JPH02141476A - Production of ceramics substrate - Google Patents
Production of ceramics substrateInfo
- Publication number
- JPH02141476A JPH02141476A JP63294090A JP29409088A JPH02141476A JP H02141476 A JPH02141476 A JP H02141476A JP 63294090 A JP63294090 A JP 63294090A JP 29409088 A JP29409088 A JP 29409088A JP H02141476 A JPH02141476 A JP H02141476A
- Authority
- JP
- Japan
- Prior art keywords
- sheets
- ceramics
- ceramic green
- ceramic
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 88
- 239000000758 substrate Substances 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 claims abstract description 14
- 238000010304 firing Methods 0.000 claims description 16
- 239000002245 particle Substances 0.000 abstract description 10
- 238000012856 packing Methods 0.000 abstract description 5
- 238000010030 laminating Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000001354 calcination Methods 0.000 abstract 3
- 238000003466 welding Methods 0.000 abstract 2
- 239000010408 film Substances 0.000 description 21
- 238000007606 doctor blade method Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 3
- 238000002788 crimping Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- NJSUFZNXBBXAAC-UHFFFAOYSA-N ethanol;toluene Chemical compound CCO.CC1=CC=CC=C1 NJSUFZNXBBXAAC-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はセラミック基板の製造方法に関し、特に複数
枚のセラミックグリーンシートを重ね合わせて一体焼成
する、セラミック基板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a ceramic substrate, and more particularly to a method for manufacturing a ceramic substrate in which a plurality of ceramic green sheets are stacked and integrally fired.
セラミック基板を製造するために用いられる薄いセラミ
ックグリーンシートは、一般的には、ドクタブレード法
等によって製造される。このようなドクタブレード法等
によって作成したセラミックグリーンシートでは、その
厚み方向や面方向(幅方向または長さ方向)によってセ
ラミック粒子の充填密度が異なるため、焼成時の「反り
」を生じる。これは、押し出し成形によって作られたセ
ラミックグリーンシートにおいても程度の違いはあるも
のの同様である。Thin ceramic green sheets used for manufacturing ceramic substrates are generally manufactured by a doctor blade method or the like. In a ceramic green sheet created by such a doctor blade method or the like, the packing density of ceramic particles differs depending on the thickness direction and surface direction (width direction or length direction), which causes "warpage" during firing. This also applies to ceramic green sheets made by extrusion molding, although there are differences in degree.
そこで、従来では、セラミックグリーンシートを一旦焼
成した後のセラミック基板に重りを載せ、再び焼成温度
近くまで加熱していわゆる「反り直し」を行う後処理が
行われる。Therefore, conventionally, after the ceramic green sheet has been fired, a weight is placed on the ceramic substrate, and a post-processing process is performed in which the ceramic green sheet is heated again to near the firing temperature to cause so-called "rewarping".
従来のセラミック基板の製造方法におりる「反り直し」
の工程は、2回焼成するに等しい多大なエネルギを必要
とするだけでなく歩留りも低いため、生産性が悪く、製
品のコストダウンが図れない。“Rewarping” in conventional ceramic substrate manufacturing methods
This process not only requires a large amount of energy equivalent to firing twice, but also has a low yield, resulting in poor productivity and difficulty in reducing product costs.
また、「反り直し」工程において用いる重りにはセラミ
ックを用い得るが、これがセラミック基板と反応を起こ
すことが多く、セラミック基板の表面状態が悪くなると
いった欠点もあった。さらに、通常グリーンシートの作
成はフィルム」−にイ1与して行われるが、この場合グ
リーンシートのフィルム面側は焼成後の平滑度に優れる
ものの、他面側は比較的粗面となって薄膜形成用セラミ
ック基板としては適しないことがあった。Furthermore, although ceramic can be used as the weight used in the "rewarping" process, it often reacts with the ceramic substrate, resulting in a disadvantage that the surface condition of the ceramic substrate deteriorates. Furthermore, green sheets are usually created by applying a film to the film, but in this case, although the film side of the green sheet has excellent smoothness after firing, the other side is relatively rough. In some cases, it was not suitable as a ceramic substrate for thin film formation.
それゆえに、この発明の主たる目的は、安価にしてしか
も平滑な表面を有するセラミック基板が得られる、セラ
ミック基板の製造方法を提供することである。Therefore, the main object of the present invention is to provide a method for manufacturing a ceramic substrate, which is inexpensive and allows a ceramic substrate having a smooth surface to be obtained.
〔課題を解決するための手段]
この発明は、簡単にいえば、フィルム接触面が最外表面
になるように、焼成時の反り方向が反対のセラミックグ
リーンシートを交互に積層圧着して一体焼成する、セラ
ミック基板の製造方法である。[Means for Solving the Problems] To put it simply, the present invention is to alternately stack and press ceramic green sheets whose warp direction is opposite during firing so that the contact surface of the film becomes the outermost surface, and then integrally fire the sheets. This is a method of manufacturing a ceramic substrate.
フィルム接触面が最外表面になるように焼成時の反り方
向が反対のセラミックグリーンシートを交互に積層圧着
して一体焼成するので、表面平滑度がよく、しかも焼成
時の反りが互いに相殺されあるいは抑制される。Ceramic green sheets with opposite warp directions during firing are alternately laminated and pressed together so that the contact surface of the film is the outermost surface and are fired as a single unit, resulting in good surface smoothness and the warping during firing canceling out each other. suppressed.
〔発明の効果〕
この発明によれば、フィルム接触面が最外表面になるの
で、得られるセラミック基板の表面平滑度がよく、しか
も重りを載せずに焼成することができるので、表面状態
の優れたセラミ・ンク枯板が焼成できる。また、反り直
しの処理も必要がないので、生産効率が高く、製品のコ
ストダウンが図れる。[Effects of the Invention] According to the present invention, since the contact surface of the film is the outermost surface, the surface smoothness of the resulting ceramic substrate is good, and it can be fired without placing any weight on it, resulting in an excellent surface condition. Ceramic dry wood boards can be fired. In addition, since there is no need for re-warping, production efficiency is high and product costs can be reduced.
この発明の上述の目的、その他の目的、特徴および利点
は、図面を参照して行う以下の実施例の詳細な説明から
一層明らかとなろう。The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
第1図はこの発明の一実施例を説明するための分解斜視
図である。焼成されるとセラミック基板になるセラミッ
クグリーン体10′は、2枚のセラミックグリーンシー
ト12および14が積層圧着されてなる。これらセラミ
ックグリーンシート12および14は、この実施例では
、公知のFフタブレード法によって成形されたものが用
いられる。そして、セラミックグリーンシート12およ
び14には、圧着時にグリーンシート12.14がポン
チ等に接着しないように、かつ圧着後の取り出しが容易
に行なえるように、離型材としてのフィルムシート16
および18が設けられている。この場合、前記セラミッ
クグリーンシート1214は、フィルムシート16.1
8との当接面、つまり焼成後のセラミック基板の両外表
面に、セラミックグリーンシート12.14の成形時の
フィルム当接面が位置されるように配置される。FIG. 1 is an exploded perspective view for explaining one embodiment of the present invention. The ceramic green body 10', which becomes a ceramic substrate when fired, is formed by laminating and pressing two ceramic green sheets 12 and 14. In this embodiment, these ceramic green sheets 12 and 14 are formed by the known F-lid blade method. A film sheet 16 is attached to the ceramic green sheets 12 and 14 as a release material to prevent the green sheets 12 and 14 from adhering to a punch or the like during crimping and to facilitate removal after crimping.
and 18 are provided. In this case, the ceramic green sheet 1214 is the film sheet 16.1
The ceramic green sheets 12 and 14 are arranged so that the film contact surfaces during molding are located on both outer surfaces of the ceramic substrate after firing.
また、第1図において、それぞれの矢印で、それぞれの
セラミックグリーンシート12および14のシート成形
方向を示す。すなわち、セラミックグリーンシート12
は、矢印12aで示す方向にフィルムシート16を移動
させて形成する。同様に、セラミックグリーンシート1
4も矢印14aで示す方向にフィルムシート18を移動
させて形成する。この実施例では、セラミックグリーン
シート12および14ば、それぞれのシート成形方向が
交互に直交するように配置される。Further, in FIG. 1, respective arrows indicate sheet forming directions of the respective ceramic green sheets 12 and 14. That is, the ceramic green sheet 12
is formed by moving the film sheet 16 in the direction shown by the arrow 12a. Similarly, ceramic green sheet 1
4 is also formed by moving the film sheet 18 in the direction shown by the arrow 14a. In this embodiment, the ceramic green sheets 12 and 14 are arranged so that their sheet forming directions are alternately orthogonal to each other.
このようにして、セラミックグリーンシート12および
14が積層されたセラミックグリーン体10′は、次い
で、たとえば冷間静水圧法(C12法)等によって、温
度40〜80°Cの下で300kgf/crR以上の圧
力が加えられ圧着される。その後、第2図に示すように
、セラミックグリーン体10′は所定の大きさにカット
され、そのセラミックグリーン体10は一体焼成される
。この焼成後にはフィルムシート16.18を予め剥離
しておくとよいが、そのまま焼成してもよい。In this way, the ceramic green body 10' in which the ceramic green sheets 12 and 14 are laminated is produced by, for example, a cold isostatic pressure method (C12 method) or the like, at a temperature of 40 to 80°C and a pressure of 300 kgf/crR or more. pressure is applied and crimped. Thereafter, as shown in FIG. 2, the ceramic green body 10' is cut into a predetermined size, and the ceramic green body 10 is integrally fired. After this firing, the film sheets 16 and 18 are preferably peeled off in advance, but they may be fired as they are.
上述のように配置されたセラミックグリーンシート12
および14は、焼成時において、セラミックグリーンシ
ート12は上方へ、セラミックグリーンシート14は下
方へ湾曲しようとする。これは簡単にいえば、セラミッ
クグリーンシー1−12および14中の厚み方向の上下
におけるセラミック粒子の充填密度の違いによる。すな
わち、たとえばドクタブレード法では、ドクタブレード
によって作った隙間を通してセラミックスラリを移動し
ているフィルムシート上に流出させるが、セラミックス
ラリに含まれるセラミック粒子は沈降し易く、したがっ
て、当然、フィルムシートに接触している面側の方が反
対面側に比べてセラミック粒子の密度が大きくなる。こ
のようなセラミック粒子の充填密度の違いによって、焼
成時に、セラミックグリーンシート12および14はそ
れぞれの方向に湾曲しようとするのである。Ceramic green sheets 12 arranged as described above
and 14, during firing, the ceramic green sheet 12 tends to curve upward, and the ceramic green sheet 14 tends to curve downward. Simply put, this is due to the difference in the packing density of ceramic particles in the upper and lower parts of the ceramic green sheets 1-12 and 14 in the thickness direction. That is, for example, in the doctor blade method, the ceramic slurry is flowed onto the moving film sheet through the gap created by the doctor blade, but the ceramic particles contained in the ceramic slurry tend to settle and therefore naturally come into contact with the film sheet. The density of the ceramic particles is higher on the side with the edge than on the opposite side. Due to such a difference in the packing density of the ceramic particles, the ceramic green sheets 12 and 14 tend to curve in respective directions during firing.
一方、焼成時の面方向の反りないし湾曲についてみると
、面方向においては、前述のシート成形方向(第1図の
矢印12aおよび14a)に直交する方向に反りないし
湾曲が生じようとする。そこで、この実施例においては
、各セラミックグリーンシート12および14を先に説
明した方向性を持たせて積層する。On the other hand, when looking at warpage or curvature in the surface direction during firing, warpage or curvature tends to occur in the direction perpendicular to the sheet forming direction (arrows 12a and 14a in FIG. 1). Therefore, in this embodiment, the ceramic green sheets 12 and 14 are laminated with the directionality described above.
すなわち、セラミックグリーンシート12および14は
、セラミック粒子の充填密度に起因する反り方向が互い
に反対になるよう積層される。そのため、セラミックグ
リーンシー1へ12および14が重ね合わされて、たと
えば冷間静水圧法によって圧着されて焼成されると、そ
れぞれのセラミックグリーンシート12および14の反
りないし湾曲応力は相殺され、あるいは緩和ないし抑制
されて、セラミツクグリーン体10全体としての変形な
いし反りはなくなる。したがって、「反り直し」の工程
は行われない。That is, the ceramic green sheets 12 and 14 are stacked so that the directions of warpage due to the packing density of the ceramic particles are opposite to each other. Therefore, when the ceramic green sheets 12 and 14 are superimposed on the ceramic green sheets 1, pressed and fired by, for example, a cold isostatic pressure method, the warping or bending stress of the respective ceramic green sheets 12 and 14 is canceled out or alleviated. This suppresses deformation or warping of the ceramic green body 10 as a whole. Therefore, the process of "rewarping" is not performed.
上述の実施例に従って形成した4層のセラミック基板と
、従来の方法で形成した4層のセラミック基板との比較
の結果を次表に示す。なお、実施例および従来例のいず
れにおいても、純度99゜9%以上で平均粒径0.4μ
mのAI!、20.に、焼結助材として、純度99.9
%以上で平均粒径0.5μmのMgOを0.5wt%を
添加し、この粒末に対してバインダとしてPVB (ポ
リビニルブチラール)を12wt%、可塑剤としてDO
P(ジオクチルフタレート)を6wt%、溶剤としてト
ルエン−エタノールを90wt%、そして分散剤を1w
t%を加えてボールミルによって48時間混合してセラ
ミックスラリを作る。そのセラミックスラリを脱泡して
粘度調整を行った後、ドクタブレード法によって、厚さ
0.25mmのセラミックグリーンシートを作成する。The following table shows the results of a comparison between the four-layer ceramic substrate formed according to the above-described example and the four-layer ceramic substrate formed by the conventional method. In addition, in both the example and the conventional example, the purity is 99.9% or more and the average particle size is 0.4μ.
AI of m! , 20. As a sintering aid, purity 99.9
% or more, 0.5 wt% of MgO with an average particle size of 0.5 μm was added, and to this particle powder, 12 wt% of PVB (polyvinyl butyral) was added as a binder, and DO was added as a plasticizer.
6 wt% of P (dioctyl phthalate), 90 wt% of toluene-ethanol as a solvent, and 1 w of a dispersant.
t% and mixed by ball mill for 48 hours to form a ceramic slurry. After defoaming the ceramic slurry and adjusting the viscosity, a ceramic green sheet with a thickness of 0.25 mm is created by the doctor blade method.
そして、実施例では、フィルム接触面が最外表面になる
ように、焼成時の反り方向が反対のセラミックグリーン
シートを交互に4枚積層し、温度70°Cの下で500
kgf /ct!+の圧力をかけて圧着する。それを、
適当な大きさ、たとえば70胚角程度にカットして、1
550°Cの温度の下で2時間焼成して、たとえば50
mm角のセラミック基板を形成するもので、「反り直し
」ばしていない。In the example, four ceramic green sheets with opposite warping directions during firing were alternately laminated so that the film contact surface was the outermost surface, and the ceramic green sheets were heated at a temperature of 70°C for 500°C.
kgf/ct! Apply + pressure to crimp. That,
Cut into appropriate size, for example about 70 embryonic horns, and
Baking for 2 hours at a temperature of 550°C, e.g.
It forms a mm square ceramic substrate and is not "rewarped".
一方、従来例では、フィルム接触面や積層方向を考慮す
ることな(、単に厚さ1胴のセラミックグリーンシート
を成形して、その後、実施例と同じように1550°C
の温度の下で2時間焼成して50mm角のセラミック基
板を形成した。On the other hand, in the conventional example, the film contact surface and lamination direction are not considered (i.e., a ceramic green sheet with a thickness of one cylinder is simply molded, and then heated at 1550°C as in the example).
A ceramic substrate of 50 mm square was formed by firing at a temperature of 2 hours.
なお、これらの数値は、100個のサンプルの平均値を
示している。Note that these numerical values indicate average values of 100 samples.
(以下余白)
表
上表においてフィルム面とは、セラミックグリーンシー
ト作成時のフィルムからの剥離面を、また乾燥面とはこ
のフィルム面の反対面をいう。(Margins below) In the above table, the film surface refers to the surface from which the ceramic green sheet is peeled off during production, and the dry surface refers to the opposite surface to this film surface.
表から明らかなように、実施例の基板では、10μm以
上のピンホールが出て不良品となってしまう確率が従来
の20%から5%に低減することができる。また、縦方
向と横方向の収縮率差も、従来は0.3%あったものが
0.1%と小さくできる。さらに、従来の基板では、セ
ラミックグリ−ンシートの乾燥面の表面粗さは0.1μ
mと悪かった。しかし、実施例の基板では、フィルム面
が基板の両表面になるようにセラミックグリーンシート
を積層しているので、基板の表面粗さは両面とも最小の
0.05μmに保つことができる。As is clear from the table, in the substrate of the example, the probability that a pinhole of 10 μm or more will appear and become a defective product can be reduced from the conventional 20% to 5%. Furthermore, the difference in shrinkage rate between the vertical and horizontal directions can be reduced from 0.3% in the past to 0.1%. Furthermore, in conventional substrates, the surface roughness of the dry surface of the ceramic green sheet is 0.1 μm.
It was bad. However, in the substrate of the example, since the ceramic green sheets are laminated so that the film surfaces are on both surfaces of the substrate, the surface roughness of the substrate can be maintained at the minimum of 0.05 μm on both surfaces.
したがって、この製造方法では、「反り直し」の工程な
しに表面粗さおよび反りがそれぞれ0゜05μm以下の
セラミック基板を歩留り95%以上の確率で製造するこ
とができる。Therefore, in this manufacturing method, a ceramic substrate having a surface roughness and warpage of 0.05 μm or less can be manufactured with a yield rate of 95% or more without any "rewarping" process.
なお、フィルム面が最外表面になるようにかつ焼成時の
反り方向が反対のセラミックグリーンシートを交互に積
層するようにすれば、より多くの数のセラミックグリー
ンシートが積層されてもよい。Note that a larger number of ceramic green sheets may be laminated by alternately laminating ceramic green sheets with the film surface being the outermost surface and having opposite warp directions during firing.
第1図はこの発明の一実施例の製造過程を説明するため
の斜視図である。
第2図は第1図のようにして積層されたセラミックグリ
ーン体を示す断面図解図である。
図において、12および14はセラミックグリーンシー
ト、16および18はフィルムシートを示す。
特許出願人 株式会社 月田製作所
代理人 弁理士 山 1) 義 人FIG. 1 is a perspective view for explaining the manufacturing process of an embodiment of the present invention. FIG. 2 is an illustrative cross-sectional view showing the ceramic green body laminated as shown in FIG. 1. In the figure, 12 and 14 are ceramic green sheets, and 16 and 18 are film sheets. Patent applicant Tsukita Seisakusho Co., Ltd. Agent Patent attorney Yama 1) Yoshito
Claims (1)
方向が反対のセラミックグリーンシートを交互に積層圧
着して一体焼成する、セラミック基板の製造方法。A method for manufacturing a ceramic substrate in which ceramic green sheets with opposite warp directions during firing are laminated and pressed together alternately and fired as one unit so that the film contact surface is the outermost surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63294090A JPH02141476A (en) | 1988-11-21 | 1988-11-21 | Production of ceramics substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63294090A JPH02141476A (en) | 1988-11-21 | 1988-11-21 | Production of ceramics substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02141476A true JPH02141476A (en) | 1990-05-30 |
Family
ID=17803158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63294090A Pending JPH02141476A (en) | 1988-11-21 | 1988-11-21 | Production of ceramics substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02141476A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6217990B1 (en) | 1997-05-07 | 2001-04-17 | Denso Corporation | Multilayer circuit board having no local warp on mounting surface thereof |
US7108827B1 (en) | 1998-04-10 | 2006-09-19 | Nippon Shokubai Co., Ltd. | Ceramic sheet and method of producing ceramic sheet |
JP2009008693A (en) * | 1997-12-23 | 2009-01-15 | Inficon Gmbh | Capacitive vacuum measuring cell |
WO2021095843A1 (en) * | 2019-11-15 | 2021-05-20 | デンカ株式会社 | Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards |
WO2021095844A1 (en) * | 2019-11-15 | 2021-05-20 | デンカ株式会社 | Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards |
-
1988
- 1988-11-21 JP JP63294090A patent/JPH02141476A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6217990B1 (en) | 1997-05-07 | 2001-04-17 | Denso Corporation | Multilayer circuit board having no local warp on mounting surface thereof |
JP2009008693A (en) * | 1997-12-23 | 2009-01-15 | Inficon Gmbh | Capacitive vacuum measuring cell |
US7108827B1 (en) | 1998-04-10 | 2006-09-19 | Nippon Shokubai Co., Ltd. | Ceramic sheet and method of producing ceramic sheet |
US7807257B2 (en) | 1998-04-10 | 2010-10-05 | Nippon Shokubai Co., Ltd. | Ceramic sheet and method of producing ceramic sheet |
WO2021095844A1 (en) * | 2019-11-15 | 2021-05-20 | デンカ株式会社 | Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards |
JPWO2021095843A1 (en) * | 2019-11-15 | 2021-05-20 | ||
WO2021095843A1 (en) * | 2019-11-15 | 2021-05-20 | デンカ株式会社 | Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards |
JPWO2021095844A1 (en) * | 2019-11-15 | 2021-05-20 | ||
CN114667806A (en) * | 2019-11-15 | 2022-06-24 | 电化株式会社 | Ceramic substrate, composite substrate, circuit substrate, method for manufacturing ceramic substrate, method for manufacturing composite substrate, method for manufacturing circuit substrate, and method for manufacturing plurality of circuit substrates |
CN114830837A (en) * | 2019-11-15 | 2022-07-29 | 电化株式会社 | Ceramic substrate, composite substrate, circuit substrate, method for manufacturing ceramic substrate, method for manufacturing composite substrate, method for manufacturing circuit substrate, and method for manufacturing plurality of circuit substrates |
EP4059911A4 (en) * | 2019-11-15 | 2023-01-04 | Denka Company Limited | Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards |
CN114830837B (en) * | 2019-11-15 | 2024-04-02 | 电化株式会社 | Ceramic substrate, composite substrate, circuit substrate, and method for manufacturing ceramic substrate, method for manufacturing composite substrate, method for manufacturing circuit substrate, and method for manufacturing a plurality of circuit substrates |
CN114667806B (en) * | 2019-11-15 | 2024-04-02 | 电化株式会社 | Ceramic substrate, composite substrate, circuit substrate, and method for manufacturing ceramic substrate, method for manufacturing composite substrate, method for manufacturing circuit substrate, and method for manufacturing a plurality of circuit substrates |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113916002B (en) | Sheet ceramic pressing and sintering device and using method thereof | |
JPH02141476A (en) | Production of ceramics substrate | |
JP3644800B2 (en) | Manufacturing method of multilayer ceramic electronic component | |
JP2856045B2 (en) | Manufacturing method of ceramic substrate | |
TWI356665B (en) | ||
JPH07240217A (en) | Electrolyte substrate and flat cell manufacturing method | |
JP4445429B2 (en) | Manufacturing method of ceramic substrate | |
JPH03220709A (en) | Manufacture of laminated ceramic capacitor | |
JP2005191409A (en) | Method for manufacturing laminated ceramic capacitor | |
US6526958B1 (en) | Method of cutting ceramic green block | |
JPH047575B2 (en) | ||
JPH02141477A (en) | Production of ceramics substrate | |
JP2001338832A (en) | Ceramic electronic part and method of manufacturing laminated ceramic board | |
JPH0255267A (en) | Production of ceramic substrate | |
JPH0590067A (en) | Manufacture of laminated ceramic capacitor | |
JPS61136965A (en) | Manufacture of ceramic substrate for thin membrane | |
JP2000277367A (en) | Multilayer ceramic capacitor | |
JPH0352210A (en) | Laminated ceramic capacitor | |
JPS63136677A (en) | Manufacture of piezoelectric ceramics thin plate | |
JP2014222782A (en) | Multilayer ceramic capacitor | |
JP3042463B2 (en) | Manufacturing method of ceramic electronic components | |
JPS6258646B2 (en) | ||
JPH02311371A (en) | Sintering of ceramic substrate | |
JP5012649B2 (en) | Manufacturing method of laminated electronic component | |
JPH05315184A (en) | Manufacture of laminated ceramic electronic component |