JPH0590067A - Manufacture of laminated ceramic capacitor - Google Patents
Manufacture of laminated ceramic capacitorInfo
- Publication number
- JPH0590067A JPH0590067A JP3248865A JP24886591A JPH0590067A JP H0590067 A JPH0590067 A JP H0590067A JP 3248865 A JP3248865 A JP 3248865A JP 24886591 A JP24886591 A JP 24886591A JP H0590067 A JPH0590067 A JP H0590067A
- Authority
- JP
- Japan
- Prior art keywords
- laminated
- ceramic capacitor
- laminated ceramic
- capacitor
- external electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、大容量を有する積層磁
器コンデンサを製造するための新規方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for manufacturing a laminated ceramic capacitor having a large capacity.
【0002】[0002]
【従来技術】積層磁器コンデンサは、特にチップ型の小
型電子部品として多用されているが、このような積層磁
器コンデンサは通常、所定の誘電体組成物より構成され
たグリーンシートの表面に内部電極形成用のペーストを
塗布し、そのグリーンシートを複数枚積層して圧着した
後、かかる積層体を大気中で焼成して一体化し、その
後、外部電極形成用ペーストをその端面に塗布し焼付け
を行うことにより得られている。また、量産化を行う場
合には、大面積のグリーンシートを用意し、その表面に
内部電極形成用ペーストを複数の位置に印刷して積層し
た後、カッター等により分割して個々のコンデンサの積
層体を作成する方法が採用されている。2. Description of the Related Art A laminated ceramic capacitor is widely used especially as a chip type small electronic component. Such a laminated ceramic capacitor is usually formed with an internal electrode on the surface of a green sheet made of a predetermined dielectric composition. After applying a paste for coating, laminating a plurality of green sheets and press-bonding them, the laminated body is fired in the air to be integrated, and then the external electrode forming paste is applied to the end face and baked. Has been obtained by. For mass production, prepare a large-area green sheet, print the internal electrode forming paste at multiple positions on the surface and stack it, and then divide it with a cutter etc. to stack individual capacitors. The method of creating the body has been adopted.
【0003】一方、積層磁器コンデンサは、単一の部品
としてその大容量化が要求されている。コンデンサの容
量を大きくするには、誘電体シートの積層枚数を増やす
ことが最も一般的方法である。その他、図4に示すよう
に内部電極11および外部電極12が形成された積層磁
器コンデンサ13を複数重畳し、外部電極11同士をハ
ンダ14などにより接着する方法等も提案されている。On the other hand, the laminated ceramic capacitor is required to have a large capacity as a single component. The most common method for increasing the capacitance of a capacitor is to increase the number of laminated dielectric sheets. In addition, a method has also been proposed in which a plurality of laminated ceramic capacitors 13 each having an internal electrode 11 and an external electrode 12 formed thereon are overlapped as shown in FIG. 4, and the external electrodes 11 are bonded to each other with solder 14 or the like.
【0004】[0004]
【発明が解決しようとする問題点】しかしながら、積層
枚数を増やす方法では、積層体自体の厚みが大きくな
り、積層ズレが発生しやすく、デラミネーションが生じ
やすく、しかも量産時にカッターで切断する時にカット
面が崩れたり、カッターにより垂直に切断することが難
しくなるなどコンデンサの品質面で問題がある。また、
積層枚数を増加させる場合、一枚のグリーンシートの厚
みを薄くすることも考えられるが、成形性の点で限界が
ある。However, in the method of increasing the number of laminated layers, the thickness of the laminated body itself becomes large, the laminated layer is apt to be displaced, the delamination is liable to occur, and moreover, the cutting is performed at the time of cutting with a cutter during mass production. There is a problem with the quality of the capacitor, such as the surface being broken and it becomes difficult to cut vertically with a cutter. Also,
When increasing the number of laminated sheets, it is possible to reduce the thickness of one green sheet, but there is a limit in terms of formability.
【0005】また、一旦作成した積層磁器コンデンサを
重畳する方法では、重畳する際に隙間aが生じたり、コ
ンデンサ同士が外部電極のみで固着されているために強
度が小さく、信頼性に欠ける。またチップ全体の厚み寸
法が大きくなる等の問題があり、小型化を図る上では不
適当であった。Further, in the method of superposing the once-formed laminated ceramic capacitors, a gap a is formed during the superposition and the capacitors are fixed only by the external electrodes, so that the strength is low and the reliability is poor. In addition, there is a problem that the thickness of the entire chip becomes large, which is unsuitable for downsizing.
【0006】[0006]
【問題点を解決するための手段】本発明者等は、上記の
問題点に対して検討を重ねた結果、内部電極形成用ペー
ストを塗布して積層した後、その積層体を重畳圧着して
一体化した後、焼成して外部電極を形成することによ
り、小型で大容量の積層磁器コンデンサが容易に得られ
ることを見出した。The inventors of the present invention have made repeated studies on the above-mentioned problems, and as a result, after applying and laminating internal electrode forming paste, the laminated body is superposed and pressure-bonded. It has been found that a small-sized and large-capacity laminated ceramic capacitor can be easily obtained by forming an external electrode by firing after being integrated.
【0007】以下、本発明の方法、特に量産時の方法に
ついて詳述するに、まず、従来法に基づき、複数のコン
デンサを得ることができるように大面積の誘電体グリー
ンシートを作成する。グリーンシートは、誘電体を形成
する組成に調合された、例えばBaTiO3 等の誘電体
混合粉末をドクターブレード法等の公知の成形手段によ
り15〜30μm の厚みのシートに成形することにより
得られる。The method of the present invention, particularly the method for mass production, will be described in detail below. First, a large-area dielectric green sheet is prepared based on the conventional method so that a plurality of capacitors can be obtained. The green sheet can be obtained by molding a mixed powder of a dielectric material such as BaTiO 3 which is prepared to have a composition for forming a dielectric material into a sheet having a thickness of 15 to 30 μm by a known molding means such as a doctor blade method.
【0008】次に、このグリーンシートの表面に内部電
極形成用のペースト、例えばパラジウムペースト、ある
いは銀パラジウム合金ペーストをスクリーン印刷法等に
より所定の位置に印刷する。その後、ペーストが塗布さ
れたグリーンシートを位置合わせを行い、所定枚数積層
圧着する。そして、大面積の積層体をギロチン刃等のカ
ッターにより切断して図1に示すようにコンデンサの積
層体1,1を得る。なお、図中、2は内部電極である。Next, a paste for forming internal electrodes, for example, a palladium paste or a silver-palladium alloy paste is printed on a predetermined position on the surface of the green sheet by a screen printing method or the like. Then, the green sheets to which the paste has been applied are aligned, and a predetermined number of green sheets are laminated and pressure-bonded. Then, the large-area laminate is cut by a cutter such as a guillotine blade to obtain capacitor laminates 1 and 1 as shown in FIG. In the figure, 2 is an internal electrode.
【0009】その後、図2に示すようにコンデンサ積層
体1,1を重畳し圧着して重畳体3を得る。この重畳時
には、積層体1,1間には何も介在させずに行い、焼成
により接着することもできるが、積層体の重畳に際して
ズレ等を防止するために樹脂等の接着剤により仮止めし
ておくことが望ましい。Thereafter, as shown in FIG. 2, the capacitor laminated bodies 1 and 1 are superposed and pressure-bonded to obtain a superposed body 3. At the time of this stacking, it is possible to perform the bonding without firing between the laminates 1 and 1 and to bond them by firing, but to prevent misalignment etc. when stacking the laminates, it is temporarily fixed with an adhesive such as resin. It is desirable to keep.
【0010】次に、上記のようにして得られた重畳体3
を焼成する。焼成は、その誘電体の組成によって最適な
焼成温度で且つ内部電極も同時に焼成可能な条件で焼成
する。また、この時、重畳体の上に重しを載せて焼成す
れば、積層体1,1同士の接着性が向上する。この焼成
によれば、積層体1,1が同一材質であることにより両
者は反応して接着し、一体化される。Next, the superposed body 3 obtained as described above.
Bake. The firing is performed at an optimum firing temperature depending on the composition of the dielectric material and under the condition that the internal electrodes can be fired at the same time. Further, at this time, if a weight is placed on the stack and baked, the adhesion between the stacked bodies 1 and 1 is improved. According to this firing, since the laminated bodies 1 and 1 are made of the same material, both react and adhere to each other to be integrated.
【0011】その後、図3に示すように焼成物の端面に
外部電極形成用ペーストを塗布し、所定の温度で焼き付
けを行い、外部電極4を形成することにより積層磁器コ
ンデンサ5を作成することができる。Thereafter, as shown in FIG. 3, an external electrode forming paste is applied to the end surface of the fired product and baked at a predetermined temperature to form the external electrode 4, whereby the laminated ceramic capacitor 5 can be prepared. it can.
【0012】[0012]
【作用】本発明の方法によれば、大容量の積層磁器コン
デンサを製造する場合、誘電体シートの積層枚数を増加
させることが必要であるが、例えば、100層の積層が
必要である場合、一般的には積層精度を高めつつ100
層を積層していたが、本発明の方法によれば、50層の
積層体を作成し、100層の積層体を作成する必要がな
いことから、積層精度が低下することがない。According to the method of the present invention, when manufacturing a large-capacity laminated ceramic capacitor, it is necessary to increase the number of laminated dielectric sheets. For example, when 100 layers are required to be laminated, Generally, the stacking accuracy is increased to 100
Although the layers were laminated, according to the method of the present invention, it is not necessary to form a laminated body of 50 layers and a laminated body of 100 layers, so that the lamination accuracy does not decrease.
【0013】また、重畳工程を焼成前に実施するため
に、重畳する積層体間に隙間の発生がなく、しかも両者
は焼成時の反応により接着することから強度が高く信頼
性が優れる。Further, since the superposing step is carried out before firing, there is no gap between the superposed laminates, and since the two are bonded by the reaction during firing, the strength is high and the reliability is excellent.
【0014】[0014]
【実施例】誘電体材料としてPb(Fe,Nb)O3 系
材料を用いてスラリーを調製し、ドクターブレード法に
より20μmの厚みのグリーンシートを作成した。次
に、このグリーンシートの表面にAg/Pd内部電極ペ
ーストを印刷し、65枚積層した後に60℃で熱圧着し
た。その後、5750型にカッターにより切断して厚さ
1.4mmのコンデンサ積層体を作成した。EXAMPLE A slurry was prepared using a Pb (Fe, Nb) O 3 material as a dielectric material, and a 20 μm thick green sheet was prepared by the doctor blade method. Next, Ag / Pd internal electrode paste was printed on the surface of this green sheet, and 65 sheets were laminated and then thermocompression bonded at 60 ° C. Then, it cut | disconnected to the 5750 type | mold with a cutter, and produced the capacitor laminated body of thickness 1.4mm.
【0015】次に、この積層体を2個、それぞれの内部
電極が露出した端面が同一平面になるように整合させて
重畳体を得、これを敷板上に乗せて240℃でバインダ
ーの除去を行った後、敷板を重畳体の上に乗せて950
℃の大気中で2時間焼成した。焼成後の重畳体を観察し
たところ、積層体同士が固着しており完全に一体化して
いた。Next, two of these laminated bodies were aligned so that the exposed end faces of the respective internal electrodes were in the same plane to obtain a superposed body, which was placed on a floor plate to remove the binder at 240 ° C. After that, put the floorboard on top of the stack for 950
It was fired for 2 hours in the atmosphere of ° C. Observation of the stacked body after firing revealed that the stacked bodies were firmly attached to each other and were completely integrated.
【0016】その後、重畳体の端面をバレル研磨してA
gよりなる外部電極ペーストを塗布して700℃で焼付
けを行い、厚さ3.0mm、容量100μFの積層磁器
コンデンサを得た。After that, the end face of the superposed body is barrel-polished and A
The external electrode paste of g was applied and baked at 700 ° C. to obtain a laminated ceramic capacitor having a thickness of 3.0 mm and a capacity of 100 μF.
【0017】一方、同様の容量のコンデンサを得るため
に、グリーンシートを130枚積層し、カッターにより
切断を行ったところ、積層ズレの発生があった。また、
焼成後の端面を観察したところ、デラミネーションの発
生が確認された。On the other hand, in order to obtain a capacitor having the same capacity, 130 green sheets were laminated and cut with a cutter, and a lamination deviation occurred. Also,
When the end face after firing was observed, the occurrence of delamination was confirmed.
【0018】[0018]
【発明の効果】以上詳述した通り、本発明の積層磁器コ
ンデンサの製造方法によれば、大容量の積層磁器コンデ
ンサを製造する場合、誘電体シートの積層枚数の多い積
層体を切断する必要がないために端面のくずれ等の弊害
がなく、積層精度の管理を容易に行うことができる。し
かも、重畳体としての強度に優れることから、信頼性の
高い大容量の積層磁器コンデンサを安定して製造するこ
とができる。As described above in detail, according to the method for manufacturing a laminated ceramic capacitor of the present invention, when manufacturing a large capacity laminated ceramic capacitor, it is necessary to cut a laminated body having a large number of laminated dielectric sheets. Since it does not exist, there is no adverse effect such as collapse of the end faces, and the stacking accuracy can be easily managed. Moreover, since the strength of the superposed body is excellent, a highly reliable large-capacity laminated ceramic capacitor can be stably manufactured.
【図1】本発明の積層磁器コンデンサの製造方法におい
て用いられる積層体の一部切り欠き斜視図である。FIG. 1 is a partially cutaway perspective view of a laminated body used in a method for manufacturing a laminated ceramic capacitor of the present invention.
【図2】本発明の積層磁器コンデンサの製造方法におけ
る重畳体の斜視図である。FIG. 2 is a perspective view of a superposed body in the method for manufacturing a laminated ceramic capacitor of the present invention.
【図3】本発明の積層磁器コンデンサの斜視図である。FIG. 3 is a perspective view of a laminated ceramic capacitor of the present invention.
【図4】従来の大容量の積層磁器コンデンサを説明する
ための図である。FIG. 4 is a diagram for explaining a conventional large-capacity multilayer ceramic capacitor.
1 積層体 2 内部電極 3 重畳体 4 外部電極 5 積層磁器コンデンサ 1 laminated body 2 internal electrode 3 superposed body 4 outer electrode 5 laminated ceramic capacitor
Claims (1)
体グリーンシートを複数枚積層して積層体を作成する工
程と、該積層体を複数個重畳し圧着する工程と、該重畳
体を焼成する工程と、該焼成物の端面に外部電極を形成
する工程を具備してなる積層磁器コンデンサの製造方
法。1. A step of stacking a plurality of dielectric green sheets coated with an internal electrode forming paste to form a stack, a step of stacking a plurality of the stacks and pressure bonding, and baking the stack. And a step of forming an external electrode on the end face of the fired product, a method of manufacturing a laminated ceramic capacitor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3248865A JPH0590067A (en) | 1991-09-27 | 1991-09-27 | Manufacture of laminated ceramic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3248865A JPH0590067A (en) | 1991-09-27 | 1991-09-27 | Manufacture of laminated ceramic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0590067A true JPH0590067A (en) | 1993-04-09 |
Family
ID=17184576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3248865A Pending JPH0590067A (en) | 1991-09-27 | 1991-09-27 | Manufacture of laminated ceramic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0590067A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012043947A (en) * | 2010-08-18 | 2012-03-01 | Tdk Corp | Package structure of multilayer capacitor |
US20140043723A1 (en) * | 2012-08-09 | 2014-02-13 | Murata Manufacturing Co., Ltd. | Capacitor component and capacitor component mounting structure |
US20170358397A1 (en) * | 2010-05-26 | 2017-12-14 | Kemet Electronics Corporation | Leadless Stack Comprising Multiple Components |
CN110997223A (en) * | 2017-08-07 | 2020-04-10 | 凯米特电子公司 | Leadless stack comprising a plurality of components |
JP2021184472A (en) * | 2016-09-05 | 2021-12-02 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Capacitor component |
-
1991
- 1991-09-27 JP JP3248865A patent/JPH0590067A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170358397A1 (en) * | 2010-05-26 | 2017-12-14 | Kemet Electronics Corporation | Leadless Stack Comprising Multiple Components |
US10381162B2 (en) * | 2010-05-26 | 2019-08-13 | Kemet Electronics Corporation | Leadless stack comprising multiple components |
JP2012043947A (en) * | 2010-08-18 | 2012-03-01 | Tdk Corp | Package structure of multilayer capacitor |
US20140043723A1 (en) * | 2012-08-09 | 2014-02-13 | Murata Manufacturing Co., Ltd. | Capacitor component and capacitor component mounting structure |
US9867278B2 (en) * | 2012-08-09 | 2018-01-09 | Murata Manufacturing Co., Ltd. | Capacitor component and capacitor component mounting structure |
JP2021184472A (en) * | 2016-09-05 | 2021-12-02 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Capacitor component |
CN110997223A (en) * | 2017-08-07 | 2020-04-10 | 凯米特电子公司 | Leadless stack comprising a plurality of components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7359258B2 (en) | Multilayer ceramic electronic component and method for manufacturing multilayer ceramic electronic component | |
JP3772622B2 (en) | Thin film multilayer capacitor and mounting method thereof | |
JPH0590067A (en) | Manufacture of laminated ceramic capacitor | |
JP3210440B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JPH0786083A (en) | Manufacture of multilayered ceramic capacitor | |
JPS6159522B2 (en) | ||
JPH08115845A (en) | Monolithic ceramic capacitor | |
JPH11354379A (en) | Method and apparatus for manufacturing laminate | |
JPH0317207B2 (en) | ||
JPH08279435A (en) | Stacked ceramic capacitor | |
JP2756745B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JPS6263413A (en) | Manufacturing laminated ceramic capacitor | |
JPH0787158B2 (en) | Method for manufacturing laminated ceramic element | |
JPH0536568A (en) | Manufacture of laminated ceramic electronic component | |
JP2946844B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JPH04298915A (en) | Manufacture of ceramic laminated body | |
JPH04206808A (en) | Manufacture of ceramic laminate | |
JPH09129482A (en) | Manufacture of laminated ceramic capacitor | |
JPH09172209A (en) | Multilayer piezoelectric device and manufacturing method thereof | |
JPH05315184A (en) | Manufacture of laminated ceramic electronic component | |
JP2000114611A (en) | Multi-layer piezoelectric element | |
JP2023046622A (en) | Multilayer ceramic capacitor | |
JPH05198459A (en) | Manufacture of laminated ceramic electronic part | |
JPH07211577A (en) | Manufacture of laminated ceramic capacitor | |
JPH08316092A (en) | Laminated ceramic electronic component manufacturing method |