Nothing Special   »   [go: up one dir, main page]

JPH03111606A - Water generating type binary generator - Google Patents

Water generating type binary generator

Info

Publication number
JPH03111606A
JPH03111606A JP24780789A JP24780789A JPH03111606A JP H03111606 A JPH03111606 A JP H03111606A JP 24780789 A JP24780789 A JP 24780789A JP 24780789 A JP24780789 A JP 24780789A JP H03111606 A JPH03111606 A JP H03111606A
Authority
JP
Japan
Prior art keywords
water
heat source
cooling tower
working medium
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24780789A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sumitomo
住友 博之
Akira Horiguchi
章 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP24780789A priority Critical patent/JPH03111606A/en
Publication of JPH03111606A publication Critical patent/JPH03111606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To minimize the use of replenishing water even when an external cold heat source is not available, by utilizing ground temperature water already used as warm heat source further for cooling tower replenishing water. CONSTITUTION:A heat source water line 30 from a flush tank 32 is connected through an evaporator 2 to a gas-liquid separator 34. Ground temperature water stored in the separator 34 is sent to a preheater 12 by a pump 36 to give heat to an operative medium therein and reduce temperature. Further, the ground temperature water is cooled by an air cooler 38 and then sent to a cooling tower 42. Thus, condensed liquid obtained through the heat exchange between the heat source water in the form of steam and the operative medium is used for water to replenish the cooling tower 42, so that a cold heat source is ensured by the cooling tower 42 utilizing the atmospheric air and a binary generator can be run even if a cooling water source is quite absent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱源との熱交換により発生した作動媒体の
蒸気をタービンに供給して発電機を駆動させるようにし
たバイナリ−発電システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a binary power generation system in which steam of a working medium generated by heat exchange with a heat source is supplied to a turbine to drive a generator.

〔従来の技術〕[Conventional technology]

地熱を利用するバイナリ−発電システムは、地熱水を熱
源として作動媒体を蒸発させ、この作動媒体蒸気をター
ビンに供給して発電機を駆動させるようにしている。第
2図を参照して説明すると、蒸発器(2)、タービン(
4)、凝縮器(6)、および、ポンプ(8)を直列に接
続して閉じた作動媒体ループが構成され、タービン(4
)の出力軸が発電機(10)と連結されている。蒸発器
(2)には地熱水が温熱源として供給され、凝縮器(6
)には冷熱源として冷却水が供給される。そうして、作
動媒体は蒸発器(2)にて地熱水から熱を奪って蒸発し
、発生した蒸気はタービン(4)に供給され、そこで膨
張して仕事をする。タービン(4)から排出された蒸気
は凝縮器(6)で冷却水に熱を奪われて凝縮し、液化し
た作動媒体はポンプ(8)で再び蒸発器(2)へ送られ
る。このように作動媒体が作動媒体ループ内を循環し、
上述のサイクルを反復する。
A binary power generation system using geothermal heat uses geothermal water as a heat source to evaporate a working medium, and supplies this working medium steam to a turbine to drive a generator. To explain with reference to FIG. 2, the evaporator (2), the turbine (
4), a condenser (6), and a pump (8) are connected in series to form a closed working medium loop.
) is connected to a generator (10). Geothermal water is supplied to the evaporator (2) as a heat source, and the condenser (6)
) is supplied with cooling water as a cold source. The working medium is then evaporated by removing heat from the geothermal water in the evaporator (2), and the generated steam is supplied to the turbine (4) where it expands and does work. The steam discharged from the turbine (4) is condensed in the condenser (6) by removing heat from the cooling water, and the liquefied working medium is sent to the evaporator (2) again by the pump (8). In this way, the working medium circulates within the working medium loop,
Repeat the cycle described above.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

地熱水の得られる場所は山地が多く、冷熱源を確保する
のが困難な場合がある。大気を冷却源とする冷却塔を用
いるにしても、補給水が必要であり、大掛かりな補給水
タンク等の設備が付加的に必要となる。
Many places where geothermal water can be obtained are located in mountainous areas, and it may be difficult to secure a source of cold heat. Even if a cooling tower using the atmosphere as a cooling source is used, make-up water is required, and additional equipment such as a large-scale make-up water tank is required.

そこで、この発明は、外部の冷熱源が得られない場合で
も、補給水の所要量をできる限り少なくすることである
Therefore, the object of the present invention is to minimize the amount of makeup water required even when an external cold source is not available.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、温熱源として使用した地熱水を、さらに冷
却塔の補給水として利用することにより上記課題を解決
した。すなわち、この発明の造水式バイナリ−発電装置
は、熱源との熱交換により発生した作動媒体の蒸気をタ
ービンに供給して発電機を駆動させるようにしたもので
あって、熱源より蒸気を発生させてこの熱源蒸気によっ
て作動媒体を蒸発させるとともに、その結果発生する熱
源蒸気の凝縮液を、作動媒体蒸気を凝縮させるための冷
熱源用冷却塔の補給水として使用するようにしたことを
特徴とする。
This invention solved the above problem by further utilizing geothermal water used as a heat source as make-up water for a cooling tower. That is, the water production type binary power generation device of the present invention is configured to drive a generator by supplying the steam of the working medium generated by heat exchange with a heat source to a turbine, and generates steam from the heat source. The working medium is evaporated by the heat source vapor, and the resulting condensate of the heat source vapor is used as make-up water for a cooling tower for a cold source for condensing the working medium vapor. do.

〔作用〕 例えば120℃の熱源水をフラッシュ蒸発させて102
℃の蒸気とし、この蒸気を熱源として蒸発器に供給する
。すると、熱源蒸気は蒸発器で作動媒体に熱を与えて作
動媒体を蒸発させるとともに、自らは凝縮して100℃
の凝縮液となる、この凝縮液を、さらに作動媒体の予熱
に用いたり空気冷却器を通すことによって32℃まで冷
却したうえで冷却塔に補給水として供給する。
[Operation] For example, flash evaporation of heat source water at 120°C
℃ steam, and this steam is supplied to the evaporator as a heat source. Then, the heat source steam gives heat to the working medium in the evaporator, evaporating the working medium, and condenses itself to 100°C.
This condensate is further used for preheating the working medium or cooled to 32° C. by passing it through an air cooler, and then supplied to the cooling tower as make-up water.

冷却塔において、この補給水は冷却水から蒸発潜熱を奪
って蒸発する。これにより32℃の冷却水が得られる。
In the cooling tower, this make-up water removes latent heat of vaporization from the cooling water and evaporates. This provides cooling water at 32°C.

このように、−旦温熱源としての利用に供された熱源水
を冷却して冷却塔の補給水とすることにより全体の水収
支が成り立つ、すなわち、補給水として利用できる熱源
水の量をWlとし、冷却塔で蒸発する量をw2 、その
際にミストとして連れ去られる量をW3とすれば、W!
=w2X0.9であることから、W3 =W1 xQ、
lにすれば収支が成り立つ、したがって、水のないとこ
ろでも発電ができる。この意味でこの発明は、外部の冷
却水源に頼らない自己完結型の造水式バイナリ−発電装
置を提供するものである。
In this way, the overall water balance can be achieved by cooling the heat source water that has been used as a heat source and using it as make-up water for the cooling tower, that is, the amount of heat source water that can be used as make-up water is If the amount evaporated in the cooling tower is w2 and the amount removed as mist at that time is W3, then W!
Since =w2X0.9, W3 =W1 xQ,
If it is 1, it will be possible to make ends meet, and therefore power can be generated even in places where there is no water. In this sense, the present invention provides a self-contained water generating binary power generation device that does not rely on an external cooling water source.

〔実施例〕〔Example〕

第1図において、作動媒体ループは参照数字(20)で
包括的に指してあり、予熱器(12)を設けである点を
除き、基本的には第2図に示されるものと同じである。
In FIG. 1, the working medium loop is indicated generically by the reference numeral (20) and is essentially the same as that shown in FIG. 2, except that it is provided with a preheater (12). .

すなわち、作動媒体ループ(20)は、蒸発器(2)、
タービン(4)、凝縮器(6)、および、予熱器(12
)を直列に接続し、ポンプ(8)で作動媒体を循環させ
るようにしである。
That is, the working medium loop (20) includes the evaporator (2),
Turbine (4), condenser (6), and preheater (12
) are connected in series, and the working medium is circulated by the pump (8).

蒸発器(2)には地熱水ライン(30)が接続されてい
る。地熱水ライン(30)は、図示しない生産井から地
熱水をフラッシュタンク(32)に導き、このフラッシ
ュタンク(32)の気相を蒸発器(2)に接続している
。蒸発器(2)を出ると、気液分離器(34) 、ポン
プ(36) 、予熱r5(12) 、空気冷却器(38
)を経て冷却塔(42)に至る。フラッシュタンク(3
2)の液相は還元井に接続されている。
A geothermal water line (30) is connected to the evaporator (2). A geothermal water line (30) leads geothermal water from a production well (not shown) to a flash tank (32), and connects the gas phase of this flash tank (32) to the evaporator (2). After exiting the evaporator (2), a gas-liquid separator (34), a pump (36), a preheater R5 (12), an air cooler (38)
) to the cooling tower (42). Flash tank (3
The liquid phase of 2) is connected to the reinjection well.

凝縮器(6)には冷却水ライン(40)が接続され、こ
の冷却水ライン(40)は冷却塔(42)と水ポンプ(
44)を有している。冷却塔(42)には補給水栓が設
けられ、適当な補給水タンク等と接続される。
A cooling water line (40) is connected to the condenser (6), and this cooling water line (40) is connected to the cooling tower (42) and the water pump (
44). The cooling tower (42) is provided with a make-up water tap and connected to a suitable make-up water tank or the like.

次にこの実施例の作用を説明する。Next, the operation of this embodiment will be explained.

まず、地熱水はフラッシュタンク(32)に入ってフラ
ッシュ蒸発する。そして、蒸発しなかった分は還元井へ
戻される0発生した水蒸気は蒸発器(2)に供給され、
そこで作動媒体に熱を与えて凝縮し、蒸発器(2)の出
口側に設けられた気液分離器(34)に貯る。気液分離
器(34)内で分離した空気その他の不凝縮ガスはガス
抜きバルブ(35)から系外へ排出される。
First, the geothermal water enters the flash tank (32) and undergoes flash evaporation. The unevaporated water vapor is returned to the reinjection well.The generated water vapor is supplied to the evaporator (2),
There, heat is applied to the working medium to condense it and store it in a gas-liquid separator (34) provided on the outlet side of the evaporator (2). Air and other non-condensable gases separated in the gas-liquid separator (34) are discharged from the system through the gas vent valve (35).

気液分離器(34)に貯った地熱水は、ポンプ(36)
で予熱器(12)へ送られ、そこで作動媒体に熱を与え
て温度を下げ、さらに、空気冷却器(38)で冷却され
たうえで冷却塔(42)に進む。
The geothermal water stored in the gas-liquid separator (34) is transferred to the pump (36)
The working medium is then sent to the preheater (12), where it is given heat to the working medium to lower its temperature, and further cooled by the air cooler (38) before proceeding to the cooling tower (42).

冷却塔(42)は、補給水の蒸発潜熱を利用して、凝縮
器(6)に供給される冷熱源の冷却を行う。
The cooling tower (42) cools the cold heat source supplied to the condenser (6) by using the latent heat of vaporization of makeup water.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、熱源水を蒸気の形で
作動媒体と熱交換させ、その結果得られる凝縮液を冷却
塔の補給水として使用するようにしたから、冷却水源が
全くないような場所であっても、大気を利用した冷却塔
により冷熱源を確保してバイナリ−発電装置を運転する
ことができ、補給水タンクの容量も可及的に小さくする
ことができる。
As explained above, this invention allows the heat source water to exchange heat with the working medium in the form of steam, and the resulting condensate is used as make-up water for the cooling tower, so there is no need for a cooling water source at all. Even in a cold place, the binary power generator can be operated by securing a cold heat source using a cooling tower that uses the atmosphere, and the capacity of the make-up water tank can be made as small as possible.

また、実施例のように地熱水を熱源とする場合、地熱水
をフラッシュ蒸発させて気液分離することによって同時
にスケール成分が系内に進入するのを防止することがで
きるという効果も得られる。
In addition, when geothermal water is used as a heat source as in the example, flash evaporation of geothermal water and gas-liquid separation also has the effect of preventing scale components from entering the system. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示すブロック線図、 第2図は従来例を示すブロック線図である。 10:発電機 20:作動媒体ループ 2:蒸発器 4:タービン 6:凝縮器 8:ポンプ 12:予熱器 30:熱源水ライン 32:フラッシュタンク 34:気液分離器 38:空気冷却器 40:冷却水ライン 42:冷却器 FIG. 1 is a block diagram showing an embodiment of the present invention; FIG. 2 is a block diagram showing a conventional example. 10: Generator 20: Working medium loop 2: Evaporator 4: Turbine 6: Condenser 8: Pump 12: Preheater 30: Heat source water line 32: Flash tank 34: Gas-liquid separator 38: Air cooler 40: Cooling water line 42: Cooler

Claims (1)

【特許請求の範囲】[Claims] (1)熱源との熱交換により発生した作動媒体の蒸気を
タービンに供給して発電機を駆動させるようにしたもの
において、熱源より蒸気を発生させてこの熱源蒸気によ
って作動媒体を蒸発させるとともに、その結果発生する
熱源蒸気の凝縮液を、作動媒体蒸気を凝縮させるための
冷熱源用冷却塔の補給水として使用する造水式バイナリ
ー発電装置。
(1) In a device in which the steam of the working medium generated by heat exchange with the heat source is supplied to the turbine to drive the generator, the steam is generated from the heat source and the working medium is evaporated by the heat source steam, and A water production type binary power generation system that uses the resulting condensate of heat source steam as make-up water for a cold source cooling tower for condensing working medium steam.
JP24780789A 1989-09-22 1989-09-22 Water generating type binary generator Pending JPH03111606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24780789A JPH03111606A (en) 1989-09-22 1989-09-22 Water generating type binary generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24780789A JPH03111606A (en) 1989-09-22 1989-09-22 Water generating type binary generator

Publications (1)

Publication Number Publication Date
JPH03111606A true JPH03111606A (en) 1991-05-13

Family

ID=17168954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24780789A Pending JPH03111606A (en) 1989-09-22 1989-09-22 Water generating type binary generator

Country Status (1)

Country Link
JP (1) JPH03111606A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413361B1 (en) * 1997-10-08 2002-07-02 Mitsubishi Heavy Industries, Ltd. Heavy oil emulsified fuel evaporator system and operation method thereof
WO2014034354A1 (en) * 2012-08-30 2014-03-06 三菱重工業株式会社 Cooling water supply system and binary cycle power plant comprising same
JP2014047638A (en) * 2012-08-29 2014-03-17 Kobe Steel Ltd Power and heat generation device
JP2014084857A (en) * 2012-10-28 2014-05-12 Yasuharu Kawabata Binary power generation system
JPWO2013027643A1 (en) * 2011-08-19 2015-03-19 富士電機株式会社 Power generator
JP2019011723A (en) * 2017-06-30 2019-01-24 株式会社Ihi Combined heat and power system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214278A (en) * 1986-03-14 1987-09-21 Mitsubishi Heavy Ind Ltd Geothermal power generation system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214278A (en) * 1986-03-14 1987-09-21 Mitsubishi Heavy Ind Ltd Geothermal power generation system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413361B1 (en) * 1997-10-08 2002-07-02 Mitsubishi Heavy Industries, Ltd. Heavy oil emulsified fuel evaporator system and operation method thereof
JPWO2013027643A1 (en) * 2011-08-19 2015-03-19 富士電機株式会社 Power generator
US9512741B2 (en) 2011-08-19 2016-12-06 Fuji Electric Co., Ltd. Power plant
JP2014047638A (en) * 2012-08-29 2014-03-17 Kobe Steel Ltd Power and heat generation device
WO2014034354A1 (en) * 2012-08-30 2014-03-06 三菱重工業株式会社 Cooling water supply system and binary cycle power plant comprising same
JP2014047675A (en) * 2012-08-30 2014-03-17 Mitsubishi Heavy Ind Ltd Cooling water supply system and binary generator with the same
US20150168022A1 (en) * 2012-08-30 2015-06-18 Mitsubishi Hitachi Power Systems, Ltd. Cooling water supply system and binary cycle power plant including same
US9879885B2 (en) 2012-08-30 2018-01-30 Mitsubishi Hitachi Power Systems, Ltd. Cooling water supply system and binary cycle power plant including same
JP2014084857A (en) * 2012-10-28 2014-05-12 Yasuharu Kawabata Binary power generation system
JP2019011723A (en) * 2017-06-30 2019-01-24 株式会社Ihi Combined heat and power system

Similar Documents

Publication Publication Date Title
RU2123606C1 (en) Method and device to realize thermodynamic cycle
JP3594635B2 (en) Geothermal power plant operating on high pressure geothermal fluid
US5664419A (en) Method of and apparatus for producing power using geothermal fluid
JP3391515B2 (en) Apparatus and method for obtaining power from high pressure geothermal fluid
US6076369A (en) Evaporative concentration apparatus for waste water
JP2679753B2 (en) Method and device for converting thermal energy into electric power
JP2716606B2 (en) Method and apparatus for performing a thermodynamic cycle
JP5906058B2 (en) Rankine cycle integrated with water absorption chiller
US4337625A (en) Waste heat driven absorption refrigeration process and system
US4982568A (en) Method and apparatus for converting heat from geothermal fluid to electric power
US6347520B1 (en) Method for Kalina combined cycle power plant with district heating capability
JPH11324711A (en) Method for cooling ambient air entering gas turbine
PT82087B (en) METHOD AND DEVICE FOR CONDUCTING A THERMODYNAMIC CYCLE WITH INTERMEDIATE COOLING
JPS61169604A (en) Method and device for operating steam cycle heat engine
JPH03111606A (en) Water generating type binary generator
JPH02181002A (en) Double flow turbine plant
JPH08261600A (en) Recovering method for exhaust heat
JPH01285607A (en) Hybrid binary generating system
US4294080A (en) Desorption step in absorption heat pumps and refrigerators
JP3263404B2 (en) Evaporation concentration method of aqueous solution containing water-soluble organic matter
JPH08338206A (en) Coolant/electric power equally supplying heat recovery mechanism
JPH01234761A (en) Double-effect multi-stage pressure type absorption type refrigerator and system therefor
CA2570654C (en) Efficient conversion of heat to useful energy
JPH05263610A (en) Power generating facility
JPS6232384B2 (en)