Nothing Special   »   [go: up one dir, main page]

JPH07240217A - Electrolyte substrate and flat cell manufacturing method - Google Patents

Electrolyte substrate and flat cell manufacturing method

Info

Publication number
JPH07240217A
JPH07240217A JP6029928A JP2992894A JPH07240217A JP H07240217 A JPH07240217 A JP H07240217A JP 6029928 A JP6029928 A JP 6029928A JP 2992894 A JP2992894 A JP 2992894A JP H07240217 A JPH07240217 A JP H07240217A
Authority
JP
Japan
Prior art keywords
green sheets
electrolyte
doctor blade
thickness
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6029928A
Other languages
Japanese (ja)
Inventor
Seiji Takatsuki
誠治 高月
Osao Kudome
長生 久留
Tatsuo Kahata
達雄 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6029928A priority Critical patent/JPH07240217A/en
Publication of JPH07240217A publication Critical patent/JPH07240217A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a smooth electrolyte substrate suitable for a supporting body by baking a laminated body composed of an even number of green sheets formed by doctor blade method. CONSTITUTION:Green sheets 21 with 100-300mum thickness are formed of a slurry consisting of yttria-stabilized zirconia(YSZ) with 0.1mum particle size, a binder, a dispersant, a plastisizer, a dispersing solvent, etc., by a doctor blade method. Two green sheets 21 are stuck to each other by a dibutyl phthalate while the back sides thereof at the time of film formation are positioned face to face to obtain a laminated body 22. After being dried by hot air while sandwiched between glass plates, the laminated green sheets are baked at 1300 deg.C to obtain an electrolyte substrate with 300-600mum thickness. An electrolyte substrate with sufficient thickness and suitable for a supporting body for a self-standing film type cell is obtained by laminating the green sheets which have uniform thickness since they are formed by doctor blade method. The shrinkage anisotropy of green sheets in the film thickness direction at the time of firing is offset by layering the sheets while setting the back sides of the sheets face to face and warping is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は電解質基板及び平板型
セルの製造方法に関し、特に平板型セル用のみならず、
一般的用途のセラミック薄膜あるいは板材部材の製造法
として応用可能なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrolyte substrate and a flat plate type cell, and not only for a flat plate type cell,
It can be applied as a method for producing a ceramic thin film or a plate member for general use.

【0002】[0002]

【従来の技術】平板型固体電解質燃料電池(以下、平板
型SOFCと呼ぶ)は、その支持構造によって電解質層
1が支持体である自立膜型セル(図1(A))と、燃料
極(あるいは空気極)2が支持体である支持膜型セル
(図1(B))とに分類される。なお、図1において、
符番3は燃料極(又は空気極)を示す。
2. Description of the Related Art A flat plate type solid electrolyte fuel cell (hereinafter referred to as a flat plate SOFC) has a supporting structure, and a self-supporting membrane type cell (FIG. 1 (A)) in which an electrolyte layer 1 is a support and a fuel electrode ( Alternatively, the air electrode) 2 is classified as a support membrane type cell (FIG. 1B) that is a support. In addition, in FIG.
Reference numeral 3 indicates a fuel electrode (or an air electrode).

【0003】ここで、前記自立膜型セルの製造は、一般
的に焼結法によって得られた電解質層あるいは薄板上
に、更に燃料極(あるいは空気極)の電極材グリーンシ
ートを貼布,スクリーン印刷あるいはスラリー塗布法に
よって成膜した後、焼成することによって得る方法が一
般的に採用されている。
In order to manufacture the self-supporting membrane cell, a green sheet of an electrode material for a fuel electrode (or an air electrode) is further adhered to an electrolyte layer or a thin plate obtained by a sintering method, or a screen. A method of obtaining a film by firing after forming a film by printing or a slurry coating method is generally adopted.

【0004】[0004]

【発明が解決しようとする課題】ところで、自立膜型セ
ルにおいては、支持体である電解質層1を厚くすること
によってセルとしての強度を維持することが必要であ
る。しかるに、焼結法によって緻密な電解質層1が得ら
れる。一方、支持膜型セルでは、支持体が燃料極(又は
空気極)であるため、電解質層1は自立膜型セルに比べ
て薄膜化が可能である。しかし、緻密な電解質層の形成
が技術的に難しく、支持体が多孔性の電極層であり、セ
ルとしての強度を保つためには相対的に厚くする必要が
ある。このため、ガス拡散性が阻害される。また、支持
体膜型セルではガスシールが難しく、スタック構造が複
雑となる。
By the way, in the self-supporting membrane type cell, it is necessary to maintain the strength as a cell by thickening the electrolyte layer 1 as a support. However, the dense electrolyte layer 1 can be obtained by the sintering method. On the other hand, in the support membrane type cell, since the support is the fuel electrode (or the air electrode), the electrolyte layer 1 can be made thinner than the self-supporting membrane type cell. However, it is technically difficult to form a dense electrolyte layer, the support is a porous electrode layer, and it is necessary to make it relatively thick in order to maintain the strength as a cell. Therefore, gas diffusivity is impaired. Further, in the support membrane type cell, gas sealing is difficult and the stack structure becomes complicated.

【0005】ここで、セラミックスの成型法としては種
々の方法があるが、平板型SOFC用セルに代表される
薄膜あるいは薄板の製造法としては、ドクターブレード
法による成形が一般的である。このドクターブレード法
の利点は、厚さが均一な薄膜を連続的に成形できること
にある。従って、平板型SOFC用セルの製法において
も、ドクターブレード法による成膜が主流である。
Here, there are various methods for molding ceramics, but as a method for producing a thin film or a thin plate represented by a flat plate type SOFC cell, a doctor blade method is generally used. The advantage of this doctor blade method is that a thin film having a uniform thickness can be continuously formed. Therefore, also in the manufacturing method of the flat plate type SOFC cell, the film formation by the doctor blade method is the mainstream.

【0006】セルの一般的製造プロセスとしては、まず
ドクターブレード法により電解質グリーンシートを成膜
し、これを焼成して電解質薄膜基板とする。つづいて、
これに燃料極,空気極のスラリーを直接塗布あるいはグ
リーンシート等を貼布し、焼成することによってセルが
得られる。
As a general cell manufacturing process, first, an electrolyte green sheet is formed by a doctor blade method, and this is fired to form an electrolyte thin film substrate. Continuing,
A cell can be obtained by directly coating the slurry of the fuel electrode or the air electrode on this, or by pasting a green sheet or the like and firing it.

【0007】[0007]

【発明が解決しようとする課題】一般的に、ドクターブ
レード法は膜あるいは薄板の成形に優れた方法である。
しかしながら、反対に得られる成形体の膜厚は1mm以
下に限定される。これは、ドクターブレード法ではスラ
リーを用い、高分子膜の無吸湿性フィルム上に成膜する
ため、成膜時の膜厚を厚くした場合、乾燥時にひび割
れ,反り等が生じるため、厚く成膜できないことによ
る。
Generally, the doctor blade method is an excellent method for forming a film or a thin plate.
However, conversely, the film thickness of the obtained molded body is limited to 1 mm or less. This is because the doctor blade method uses a slurry to form a film on a non-absorptive polymer film, so if the film thickness is increased during film formation, cracks, warpage, etc. will occur during drying. It depends on what you cannot do.

【0008】また、得られたグリーンシートは膜厚方向
での充填状態等が異なる。このため、焼成時において膜
厚方向での収縮率が微妙に異なり、反りあるいは変形が
生じる。従って、一般的には再度高温下で荷重を加えて
矯正し、平滑化することが行なわれている。しかしなが
ら、成型体の大きさにも制限があり、あまり大きなもの
では十分な平滑化が困難である。
Further, the obtained green sheets differ in the filling state and the like in the film thickness direction. Therefore, during firing, the shrinkage ratio in the film thickness direction is slightly different, and warpage or deformation occurs. Therefore, generally, a load is applied again at a high temperature to correct and smooth the surface. However, the size of the molded body is also limited, and if it is too large, sufficient smoothing is difficult.

【0009】しかるに、平板型SOFC用セルで電解質
層を支持体とする自立膜型セルでは強度面より電解質膜
をある程度厚くする必要がある。また、セルの大型化
(大面積化)においても十分な平滑性が要求される。
However, in a flat plate type SOFC cell in which a self-supporting membrane type cell uses an electrolyte layer as a support, it is necessary to make the electrolyte membrane thick to some extent from the viewpoint of strength. In addition, sufficient smoothness is required even when the cell size is increased (area is increased).

【0010】この発明はこうした事情を考慮してなされ
たもので、ドクターブレード法でセルを製造する場合に
ついて十分な強度を有するに足る膜厚及びセルの大面積
化においても十分な平滑性を有する電解質基板あるいは
燃料極,空気極を具備した平板型用セルの製造方法を提
供することを目的とする。
The present invention has been made in consideration of such circumstances, and has a sufficient film thickness and a sufficient smoothness even when a cell has a large area when a cell is manufactured by the doctor blade method. It is an object of the present invention to provide a method for manufacturing a flat plate type cell having an electrolyte substrate, a fuel electrode or an air electrode.

【0011】[0011]

【課題を解決するための手段】本願第1の発明は、ドク
ターブレード法により成膜した電解質グリーンシートを
数枚貼り合せてなる積層体を、焼成して得られる構成で
あることを特徴とする電解質基板である。
The first invention of the present application is characterized in that it is obtained by firing a laminate obtained by laminating several electrolyte green sheets formed by the doctor blade method. It is an electrolyte substrate.

【0012】本願第2の発明は、前記積層体の表面,裏
面夫々に燃料極及び空気極のグリーンシートを貼り合わ
せて一体で焼成することを特徴とする平板型セルの製造
方法である。
A second invention of the present application is a method of manufacturing a flat plate type cell, wherein green sheets of a fuel electrode and an air electrode are bonded to the front surface and the back surface of the laminated body and integrally fired.

【0013】具体的には、この発明は、自立膜型セルを
ドクターブレード法により製造する上で十分な強度を維
持するために必要な電解質膜厚及び焼成において十分な
平滑性を有するようにするため、ドクターブレード法に
よって成膜した電解質グリーンシートを数枚貼り合わせ
ることによって厚膜化する。また、このときグリーンシ
ートの積層枚数を偶数枚とし、図2に示すように上下面
対称となるように貼り合わせることで、焼成時の膜厚方
向での収縮異方性を相殺し、平滑な電解質膜とする。こ
のとき、1枚のグリーンシートの厚さあるいは積層枚数
によって任意の厚さの電解質膜とすることができる。ま
た、グリーンシートの積層体の表,裏夫々に収縮率を合
わせた燃料極及び空気極のグリーンシートを貼布し、一
体で焼成することによって十分な強度と平滑性を有する
平板型セルとする。
Specifically, the present invention has an electrolyte film thickness necessary for maintaining sufficient strength for producing a self-supporting membrane type cell by the doctor blade method and a sufficient smoothness in firing. Therefore, the thickness of the film is increased by laminating several electrolyte green sheets formed by the doctor blade method. Further, at this time, the number of laminated green sheets is set to an even number, and the green sheets are attached so as to be vertically symmetrical as shown in FIG. Use as electrolyte membrane. At this time, an electrolyte membrane having an arbitrary thickness can be obtained depending on the thickness of one green sheet or the number of laminated green sheets. In addition, by stacking the green sheets of the fuel electrode and the air electrode having the shrinkage ratios on the front and back sides of the laminated body of green sheets and firing them together, a flat plate cell having sufficient strength and smoothness is obtained. .

【0014】[0014]

【作用】ドクターブレード法により電解質膜を製造する
上で自立膜型セルとして十分な強度を得るために電解質
グリーンシートを数枚貼り合わせて積層することによっ
て容易に厚膜化が可能であり、積層枚数によって自由に
膜厚を制御することができる。また、グリーンシート製
造時に生じる膜厚方向での充填状態等の違いによる焼成
時の収縮異方性に対しては、グリーンシートの積層方法
として積層枚数を偶数枚とし、シート表面・裏面に関
し、積層体が上下対称となるように貼り合わせることで
各々のグリーンシートの膜厚方向での収縮異方性が相殺
されて、積層体全体としては収縮等方性となる。このた
め、焼成時においてグリーンシート単層膜で発生し易い
反りあるいはひび割れ等が積層体ではほとんど生じるこ
とがなく、平滑性の良好な電解質膜が得られる。加えて
製造歩留まりが大幅に向上するため、製造コストが低減
できる。
[Function] In order to obtain sufficient strength as a self-supporting membrane type cell for producing an electrolyte membrane by the doctor blade method, it is possible to easily increase the thickness by laminating and stacking several electrolyte green sheets. The film thickness can be freely controlled by the number of sheets. Regarding the shrinkage anisotropy during firing due to the difference in the filling state in the film thickness direction that occurs during the production of green sheets, the number of sheets to be laminated is an even number as a method of laminating green sheets, and the front and back surfaces of the sheets are laminated. By laminating the green sheets so as to be vertically symmetrical, the shrinkage anisotropy in the film thickness direction of each green sheet is canceled out, and the stack as a whole becomes isotropic. Therefore, warpage or cracking, which is likely to occur in the green sheet single-layer film during firing, hardly occurs in the laminate, and an electrolyte membrane having good smoothness can be obtained. In addition, since the manufacturing yield is significantly improved, the manufacturing cost can be reduced.

【0015】[0015]

【実施例】以下、この発明の実施例を図を参照して説明
する。 (実施例1)図2(A),(B)及び図3(A),
(B)を参照する。
Embodiments of the present invention will be described below with reference to the drawings. (Example 1) FIGS. 2A, 2B and 3A,
Refer to (B).

【0016】電解質原料粉[イットリア安定化ジルコニ
ア(YSZ):粒径0.1μm]、有機バインダーとし
てポリメタクリル酸エチル、分散剤としてアミン、可塑
剤としてジブチルフタレート、更に分散溶剤としてシン
ナーを夫々下記「表1」に示す割合で10mmφ磁性ボ
ールとともに1リットル磁性ポットに入れ、ミルローラ
上で72rpm×12時間で混練し、スラリー懸濁液を
得る。
Electrolyte raw material powder [yttria-stabilized zirconia (YSZ): particle size 0.1 μm], polyethyl methacrylate as an organic binder, amine as a dispersant, dibutyl phthalate as a plasticizer, and thinner as a dispersant are described below. It is put in a 1 liter magnetic pot together with 10 mmφ magnetic balls in the ratio shown in Table 1 and kneaded on a mill roller at 72 rpm for 12 hours to obtain a slurry suspension.

【0017】 表1 電解質原料粉 200g バインダー 43.3g 分散剤 3.6g 可塑剤 17.3g 分散溶剤 215g 水に得られたスラリーを取り出して密封容器内で一昼夜
静置した後、スラリーを約50℃に加熱しながら真空脱
泡し、スラリー粘度5〜60000cpとなるようにス
ラリーを調整する。つづいて、ドクターブレード成膜機
により厚さ100〜300μmになるように成膜し、グ
リーンシートを得た。
Table 1 Electrolyte raw material powder 200 g Binder 43.3 g Dispersant 3.6 g Plasticizer 17.3 g Dispersion solvent 215 g The slurry obtained in water was taken out and allowed to stand still overnight in a sealed container, and then the slurry was about 50 ° C. Vacuum degassing is performed while heating to 0, and the slurry is adjusted to have a slurry viscosity of 5 to 60,000 cp. Subsequently, a doctor blade film forming machine was used to form a film having a thickness of 100 to 300 μm to obtain a green sheet.

【0018】つづいて、上述のグリーンシートを長さ2
00mm(シート幅は180mm)程度に裁断後、図2
(A)に示すように電解質グリーンシート21の裏面(成
膜時フィルムに接している面)同士を接着剤としてジブ
チルフタレートを用い貼り合わせ、図2(B)に示すよ
うなグリーンシート2層積層品22とした。
Subsequently, the above-mentioned green sheet is length 2
After cutting to about 00 mm (sheet width 180 mm),
As shown in (A), the back surfaces of electrolyte green sheets 21 (the surfaces in contact with the film at the time of film formation) are bonded together using dibutyl phthalate as an adhesive, and two layers of green sheets are laminated as shown in FIG. 2 (B). Item 22

【0019】更に、図3(A)に示すように2層積層品
の両面に対してグリーンシート裏面をジブチルフタレー
トを用いて貼り付けた図3(B)に示すようなグリーン
シート4層積層品31も作製した。これらの積層品につい
てはガラス板にはさみ込んで100℃で約1時間熱風乾
燥し、取り出した後、所定の寸法に型を用いて打ち抜い
た。
Further, as shown in FIG. 3 (A), the back surface of the green sheet is attached to both sides of the two-layer laminated product by using dibutyl phthalate as shown in FIG. 3 (B) four-layer laminated product. 31 was also made. These laminated products were sandwiched between glass plates, dried with hot air at 100 ° C. for about 1 hour, taken out, and then punched into a predetermined size using a mold.

【0020】以上の方法によって得られた2層あるいは
4層の電解質グリーンシート積層品については500℃
で脱脂後、更に1300℃で焼成し、厚さ300〜60
0μmの電解質膜とした。これらの電解質膜について
は、図5に示すような反りあるいはうねりを計測した。
下記「表2」は、計測結果を示す。
For the two-layer or four-layer electrolyte green sheet laminate obtained by the above method, 500 ° C.
After degreasing, baking at 1300 ° C, thickness 300-60
The electrolyte membrane was 0 μm. With respect to these electrolyte membranes, warpage or waviness as shown in FIG. 5 was measured.
The following “Table 2” shows the measurement results.

【0021】[0021]

【表1】 [Table 1]

【0022】(実施例2)空気極原料粉(LaSrMn
3 :粒径0.5〜2μm)、又は燃料極原料粉(Ni
O/YSZ:粒径0.1〜1.0μm)を、各々有機バ
インダーとしてポリメタクリル酸エチル、分散剤として
アミン、可塑剤としてジブチルフタレート、更に分散溶
剤としてシンナーを下記「表3」,「表4」に示す割合
で、実施例1と同様にして厚さ100〜150μmの空
気極及び燃料極のグリーンシートを得た。
(Example 2) Air electrode raw material powder (LaSrMn)
O 3 : particle size 0.5 to 2 μm, or fuel electrode raw material powder (Ni
(O / YSZ: particle size 0.1 to 1.0 μm), polyethyl methacrylate as an organic binder, amine as a dispersant, dibutyl phthalate as a plasticizer, and thinner as a dispersion solvent are shown in Tables 3 and 4 below. 4 ”in the same manner as in Example 1 to obtain air electrode and fuel electrode green sheets having a thickness of 100 to 150 μm.

【0023】 表3(空気極スラリー混合条件) 空気極原料粉 110g バインダー 26.5g 分散剤 4.1g 可塑剤 8.0g 分散溶剤 80g 表4(燃料極スラリー混合条件) 燃料極原料粉 160g バインダー 47.2g 分散剤 7.4g 可塑剤 14.2g 分散溶剤 105g つづいて、実施例1の手順によって得られた電解質の2
層あるいは4層グリーンシート積層品の両面に対して図
4(A)に示すように空気極,燃料極夫々のグリーンシ
ート41,42裏面(成膜時フィルムに接している面)を接
着剤としてジブチルフラレートを用いて貼り付け、空気
極/電解質/燃料極グリーンシート積層品43とした(図
4(B)図示)。これらの積層品についても実施例1と
同様ガラス板に挟んで乾燥後所定寸法に打ち抜き、50
0℃で脱脂,1300℃で焼成し、反り,うねりを計測
した。計測結果を上述した表2に示す。
Table 3 (air electrode slurry mixing conditions) Air electrode raw material powder 110 g Binder 26.5 g Dispersant 4.1 g Plasticizer 8.0 g Dispersing solvent 80 g Table 4 (fuel electrode slurry mixing conditions) Fuel electrode raw material powder 160 g Binder 47 0.2 g dispersant 7.4 g plasticizer 14.2 g dispersing solvent 105 g, followed by 2 of the electrolyte obtained by the procedure of Example 1.
As shown in FIG. 4 (A), the back surface (the surface in contact with the film at the time of film formation) of the green sheets 41 and 42 of the air electrode and the fuel electrode is used as an adhesive for both surfaces of the one-layer or four-layer green sheet laminated product. It was attached using dibutyl furarate to obtain an air electrode / electrolyte / fuel electrode green sheet laminate 43 (illustrated in FIG. 4 (B)). These laminated products were also sandwiched between glass plates in the same manner as in Example 1 and dried, and then punched into a predetermined size.
Degreasing was performed at 0 ° C, firing was performed at 1300 ° C, and warpage and waviness were measured. The measurement results are shown in Table 2 described above.

【0024】(比較例1)比較例1について、実施例1
と同様にして厚さ300〜600μmの電解質グリーン
シートを成膜し、単膜で焼成後、反り,うねりを計測し
た。上述した表2に計測結果を示す。
(Comparative Example 1) Regarding Comparative Example 1, Example 1
Similarly to the above, an electrolyte green sheet having a thickness of 300 to 600 μm was formed, and after firing as a single film, warpage and waviness were measured. The measurement results are shown in Table 2 above.

【0025】(比較例2)また、比較例2について、電
解質グリーンシート単膜に実施例2と同様にして空気
極,燃料極のグリーンシートを貼り付けたものについて
も焼成後,反り,うねりの計測を行なった。上述した表
2に計測結果を示す。
(Comparative Example 2) Also, in Comparative Example 2, the electrolyte green sheet single film having the green sheets for the air electrode and the fuel electrode adhered thereto in the same manner as in Example 2 had no warpage or waviness after firing. Measurement was performed. The measurement results are shown in Table 2 above.

【0026】この発明によれば、従来のドクターブレー
ド法において困難であった厚膜の電解質膜あるいはこれ
と空気極及び燃料極を一体で焼成した自立膜型セルとし
て十分な強度を有する平板型SOFCを製造することが
できる。また、この発明によって得られる電解質あるい
はセルは反り及びうねりが大幅に低減するとともに、焼
成工程でのひび又は割れ等が低減し、製造歩留りの向上
が期待できる。更に、この発明によれば、平板型SOF
C用セル以外での一般的なセラミックス薄膜あるいは板
材等への応用が可能である。
According to the present invention, a flat plate type SOFC having sufficient strength as a thick film electrolyte membrane or a self-supporting membrane type cell in which this and an air electrode and a fuel electrode are integrally fired, which has been difficult in the conventional doctor blade method. Can be manufactured. In addition, the electrolyte or cell obtained by the present invention is greatly reduced in warpage and undulation, and cracks or cracks in the firing process are reduced, so that improvement in manufacturing yield can be expected. Further, according to the present invention, a flat plate type SOF
It can be applied to general ceramic thin films or plate materials other than C cells.

【0027】[0027]

【発明の効果】以上詳述したようにこの発明によれば、
ドクターブレード法でセルを製造する場合について十分
な強度を有するに足る膜厚及びセルの大面積化において
も十分な平滑性を有する電解質基板あるいは燃料極,空
気極を具備した平板型セルの製造方法を提供できる。
As described above in detail, according to the present invention,
Method of manufacturing flat plate cell having electrolyte substrate or fuel electrode, air electrode having sufficient film thickness and sufficient smoothness even in increasing cell area when manufacturing cells by doctor blade method Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の平板型SOFC用セルの説明図であり、
図1(A)は自立膜型セルの断面積を、図1(B)は支
持膜型セルの断面図。
FIG. 1 is an explanatory view of a conventional flat-plate SOFC cell,
1A is a cross-sectional area of a self-supporting membrane cell, and FIG. 1B is a cross-sectional view of a supporting membrane cell.

【図2】この発明の実施例1に係るグリーンシート2層
積層品の説明図であり、図2(A)は貼り合せ前、図2
(B)は貼り合せ後の状態を示す。
FIG. 2 is an explanatory view of a green sheet two-layer laminated product according to the first embodiment of the present invention, and FIG.
(B) shows the state after bonding.

【図3】この発明の実施例1に係るグリーンシート4層
積層品の説明図であり、図3(A)は貼り合せ前、図3
(B)は貼り合せ後の状態を示す。
FIG. 3 is an explanatory diagram of a green sheet four-layer laminated product according to the first embodiment of the present invention, and FIG.
(B) shows the state after bonding.

【図4】この発明の実施例2に係る空気極/電解質/燃
料極グリーンシート積層品の説明図であり、図4(A)
は貼り合せ前、図4(B)は貼り合せ後の状態を示す。
FIG. 4 is an explanatory view of an air electrode / electrolyte / fuel electrode green sheet laminated product according to Example 2 of the present invention, and FIG.
Shows the state before bonding and FIG. 4B shows the state after bonding.

【図5】電解質膜又はセルの反り,うねりの説明図。FIG. 5 is an explanatory view of warpage and waviness of an electrolyte membrane or a cell.

【符号の説明】[Explanation of symbols]

21…電解質グリーンシート、 22…グリーンシ
ート2層積層品、31…グリーンシート4層積層品、
41…燃料極グリーンシート、42…空気極グリーンシー
ト、 43…空気極/電解質/燃料極グリーンシ
ート積層品。
21 ... Electrolyte green sheet, 22 ... Green sheet 2-layer laminated product, 31 ... Green sheet 4-layer laminated product,
41 ... Fuel electrode green sheet, 42 ... Air electrode green sheet, 43 ... Air electrode / electrolyte / fuel electrode green sheet laminated product.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ドクターブレード法により成膜した電解
質グリーンシートを数枚貼り合せてなる積層体を、焼成
して得られる構成であることを特徴とする電解質基板。
1. An electrolyte substrate, which is obtained by firing a laminate obtained by laminating several electrolyte green sheets formed by a doctor blade method.
【請求項2】 請求項1記載の積層体を偶数枚とし、上
下面対称となるように貼り合わせた構成であることを特
徴とする電解質基板。
2. An electrolyte substrate, comprising an even number of the laminates according to claim 1, which are laminated so as to be vertically symmetrical.
【請求項3】 前記積層体の表面,裏面夫々に燃料極及
び空気極のグリーンシートを貼り合わせて一体で焼成す
ることを特徴とする平板型セルの製造方法。
3. A method of manufacturing a flat plate cell, comprising bonding green sheets of a fuel electrode and an air electrode to the front surface and the back surface of the laminated body and firing them integrally.
JP6029928A 1994-02-28 1994-02-28 Electrolyte substrate and flat cell manufacturing method Pending JPH07240217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6029928A JPH07240217A (en) 1994-02-28 1994-02-28 Electrolyte substrate and flat cell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6029928A JPH07240217A (en) 1994-02-28 1994-02-28 Electrolyte substrate and flat cell manufacturing method

Publications (1)

Publication Number Publication Date
JPH07240217A true JPH07240217A (en) 1995-09-12

Family

ID=12289659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6029928A Pending JPH07240217A (en) 1994-02-28 1994-02-28 Electrolyte substrate and flat cell manufacturing method

Country Status (1)

Country Link
JP (1) JPH07240217A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054131A1 (en) * 1998-04-16 1999-10-28 Alstom Uk Ltd. Glass-ceramic coatings and sealing arrangements and their use in fuel-cells
JP2009252416A (en) * 2008-04-02 2009-10-29 Sanyo Special Steel Co Ltd Fuel battery cell, and manufacturing method therefor
JP2011514644A (en) * 2008-03-18 2011-05-06 テクニカル ユニヴァーシティー オブ デンマーク All-ceramic solid oxide battery
JP2012079506A (en) * 2010-09-30 2012-04-19 Nippon Shokubai Co Ltd Solid oxide fuel cell electrolyte sheet manufacturing method
JP2015122288A (en) * 2013-12-25 2015-07-02 株式会社ノリタケカンパニーリミテド Solid oxide fuel cell, and method and material for manufacturing the same
JP2016146453A (en) * 2015-02-06 2016-08-12 ピーエスケー・インコーポレーテッド Device packaging facility using phthalate and its method, and device processing apparatus
US9496576B2 (en) 2006-11-23 2016-11-15 Technical University Of Denmark Thin solid oxide cell
US9824998B2 (en) 2015-02-06 2017-11-21 Semigear, Inc. Device packaging facility and method, and device processing apparatus utilizing DEHT
CN114335640A (en) * 2021-12-27 2022-04-12 安徽壹石通材料科学研究院有限公司 Anode support type SOFC half-cell sintering method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656625B1 (en) 1998-04-16 2003-12-02 Alstom Uk Ltd. Glass-ceramic coatings and sealing arrangements and their use in fuel cells
WO1999054131A1 (en) * 1998-04-16 1999-10-28 Alstom Uk Ltd. Glass-ceramic coatings and sealing arrangements and their use in fuel-cells
US9496576B2 (en) 2006-11-23 2016-11-15 Technical University Of Denmark Thin solid oxide cell
JP2011514644A (en) * 2008-03-18 2011-05-06 テクニカル ユニヴァーシティー オブ デンマーク All-ceramic solid oxide battery
US8741425B2 (en) 2008-03-18 2014-06-03 Technical University Of Denmark All ceramics solid oxide fuel cell
JP2009252416A (en) * 2008-04-02 2009-10-29 Sanyo Special Steel Co Ltd Fuel battery cell, and manufacturing method therefor
JP2012079506A (en) * 2010-09-30 2012-04-19 Nippon Shokubai Co Ltd Solid oxide fuel cell electrolyte sheet manufacturing method
JP2015122288A (en) * 2013-12-25 2015-07-02 株式会社ノリタケカンパニーリミテド Solid oxide fuel cell, and method and material for manufacturing the same
JP2016146453A (en) * 2015-02-06 2016-08-12 ピーエスケー・インコーポレーテッド Device packaging facility using phthalate and its method, and device processing apparatus
US9741683B2 (en) 2015-02-06 2017-08-22 Semigear, Inc. Device packaging facility and method, and device processing apparatus utilizing phthalate
US9824998B2 (en) 2015-02-06 2017-11-21 Semigear, Inc. Device packaging facility and method, and device processing apparatus utilizing DEHT
US10283481B2 (en) 2015-02-06 2019-05-07 Semigear, Inc. Device packaging facility and method, and device processing apparatus utilizing DEHT
US10937757B2 (en) 2016-07-27 2021-03-02 Semigear, Inc. Device packaging facility and method, and device processing apparatus utilizing DEHT
CN114335640A (en) * 2021-12-27 2022-04-12 安徽壹石通材料科学研究院有限公司 Anode support type SOFC half-cell sintering method

Similar Documents

Publication Publication Date Title
CN1047341C (en) Method of producing ceramic diaphragm structure having convex diaphragm portion and diaphragm structure produced by the same method
JP3471447B2 (en) Ceramic diaphragm structure and method of manufacturing the same
US20040265664A1 (en) Fuel cell device with a textured electrolyte sheet and a method of making such sheet
JPH06223848A (en) Solid electrolytic fuel cell
JP4008056B2 (en) Method for manufacturing ceramic laminate
JP2007511874A (en) ELECTROLYTE SHEET HAVING PROJECTED SHAPE HAVING UNDER CUT ANGLE AND METHOD OF SEPARATING THE SHEET FROM CARRIER
JPH07240217A (en) Electrolyte substrate and flat cell manufacturing method
JPH08114571A (en) Manufacture of oxygen sensor
JP3886020B2 (en) Manufacturing method of ceramic laminated sintered body and laminated body of green molded body
JP3434883B2 (en) Method for manufacturing fuel cell
JP3462400B2 (en) Manufacturing method of ceramic diaphragm structure
CN115206681A (en) Method for preparing multilayer ceramic capacitor
JPH09129251A (en) Flat plate stacked solid electrolyte fuel cell and manufacture thereof
JP3366158B2 (en) Ceramic diaphragm structure and method of manufacturing the same
KR101595541B1 (en) Setter for manufacturing ceramic and manufacturing method thereof
JP2007001786A (en) Laminate baking method and laminate baking tool
JP3752452B2 (en) Flat plate oxygen sensor and manufacturing method thereof
JPH0594829A (en) Solid electrolyte type fuel cell
TWI806482B (en) Ceramic substrate and method for manufacturing the same
US20240222671A1 (en) Corrugated green sheets for the preparation of large-sized ceramic sheets and related methods and uses
KR102100257B1 (en) Plate-type unit cell for solid oxide fuel cell with high strength
JPH05138620A (en) Production of hollow ceramics panel
JP2003133613A (en) Ceramic diaphragm structural body and manufacturing method thereof
JP2749916B2 (en) Method for manufacturing solid oxide fuel cell
JPH07335239A (en) Manufacture of junction body

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020709