Nothing Special   »   [go: up one dir, main page]

JPH0626821Y2 - Infrared camera - Google Patents

Infrared camera

Info

Publication number
JPH0626821Y2
JPH0626821Y2 JP1989116164U JP11616489U JPH0626821Y2 JP H0626821 Y2 JPH0626821 Y2 JP H0626821Y2 JP 1989116164 U JP1989116164 U JP 1989116164U JP 11616489 U JP11616489 U JP 11616489U JP H0626821 Y2 JPH0626821 Y2 JP H0626821Y2
Authority
JP
Japan
Prior art keywords
mirror
room temperature
housing
infrared
infrared camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989116164U
Other languages
Japanese (ja)
Other versions
JPH0391939U (en
Inventor
成介 小松原
公喜 中村
利昭 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP1989116164U priority Critical patent/JPH0626821Y2/en
Publication of JPH0391939U publication Critical patent/JPH0391939U/ja
Application granted granted Critical
Publication of JPH0626821Y2 publication Critical patent/JPH0626821Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、サーモグラフィ装置に使用される赤外線カメ
ラに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to an infrared camera used in a thermography device.

[従来の技術] 被写体表面より放射される赤外線を検出し、その温度分
布を可視像(熱画像)として表示するサーモグラフィ装
置の赤外線カメラとしては一般に第4図および第5図に
示すように構成されたものが知られている。すなわち、
1は被写体、2は赤外線カメラで、被写体1の表面から
放射された光は、カメラ筐体を構成するハウジング3の
前面開口部に設けたシリコンウインド4によって可視光
5が遮断され、赤外線6のみが赤外線カメラ2内に入射
する。
[Prior Art] An infrared camera of a thermography device that detects infrared rays radiated from the surface of a subject and displays the temperature distribution as a visible image (thermal image) is generally configured as shown in FIGS. 4 and 5. What has been done is known. That is,
Reference numeral 1 is a subject, 2 is an infrared camera, and the light emitted from the surface of the subject 1 is blocked by visible light 5 by a silicon window 4 provided in a front opening of a housing 3 constituting a camera housing, and only infrared rays 6 are emitted. Enters the infrared camera 2.

7はハウジング3内に配設され、不図示の駆動モータに
よって矢印方向に定速回転される回転多面体ミラーで、
この回転多面体ミラー7は例えば10面体からなり、そ
の各々のミラー7a〜7jが回転多面体ミラー7の回転
中心Oに対して垂直方向に少しずつ異なった傾きをもっ
て多角錐体状に配設されている。前記シリコンウインド
4を透過した赤外線6は回転多面体ミラー7に入射する
と、各ミラー7a〜7jによって反射され、さらに折り
返しミラー8に当たって反射し、赤外線透過フィルタ9
および集光レンズ10を経て赤外線検出器11に入射す
る。したがって、回転多面体ミラー7の各ミラー7a〜
7jは被写体1の垂直方向に少しずつずれた部分を横方
向に走査することになり、回転多面体ミラー7の1回転
で垂直方向の例えば10°の範囲を走査する。
Reference numeral 7 denotes a rotating polyhedral mirror which is disposed in the housing 3 and is rotated at a constant speed in the arrow direction by a drive motor (not shown).
The rotating polyhedron mirror 7 is composed of, for example, a dodecahedron, and each of the mirrors 7a to 7j is arranged in a polygonal pyramid shape with an inclination slightly different from the rotation center O of the rotating polyhedron mirror 7 in the vertical direction. . When the infrared ray 6 transmitted through the silicon window 4 is incident on the rotating polyhedron mirror 7, it is reflected by each of the mirrors 7a to 7j, further hits the folding mirror 8 and reflected, and the infrared ray transmitting filter 9
Then, the light enters the infrared detector 11 through the condenser lens 10. Therefore, each of the mirrors 7a-
7j horizontally scans a portion of the subject 1 that is slightly shifted in the vertical direction, and one rotation of the rotating polyhedral mirror 7 scans a range of, for example, 10 ° in the vertical direction.

赤外線検出器11は回転多面体ミラー7の中心軸O方向
に並設された10個の検出素子からなり、その間隔は垂
直視野角10°に対して各ミラー7a〜7j毎に1°の
角度に相当する間隔とされている。このため、回転多面
体ミラー7の最初のミラー7aで10素子の赤外線検出
器11が被写体1の垂直視野角1.0°の熱像信号を同
時に受け、0.1°の間隔をもった10本の走査線信号
として出力する。回転多面体ミラー7の回転に伴い次の
ミラー7bが被写体1から赤外線6を反射すると、ミラ
ー7bの傾きの違いにより10素子の赤外線検出器11
が前の位置より1°ずれた位置の熱像信号を同時に受
け、同じく0.1°の間隔をもった10本の走査線信号
として出力する。
The infrared detector 11 is composed of 10 detecting elements arranged in parallel in the central axis O direction of the rotating polyhedral mirror 7, and the distance between them is 1 ° for each mirror 7a to 7j with respect to a vertical viewing angle of 10 °. The intervals are equivalent. For this reason, the infrared detector 11 of 10 elements simultaneously receives the thermal image signal of the vertical viewing angle of 1.0 ° of the subject 1 by the first mirror 7a of the rotating polyhedral mirror 7 and the ten infrared detectors 11 are arranged at intervals of 0.1 °. It is output as a scanning line signal. When the next mirror 7b reflects infrared rays 6 from the subject 1 as the rotating polyhedron mirror 7 rotates, the infrared detector 11 of 10 elements is generated due to the difference in inclination of the mirror 7b.
Simultaneously receives a thermal image signal at a position deviated by 1 ° from the previous position, and outputs it as 10 scanning line signals also having an interval of 0.1 °.

このようにして回転多面体ミラー7が1回転すると、被
写体1の垂直視野角10°にわたって走査したことにな
り、1個の検出素子の上には10本の0.1°ずつ異な
った被写体1からの赤外線6が入射することになり、検
出器11全体としては100本の赤外線走査信号として
出力することになる。そして、この赤外線検出器11か
ら出力される赤外線走査信号は、増幅回路12によって
増幅された後、プロセッサ13によって画像処理され、
モニタ14に熱画像としてカラー表示される。
When the rotating polygon mirror 7 makes one rotation in this way, the object 1 is scanned over a vertical viewing angle of 10 °, and ten detection objects 1 different from each other by 0.1 ° are arranged on one detection element. Infrared rays 6 will be incident, and the detector 11 as a whole will output 100 infrared scanning signals. The infrared scanning signal output from the infrared detector 11 is amplified by the amplifier circuit 12, and then image-processed by the processor 13.
A color image is displayed on the monitor 14 as a thermal image.

この場合、モニタ14に表示される赤外線画像は被写体
1における相対的温度を知ることはできても、被写体1
の実際の温度を知ることは出来ない。そこで、温度と赤
外線放射量とはプランクの放射公式により一定の関係を
有することから、室温検出用センサ15によってカメラ
内部の環境温度を検出し、その信号をプロセッサ13に
供給して処理を行い、実際の温度を知るようにしてい
る。
In this case, although the infrared image displayed on the monitor 14 can know the relative temperature of the subject 1,
It is not possible to know the actual temperature of. Therefore, since the temperature and the infrared radiation amount have a fixed relationship according to Planck's radiation formula, the room temperature detection sensor 15 detects the environmental temperature inside the camera and supplies the signal to the processor 13 for processing. I try to know the actual temperature.

なお、水平方向の走査角度については各ミラー7a〜7
jの最大水平視野角36°とされるが、実際には光学系
のもつぼけ現象を防ぐため15°程度の範囲で走査され
る。
Regarding the horizontal scanning angle, each of the mirrors 7a to 7a
The maximum horizontal viewing angle of j is 36 °, but in actuality, scanning is performed within a range of about 15 ° in order to prevent the blurring phenomenon of the optical system.

[考案が解決しようとする課題] ところで、このような従来の赤外線カメラ2において
は、ハウジング3の前面部内壁面温度をセンサ15によ
って検出し、室温校正用信号としてプロセッサ13に入
力しているものの、ハウジング内壁面は、屋外での使用
時等において太陽の直射光が当たったりすると、それだ
けでハウジング自体の温度が変動するため、高精度な温
度校正が出来ないと云う問題があった。
[Problems to be Solved by the Invention] In such a conventional infrared camera 2, although the temperature of the inner wall surface of the front surface of the housing 3 is detected by the sensor 15 and input to the processor 13 as a room temperature calibration signal, The inner wall surface of the housing has a problem that the temperature of the housing itself fluctuates only when it is exposed to direct sunlight of the sun when it is used outdoors or the like, so that highly accurate temperature calibration cannot be performed.

したがって、本考案は上記したような従来の問題点に鑑
みてなされたもので、その目的とするところは、比較的
簡単な構成で外光等による影響を受け難くし、高精度な
温度校正を行い得るようにした赤外線カメラを提供する
ことにある。
Therefore, the present invention has been made in view of the conventional problems as described above, and the purpose thereof is to make it possible to perform high-accuracy temperature calibration while being relatively unaffected by external light or the like with a relatively simple structure. It is to provide an infrared camera that can be performed.

[課題を解決するための手段] 本考案は上記目的を達成するために、被写体から放射さ
れ、ハウジング内に入射した赤外線を回転多面体ミラー
によって反射し、その反射光を赤外線検出器によって受
光し、熱画像信号として出力するようにした赤外線カメ
ラにおいて、前記ハウジングの内面より離間し前記回転
多面体ミラーの一部周面と近接対向し前記回転多面体ミ
ラーの1ミラー面の回転後端部を被写体の放射光から遮
蔽する室温校正用壁を前記ハウジング内に設け、この室
温校正用壁のミラー対向面に対して室温検出用センサを
近接配置したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention reflects infrared rays emitted from a subject and entering a housing by a rotating polyhedral mirror, and receives the reflected light by an infrared detector, In an infrared camera configured to output as a thermal image signal, a rotation rear end portion of one mirror surface of the rotating polyhedral mirror is radiated from an object while being separated from an inner surface of the housing and closely facing a part of a peripheral surface of the rotating polyhedral mirror. A room temperature calibration wall that shields light from light is provided in the housing, and a room temperature detection sensor is disposed close to the mirror facing surface of the room temperature calibration wall.

[作用] 本考案において、室温校正用壁はハウジング内壁面から
離間されており、外光等によるハウジング内壁面の温度
変化を受け難い。ハウジング内壁面と室温校正用壁との
間の空間は断熱空間を形成する。
[Operation] In the present invention, the room temperature calibration wall is separated from the inner wall surface of the housing, and is unlikely to be affected by the temperature change of the inner wall surface of the housing due to external light or the like. The space between the inner wall surface of the housing and the room temperature calibration wall forms a heat insulating space.

[実施例] 以下、本考案を図面に示す実施例に基づいて詳細に説明
する。
[Embodiment] Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings.

第1図は本考案に係る赤外線カメラのハウジング内部を
示す一部破断正面図、第2図は第1図のII−II線断面
図、第3図は第1図のIII−III線断面図である。なお、
図中第4図および第5図と同一構成部品のものに対して
は同一符号を以て示し、その説明を省略する。これらの
図において、20はハウジング3の前面中央部に開設さ
れた開口部、21はハウジング内面とともにシリコンウ
インド4の一側端部を咬持するウインド固定部材、22
は遮蔽板、24は回転ミラー7の一部外周縁と近接対向
するようにハウジング3内に設けられた室温校正用壁で
ある。
FIG. 1 is a partially cutaway front view showing the inside of a housing of an infrared camera according to the present invention, FIG. 2 is a sectional view taken along line II-II of FIG. 1, and FIG. 3 is a sectional view taken along line III-III of FIG. Is. In addition,
The same components as those in FIGS. 4 and 5 are designated by the same reference numerals, and the description thereof will be omitted. In these figures, 20 is an opening formed in the center of the front surface of the housing 3, 21 is a window fixing member that holds one end of the silicon window 4 together with the inner surface of the housing, 22
Is a shielding plate, and 24 is a room temperature calibration wall provided in the housing 3 so as to closely face a part of the outer peripheral edge of the rotating mirror 7.

前記室温校正用壁24は前記シリコンウインド4の後方
で、回転多面体ミラー7の前面側下部に対応して設けら
れることにより、従来カメラにおける校正用基準面とさ
れていたハウジング3の前面部内壁面下部分25より十
分離間している。また、この室温校正用壁24は、第1
図から明らかなように、回転多面体ミラー7の1ミラー
面の回転後端部を被写体からの放射光から遮蔽してい
る。つまり、室温校正用壁24は、回転多面体ミラー7
の1ミラー面の回転後端部を覆い、この回転後端部に被
写体からの放射光が当たらないようにしている。そし
て、室温検出用センサ15が室温校正用壁24に近接配
置されている。
The room temperature calibration wall 24 is provided behind the silicon window 4 and corresponding to the lower part on the front surface side of the rotating polyhedral mirror 7, so that the room inner wall surface of the front surface of the housing 3, which has been used as a calibration reference surface in the conventional camera, is below the wall surface. It is sufficiently separated from the portion 25. In addition, the room temperature calibration wall 24 is the first
As is clear from the figure, the rotating rear end of one mirror surface of the rotating polyhedral mirror 7 is shielded from the light emitted from the subject. That is, the room temperature calibration wall 24 is the same as the rotating polyhedral mirror 7.
The rear end of the rotation of one mirror surface is covered so that the radiated light from the subject does not hit the rear end of the rotation. Then, the room temperature detecting sensor 15 is arranged close to the room temperature calibration wall 24.

かくしてこのような構成からなる赤外線カメラ2におい
ては、室温校正用壁24をハウジング3の前面部内壁面
下部分25より十分離間させてハウジング内部に設けて
いるので、室温校正用壁24が被写体による熱、外光、
外部温度の変動等によって影響を受けることが少なく、
またたとえハウジング3の温度が外光等によって変動し
ても、前記前面部内壁面下部分25までの空間が断熱空
間を形成しているため、その影響が少なく、略一定の温
度を維持する。また、室温検出用センサ15は室温校正
用壁24によって入射光および散乱光が遮られる位置に
配設されているので、ハウジング内の散乱光等の不要光
がセンサ15に当たらず、また室温校正用壁24と室温
検出用センサ15を近接対向させて配置しているので、
回転多面体ミラー7の走査によって得られる熱画像信号
中の基準温度信号と室温検出用センサ15で検出した温
度との誤差が生じないため、高精度な室温校正を行うこ
とができ、被写体のより正確な温度計測を行うことがで
きる。
Thus, in the infrared camera 2 having such a configuration, since the room temperature calibration wall 24 is provided inside the housing with being sufficiently separated from the front inner wall surface lower portion 25 of the housing 3, the room temperature calibration wall 24 is not heated by the subject. Outside light,
Less affected by fluctuations in external temperature,
Even if the temperature of the housing 3 fluctuates due to outside light or the like, the space up to the lower portion 25 of the inner wall surface of the front face forms a heat insulating space, so that the influence thereof is small and the temperature is maintained substantially constant. Further, since the room temperature detection sensor 15 is arranged at a position where the incident light and the scattered light are blocked by the room temperature calibration wall 24, unnecessary light such as scattered light in the housing does not hit the sensor 15, and the room temperature calibration is performed. Since the wall 24 and the room temperature detecting sensor 15 are arranged in close proximity to each other,
Since there is no error between the reference temperature signal in the thermal image signal obtained by the scanning of the rotating polyhedral mirror 7 and the temperature detected by the room temperature detecting sensor 15, highly accurate room temperature calibration can be performed, and more accurate object It is possible to measure various temperatures.

[考案の効果] 以上説明したように本考案に係る赤外線カメラによれ
ば、ハウジングの内面より離間し前記回転多面体ミラー
の一部周面と近接対向し前記回転多面体ミラーの1ミラ
ー面の回転後端部を被写体の放射光から遮蔽する室温校
正用壁を前記ハウジング内に設け、この室温校正用壁の
ミラー対向面に対して室温検出用センサを近接配置した
ので、ハウジング内の散乱光等の不要光が室温検出用セ
ンサに当たらず、また室温校正用壁と室温検出用センサ
を近接対向させているので、回転多面体ミラーの走査に
よって得られる熱画像信号中の基準温度信号と室温検出
用センサで検出した温度との誤差が生じず、高精度な室
温校正を行うことができ、正確な温度計測を行うことが
できる。またハウジング内壁面と室温校正用壁との間の
空間は断熱空間を形成し、一層外部温度、直射光等の影
響を受け難く、したがって、より高精度な室温校正を行
うことができ、カメラの性能を向上させることが出来る
と云う利点を有する。
[Effects of the Invention] As described above, according to the infrared camera of the present invention, after the rotation of one mirror surface of the rotating polyhedral mirror, the infrared camera is spaced apart from the inner surface of the housing and closely faces a part of the peripheral surface of the rotating polyhedral mirror. Since a room temperature calibration wall that shields the end portion from the radiated light of the subject is provided in the housing, and the room temperature detection sensor is arranged close to the mirror facing surface of the room temperature calibration wall, the scattered light in the housing, etc. Since unnecessary light does not hit the room temperature detection sensor and the room temperature calibration wall and the room temperature detection sensor are in close proximity to each other, the reference temperature signal and the room temperature detection sensor in the thermal image signal obtained by scanning the rotating polyhedral mirror. There is no error with the temperature detected in step 1, high-accuracy room temperature calibration can be performed, and accurate temperature measurement can be performed. In addition, the space between the inner wall surface of the housing and the room temperature calibration wall forms a heat insulating space, which is less likely to be affected by external temperature, direct light, etc. Therefore, more accurate room temperature calibration can be performed, and the camera It has an advantage that the performance can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に係る赤外線カメラの一実施例を示すハ
ウジング内部の一部破断正面図、第2図は第1図のII−
II線断面図、第3図は第1図のIII−III線断面図、第4
図は赤外線カメラの従来例を示す正面図、第5図は同カ
メラの概略構成図である。 1……被写体、2……赤外線カメラ、3……ハウジン
グ、4……シリコンウインド、6……赤外線、7……回
転多面体ミラー、8……折り返しミラー、9……赤外線
透過フィルタ、10……集光レンズ、11……赤外線検
出器、15……室温検出用センサ、24……室温校正用
壁。
FIG. 1 is a partially cutaway front view of the inside of a housing showing an embodiment of an infrared camera according to the present invention, and FIG. 2 is a II- of FIG.
II sectional view, FIG. 3 is a III-III sectional view of FIG. 1, 4
FIG. 1 is a front view showing a conventional example of an infrared camera, and FIG. 5 is a schematic configuration diagram of the same camera. 1 ... Subject, 2 ... Infrared camera, 3 ... Housing, 4 ... Silicon window, 6 ... Infrared, 7 ... Rotating polyhedral mirror, 8 ... Folding mirror, 9 ... Infrared transmission filter, 10 ... Condensing lens, 11 ... Infrared detector, 15 ... Room temperature detection sensor, 24 ... Room temperature calibration wall.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−144034(JP,A) 実願 昭58−66549号(実開 昭59− 172343号)の願書に添付した明細書及び図 面の内容を撮影したマイクロフィルム(J P,U) 実願 昭62−140072号(実開 昭64− 46726号)の願書に添付した明細書及び図 面の内容を撮影したマイクロフィルム(J P,U) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-62-144034 (JP, A) Jpn. App. 58-66549 (Jpn. Pat. Appl. Sho 59-172343) A microfilm (JP, U) of which the contents were photographed. A microfilm (JP, U, U) of the specification and drawings attached to the application of the actual application Sho 62-140072 (Actual 64-64726). )

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】被写体から放射され、ハウジング内に入射
した赤外線を回転多面体ミラーによって反射し、その反
射光を赤外線検出器によって受光し、熱画像信号として
出力するようにした赤外線カメラにおいて、 前記ハウジングの内面より離間し前記回転多面体ミラー
の一部周面と近接対向し前記回転多面体ミラーの1ミラ
ー面の回転後端部を被写体の放射光から遮蔽する室温校
正用壁を前記ハウジング内に設け、この室温校正用壁の
ミラー対向面に対して室温検出用センサを近接配置した
ことを特徴とする赤外線カメラ。
1. An infrared camera in which infrared rays radiated from a subject and incident on a housing are reflected by a rotating polyhedral mirror, and the reflected light is received by an infrared detector and output as a thermal image signal. A room temperature calibration wall that is spaced apart from the inner surface of the rotary polyhedron mirror and partially faces the peripheral surface of the rotary polyhedron mirror and shields the rotation rear end of one mirror surface of the rotary polyhedron mirror from the radiated light of the subject is provided in the housing, An infrared camera characterized in that a room temperature detecting sensor is arranged in proximity to the mirror facing surface of the room temperature calibration wall.
JP1989116164U 1989-10-04 1989-10-04 Infrared camera Expired - Lifetime JPH0626821Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989116164U JPH0626821Y2 (en) 1989-10-04 1989-10-04 Infrared camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989116164U JPH0626821Y2 (en) 1989-10-04 1989-10-04 Infrared camera

Publications (2)

Publication Number Publication Date
JPH0391939U JPH0391939U (en) 1991-09-19
JPH0626821Y2 true JPH0626821Y2 (en) 1994-07-20

Family

ID=31664463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989116164U Expired - Lifetime JPH0626821Y2 (en) 1989-10-04 1989-10-04 Infrared camera

Country Status (1)

Country Link
JP (1) JPH0626821Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524032Y2 (en) * 1987-09-16 1993-06-18

Also Published As

Publication number Publication date
JPH0391939U (en) 1991-09-19

Similar Documents

Publication Publication Date Title
JPH023150B2 (en)
US4341447A (en) Infrared camera ranging system
JP2677128B2 (en) Thermal image detector
GB1377633A (en) Telescope including an imaging system for visible radiation
JP2760146B2 (en) Thermal image detector
JPH0626821Y2 (en) Infrared camera
US4644164A (en) Compact passive infrared intrusion sensor
KR960015008B1 (en) Prevention apparatus of disasters having fire detection means
JP2615913B2 (en) Infrared optical device
JP3534281B2 (en) Detection device
CA2090115C (en) Thermal image detection apparatus
JP2644822B2 (en) Infrared detector
JPH0535651Y2 (en)
JPH0628857Y2 (en) Infrared camera mirror drive mechanism
JP2564533Y2 (en) Infrared camera
CA1310506C (en) Electromagnetic radiation detecting device
JP2586366Y2 (en) Infrared camera
JPH07301568A (en) Infrared detector
JPH05296828A (en) Infrared camera
JP2668948B2 (en) Light sensor
JPH039025Y2 (en)
KR102117271B1 (en) Distance-temperature scanning sensor devices
Leftwich Single-Detector Infrared Scanners
JP3174892B2 (en) Infrared camera
JPH09126899A (en) Thermal image detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term