Nothing Special   »   [go: up one dir, main page]

JPH09330937A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH09330937A
JPH09330937A JP14592096A JP14592096A JPH09330937A JP H09330937 A JPH09330937 A JP H09330937A JP 14592096 A JP14592096 A JP 14592096A JP 14592096 A JP14592096 A JP 14592096A JP H09330937 A JPH09330937 A JP H09330937A
Authority
JP
Japan
Prior art keywords
gate
insulating film
film
gate electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14592096A
Other languages
Japanese (ja)
Inventor
Takahiro Tan
孝弘 丹
Hidenori Hirano
英則 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14592096A priority Critical patent/JPH09330937A/en
Publication of JPH09330937A publication Critical patent/JPH09330937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To mold-seal a semiconductor device without deteriorating the characteristics of an element by a method wherein a cap layer is etched through a gate opening window, the cap layer under the lower side of an insulating layer is side-etched, a gate electrode is formed in the gate opening window and a cavity is formed of an element formation layer, the side surfaces of the cap layer, the insulating film and the gate electrode. SOLUTION: An SiO2 film 5 is grown on the whole upper surface of a cap layer 2, which is a gate formation region, and source and drain electrodes 3 are formed on prescribed positions on an element region. Then, a resist pattern 4 having an opening for gate window formation use is formed, the film 5 is etched using the pattern 4 as a mask, the pattern 4 is removed, a second layer SiO2 film 6 is grown, a semiconductor substrate is etched until the surface of the semiconductor substrate is exposed to obtain a gate opening window 9 with the open section having a projected curve toward the opening. Then, a resist pattern 7 for gate electrode film lift-off use is formed, the cap layer 2 is etched through the window 9, the insulating film is left over a recess part into an overhang shape and a cavity 12 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置及びその
製造方法に係り, 特に樹脂封止の電界効果型トランジス
タ(FET) のT型ゲート構造およびその形成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a T-type gate structure of a resin-sealed field effect transistor (FET) and its formation.

【0002】μ波回路や高速論理回路に用いられる短ゲ
ート長を有するFET を樹脂封止してもその性能が維持で
きるようなゲート構造が望まれている。
There is a demand for a gate structure that can maintain its performance even if a FET having a short gate length used in a μ-wave circuit or a high-speed logic circuit is resin-sealed.

【0003】[0003]

【従来の技術】近年のトランジスタの高速化に伴い,ゲ
ート長は縮小の一途をたどっている。特に,HEMT(高電
子移動度トランジスタ)等の高性能トランジスタでは,
ゲート長が 0.3μm以下になってきた。しかしながら,
ゲート長の短縮に伴いゲート抵抗の増大や, ゲート電極
近傍で発生する寄生容量の増大による素子特性の低下が
発生する。
2. Description of the Related Art With the recent increase in the speed of transistors, the gate length is shrinking. Especially in high-performance transistors such as HEMT (High Electron Mobility Transistor),
The gate length has become less than 0.3 μm. However,
As the gate length is shortened, the gate resistance increases and the device characteristics deteriorate due to the increase of parasitic capacitance near the gate electrode.

【0004】ゲート長の短縮とゲート抵抗の低減という
相反する問題を解決するために, 図2に示されるよう
に,ゲート電極11の断面形状をT型,またはマッシュル
ーム型と呼ばれる形状にし,半導体基板とゲート電極の
接触面積を減らしてゲート長を短縮しつつ,ゲート電極
の断面積を大きく確保してゲート抵抗の低減化を行って
いる。
In order to solve the contradictory problems of shortening the gate length and the gate resistance, as shown in FIG. 2, the cross-sectional shape of the gate electrode 11 is formed into a shape called T-shape or mushroom-shape, and the semiconductor substrate While reducing the contact area of the gate electrode and the gate length, the gate resistance is reduced by ensuring a large cross-sectional area of the gate electrode.

【0005】このT型ゲートの形成法の一例を図3に示
す。図3(a) 〜(e) はT型ゲートの製造プロセスの従来
例の説明図である。図3(a) において, 電子ビームによ
る直接描画法,あるいは位相シフト法を用いた光学露光
を利用して, 狭い下部開口部を形成するレジストパター
ン (低感度電子線用レジスト) 13と広い上部開口部を形
成するレジストパターン (高感度電子線用レジスト) 14
を形成し, 高ドーズ量電子ビームを開口領域に照射す
る。
An example of a method of forming this T-type gate is shown in FIG. 3A to 3E are explanatory views of a conventional example of the manufacturing process of the T-type gate. In Fig. 3 (a), a resist pattern (resist for low-sensitivity electron beam) 13 and a wide upper opening that forms a narrow lower opening by using optical exposure using the electron beam direct writing method or the phase shift method. Pattern that forms the area (resist for high-sensitivity electron beam) 14
And the high-dose electron beam is applied to the aperture area.

【0006】図3(b) において, 低ドーズ量電子ビーム
を開口領域に照射する。図3(c) において, 現像してT
型ゲート電極形成用の開口されたレジストパターン17を
形成する。
In FIG. 3B, a low dose electron beam is applied to the opening region. In FIG. 3 (c), after development, T
A resist pattern 17 having an opening for forming a mold gate electrode is formed.

【0007】図3(d) において,ゲート電極用の金属膜
10を蒸着して堆積する。図3(e) において,レジストを
リフトオフして, レジストパターン上の金属膜を除去す
ると,T型ゲート電極11が形成される。
In FIG. 3D, a metal film for a gate electrode
Deposit 10 by vapor deposition. In FIG. 3 (e), the T-type gate electrode 11 is formed by lifting off the resist and removing the metal film on the resist pattern.

【0008】このようにして製造されたHEMT素子は, μ
波帯で高い利得と低い雑音指数が得られ, 電波天文学の
進歩や, 惑星間を航行する人工衛星の電波受信に多大な
貢献をし,衛星放送の受信も可能になった。しかしなが
ら,このような特殊な分野から実用化が始まったため,
これらの素子は容易に高信頼化が得られるメタルハーメ
チックパッケージに搭載されている。
The HEMT device manufactured in this way is
High gain and low noise figure were obtained in the waveband, which made a great contribution to the progress of radio astronomy and to the reception of radio waves by artificial satellites that travel between planets, and also made it possible to receive satellite broadcasts. However, since practical application began in such a special field,
These devices are mounted in a metal hermetic package that can easily achieve high reliability.

【0009】この高価なメタルハーメチックパッケージ
の代わりに,より安価なモールドパッケージを導入する
ことは,衛星放送の受信装置や人工衛星を利用した位置
測定装置の一層の普及や,ミリ波を利用した自動車の衝
突防止装置等の開発,実用化に不可欠な課題である。
Introducing a cheaper mold package instead of this expensive metal hermetic package will further spread the position measuring device using satellite broadcasting receivers and artificial satellites, and will enable automobiles utilizing millimeter waves. This is an essential issue for the development and commercialization of the collision prevention device.

【0010】[0010]

【発明が解決しようとする課題】従来素子をモールド樹
脂で封止して素子特性の評価を行ったが,すべての素子
が不良で測定することが出来なかった。不良のモードは
ゲート電極のオープンであった。この原因は,図4(a)
に示されるように,モールド成形時の樹脂の流れ込みや
樹脂の硬化の際のストレスにより,ゲート電極が引き剥
がされ浮き上がっていたためであった。
The device characteristics were evaluated by sealing the conventional device with a mold resin, but all the devices were defective and could not be measured. The failure mode was open gate electrode. The cause of this is shown in Fig. 4 (a).
This is because the gate electrode was peeled off and floated up due to the resin flow during molding and the stress during resin curing, as shown in FIG.

【0011】その対策として,図4(b) に示されるよう
に,素子をポリイミド樹脂で覆ってからモールド樹脂で
封止した。この際も,ゲート電極のオープンが多発した
が,辛うじて動作した素子の利得は著しく減少してい
た。これは,ゲート電極の側壁についたポリイミド樹脂
が寄生容量 Cgs(ゲート−ソース間の寄生容量),C
gd(ゲート−ドレイン間の寄生容量)を増加させたこと
が原因であった。
As a countermeasure against this, as shown in FIG. 4 (b), the element was covered with a polyimide resin and then sealed with a mold resin. At this time, too, the gate electrode was frequently opened, but the gain of the element that barely operated was significantly reduced. This is because the polyimide resin on the side wall of the gate electrode has parasitic capacitance C gs (parasitic capacitance between gate and source), C
The cause was that gd (parasitic capacitance between gate and drain) was increased.

【0012】さらに,図4(c) に示されるように,動作
する素子を選別し一般的な温度サイクル試験を行ったと
ころ, 試験の初期の段階ですべての素子のゲート電極が
オープンになってしまった。この原因はポリイミド樹脂
の膨張と収縮の繰り返しにより, ゲート電極が浮いてし
まったためである。
Further, as shown in FIG. 4 (c), when operating elements were selected and a general temperature cycle test was performed, the gate electrodes of all the elements were opened at the initial stage of the test. Oops. This is because the gate electrode floats due to repeated expansion and contraction of the polyimide resin.

【0013】さらに強固にゲート電極を固定するために
以下の試みを行った。図5に示されるように,気相成長
(CVD) 法により二酸化シリコン(SiO2)膜をゲート電極の
下部を埋め込むように固定してからモールド樹脂で封止
した。この素子はゲート電極の初期のオープンや,簡単
な温度サイクル試験での不良は発生しなかったが,ポリ
イミド樹脂で覆ったものと同様に,寄生容量の増大によ
り,利得が減少し雑音指数が増大し,実用に耐えないも
のであった。
The following attempts were made to more firmly fix the gate electrode. As shown in Figure 5, vapor phase growth
A silicon dioxide (SiO 2 ) film was fixed by the (CVD) method so as to fill the lower part of the gate electrode and then sealed with a mold resin. This device did not cause initial opening of the gate electrode or defects in a simple temperature cycle test, but like the one covered with polyimide resin, the parasitic capacitance increased and the gain decreased and the noise figure increased. However, it was not practical.

【0014】以上の事実から,ゲート長が 0.3μm以下
でT型電極構造の従来の素子構造では,モールド樹脂の
流れや膨張収縮のストレスでゲート電極の引き剥がれを
発生し,従来素子そのままではモールド化ができないこ
とが判明した。
From the above facts, in the conventional element structure having a gate length of 0.3 μm or less and the T-type electrode structure, the gate electrode is peeled off due to the flow of the molding resin and the stress of expansion and contraction, and the conventional element is not molded. It turned out that it could not be converted.

【0015】そこで,寄生容量 Cgs,Cgdの増大を回避す
る別の手段を行ってから,樹脂封止を行う試みをした。
その工程を図6で説明する。図6(a) 〜(e) は他の従来
例の説明図である。
Therefore, an attempt was made to perform resin encapsulation after another means for avoiding an increase in parasitic capacitances C gs and C gd was taken.
The process will be described with reference to FIG. 6 (a) to 6 (e) are explanatory views of another conventional example.

【0016】図6(a) において,半導体基板 1上にソー
スドレイン電極 3を形成し,その上に二酸化シリコン(S
iO2)膜等の絶縁膜23を形成し,次いで, ゲート電極形成
のためのレジストパッケージ24を形成する。
In FIG. 6 (a), a source / drain electrode 3 is formed on a semiconductor substrate 1 and silicon dioxide (S
An insulating film 23 such as an iO 2 ) film is formed, and then a resist package 24 for forming a gate electrode is formed.

【0017】図6(b) において,ドライエッチングによ
り絶縁膜23をエッチングする。この際, エッチングによ
り生じた絶縁膜23の開口部を通して半導体基板 1が横方
向にもエッチング (サイドエッチング) されるように,
オーバエッチングを行う。この工程で形成された半導体
基板のゲート領域のくぼみはリセスと呼ばれる。
In FIG. 6B, the insulating film 23 is etched by dry etching. At this time, the semiconductor substrate 1 is laterally etched (side etching) through the opening of the insulating film 23 generated by etching.
Perform over etching. The recess of the gate region of the semiconductor substrate formed in this process is called a recess.

【0018】図6(c) において,半導体基板上に絶縁膜
の開口部を覆って半導体基板に接触するようにゲート電
極膜10を堆積する。次いで, その上にゲート電極形成用
のレジストマスク25を形成する。
In FIG. 6C, a gate electrode film 10 is deposited on the semiconductor substrate so as to cover the opening of the insulating film and contact the semiconductor substrate. Then, a resist mask 25 for forming a gate electrode is formed thereon.

【0019】図6(d) において,ゲート電極膜10をドラ
イエッチングしてゲート電極11を形成する。図6(e) は
電極部の拡大図である。この構造ではゲート電極近傍の
絶縁膜下のリセス部が空洞となっており,寄生容量の増
大を阻止している。
In FIG. 6D, the gate electrode film 10 is dry-etched to form a gate electrode 11. FIG. 6 (e) is an enlarged view of the electrode portion. In this structure, the recess under the insulating film near the gate electrode is hollow, preventing an increase in parasitic capacitance.

【0020】上記の構造のHEMTの素子特性は,製品とし
て十分であった。この素子をモールド封止したところ,
ゲート電極がオープンになる不良は発生せず, 寄生容量
Cgs,Cgdの増加は著しく抑えられ, 特性はややばらつく
ものの,製品の規格を満足するものであった。
The device characteristics of the HEMT having the above structure were sufficient as a product. When this device was molded and sealed,
There is no defect that the gate electrode is open, and parasitic capacitance
The increase of C gs and C gd was significantly suppressed, and although the characteristics varied slightly, they satisfied the product specifications.

【0021】次にこの素子の信頼性を評価するため, 高
温通電試験を行ったところ,ゲートのリーク電流
Igso , Igdo , Gm が増大し,ゲート電圧 Vgso , V
gdo が低下し, 電流 Idss や Gm が変動した。
Next, in order to evaluate the reliability of this device, a high-temperature current test was conducted.
I gso , I gdo , G m increase, and gate voltage V gso , V
The gdo decreased, and the currents I dss and G m fluctuated.

【0022】また,−65℃と 175℃の温度を交互に繰り
返して印加する温度サイクル試験を行ったところかなり
の試料のゲートがオープンになった。この現象は短ゲー
ト長の素子ほど顕著であった。この原因を調査した結果
以下のことがわかった。
Further, a temperature cycle test was conducted in which temperatures of −65 ° C. and 175 ° C. were alternately repeated, and the gate of a considerable sample was opened. This phenomenon was more remarkable in devices with shorter gate lengths. As a result of investigating the cause, the following was found.

【0023】図7(a),(b) は空洞型素子の問題点の説明
図である。 (1) 素子の半導体, 絶縁膜, ゲート電極及び樹脂の熱膨
張係数の差異と, 温度サイクルによりゲート電極を絶縁
膜表面から剥がすようなストレスが働いて絶縁膜とゲー
ト電極との間にわずかの隙間が生じ, 樹脂の有機物成分
や水分等の外気が入り, リセス領域の空洞部に浸入し,
半導体表面を汚染し,特性の不安定性や劣化が発生する
(図7(a) 参照) 。 (2) 短ゲート長FET では, 同様な温度変化による繰り返
しストレスにより, 電極の上部が浮き上がり, 同時にゲ
ート電極は開口寸法が小さいため, 絶縁膜の内部で電極
の断線が発生する (図7(b) 参照) 。
FIGS. 7 (a) and 7 (b) are explanatory views of problems of the cavity type element. (1) Differences in the thermal expansion coefficients of the semiconductor, insulating film, gate electrode and resin of the device, and the stress that peels the gate electrode from the surface of the insulating film due to the temperature cycle causes a slight difference between the insulating film and the gate electrode. A gap is created, and outside air such as the organic component of the resin and water enters and enters the cavity of the recess area,
Contamination of semiconductor surface, resulting in instability and deterioration of characteristics
(See Figure 7 (a)). (2) In a short gate length FET, the upper part of the electrode floats up due to repeated stress due to similar temperature changes, and at the same time, the opening size of the gate electrode is small, causing electrode breakage inside the insulating film (Fig. 7 (b )).

【0024】本発明は, 素子特性の劣化をきたすことな
く,且つモールド封止を可能にするゲート電極構造の提
供を目的とする。
It is an object of the present invention to provide a gate electrode structure which enables mold sealing without deteriorating device characteristics.

【0025】[0025]

【課題を解決するための手段】上記課題の解決は, 1)半導体からなる素子形成層上に被着された半導体か
らなるキャップ層上に絶縁膜を形成する工程と,開口の
断面形状が該開口に対して凸の曲線を有し且つ上方に向
かって広がったゲート開口窓を該絶縁膜に形成する工程
と,該絶縁膜をエッチングマスクにして該ゲート開口窓
を通して該キャップ層をエッチングし,続いてオーバエ
ッチングして該絶縁膜の下側の該キャップ層をサイドエ
ッチングしてリセスを形成する工程と,該ゲート開口窓
を覆ってゲート電極膜を被着し,ゲート電極を形成する
とともに,該素子形成層表面と該キャップ層の側面と該
絶縁膜と該ゲート電極とで空洞を形成する工程とを含む
半導体装置の製造方法,あるいは 2)前記ゲート開口窓の断面形状の曲線と前記絶縁膜の
厚さの中心線との交点における該曲線の接線と前記素子
形成層表面となす角が50〜75°であり,該絶縁膜の厚さ
が 0.2μmを越える前記1記載の半導体装置の製造方
法,あるいは 3)前記絶縁膜が2層からなり,下層絶縁膜を被着後,
開口を設け,該開口を含んで上層絶縁膜を被着し,ドラ
イエッチングを行って前記ゲート開口窓を形成する前記
1記載の半導体装置の製造方法,あるいは 4)前記絶縁膜に前記ゲート開口窓を形成する際に,上
層には高解像度タイプのレジスト膜を, 下層には高感度
タイプのレジスト膜を成膜した2層構造のレジスト膜を
用いて露光する前記1記載の半導体装置の製造方法,あ
るいは 5)前記1に記載された方法を含んで製造され且つ樹脂
封止された半導体装置により達成される。
Means for Solving the Problems To solve the above problems, 1) a step of forming an insulating film on a cap layer made of a semiconductor deposited on an element forming layer made of a semiconductor and the cross-sectional shape of an opening are Forming in the insulating film a gate opening window having a convex curve with respect to the opening and expanding upward, and etching the cap layer through the gate opening window using the insulating film as an etching mask, Subsequently, a step of forming a recess by side-etching the cap layer under the insulating film to form a recess, and forming a gate electrode film by covering the gate opening window and forming a gate electrode, A method for manufacturing a semiconductor device, including the step of forming a cavity with the surface of the element forming layer, the side surface of the cap layer, the insulating film and the gate electrode, or 2) a curve of a cross-sectional shape of the gate opening window The semiconductor according to 1 above, wherein an angle between the tangent of the curve at the intersection with the center line of the thickness of the insulating film and the surface of the element forming layer is 50 to 75 °, and the thickness of the insulating film exceeds 0.2 μm. A method for manufacturing the device, or 3) the insulating film is composed of two layers, and after depositing the lower insulating film,
4. The method for manufacturing a semiconductor device as described in 1 above, wherein an opening is provided, an upper insulating film is deposited to include the opening, and the gate opening window is formed by dry etching, or 4) The gate opening window is formed in the insulating film. 2. The method for manufacturing a semiconductor device according to 1 above, in which, when forming a film, a high-resolution type resist film is used as an upper layer and a high-sensitivity type resist film is used as a lower layer to form a two-layer structure Or 5) It is achieved by a resin-sealed semiconductor device manufactured by including the method described in 1 above.

【0026】次に,本発明の作用について説明する。汚
染による特性変化は,半導体表面上の絶縁膜に窓開けし
た空洞のない従来型のゲート電極構造では発生しない
で,リセス構造で空洞を持つゲート電極構造でのみ顕著
に発生する。このように空洞リセス構造は汚染に非常に
敏感であるが,寄生容量の低減のためにはこれ以外の構
造では困難であると判断した。
Next, the operation of the present invention will be described. The change in characteristics due to contamination does not occur in the conventional gate electrode structure having no cavity opened in the insulating film on the semiconductor surface, but only in the gate electrode structure having a cavity in the recess structure. In this way, the cavity recess structure is very sensitive to contamination, but it was judged that other structures are difficult to reduce the parasitic capacitance.

【0027】ここで,気密性, すなわち絶縁膜とゲート
電極の密着力を確保するにはゲート電極と絶縁膜との接
触面積を増やせばよいが, 0.3 μm以下のゲート長では
問題発生が顕著であり,このような素子では電極や素子
の寸法増大は性能低下につながる。
Here, in order to secure the airtightness, that is, the adhesive force between the insulating film and the gate electrode, the contact area between the gate electrode and the insulating film may be increased, but the problem is remarkable when the gate length is 0.3 μm or less. However, in such an element, an increase in the size of the electrode or element leads to a deterioration in performance.

【0028】そのため,本発明では小面積で高い剥離耐
性を得るために密着部の形状に着目した。従来の電極構
造では,絶縁膜のゲート窓上部には直角に近いかどが存
在する。この角の部分にストレスが集中し,ゲート電極
が絶縁膜から浮き上がり,更に,窓内部の壁面は垂直に
近いため電極と絶縁膜との密着性が悪く,電極の切断や
汚染経路を形成していた。
Therefore, in the present invention, attention is paid to the shape of the contact portion in order to obtain high peeling resistance in a small area. In the conventional electrode structure, there is a corner near the top of the gate window of the insulating film. The stress concentrates on this corner, the gate electrode floats up from the insulating film, and since the wall surface inside the window is nearly vertical, the adhesion between the electrode and the insulating film is poor, and the electrode is cut or a contamination path is formed. It was

【0029】そのために,実験の結果図8(a) に示され
るような窓内部の壁面が開口に対し凸のゆるやかな曲線
が有効であることがわかった。また,図8(b) のように
ゆるやかな曲線であってもS字型のようなくぼみがある
と,この部分から電極剥がれがあることもわかった。
Therefore, as a result of the experiment, it was found that a gentle curve where the wall surface inside the window is convex to the opening as shown in FIG. 8 (a) is effective. It was also found that even if the curve is gentle as shown in Fig. 8 (b), if there is an S-shaped depression, the electrode peels from this part.

【0030】また,0.3 μm以下のゲート長の素子にお
いて,ゲート電極が過度に大きくならず且つ十分な接着
力が得られる構造として,図8(c) に示されるように,
断面形状の曲線が絶縁膜の厚さの1/2 の水平線と交わる
点で引いた接線と水平面となす角が50〜75°であること
及び絶縁膜の厚さは 0.2μm以上必要であることがわか
った。
In a device having a gate length of 0.3 μm or less, as a structure in which the gate electrode does not become excessively large and a sufficient adhesive force is obtained, as shown in FIG.
The angle between the tangent line drawn at the point where the curve of the cross-sectional shape intersects the horizontal line of 1/2 the thickness of the insulating film and the horizontal plane is 50 to 75 °, and the thickness of the insulating film must be 0.2 μm or more. I understood.

【0031】本発明では以上の構造をとることにより,
リセス空洞の気密性を保つことにより素子特性の劣化を
きたすことなく,且つゲート電極を絶縁膜で囲って機械
的に保護することによりモールド封止を可能にしてい
る。
In the present invention, by adopting the above structure,
By maintaining the airtightness of the recess cavity, deterioration of the device characteristics is not caused, and by enclosing the gate electrode with an insulating film and mechanically protecting it, mold sealing is possible.

【0032】[0032]

【発明の実施の形態】以下に本発明の実施の形態のHEMT
野構造をその製造プロセスとともに図1を用いて説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION HEMTs according to embodiments of the present invention will be described below.
The field structure will be described together with its manufacturing process with reference to FIG.

【0033】図1(a) 〜(f) は本発明の実施の形態の説
明図である。図1において, 1は半導体基板, 2はGaAs
キャップ層, 3はソースドレイン電極, 4はゲート窓形
成のためのポジ型フォトレジストパターン, 5は第1層
目のSiO2膜, 6は第2層目のSiO2膜, 7はゲート電極膜
のリフトオフ用のポジ型フォトレジストパターン, 8は
最終形状になった絶縁膜, 9はゲート開口窓, 10はレジ
スト膜上のゲート電極膜, 11はゲート電極, 12はリセス
上の絶縁膜下に形成された空洞である。
1 (a) to 1 (f) are explanatory views of an embodiment of the present invention. In FIG. 1, 1 is a semiconductor substrate, 2 is GaAs
Cap layer, 3 source / drain electrodes, 4 positive photoresist pattern for forming gate window, 5 first layer SiO 2 film, 6 second layer SiO 2 film, 7 gate electrode film Positive photoresist pattern for lift-off, 8 is the final insulating film, 9 is the gate opening window, 10 is the gate electrode film on the resist film, 11 is the gate electrode, 12 is under the insulating film on the recess. It is the formed cavity.

【0034】図1(a) において,半導体基板 1はイオン
注入法により素子分離を行ったものを用い, ゲートを形
成する領域のキャップ層 2の上全面に, 厚さ 0.3μmの
第1層目のSiO2膜 5を成長し, 素子領域上の所定の位置
にソースドレイン電極 3を形成する。
In FIG. 1 (a), a semiconductor substrate 1 is used which has been subjected to element isolation by an ion implantation method, and a 0.3 μm-thick first layer is formed on the entire surface of the cap layer 2 in a region where a gate is formed. A SiO 2 film 5 is grown to form a source / drain electrode 3 at a predetermined position on the device region.

【0035】次に, ゲート窓形成の第1段階として, 開
口寸法が 0.4μm程度のレジストパターン 4を形成し,
それをマスクにしてSiO2膜 5をドライエッチングする。
図1(b)において,レジストパターン 4を除去する。
Next, as the first step of forming the gate window, a resist pattern 4 having an opening size of about 0.4 μm is formed,
Using this as a mask, the SiO 2 film 5 is dry-etched.
In FIG. 1 (b), the resist pattern 4 is removed.

【0036】次いで, 厚さ0.4 μm程度の第2層目のSi
O2膜 6を成長する。図1(c) において,反応性イオンエ
ッチング(RIE) により,半導体表面が露出するまで異方
性エッチングを行う。この工程で上部開口寸法が約 0.6
μmで下部開口寸法が約 0.2μmの, 開口断面が開口に
向かって凸 (上に凸) の曲線を持つゲート開口窓 9が得
られる。その曲線の半導体表面となす角は約65°であ
る。
Next, the Si of the second layer having a thickness of about 0.4 μm
O 2 film 6 is grown. In Fig. 1 (c), anisotropic etching is performed by reactive ion etching (RIE) until the semiconductor surface is exposed. The upper opening size is about 0.6 in this process.
A gate opening window 9 is obtained which has a lower opening size of about 0.2 μm and a curve whose opening cross section is convex (convex upward) toward the opening. The angle between the curve and the semiconductor surface is about 65 °.

【0037】次いで, ゲート電極膜のリフトオフ用のポ
ジ型フォトレジストパターン 7を形成する。図1(d) に
おいて,ゲート開口窓 9を通して, GaAsキャップ層 2を
異方性を弱くしたドライエッチングにより, 所望の深さ
までエッチングする。
Next, a positive photoresist pattern 7 for lift-off of the gate electrode film is formed. In FIG. 1 (d), the GaAs cap layer 2 is etched through the gate opening window 9 to a desired depth by dry etching with weakened anisotropy.

【0038】このドライエッチングは, 装置の構成, ガ
スの選択, ガス圧力, 投入電力等の諸条件を最適化して
行った。この最適化を行うにあたり,上に凸の曲線状の
開口形状はエッチングガスのラジカル密度を高めるため
の一つの要素であり,異方性を弱くすることによりサイ
ドエッチングを行いリセスを形成している。
This dry etching was performed by optimizing various conditions such as the configuration of the apparatus, gas selection, gas pressure, and input power. In performing this optimization, the upward convex curved opening shape is one factor for increasing the radical density of the etching gas, and side etching is performed by weakening the anisotropy to form the recess. .

【0039】このようにして, エッチングのマスクとな
った絶縁膜をリセス部上方に庇状に残し, 空洞12を形成
することができる。次に,ゲート開口窓を形成するため
のエッチング条件の一例を示す。
In this manner, the cavity 12 can be formed by leaving the insulating film, which serves as an etching mask, in the form of an eaves above the recess. Next, an example of etching conditions for forming the gate opening window is shown.

【0040】 反応ガス: CCl2F2 30 SCCM + He 60 SCCM ガス圧力: 4.0 Pa RF電力: 70 W 基板温度: 38℃ 図1(e) において,ゲート電極膜10, 11として, アルミ
ニウム(Al)膜を成膜し,レジストパターン 7上の不要な
アルミニウム膜10をリフトオフしてゲート電極11を形成
する。
Reaction gas: CCl 2 F 2 30 SCCM + He 60 SCCM Gas pressure: 4.0 Pa RF power: 70 W Substrate temperature: 38 ° C. In FIG. 1 (e), aluminum (Al) was used as the gate electrode films 10 and 11. A film is formed, and unnecessary aluminum film 10 on resist pattern 7 is lifted off to form gate electrode 11.

【0041】図1(f) はゲート電極部の拡大図である。
完成したゲート電極の断面形状はT型をしており,空洞
12は半導体表面, キャップ層の側壁, 庇状絶縁膜及びゲ
ート電極側壁に囲まれており,また, 空洞は絶縁膜のゆ
るやかな曲線状の側壁とゲート電極との密着により気密
封止されている。
FIG. 1 (f) is an enlarged view of the gate electrode portion.
The sectional shape of the completed gate electrode is T-shaped,
12 is surrounded by the semiconductor surface, the side wall of the cap layer, the eaves-shaped insulating film, and the side wall of the gate electrode, and the cavity is hermetically sealed by the close contact between the gently curved side wall of the insulating film and the gate electrode. .

【0042】次に, HEMT素子の他の実施の形態について
説明する。前記実施の形態と同様に, 絶縁膜にゆるやか
な曲線状の側壁を持つ開口部を形成後, リフトオフ用の
レジストパターンの形成は行わず, キャップ層のオーバ
エッチングによるリセス構造及び庇構造の形成を行う。
Next, another embodiment of the HEMT device will be described. Similar to the previous embodiment, after forming the opening with the gently curved side wall in the insulating film, the resist pattern for lift-off is not formed, and the recess structure and the eave structure are formed by overetching the cap layer. To do.

【0043】次いで, リセス部の半導体表面安定化のた
めに, 絶縁膜開口窓を通して光気相成長(CVD) 法により
窒化シリコン(Si3N4) 膜を薄く成長し,再度開口窓を持
つ絶縁膜をマスクにして,RIE で半導体表面のSi3N4
を除去し,ゲート窓を形成する。
Next, in order to stabilize the semiconductor surface of the recessed portion, a thin silicon nitride (Si 3 N 4 ) film is grown by a photo vapor deposition (CVD) method through an insulating film opening window, and an insulating window having an opening window is formed again. Using the film as a mask, the Si 3 N 4 film on the semiconductor surface is removed by RIE to form a gate window.

【0044】次いで, マグネトロンスパッタ法により,
ゲート電極となるWSi 膜を全面に被着し,半導体の損傷
除去のための熱処理を行った後, WSi 膜上に金(Au)系の
ゲート電極パターンを形成し,他の不要なWSi 膜をエッ
チング除去し,本発明によるゲート電極構造の素子を作
製した。
Next, by the magnetron sputtering method,
After depositing the WSi film to be the gate electrode on the entire surface and performing heat treatment for removing the semiconductor damage, a gold (Au) -based gate electrode pattern is formed on the WSi film and other unnecessary WSi film is formed. After removal by etching, a device having a gate electrode structure according to the present invention was manufactured.

【0045】上記の工程でポジ型フォトレジストパター
ン 7の形成において,上層には高解像度タイプ(例え
ば,東京応化製のTSMR-V50) を, 下層には高感度タイプ
(例えば,東京応化製のOFPR7450) を用いた2層レジス
ト構造とし,縮小投影露光装置で露光し,現像して,図
示のような狭い入口と広い底部を持つ,リフトオフに適
した断面形状にすることができる。
In the formation of the positive photoresist pattern 7 in the above process, a high resolution type (for example, TSMR-V50 manufactured by Tokyo Ohka) is used as the upper layer and a high sensitivity type is used as the lower layer.
(For example, OFPR7450 manufactured by Tokyo Ohka Co., Ltd.) is used as a two-layer resist structure, exposed by a reduction projection exposure apparatus, and developed to have a sectional shape suitable for lift-off with a narrow entrance and a wide bottom as shown. be able to.

【0046】以上二つの実施の形態に示した素子は実施
の形態のHEMTに比べて, 同等もしくはそれ以上の素子特
性を有していた。本発明のゲート電極構造を実現するプ
ロセスは, 上記の実施の形態に限らない。また, 素子形
成もHEMTに限らず他の短チャネル素子であっても本発明
は有効である。
The devices shown in the above two embodiments had device characteristics equivalent to or higher than those of the HEMTs of the embodiments. The process for realizing the gate electrode structure of the present invention is not limited to the above embodiment. Moreover, the present invention is effective not only for HEMT formation but also for other short channel elements.

【0047】[0047]

【発明の効果】本発明による樹脂封止した短チャネルト
ランジスタは, 寄生容量の増加は無く, μ波帯で高い利
得と低い雑音指数を持ち, 温度サイクル試験, 高温通電
試験,高温耐湿試験に製品として十分な性能を維持でき
る高信頼の素子を得ることができる。
The resin-encapsulated short-channel transistor according to the present invention has no increase in parasitic capacitance, has a high gain and a low noise figure in the μ-wave band, and is suitable for temperature cycle tests, high-temperature current tests, and high-temperature humidity resistance tests. As a result, a highly reliable element capable of maintaining sufficient performance can be obtained.

【0048】また,従来硬化なメタルパッケージのみで
実用化されてきたHEMT素子を安価なモールドパッケージ
で供給できるようになる。この結果, 短チャネルFET の
より広い応用分野がミリ波帯まで開拓できる。
Further, it becomes possible to supply the HEMT element which has been put to practical use only with a hardened metal package in the past with an inexpensive mold package. As a result, wider application fields of short-channel FETs can be developed into the millimeter wave band.

【0049】また,本発明は, μ波用素子に限らず, 高
速論理回路素子にも応用でき, さらに素子単体のモール
ド化にとどまらず, 短チャネル素子を含む半導体装置の
モールドパッケージ化に応用できる。
Further, the present invention can be applied not only to the μ-wave device but also to a high-speed logic circuit device, and can be applied not only to the molding of a single device but also to the molding packaging of a semiconductor device including a short channel device. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態の説明図FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】 従来のゲート電極の断面図(1)FIG. 2 is a sectional view of a conventional gate electrode (1)

【図3】 プロセスの従来例の説明図(1)[Figure 3] Illustration of the conventional example of the process (1)

【図4】 従来例の問題点の説明図(1)FIG. 4 is an explanatory diagram of the problems of the conventional example (1)

【図5】 従来のゲート電極の断面図(2)FIG. 5 is a sectional view of a conventional gate electrode (2)

【図6】 プロセスの従来例の説明図(2)[Figure 6] Illustration of the conventional example of the process (2)

【図7】 従来例の問題点の説明図(2)FIG. 7 is an explanatory diagram of problems of the conventional example (2)

【図8】 本発明の作用の説明図FIG. 8 is an explanatory diagram of the operation of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 GaAsキャップ層 3 ソースドレイン電極 4 ゲート窓形成のためのポジ型フォトレジストパター
ン 5 第1層目のSiO2膜 6 第2層目のSiO2膜 7 ゲート電極膜のリフトオフ用のポジ型フォトレジス
トパターン 8 最終形状になった絶縁膜 9 ゲート開口窓 10 レジスト膜上のゲート電極膜 11 ゲート電極 12 リセス上の絶縁膜下に形成された空洞
1 semiconductor substrate 2 GaAs cap layer 3 source / drain electrode 4 positive photoresist pattern for gate window formation 5 first layer SiO 2 film 6 second layer SiO 2 film 7 positive for lift-off of gate electrode film -Type photoresist pattern 8 Insulation film in final shape 9 Gate opening window 10 Gate electrode film on resist film 11 Gate electrode 12 Cavity formed under insulation film on recess

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体からなる素子形成層上に被着され
た半導体からなるキャップ層上に絶縁膜を形成する工程
と,次いで,開口の断面形状が該開口に対して凸の曲線
を有し且つ上方に向かって広がったゲート開口窓を該絶
縁膜に形成する工程と,次いで,該絶縁膜をエッチング
マスクにして該ゲート開口窓を通して該キャップ層をエ
ッチングし,続いてオーバエッチングして該絶縁膜の下
側の該キャップ層をサイドエッチングしてリセスを形成
する工程と,次いで,該ゲート開口窓を覆ってゲート電
極膜を被着し,ゲート電極を形成するとともに,該素子
形成層表面と該キャップ層の側面と該絶縁膜と該ゲート
電極とで空洞を形成する工程とを含むことを特徴とする
半導体装置の製造方法。
1. A step of forming an insulating film on a cap layer made of a semiconductor, which is deposited on an element forming layer made of a semiconductor, and then the cross-sectional shape of the opening has a convex curve with respect to the opening. And forming a gate opening window that expands upward in the insulating film, and then etching the cap layer through the gate opening window using the insulating film as an etching mask, followed by overetching the insulating layer. A step of side-etching the cap layer on the lower side of the film to form a recess, and then depositing a gate electrode film to cover the gate opening window to form a gate electrode, and to form a surface of the element forming layer. A method of manufacturing a semiconductor device, comprising: forming a cavity between the side surface of the cap layer, the insulating film, and the gate electrode.
【請求項2】 前記ゲート開口窓の断面形状の曲線と前
記絶縁膜の厚さの中心線との交点における該曲線の接線
と前記素子形成層表面となす角が50〜75°であり,該絶
縁膜の厚さが 0.2μmを越えることを特徴とする請求項
1記載の半導体装置の製造方法。
2. An angle between a tangent to the curve of the cross-sectional shape of the gate opening window and the center line of the thickness of the insulating film and the surface of the element forming layer is 50 to 75 °, and The method of manufacturing a semiconductor device according to claim 1, wherein the thickness of the insulating film exceeds 0.2 μm.
【請求項3】 前記絶縁膜が2層からなり,下層絶縁膜
を被着後,開口を設け,該開口を含んで上層絶縁膜を被
着し,ドライエッチングを行って前記ゲート開口窓を形
成することを特徴とする請求項1記載の半導体装置の製
造方法。
3. The insulating film comprises two layers, an opening is provided after depositing a lower insulating film, an upper insulating film is deposited including the opening, and dry etching is performed to form the gate opening window. The method for manufacturing a semiconductor device according to claim 1, wherein
【請求項4】 前記絶縁膜に前記ゲート開口窓を形成す
る際に,上層には高解像度タイプのレジスト膜を, 下層
には高感度タイプのレジスト膜を成膜した2層構造のレ
ジスト膜を用いて露光することを特徴とする請求項1記
載の半導体装置の製造方法。
4. When forming the gate opening window in the insulating film, a high-resolution type resist film is formed as an upper layer, and a high-sensitivity type resist film is formed as a lower layer in a two-layer structure resist film. The method of manufacturing a semiconductor device according to claim 1, wherein the exposure is performed.
【請求項5】 請求項1に記載された方法を含んで製造
されたことを特徴とする半導体装置。
5. A semiconductor device manufactured by including the method according to claim 1. Description:
JP14592096A 1996-06-07 1996-06-07 Semiconductor device and its manufacture Pending JPH09330937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14592096A JPH09330937A (en) 1996-06-07 1996-06-07 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14592096A JPH09330937A (en) 1996-06-07 1996-06-07 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH09330937A true JPH09330937A (en) 1997-12-22

Family

ID=15396145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14592096A Pending JPH09330937A (en) 1996-06-07 1996-06-07 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH09330937A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998695B2 (en) 2002-08-29 2006-02-14 Fujitsu Limited Semiconductor device having a mushroom gate with hollow space
JP2007242652A (en) * 2006-03-06 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> Process for fabricating semiconductor device
US8803198B2 (en) 2005-03-15 2014-08-12 Cree, Inc. Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998695B2 (en) 2002-08-29 2006-02-14 Fujitsu Limited Semiconductor device having a mushroom gate with hollow space
US8803198B2 (en) 2005-03-15 2014-08-12 Cree, Inc. Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions
JP2007242652A (en) * 2006-03-06 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> Process for fabricating semiconductor device

Similar Documents

Publication Publication Date Title
KR100620393B1 (en) Field effect transistor and a method for manufacturing the same
JPS5950567A (en) Manufacture of field effect transistor
JPH06140440A (en) Semiconductor device and its manufacture
JPH06196506A (en) Manufacture of field effect transistor
US6153499A (en) Method of manufacturing semiconductor device
JPH09330937A (en) Semiconductor device and its manufacture
JPH0794642A (en) Semiconductor device
JP3189779B2 (en) Method for manufacturing semiconductor device
JPH08153833A (en) Manufacturing method of semiconductor device
JPH0228255B2 (en) HANDOTAISOCHI
JPH0472381B2 (en)
JP4245689B2 (en) Manufacturing method of semiconductor device
JP3144089B2 (en) Method for manufacturing field effect transistor
JPS6129557B2 (en)
JPH0329328A (en) Semiconductor device and its manufacture
JP2004055677A (en) Gate electrode of field effect transistor and methodof manufacturing the same
JP2798041B2 (en) Method for manufacturing semiconductor device
JPS58159381A (en) Semiconductor device
JP3226808B2 (en) Method of manufacturing an integrated circuit chip
JP2904094B2 (en) Method for manufacturing semiconductor device
JP2001217258A (en) Semiconductor device and its manufacturing method
JPH0653246A (en) Manufacture of field effect transistor
JPS6039875A (en) Manufacture of semiconductor device
JPS63137481A (en) Manufacture of semiconductor device
JPH06244237A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040309

Free format text: JAPANESE INTERMEDIATE CODE: A02