. A secondary medium closed cycle generation plant is made up of the secondary medium turbine 13, a evaporator 16 which evaporates a secondary medium 15 for driving the secondary medium turbine 13, a condenser 17 which condenses the secondary medium 15 used in the secondary medium turbine 13, and a pump 18. The thermal power plant is made up of the steam turbine 12, a boiler which supplies team to the steam turbine 12, a steam condenser 20 which condenses the steam used in the steam turbine 12 to water, and an evaporator 21 which evaporates LNG, the fuel. The secondary medium 15 is condensed by the condenser 17 on the way to the thermal power plant by the use of LNG.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、超電導発電機を用いた複合発電プラントに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a combined power generation plant using a superconducting generator.

(従来の技術) 超電導発電プラントは、超電導発電機と、この超電導発
電機を駆動する駆動機(モータ、水車、蒸気タービン等
)と、超電導発電機の超電導巻線を冷却する冷却媒体(
液化He、液化N2.Heガス、H2ガス)を供給する
ための冷却装置とから構成されている。このような超電
導発電プラントの起動にあっては、駆動機によって超電
導発電機を回転させ、超電導発電機に対し冷却装置より
冷却媒体を供給する。超電導発電機は徐々に冷却され超
電導状態となるまで冷却される。すなわち、超電導発電
機として機能する状態になってから、超電導発電機の励
磁が活がされ発電が行われる。ここで、超電導発電プラ
ントの冷却装置は、超電導発電機に冷却媒体を供給して
超電導巻線を冷却し、冷却をし終えた冷却媒体を超電導
発電機より回収して液体He等に再生する機能を有して
いる。
(Prior Art) A superconducting power generation plant consists of a superconducting generator, a driving machine (motor, water wheel, steam turbine, etc.) that drives the superconducting generator, and a cooling medium (cooling medium) that cools the superconducting windings of the superconducting generator.
Liquefied He, liquefied N2. A cooling device for supplying He gas, H2 gas). When starting up such a superconducting power generation plant, the superconducting generator is rotated by a drive machine, and a cooling medium is supplied to the superconducting generator from a cooling device. The superconducting generator is gradually cooled until it becomes superconducting. That is, after the superconducting generator becomes in a state where it functions as a superconducting generator, the excitation of the superconducting generator is activated and power generation is performed. Here, the cooling device of the superconducting power plant has the function of supplying a cooling medium to the superconducting generator to cool the superconducting windings, recovering the cooled medium from the superconducting generator, and regenerating it into liquid He, etc. have.

(発明が解決しようとする課題) ところが、このような超電導発電プラントでは超勤時に
おいて5冷却媒体が超電導発電機に均一に供給できるよ
うにするため、超電導発電機を回転させながら冷却装置
によって冷却する必要がある。現状では超電導発電機の
冷却時の睨動源はタービンのターニングモータによる能
動となっているが、通常火力発電所におけるターニング
回転数(毎分10回転)と異なり、毎分数百回転でのタ
ーニングを行う必要があるので、ターニングモータの容
量が大きくなる。
(Problem to be solved by the invention) However, in such a superconducting power generation plant, in order to uniformly supply the cooling medium to the superconducting generator during overtime, the superconducting generator is cooled by a cooling device while rotating. There is a need. Currently, the source of glare during cooling of superconducting generators is an active turning motor of the turbine, but unlike the turning speed (10 revolutions per minute) in normal thermal power plants, the turning speed is several hundred revolutions per minute. Since it is necessary to perform this, the capacity of the turning motor increases.

また、超電導発電機のターニングは発電機の停止中にお
いても回転を維持し、冷却媒体が遠心力によってロータ
内で均一な液面を保つようにする必要がある。
Furthermore, when turning a superconducting generator, it is necessary to maintain rotation even when the generator is stopped, so that the cooling medium maintains a uniform liquid level within the rotor due to centrifugal force.

このように超電導発電機の起動時における駆動源は停止
中においても使用されるので重要なものである。そこで
、超電導発電機に直結したタービンを駆動源とすること
も考えられるが、そうするとタービントリップ時の高速
ターニングができない。このため、直流モータ駆動等の
大型で信頼性のある駆動源が必要であり、経済的なもの
でなかった・ [発明の構成] (課題を解決するための手段) 本発明は液化天然ガスを燃料とする火力発電プラントの
蒸気タービンと、二次媒体クローズドサイクル発電プラ
ントの二次媒体タービンと、超電導発電機とを直結し、
火力発電プラントに供給される液化天然ガスにより二次
媒体クローズドサイクル発電プラントの二次媒体を凝縮
するようにしたものである。
In this way, the drive source used when starting up the superconducting generator is important because it is used even when the generator is stopped. Therefore, it is conceivable to use a turbine directly connected to a superconducting generator as the drive source, but this would not allow high-speed turning during turbine tripping. For this reason, a large and reliable drive source such as a DC motor drive is required, which is not economical. [Structure of the Invention] (Means for Solving the Problem) The present invention Directly connects the steam turbine of the thermal power plant that uses the fuel, the secondary medium turbine of the secondary medium closed cycle power plant, and the superconducting generator,
The secondary medium of the closed cycle power plant is condensed by liquefied natural gas supplied to the thermal power plant.

(作用) 本発明では二次媒体を火力発電プラントの燃料である液
化天然ガスによって凝縮し、この凝縮した二次媒体を海
水で蒸発させて二次媒体タービンを駆動しこれにより超
電導発電機のターニングおよび発電を行う。
(Function) In the present invention, the secondary medium is condensed with liquefied natural gas, which is the fuel of a thermal power plant, and the condensed secondary medium is evaporated with seawater to drive the secondary medium turbine, thereby turning the superconducting generator. and generate electricity.

(実施例) 超電導発電機11は火力発電プラントの蒸気タービン1
2および二次媒体タービン13と直結され、双方のター
ビン12.13から駆動される。この超電導発電機11
は冷却袋M14からの冷却媒体により冷却され超電導状
態を保っている。
(Example) The superconducting generator 11 is a steam turbine 1 of a thermal power plant.
2 and secondary medium turbine 13, and is driven by both turbines 12 and 13. This superconducting generator 11
is cooled by the cooling medium from the cooling bag M14 and maintains a superconducting state.

二次媒体クローズドサイクル発電プラントは、二次媒体
タービン13と、この二次媒体タービン】3を駆動する
ための二次媒体15を蒸発させる蒸発器16と、二次媒
体タービン13で仕事を終えた二次媒体15を凝縮する
凝縮器17と、凝縮した二次媒体15を蒸発器】6に供
給するためのポンプ18とからなっている。ここで、本
発明では二次媒体I5として、たとえばフロンガスのよ
うな低沸点のものを使用する。
A secondary medium closed cycle power plant completes the work with a secondary medium turbine 13, an evaporator 16 for evaporating the secondary medium 15 for driving the secondary medium turbine 3, and a secondary medium turbine 13. It consists of a condenser 17 for condensing the secondary medium 15, and a pump 18 for supplying the condensed secondary medium 15 to the evaporator 6. Here, in the present invention, a low boiling point material such as fluorocarbon gas is used as the secondary medium I5.

一方、火力発電プラントは、蒸気タービン12と、この
蒸気タービン12に蒸気を供給するボイラ19と、蒸気
タービン12で仕事を終えた蒸気を水に戻す復水器20
と、燃料である液化天然ガス(LNG)を気化させる蒸
発器21とからなっている。液化天然ガス(LNG)は
火力発電プラントに供給される途中において、二次媒体
クローズドサイクルを構成する凝縮器17によって、二
次媒体15を凝縮する。凝縮された二次媒体はポンプ1
8によって蒸発器16に送られ、ここで海水によって蒸
発する。この蒸発エネルギーによって二次媒体タービン
13が能動される。
On the other hand, a thermal power plant includes a steam turbine 12, a boiler 19 that supplies steam to the steam turbine 12, and a condenser 20 that returns the steam that has finished working in the steam turbine 12 to water.
and an evaporator 21 that vaporizes liquefied natural gas (LNG) as fuel. While liquefied natural gas (LNG) is being supplied to a thermal power plant, a secondary medium 15 is condensed by a condenser 17 that constitutes a secondary medium closed cycle. The condensed secondary medium is transferred to pump 1
8 to an evaporator 16 where it is evaporated by seawater. The secondary medium turbine 13 is activated by this evaporation energy.

二次媒体タービン6に直結された超電導発電機7はこれ
によって回転し、ターニングおよび発電が可能となる。
The superconducting generator 7 directly connected to the secondary medium turbine 6 is thereby rotated, allowing turning and power generation.

液化天然ガス(LNP)は凝縮器17を経由した後、蒸
発器21によって蒸発し、火力発電プラントのボイラ1
9に燃料として送られ、ここで発生する燃焼エネルギー
によってすなわち、蒸気によって蒸気タービン10を駆
動する。このように構成された複合発電プラントの運転
は、二次媒体クローズドサイクル発電プラントによって
低速ターニング、高速ターニング、そして低負荷発電運
転を行う。また、火力発電プラントによって、高負荷運
転を行う。
After passing through the condenser 17, liquefied natural gas (LNP) is evaporated by the evaporator 21, and then sent to the boiler 1 of the thermal power plant.
The steam turbine 10 is driven by the combustion energy generated there, that is, by the steam. The combined power generation plant configured in this manner performs low-speed turning, high-speed turning, and low-load power generation operation using a secondary medium closed cycle power generation plant. In addition, the thermal power plant will perform high-load operation.

超電導発電機11には、その運転中、冷却媒体たとえば
液体Heが冷却装置14から供給されているが、火力発
電プラントの蒸気タービン12がトリップしたときはバ
ルブ22を閉じ火力発電プラントへの液化天然ガス(L
NG)の供給を停止する。そして、バルブ23を開き凝
縮器17には液化天然ガスを供給し、二次媒体クローズ
ドサイクル発電プラントの運転を継続する。
During operation, the superconducting generator 11 is supplied with a cooling medium, such as liquid He, from the cooling device 14. When the steam turbine 12 of the thermal power plant trips, the valve 22 is closed and the liquefied natural gas is supplied to the thermal power plant. Gas (L
NG) supply will be stopped. Then, the valve 23 is opened to supply liquefied natural gas to the condenser 17, and the operation of the secondary medium closed cycle power generation plant is continued.

このようにすることによって、蒸気タービン12がトリ
ップしても、二次媒体クローズドサイクル発電プラント
の二次媒体タービン13によって超電導発電機は回転を
保つので、そのロータ内の液面は均一に保たれる。した
がって、超電導発電機11の回転が停止して冷却媒体が
不均一状態となって歪みを生ずることはない。
By doing this, even if the steam turbine 12 trips, the superconducting generator will continue to rotate by the secondary medium turbine 13 of the secondary medium closed cycle power generation plant, so the liquid level in the rotor will remain uniform. It will be done. Therefore, the rotation of the superconducting generator 11 will not stop and the cooling medium will not become non-uniform and distorted.

一方、二次媒体タービンが停止した場合には、バルブ2
4を閉じて蒸発器16に供給する二次媒体を停止する。
On the other hand, when the secondary medium turbine stops, valve 2
4 to stop supplying the secondary medium to the evaporator 16.

この場合、火力発電プラントはそのままの運転を継続す
る。
In this case, the thermal power plant will continue to operate as is.

[発明の効果コ 以上述べたように本発明によれば、二次媒体クローズド
サイクル発電プラントによる超電導発電機のターニング
が可能となる。また、複合発電プラントを構成している
ので、一方のタービンがトリップしても発電運転を継続
できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to turn a superconducting generator using a secondary medium closed cycle power generation plant. Moreover, since it is configured as a combined power generation plant, power generation operation can be continued even if one of the turbines trips.

すなわち、蒸気タービンおよび二次媒体タービンのいず
れかが停止した場合でも相互にバックアップが可能であ
り、超電導発電プラントとしての運用上も信頼性が非常
に高くなる。
That is, even if either the steam turbine or the secondary medium turbine stops, mutual backup is possible, and the operational reliability of the superconducting power plant is extremely high.

さらに二次媒体クローズドサイクル発電プラントは二次
媒体としてフロンガスのような低沸点媒体を利用するの
で、海水で蒸発させることができ、非常に簡単な設備で
タービンを即動することができる。これは信頼性の高い
コンパクトなもので、これによって超電導発電機の高速
ターニングや超勤および発電を行うことができる。
Furthermore, since secondary medium closed cycle power plants use a low boiling point medium such as chlorofluorocarbon gas as a secondary medium, it can be evaporated with seawater and the turbine can be operated immediately with very simple equipment. This is a highly reliable and compact device that allows superconducting generators to perform high-speed turning, overtime, and power generation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における複合発電プラントの一実施例を
示すブロック図である。 11・・・超電導発電機、12・・・蒸気タービン、1
3・・・二次媒体タービン、14・・・冷却装置、15
・・・二次媒体、16・・・蒸発器、17・・・凝縮器
、18・・・ポンプ、19・・・ボイラ、20・・・復
水器、21・・・蒸発器、22.23.24・・・バル
ブ。
FIG. 1 is a block diagram showing an embodiment of a combined power generation plant according to the present invention. 11...Superconducting generator, 12...Steam turbine, 1
3... Secondary medium turbine, 14... Cooling device, 15
... Secondary medium, 16 ... Evaporator, 17 ... Condenser, 18 ... Pump, 19 ... Boiler, 20 ... Condenser, 21 ... Evaporator, 22. 23.24...Valve.

Claims (1)

【特許請求の範囲】[Claims] 液化天然ガスを燃料とする火力発電プラントの蒸気ター
ビンと、二次媒体クローズドサイクル発電プラントの二
次媒体タービンと、超電導発電機とを直結し、前記火力
発電プラントに供給される液化天然ガスにより前記二次
媒体クローズドサイクル発電プラントの二次媒体を凝縮
するようにしたことを特徴とする複合発電プラント。
A steam turbine of a thermal power plant that uses liquefied natural gas as fuel, a secondary medium turbine of a secondary medium closed cycle power plant, and a superconducting generator are directly connected, and the liquefied natural gas supplied to the thermal power plant generates the A combined power generation plant characterized in that the secondary medium of a secondary medium closed cycle power generation plant is condensed.
JP6976890A 1990-03-22 1990-03-22 Compound generation plant Pending JPH03271507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6976890A JPH03271507A (en) 1990-03-22 1990-03-22 Compound generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6976890A JPH03271507A (en) 1990-03-22 1990-03-22 Compound generation plant

Publications (1)

Publication Number Publication Date
JPH03271507A true JPH03271507A (en) 1991-12-03

Family

ID=13412308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6976890A Pending JPH03271507A (en) 1990-03-22 1990-03-22 Compound generation plant

Country Status (1)

Country Link
JP (1) JPH03271507A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533972A (en) * 2002-07-22 2005-11-10 スティンガー、ダニエル・エイチ Cascading closed-loop cycle power generation
JP2007127060A (en) * 2005-11-04 2007-05-24 Ebara Corp Drive system
WO2011149916A1 (en) * 2010-05-28 2011-12-01 General Electric International, Inc Generating energy from fluid expansion
US8400005B2 (en) 2010-05-19 2013-03-19 General Electric Company Generating energy from fluid expansion
WO2015159056A3 (en) * 2014-04-15 2015-12-10 Norgren Limited Vehicle heat recovery system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533972A (en) * 2002-07-22 2005-11-10 スティンガー、ダニエル・エイチ Cascading closed-loop cycle power generation
JP2007127060A (en) * 2005-11-04 2007-05-24 Ebara Corp Drive system
US8400005B2 (en) 2010-05-19 2013-03-19 General Electric Company Generating energy from fluid expansion
WO2011149916A1 (en) * 2010-05-28 2011-12-01 General Electric International, Inc Generating energy from fluid expansion
WO2015159056A3 (en) * 2014-04-15 2015-12-10 Norgren Limited Vehicle heat recovery system

Similar Documents

Publication Publication Date Title
KR100766101B1 (en) Turbine generator using refrigerant for recovering energy from the low temperature wasted heat
CN102869855A (en) Gas turbine and thermodynamic power generation system
JP2013076401A (en) System and method for generating electric power
JPH06221114A (en) Operating method of combination device of gas turbo group and steam turbine device
US20140110939A1 (en) Waste heat power generator
US9500205B2 (en) Multi-pressure radial turbine system
US20130327042A1 (en) Thermodynamic power generation system
JPH03271507A (en) Compound generation plant
KR102538228B1 (en) Energy saving system of encune by using waste heat and ocean construction comprising the same
JPH04127850A (en) Liquid air storage power generating system
JPH09144560A (en) Hydrogen combustion gas turbine plant and its operating method
KR102426556B1 (en) Floating and storage power plant using cold heat of liquefied natural gas and generating method thereof
JPH0688538A (en) Gas turbine plant
KR20190052794A (en) Generation system of organic rankine cycle integrated wind turbine cooling system
JPH0797933A (en) Intake air cooling device of gas turbine
JP3520927B2 (en) Power generator
JPS55142916A (en) Recovery device of waste heat from electrical equipment
JPH06235332A (en) Evaporating method of liquefied natural gas fuel for gas turbine and improving method of gas turbine performance
JPH07247862A (en) Gas turbine plant
JP2003056312A (en) Closed-cycle gas turbine and power generation system using the gas turbine
JPH03111606A (en) Water generating type binary generator
JPH06146815A (en) Gas turbine composite power generator
JPH0295757A (en) Energy supply system
JP3697291B2 (en) Fluidized bed boiler power plant
JPH04161056A (en) Superconducting power plant and operating method thereof