Nothing Special   »   [go: up one dir, main page]

JPH01102328A - Measuring apparatus of temperature by infrared ray - Google Patents

Measuring apparatus of temperature by infrared ray

Info

Publication number
JPH01102328A
JPH01102328A JP62261103A JP26110387A JPH01102328A JP H01102328 A JPH01102328 A JP H01102328A JP 62261103 A JP62261103 A JP 62261103A JP 26110387 A JP26110387 A JP 26110387A JP H01102328 A JPH01102328 A JP H01102328A
Authority
JP
Japan
Prior art keywords
infrared
detector
temperature
concave mirror
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62261103A
Other languages
Japanese (ja)
Inventor
Tetsushi Matsunaga
徹志 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Avio Infrared Technologies Co Ltd filed Critical NEC Avio Infrared Technologies Co Ltd
Priority to JP62261103A priority Critical patent/JPH01102328A/en
Publication of JPH01102328A publication Critical patent/JPH01102328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To restrict an unnecessary disturbance light entering a detector while preventing the lowering of sensitivity of the detector and the effect of the disturbance light thereon and thereby to enable the stable measurement of temperature, by a construction wherein a light quantity restricting means constituted by a concave mirror is disposed in the visual field of a detecting element. CONSTITUTION:The surface 25 of a light quantity restricting means 22 facing a detector 7 is specular, and therefore the self-emission of an infrared energy from the means 22 is very small. At the same time, the means 22 is disposed so that the center of curvature of a concave mirror 24 is located in the position of a detecting element 16, and therefore only an infrared energy self-emitted from the element 16 is reflected by the concave mirror 24 and made to enter the element 16 again, wile infrared energies other than the above falling from outside and reflected by the specular surface 25 are not made to enter the element 16. Since the element 16 is cooled down, the infrared energy from the element 16 is weak, and the infrared energy reflected by the concave mirror 24 and made to enter the element 16 again is small. Accordingly, a disturbance light occurring in a part 26 is so small as to be negligible, and thus the stable measurement of temperature is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、温度に依存して物体から放射されてくる赤外
線を検出してその物体の温度を測定する赤外線温度測定
装置、特にその赤外線検出部の構成に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an infrared temperature measuring device that measures the temperature of an object by detecting infrared rays emitted from an object depending on its temperature, and particularly to an infrared detection device for the infrared temperature measuring device. Regarding the structure of the department.

〔発明の概要〕[Summary of the invention]

本発明は、赤外線検出素子が冷却された検出器を備えた
赤外線温度測定装置において、赤外線検出素子の視野内
に、中央に赤外線透過孔を有する凹面鏡よりなる光量絞
り手段を配することにより、広い温度範囲の温度測定に
対して安定な温度測定ができるようにしたものである。
The present invention provides an infrared temperature measuring device equipped with a cooled infrared detecting element, in which a light amount diaphragm means made of a concave mirror having an infrared transmitting hole in the center is disposed within the field of view of the infrared detecting element. This allows stable temperature measurement over a range of temperatures.

〔従来の技術〕[Conventional technology]

従来、被測定物体の表面から自然放射されている赤外線
エネルギーを検出して被測定物体の温度分布を温度に対
応したカラー画像又は白黒画像として表示するようにし
た赤外線測定装置が提案されている。即ち、第2図に示
すように被測定物体(1)の所定の範囲例えば被測定領
域(2)を光学走査系(5)のX走査ミラー(X軸方向
を走査するミラー)(3)及びY走査ミラー(Y軸方向
を走査するミラー)(4)により走査することにより、
被測定領域(2)の各測定点に対応して得られた赤外線
が順次対物レンズ(6)で集光されて赤外線検出器(7
ンに入射される。
2. Description of the Related Art Conventionally, an infrared measuring device has been proposed that detects infrared energy naturally radiated from the surface of an object to be measured and displays the temperature distribution of the object as a color image or a black and white image corresponding to the temperature. That is, as shown in FIG. 2, a predetermined range of the object to be measured (1), for example, the region to be measured (2), is scanned by the X-scanning mirror (mirror that scans in the X-axis direction) (3) and the optical scanning system (5). By scanning with the Y-scanning mirror (mirror that scans in the Y-axis direction) (4),
The infrared rays obtained corresponding to each measurement point in the measurement area (2) are sequentially focused by the objective lens (6) and sent to the infrared detector (7).
is incident on the

入射された赤外線エネルギーは赤外線検出器(7)で温
度に比例した電気信号に変換され、表示部(8)に供給
されて被測定領域(2)の温度分布がカラー画像又は白
黒画像として表示される。
The incident infrared energy is converted into an electric signal proportional to the temperature by an infrared detector (7), and is supplied to a display section (8) to display the temperature distribution of the measurement area (2) as a color image or a black and white image. Ru.

赤外線検出器(7)としては、第3図に示すように内壁
(11)と外壁(12)を有し、両内外壁(11)及び
(12)間に真空領域(13)が形成された容器(14
)内に冷却媒体例えば液体窒素(−196℃)(15)
が充填され、真空領域(13)内の内壁(11)に接す
るように赤外線検出素子(16)が配されて構成される
。この検出素子(16)に対向する外壁(12)の部分
には赤外線透過窓(17)が設けられる。さらに、この
検出器(7)には視野角θ以外から検出素子(16)に
入射する光子のゆらぎ(検出器(7)のノイズの重要な
因子)を小さくするために、視野角θとなるような例え
ば炭素、コバール等よりなるコールドシールド(即ち液
体窒素(15)で冷却さるシールド体)  (18)が
設けられる。この検出器(7)ではコールドシールド(
18)によりノイズを小さくすることができる。このと
きの検出素子(16)の検出率の改善率Aは で表わされる。
As shown in Fig. 3, the infrared detector (7) had an inner wall (11) and an outer wall (12), and a vacuum region (13) was formed between the inner and outer walls (11) and (12). Container (14
) into a cooling medium such as liquid nitrogen (-196°C) (15)
The infrared detection element (16) is arranged so as to be in contact with the inner wall (11) in the vacuum region (13). An infrared transmitting window (17) is provided in a portion of the outer wall (12) facing the detection element (16). Furthermore, this detector (7) has a viewing angle θ in order to reduce the fluctuation of photons incident on the detection element (16) from angles other than the viewing angle θ (an important factor of noise in the detector (7)). A cold shield (i.e., a shield body cooled with liquid nitrogen (15)) (18) made of, for example, carbon, Kovar, etc. is provided. This detector (7) has a cold shield (
18) makes it possible to reduce noise. At this time, the improvement rate A of the detection rate of the detection element (16) is expressed by.

ところで、コールドシールド(18)によって視野角θ
を小さくするとノイズは小さくなるが、検出器(7)に
入射する光量はθが大きいほど多いので、赤外線温度測
定装置の場合、低温の測定ではθを小さくすることは出
来ない。
By the way, the viewing angle θ is changed by the cold shield (18).
If θ is made smaller, the noise becomes smaller, but the amount of light incident on the detector (7) increases as θ becomes larger, so in the case of an infrared temperature measuring device, θ cannot be made smaller when measuring low temperatures.

一方、低温から高温まで測定できる汎用の赤外線温度測
定装置では、低温の測定の場合、検出器(7)のコール
ドシールド(18)で決まる視野角θで使用するが、高
温の測定の場合、入射エネルギーは温度の4乗に比例す
るため、検出器(7)が飽和し、測定できなくなる。こ
のため、高温測定の場合、第4図に示すように検出器(
7)の前方に別途に平板状の光量絞り板(19)を配置
し、等価的に視野角を小さくし、即ち視野角θ′とし光
量を制御して測定することが行われている。゛ 一般に、物体においては赤外線エネルギーの放射率と反
射率の和はlである。従来の光量絞り坂(19)は反射
率の小さい(従って放射率の高い)材料で作られている
On the other hand, with a general-purpose infrared temperature measuring device that can measure from low to high temperatures, when measuring low temperatures, it is used at the viewing angle θ determined by the cold shield (18) of the detector (7); Since energy is proportional to the fourth power of temperature, the detector (7) becomes saturated and cannot be measured. For this reason, in the case of high temperature measurement, the detector (
7), a flat light amount diaphragm plate (19) is separately arranged in front of the light source, and the viewing angle is equivalently reduced, that is, the viewing angle is set to θ', and the amount of light is controlled and measured. ``Generally, in an object, the sum of the emissivity and reflectance of infrared energy is l. The conventional light aperture slope (19) is made of a material with low reflectance (and therefore high emissivity).

(発明が解決しようとする問題点) しかし乍ら、第4図の場合、光量絞り板(19)が検出
器の検出素子(16)が見込む視野内に入り込む、光量
絞り板(19)は外気温と同じ温度になるため外気温の
変動によってこの光量絞り板(19)から放射される赤
外線エネルギー即ち測定に不要な赤外線エネルギー(2
0)が検出器(7)に入射し、外乱となる。このため、
検出素子(16)の出力信号は、本来測定すべきθ′に
応じた入射光による信号にこの外乱光による信号が加算
され、外気温の変動にもとづく外乱光の強さに応じて変
動し、温度測定が不安定となるものであった。
(Problem to be Solved by the Invention) However, in the case of FIG. Since the temperature is the same as the air temperature, infrared energy emitted from this light aperture plate (19) due to changes in outside temperature, that is, infrared energy unnecessary for measurement (2
0) enters the detector (7) and becomes a disturbance. For this reason,
The output signal of the detection element (16) is obtained by adding the signal caused by this disturbance light to the signal caused by the incident light corresponding to θ' that should be measured, and varies depending on the intensity of the disturbance light based on fluctuations in the outside temperature. Temperature measurement became unstable.

本発明は、上述の点に鑑み、検出器に対して不要な外乱
光の入射を制限すると共に、広い温度範囲の温度測定に
対し外乱光の影響がなく安定に測 定できるようにした
赤外線温度測定装置を提供するものである。
In view of the above-mentioned points, the present invention is an infrared temperature sensor that limits the incidence of unnecessary disturbance light on the detector and enables stable temperature measurement over a wide temperature range without the influence of disturbance light. The present invention provides a measuring device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、赤外線検出素子(16)が液体窒素や、電子
冷却等の方法により冷却された検出器(7)を備えた赤
外線温度測定装置に・おいて、検出器(7)の前方で赤
外線検出素子(16)の視野内に、中央に赤外線透過孔
(23)を有する凹面鏡よりなる光量絞り手段(22)
を配するようになす、この光量絞り手段(22)はその
凹面鏡(24)が検出素子(16)に対向すると共に、
凹面鏡(24)の曲率中心がほぼ検出素子(16)の位
置となるよう配置する。この凹面鏡よりなる光量絞り手
段(22)は高温測定の場合に適宜検出器(7)の前方
に配置されるものである。
The present invention provides an infrared temperature measuring device including a detector (7) in which the infrared detecting element (16) is cooled by liquid nitrogen, electronic cooling, etc. Within the field of view of the detection element (16), a light amount diaphragm means (22) consisting of a concave mirror having an infrared transmission hole (23) in the center
This light amount diaphragm means (22) is arranged so that its concave mirror (24) faces the detection element (16),
The concave mirror (24) is arranged so that the center of curvature is approximately at the position of the detection element (16). This light amount diaphragm means (22) made of a concave mirror is appropriately placed in front of the detector (7) in the case of high temperature measurement.

〔作用〕[Effect]

上述の構成においては、凹面鏡による光量絞り手段(2
2)が配される。この光量絞り手段(22)の検出器(
7)に対向する面(25)は鏡面であるので、光量絞り
手段(22)からの赤外線エネルギーの自己放射は従来
の光量絞り板に比較して5/100程度となり非常に小
さくなる。
In the above configuration, the light amount diaphragm means (2
2) is arranged. The detector (
Since the surface (25) facing 7) is a mirror surface, the self-emission of infrared energy from the light amount diaphragm means (22) is extremely small, being about 5/100 of that of a conventional light amount diaphragm plate.

同時に、光量絞り手段(22)は凹面鏡(24)の曲率
中心が検出素子(16)の位置にあるように配されるの
で、検出素子(16)から自己放射された赤外線エネル
ギーだけが凹面鏡で反射されて再び検出素子(16)に
入射され、それ以外の外部から入射され鏡面(25)で
反射された赤外線エネルギーは検出素子(16)に入射
されない。そして、検出素子(16)は冷却されている
ので検出素子(16)からの赤外線エネルギーは極めて
弱く、したがって凹面鏡で反射されて再び検出素子(1
6)に入射された赤外線エネルギーは無視できる程度に
小さい。即ち、この構成では見掛上、視野角θ′のコー
ルドシールドを配したと同じ作用を有する。
At the same time, the light aperture means (22) is arranged so that the center of curvature of the concave mirror (24) is at the position of the detection element (16), so that only the infrared energy self-emitted from the detection element (16) is reflected by the concave mirror. Infrared energy that is incident from the outside and reflected by the mirror surface (25) is not incident on the detection element (16). Since the detection element (16) is cooled, the infrared energy from the detection element (16) is extremely weak, so it is reflected by the concave mirror and returned to the detection element (16).
The infrared energy incident on 6) is negligibly small. That is, this configuration apparently has the same effect as providing a cold shield with a viewing angle θ'.

従って、第1図の斜線で示す部分(26)に生ずる外乱
光は無視し得る程度に小さくなり、安定な温度測定が可
能となる。
Therefore, the disturbance light generated in the shaded area (26) in FIG. 1 becomes negligible, making stable temperature measurement possible.

〔実施例〕〔Example〕

以下、第1図を用いて本発明による赤外線温度測定装置
の実施例を説明する。なお、第1図は赤外線温度測定装
置の検出部のみを示す。
Hereinafter, an embodiment of the infrared temperature measuring device according to the present invention will be described using FIG. Note that FIG. 1 shows only the detection section of the infrared temperature measuring device.

本例においても第2図で説明したと同様に、被測定物体
+11の所定の被測定領域(2)を光学走査系(3)の
X走査ミラー(4)及びY走査ミラー(5)により走査
して、被測定領域(2)の各測定点に対応して得られた
赤外線エネルギーを順次対物レンズ(6)を通して赤外
線検出′a(7)に入射し、赤外線検出器(7)で電気
信号に変換して表示部(8)に供給し、被測定領域(2
)の温度分布をカラー画像又は白黒画像として表示する
ように構成する。
In this example, as explained in FIG. 2, a predetermined measurement area (2) of the measurement object +11 is scanned by the Then, the infrared energy obtained corresponding to each measurement point in the measurement area (2) is sequentially incident on the infrared detector'a (7) through the objective lens (6), and the infrared detector (7) detects an electric signal. and supplies it to the display section (8),
) is configured to display the temperature distribution as a color image or a black and white image.

そして、本例においては、特に赤外線検出部を第1図に
示すように構成する。即ち、(7)は赤外線検出器、(
22)はこの検出器(7)の前方に配置した光量絞り手
段を示す。検出器(7)は内壁(11)と外壁(12)
を有し、両内外壁(11)及び(12)間を真空領域(
13)とした容器(14)内に冷却媒体例えば液体窒素
(−196℃)  <15)を充填し、真空領域(13
)内の内壁(11)に接するように赤外線検出素子(1
6)を配し、この検出素子(16)を囲むように視野角
θとなるようなコールドシールド(18)を設け、さら
に検出素子(16)に対向する外壁(12)の部分に赤
外線透過窓(17)を設けて構成する。一方、光量絞り
手段(22)は、中央に赤外線透過孔(23)を設けた
凹面鏡(24)より成り、その鏡面(25)が検出器(
7)に対向し、且つ凹面鏡(24)の曲率中心がほぼ検
出素子(16)の位置にくるよう検出器(7)の窓(1
7)の前方に配置するようになす。この場合、凹面鏡(
24)の透過孔(23)はコールドシールド(18)に
より規制された検出素子(16)の視野内即ち視野角θ
内に存する。凹面鏡(24)の鏡面(25)は例えばA
I 、 Au等の蒸着膜で形成することができる。
In this example, the infrared detection section is particularly configured as shown in FIG. That is, (7) is an infrared detector, (
22) shows a light amount diaphragm means arranged in front of this detector (7). The detector (7) is located on the inner wall (11) and outer wall (12).
, and a vacuum area (
13) is filled with a cooling medium such as liquid nitrogen (-196°C <15), and the vacuum area (13) is
) The infrared detection element (1) is in contact with the inner wall (11) in
6), a cold shield (18) is provided to surround the detection element (16) so as to provide a viewing angle of θ, and an infrared transmitting window is provided in the part of the outer wall (12) facing the detection element (16). (17) is provided and configured. On the other hand, the light amount diaphragm means (22) consists of a concave mirror (24) with an infrared transmission hole (23) in the center, and the mirror surface (25) is the detector (24).
window (1) of the detector (7) so that the center of curvature of the concave mirror (24) is approximately at the position of the detection element (16).
7). In this case, the concave mirror (
The transmission hole (23) of 24) is within the field of view of the detection element (16) regulated by the cold shield (18), that is, the viewing angle θ
exists within. The mirror surface (25) of the concave mirror (24) is, for example, A
It can be formed using a vapor deposited film of I, Au, or the like.

斯る構成によれば、光量絞り手段(22)を構成する凹
面鏡(24)の鏡面(25)において、赤外線エネルギ
ーの放射率を0.05程度にすることは容易にできるた
め、凹面鏡(24)からの自己放射は従来の光量絞り板
(19)  (第4図参照)に比較して5/ 100程
度となる。同時に斜線部分く26)では冷却された検出
素子(16)からの放射エネルギーのみが凹面1m(2
4)の鏡面(25)で反射されて再び検出素子(16)
に入射されるだけで、他の外部からの放射エネルギーは
鏡面(25)で反射しても検出素子(16)に入射され
ない。従って、見掛上、視野角θ′のコールドシールド
を配したと同じ効果が生ずる。従って、斜線部分(26
)に生ずる外乱光は無視し得るほど最小となる。よって
、中央に赤外線透過孔(23)を有する凹面#14(2
4)を光量絞り手段(22)として使用することにより
、低温から高温にわたる広範囲な温度測定を安定して行
うことができる。
According to such a configuration, the emissivity of infrared energy can be easily set to about 0.05 on the mirror surface (25) of the concave mirror (24) constituting the light amount diaphragm (22), so that the concave mirror (24) The self-emission from the light source is about 5/100 of that of the conventional light aperture plate (19) (see Figure 4). At the same time, in the shaded area (26), only the radiation energy from the cooled detection element (16) is transmitted to the concave surface of 1 m (26).
4) is reflected by the mirror surface (25) and returns to the detection element (16).
Even if other external radiant energy is reflected by the mirror surface (25), it will not be incident on the detection element (16). Therefore, apparently the same effect as arranging a cold shield with a viewing angle θ' is produced. Therefore, the shaded area (26
) will be minimized to the point where it can be ignored. Therefore, the concave surface #14 (2) has an infrared transmission hole (23) in the center.
By using 4) as the light amount diaphragm means (22), temperature measurements over a wide range from low to high temperatures can be stably performed.

向、光量絞り手段(22)は高温測定のときに配される
もので低温測定でθの範囲で赤外線エネルギーを入射す
るときは配されない。
The light amount diaphragm means (22) is provided for high-temperature measurement, but is not provided for low-temperature measurement when infrared energy is incident within the range of θ.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、赤外線検出素子が冷却された検出器を
備えた赤外線温度測定装置において、検出素子の視野内
に、中央に赤外線透過孔を有する凹面鏡よりなる光量絞
り手段を配することにより、検出器に入射する不要な外
乱光を制限すると共に、広い温度範囲の温度測定に対し
検出器の感度の低ドや外乱光の影響をなくして安定に温
度測定することができる。
According to the present invention, in an infrared temperature measuring device equipped with a detector in which an infrared detection element is cooled, by arranging a light amount diaphragm means made of a concave mirror having an infrared transmission hole in the center within the field of view of the detection element, It is possible to limit unnecessary disturbance light incident on the detector and to stably measure temperature by eliminating the effects of low sensitivity of the detector and disturbance light in temperature measurement over a wide temperature range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による赤外線温度測定装置に係る検出部
の断面図、第2図は本発明の説明に供する赤外線温度測
定装置のブロック図、第3図及び第4図は夫々従来の赤
外線温度測定装置に係る検出部の断面図である。 (2)は被測定領域、(7)は検出器、(16)は検出
素子、(22)は光量絞り手段である。
FIG. 1 is a cross-sectional view of the detection unit of the infrared temperature measuring device according to the present invention, FIG. 2 is a block diagram of the infrared temperature measuring device used to explain the present invention, and FIGS. 3 and 4 are respectively conventional infrared temperature measuring devices. FIG. 3 is a cross-sectional view of a detection section of the measuring device. (2) is a region to be measured, (7) is a detector, (16) is a detection element, and (22) is a light amount diaphragm means.

Claims (1)

【特許請求の範囲】 赤外線検出素子が冷却された検出器を備えた赤外線温度
測定装置において、 上記赤外線検出素子の視野内に、中央に赤外線透過孔を
有する凹面鏡よりなる光量絞り手段を配して成る赤外線
温度測定装置。
[Scope of Claims] An infrared temperature measuring device equipped with a detector in which an infrared detection element is cooled, wherein a light amount diaphragm means made of a concave mirror having an infrared transmission hole in the center is disposed within the field of view of the infrared detection element. An infrared temperature measuring device consisting of:
JP62261103A 1987-10-16 1987-10-16 Measuring apparatus of temperature by infrared ray Pending JPH01102328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62261103A JPH01102328A (en) 1987-10-16 1987-10-16 Measuring apparatus of temperature by infrared ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62261103A JPH01102328A (en) 1987-10-16 1987-10-16 Measuring apparatus of temperature by infrared ray

Publications (1)

Publication Number Publication Date
JPH01102328A true JPH01102328A (en) 1989-04-20

Family

ID=17357124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62261103A Pending JPH01102328A (en) 1987-10-16 1987-10-16 Measuring apparatus of temperature by infrared ray

Country Status (1)

Country Link
JP (1) JPH01102328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291927A (en) * 1989-05-02 1990-12-03 Natl Space Dev Agency Japan<Nasda> Electromagnetic shield system of optical sensor having opening part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291927A (en) * 1989-05-02 1990-12-03 Natl Space Dev Agency Japan<Nasda> Electromagnetic shield system of optical sensor having opening part

Similar Documents

Publication Publication Date Title
US7422365B2 (en) Thermal imaging system and method
US5719670A (en) Integrated direction finder
JPH10281864A (en) Thermal type infrared camera
US3771880A (en) Roughness analyzer
US4306150A (en) Thermal image forming device comprising pneumatic infrared detectors
US7737403B2 (en) Detector arrangement for electromagnetic radiation and method for measuring electromagnetic radiation
JPH01102328A (en) Measuring apparatus of temperature by infrared ray
US4815841A (en) High resolution color band pyrometer ratioing
US5084621A (en) Radiometric standard infrared detector
JP2615913B2 (en) Infrared optical device
JPH01110225A (en) Infrared radiation meter
US6408651B1 (en) Method of manufacturing optical fibers using thermopiles to measure fiber energy
JPH0835884A (en) Infrared temperature distribution measuring apparatus and measuring method therefor
JPH11160156A (en) Infrared detector and radiation clinical thermometer with it
JPS5937703Y2 (en) Infrared temperature measuring device
US3942008A (en) Thermal imaging device
US3163760A (en) Refractive optics infrared scanning system
JPH06222003A (en) Gas concentration measuring equipment
RU2002216C1 (en) Converter of lased radiation power
JP2932821B2 (en) Wavelength fluctuation measurement device
RU2046303C1 (en) Optical pyrometer
JPH0626821Y2 (en) Infrared camera
JPH01155220A (en) Infrared optical system
JPS6257112B2 (en)
JPH1019667A (en) Infrared ray sensor