JPH087443B2 - High resolution positive type radiation sensitive resist - Google Patents
High resolution positive type radiation sensitive resistInfo
- Publication number
- JPH087443B2 JPH087443B2 JP62305480A JP30548087A JPH087443B2 JP H087443 B2 JPH087443 B2 JP H087443B2 JP 62305480 A JP62305480 A JP 62305480A JP 30548087 A JP30548087 A JP 30548087A JP H087443 B2 JPH087443 B2 JP H087443B2
- Authority
- JP
- Japan
- Prior art keywords
- resist
- copolymer
- sensitive resist
- high resolution
- sensitivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般式(I)で表わされるモノマーと、架橋
性α−シアノアクリル酸エステルとの単分散共重合体を
主剤としたポジ型高感度高解像度、放射線感応性レジス
トに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is a positive-type high-polymerization agent containing a monodisperse copolymer of a monomer represented by the general formula (I) and a crosslinkable α-cyanoacrylic acid ester as a main component. It relates to a high-sensitivity, high-resolution, radiation-sensitive resist.
半導体集積回路の光学式露光の限界である0.5μm以
下のレベルのリソグラフィー技術として電子ビーム直接
描画,X線リソグラフィーさらには集束イオンビームによ
る露光技術が提案されており、既に実現化の段階を迎え
つつあるが、これに対応できるレジストの開発がおくれ
ている。これらレジスト材料には放射線を照射すること
により、架橋反応を起し、現像液に不溶化するネガ型と
放射線を照射することにより、レジストの主剤ポリマー
が主鎖分裂反応を起こし、低分子量化することにより現
像液に溶け易くなり照射領域のレジストが除かれるポジ
型がある。Electron beam direct writing, X-ray lithography, and focused ion beam exposure technology have been proposed as lithography technology at the level of 0.5 μm or less, which is the limit of optical exposure of semiconductor integrated circuits, and they are already at the stage of realization. However, the development of a resist that can cope with this is delayed. By irradiating these resist materials with radiation, a cross-linking reaction occurs, and by irradiating with a negative type that becomes insoluble in the developing solution, the main polymer of the resist undergoes a main chain splitting reaction to lower the molecular weight. Therefore, there is a positive type in which the resist is easily dissolved in the developing solution and the resist in the irradiation region is removed.
ネガ型レジストの特徴は高感度で、耐エッチング性に
優れているが、解像度が低いことである。The features of the negative resist are high sensitivity and excellent etching resistance, but low resolution.
これに対し、ポジ型レジストの特徴は解像度は高い
が、耐エッチング性と感度が劣ることである。On the other hand, the positive resist is characterized by high resolution but poor etching resistance and sensitivity.
最近、半導体集積回路の高集積化への産業界の欲求は
ますますエスカレートして来ており、高感度で生産性の
優れたネガ型レジストも、その低解像度の故に、後退を
余儀なくされ、ポジ型レジストが主流となって来てい
る。Recently, the industry's desire for high integration of semiconductor integrated circuits has been escalated more and more, and negative resists with high sensitivity and excellent productivity have been forced to recede because of their low resolution. Mold resists have become mainstream.
ポジ型レジストの代表的主剤ポリマーにはポリメチル
メタクリレート(P−MMA)があり、その解像度は0.3〜
0.5μmと云われているが、電子ビームに対する感度が
5×10-5C/cm2と極めて低く、その上、耐エッチング性
もネガ型レジストに比べて劣り、実用レジストには程遠
い。Polymethylmethacrylate (P-MMA) is a typical base polymer for positive resist, and its resolution is 0.3-
Although it is said to be 0.5 μm, the sensitivity to electron beam is extremely low at 5 × 10 −5 C / cm 2, and the etching resistance is inferior to that of the negative resist, which is far from a practical resist.
ホジ型レジストはその解像度に比べ、従来開発されて
いるレジストの大半が感度と耐エッチング性が劣り、性
能的バランスを欠くため、集中的に検討されている。Most of the conventionally developed resists have poor sensitivity and etching resistance compared to the resolution, and lack of balance in performance, so they are being studied intensively.
これらの感度の改善の為めに提案されている多くが、
Cl,Br,F,S,O,Nなどの電子吸引基の導入によるものであ
り、一例を挙げれば、ポリへキサフルオロブチルメタク
リレート,ポリトリクロロエチルメタクリレート,ポリ
ブテン−1スルホン,ポリトリフルオロエチルα−クロ
ロアクリレート,ノボラック−ポリ2−メチルペンテン
−1スルホン混合物などがあるが、耐ドライエッチング
性を低下させないで、感度を改善し得たケースは少な
い。一方、耐エッチング性の改善にはレジスト主剤ポリ
マーの側鎖に、 ベンゼン環の導入 架橋基の導入 分子量の大きなアルキル基の導入 ラジカル捕捉剤の添加 などが提案されているが、感度の低下を招くケースが多
い。Many proposed for improving these sensitivity,
This is due to the introduction of electron withdrawing groups such as Cl, Br, F, S, O, N. As an example, polyhexafluorobutyl methacrylate, polytrichloroethyl methacrylate, polybutene-1 sulfone, polytrifluoroethyl α -Chloroacrylate, novolac-poly-2-methylpentene-1 sulfone mixture and the like are available, but there are few cases where the sensitivity can be improved without lowering the dry etching resistance. On the other hand, it has been proposed to improve the etching resistance by introducing a benzene ring into the side chain of the resist base polymer, introducing a cross-linking group, introducing an alkyl group with a large molecular weight, and adding a radical scavenger, but this leads to a decrease in sensitivity. There are many cases.
解像度の改善にはネガ型レジストでは、スチレン,P−
ジメチルアミノメチルスチレン,イソプレンなどをアル
キルリチウムなどのアニオン重合開始剤を使用して、単
分散ポリマーを合成し、解像度が顕著に向上することが
報告されている。To improve resolution, use styrene, P- for negative resist.
It is reported that dimethylaminomethylstyrene, isoprene and the like are used to synthesize a monodisperse polymer by using an anionic polymerization initiator such as alkyllithium and the resolution is remarkably improved.
本発明は、既に述べた一般式(I)で表されるモノマ
ー群のうちの一種以上と、架橋性α−シアノアクリル酸
エステルよりなる単分散共重合体を架橋させることによ
り、例えば耐エッチング性の優れた64メガビットD−RA
M以降の大規模集積回路用レジスト組成物を提供するこ
とを目的としている。The present invention comprises, for example, etching resistance by cross-linking one or more of the monomer group represented by the general formula (I) described above and a monodisperse copolymer composed of a crosslinkable α-cyanoacrylate ester. Excellent 64 Mbit D-RA
It is intended to provide a resist composition for a large-scale integrated circuit of M or later.
本発明は架橋基を分子内に保育するα−シアノアクリ
ル酸エステルと一般式(I) (ただし、式中のXは、CN,NO2,COOR,Yは、CN,H,COOR,R
はアルキル基及びハロゲン化アルキル基)のモノマーの
単分散共重合体を主剤とする組成物を放射線照射前又は
後に架橋させ、耐ドライエッチング性を向上させること
を特徴としている。The present invention relates to an α-cyanoacrylic acid ester having a crosslinking group in the molecule and a compound of the general formula (I) (However, X in the formula is CN, NO 2 , COOR, Y is CN, H, COOR, R
Is characterized in that a composition containing a monodisperse copolymer of monomers of an alkyl group and a halogenated alkyl group as a main component is crosslinked before or after irradiation with radiation to improve dry etching resistance.
α−/シアノアクリル酸エステル及び一般式(I)の
ポリマーは、その分子内に電子吸引基CN,N,OおよびCl,
F,Brなどのハロゲン元素を保有し、放射線に対し、すぐ
れた感応性を持っており、これらによって構成される共
重合体は相乗効果により感度上昇が可能となり、その
上、これらの共重合体は極めて易分解性であるばかりで
なく、すぐれた単分散共重合体を形成するので、解像度
が大幅に向上できる。また、耐エッチング性は架橋性基
を側鎖にもつα−シアノアクリル酸エステルを採用する
ことにより改善できる。The α- / cyanoacrylic acid ester and the polymer of the general formula (I) have electron withdrawing groups CN, N, O and Cl, in the molecule.
It possesses halogen elements such as F and Br and has excellent sensitivity to radiation, and the copolymers composed of these elements can increase the sensitivity due to the synergistic effect. Not only is extremely easily degradable, but also forms an excellent monodisperse copolymer, so that the resolution can be greatly improved. Further, the etching resistance can be improved by adopting an α-cyanoacrylic acid ester having a crosslinkable group in the side chain.
本発明で用いられる側鎖に架橋性基を有するα−シア
ノアクリル酸エステルは次式で表わされる。The α-cyanoacrylic acid ester having a crosslinkable group in the side chain used in the present invention is represented by the following formula.
ただし、式中のRは、アルコキシアルキル基,ヒドロキ
シアルキル基,アリル基,アルキニル基などの架橋性基
であり、具体的には、α−シアノアクリル酸2−メトキ
シエチル,α−シアノアクリル酸2−ヒドロキシエチ
ル,α−シアノアクリル酸プロパギル,α−シアノアク
リル酸アリルなどである。 However, R in the formula is a crosslinkable group such as an alkoxyalkyl group, a hydroxyalkyl group, an allyl group and an alkynyl group, and specifically, 2-methoxyethyl α-cyanoacrylate, α-cyanoacrylic acid 2 -Hydroxyethyl, propargyl α-cyanoacrylate, allyl α-cyanoacrylate and the like.
これに対応する一般式(I)のモノマーは、例えば、
ビニリデンシアニド,ニトロエチレン,メチレンマロン
酸ジエチルなどである。Corresponding monomers of general formula (I) are, for example:
Examples include vinylidene cyanide, nitroethylene, and diethyl methylene malonate.
これらのモノマーは通常の合成法で得られたもので良
く,アニオン重合抑制剤を混入したままで良い。These monomers may be those obtained by a usual synthetic method, and the anionic polymerization inhibitor may be left mixed therein.
以上の共重合体は通常、分子量が2万〜200万である
が、好ましくは20万〜100万のものが使用される。The above copolymers usually have a molecular weight of 20,000 to 2,000,000, but preferably 200,000 to 1,000,000 are used.
本発明によるポジ型レジスト材料は64メガビットD−
RAM以降の半導体大規模集積回路製造の際の電子ビー
ム、X線リソグラフィー工程におけるような超高密度彫
刻に適するものであり、加工精度の大幅な向上とラティ
チュードの広い回路設計を保証するとともにその放射線
に対する極めて高い感度はX線リソグラフィー工程にお
ける高い生産性とコスト低減に大きな効果をもたらすも
のである。以下、この発明の実施例を示すが、電子線も
X線リソグラフィーに使用される軟X線(波長4〜10
Å)も物質に及ぼす化学作用は同じであり、レジストの
電子線に対する感度とX線に対する感度とは比例関係
(例えば10-7C/cm2=10mJ/cm2)にあることが、Proc In
ternational Conf.Microlithography,Paris,July,261
(1977)等で公知になっているので、煩雑を避けるた
め、電子線照射による結果を実施例とするとにした。こ
の発明はこれらの実施例に限定されるものでないことは
云うまでもない。The positive resist material according to the present invention is 64 Mbit D-
It is suitable for electron beam and ultra-high-density engraving in the X-ray lithography process when manufacturing large-scale integrated circuits of semiconductors after RAM, and guarantees a large improvement in processing accuracy and a wide latitude circuit design, and its radiation. The extremely high sensitivity to X-ray greatly contributes to high productivity and cost reduction in the X-ray lithography process. Examples of the present invention will be shown below, but electron beams are also used for soft X-rays (wavelengths 4 to 10
Å) also has the same chemical action on the substance, and the sensitivity of the resist to electron beam and X-ray has a proportional relationship (eg 10 −7 C / cm 2 = 10 mJ / cm 2 ).
ternational Conf.Microlithography, Paris, July, 261
(1977) and the like, the result obtained by electron beam irradiation is used as an example in order to avoid complication. Needless to say, the present invention is not limited to these embodiments.
以下、実施例を挙げて本発明を更に説明する。 Hereinafter, the present invention will be further described with reference to examples.
実施例1 アニオン重合開始剤チオセミカルバジド5×10-5モル
を含む700mlのアセトン溶液をフラスコ内に導入し、フ
ラスコ内を−60℃に冷却した。この系内を十分かきまぜ
ながら、アニオン重合抑制剤SO250ppmを含むα−シアノ
アクリル酸プロパギル0.01モルを含有する100mlのアセ
トン溶液を系内温度を−60℃以下に保ちつつ、徐々に加
えて反応させ、得られたリビングポリマーに、アニオン
重合抑制剤SO2を50ppm含むビニリデンシアニド0.09モル
を含有する100mlのアセトン溶液を系内温度−60℃以下
に保ち十分かきまぜながら加えて、共重合反応を進め、
アニオン重合停止剤を加えて反応を停止させた。Example 1 700 ml of an acetone solution containing 5 × 10 −5 mol of anionic polymerization initiator thiosemicarbazide was introduced into the flask, and the inside of the flask was cooled to −60 ° C. While sufficiently stirring the system, 100 ml of an acetone solution containing 0.01 mol of α-cyanoacrylate propargyl containing 50 ppm of anionic polymerization inhibitor SO 2 was gradually added to the reaction while maintaining the system temperature at -60 ° C or lower. Then, to the living polymer obtained, 100 ml of an acetone solution containing 0.09 mol of vinylidene cyanide containing 50 ppm of an anionic polymerization inhibitor SO 2 is added with sufficient stirring while keeping the system temperature at −60 ° C. or lower to carry out the copolymerization reaction. Proceed,
The reaction was stopped by adding an anionic polymerization terminator.
この共重合体を再沈澱法により精製し、ゲルパーミエ
ーシヨンクロマトグラフィー(GPC)−光散乱法で分子
量を測定したところ、分子量は20.7万で、その分散度
(w/n)=1.05であった。This copolymer was purified by the reprecipitation method, and the molecular weight was measured by gel permeation chromatography (GPC) -light scattering method. The molecular weight was 207,000, and the dispersity (w / n) was 1.05. It was
この共重合体の5重量%シクロヘキサノン溶液に熱架
橋剤を添加してレジストを調製した。このレジストを回
転塗布法により0.5μm厚の熱酸化シリコン層上に塗布
して、0.43μmの膜厚の共重合体膜を得た。これを150
℃、30分、熱処理し熱架橋後、加速電圧10KV,4×10-7C/
cm2の電子線を所定パターンに従ってレジスト膜面に照
射した。続いて、これを大気中に取出して、25℃のシク
ロヘキサノンとメチルイソブチルケトンの1:2の現像液
に3分間浸漬することによって現像し、イソプロピルア
ルコールでリンスし乾燥させた。次いで、130℃30分間
加熱処理(ポストベーク)した。このレジスト膜をCF4
−反応性イオンエッチング装置で、CF4+5% O2 10SC
CM 60mtorr、印加パワー13.56MHz、150Wの条件でエッチ
ングしたところ、P−MMAのエッチングレートは750Å/m
inであったのに対し、このレジスト膜のエッチングレー
トは480Å/minで、P−MMAより優れた耐性を示した。な
お、この系の反応性イオンエッチング装置(R1E)によ
るエッチング結果の走査型電子顕微鏡(SEM)観察結
果、0.3μmの直線状パターンの形成を確認した。A resist was prepared by adding a thermal crosslinking agent to a 5 wt% cyclohexanone solution of this copolymer. This resist was coated on a 0.5 μm thick thermally-oxidized silicon layer by a spin coating method to obtain a copolymer film having a thickness of 0.43 μm. 150 this
After heat treatment and thermal crosslinking for 30 minutes at ℃, acceleration voltage 10KV, 4 × 10 -7 C /
The resist film surface was irradiated with an electron beam of cm 2 according to a predetermined pattern. Then, this was taken out into the air, and developed by immersing it in a developing solution of cyclohexanone and methyl isobutyl ketone of 1: 2 at 25 ° C. for 3 minutes, rinsed with isopropyl alcohol and dried. Then, heat treatment (post-baking) was performed at 130 ° C. for 30 minutes. This resist film is CF 4
- a reactive ion etching apparatus, CF 4 + 5% O 2 10SC
Etching under the conditions of CM 60mtorr, applied power 13.56MHz, 150W, the etching rate of P-MMA is 750Å / m.
In contrast to this, the etching rate of this resist film was 480 Å / min, which was superior to P-MMA. The scanning electron microscope (SEM) observation of the etching result by the reactive ion etching system (R1E) of this system confirmed the formation of a linear pattern of 0.3 μm.
注:実施例、及び比較例中のポリマーの分子量測定はい
ずれもGPC−光散乱法によった。Note: The molecular weights of polymers in Examples and Comparative Examples were measured by GPC-light scattering method.
実施例2 α−シアノアクリル酸プロパギルとニトロエチレンの
モル比1:9の単分散共重合体を実施例1に準じて低温ア
ニオン重合法により得たが、その分子量は18.9万、その
分散度(w/n)=1.04であった。この5重量%シク
ロヘキサノン溶液を作り、これに熱架橋剤を添加してレ
ジストを調製した。このレジストを回転塗布法により0.
5μm厚の熱酸化シリコン層上に塗布し、0.4μmの膜厚
の共重合体膜を得た。これを実施例1に準じて、熱架橋
・電子線照射・現像・リンス・乾燥・ポストベークを行
った。このレジスト膜を実施例1と同一条件でエッチン
グをしたところ、このレジスト膜のエッチングレートは
420Å/minで、P−MMAより優れた耐性を示した。この系
のRIEによる酸化シリコン層のパターニング結果をSEMに
より観察したところ、0.3μmの直線状パターンがシャ
ープに形成されていることが確認された。Example 2 A monodisperse copolymer of propargyl α-cyanoacrylate and nitroethylene in a molar ratio of 1: 9 was obtained by the low temperature anionic polymerization method according to Example 1, and its molecular weight was 189,000 and its degree of dispersion ( w / n) = 1.04. This 5 wt% cyclohexanone solution was prepared, and a thermal crosslinking agent was added thereto to prepare a resist. This resist is applied by spin coating method to 0.
It was applied on a thermally oxidized silicon layer having a thickness of 5 μm to obtain a copolymer film having a thickness of 0.4 μm. According to Example 1, this was subjected to thermal crosslinking, electron beam irradiation, development, rinsing, drying, and post-baking. When this resist film was etched under the same conditions as in Example 1, the etching rate of this resist film was
At 420 Å / min, it showed better resistance than P-MMA. When the result of patterning the silicon oxide layer by RIE of this system was observed by SEM, it was confirmed that a 0.3 μm linear pattern was sharply formed.
実施例3 α−シアノアクリル酸アリルとメチレンマロン酸ジエ
チルのモル比1:9の単分散共重合体を実施例1に準じ低
温アニオン重合法により得たが、その分子量は34.4万、
分散度(w/n)=1.05であった。Example 3 A monodisperse copolymer of allyl α-cyanoacrylate and diethyl methylenemalonate in a molar ratio of 1: 9 was obtained by the low temperature anionic polymerization method according to Example 1, and its molecular weight was 344,000.
The dispersity (w / n) was 1.05.
このポリマーの5重量%シクロヘキサノン溶液を作
り、これに紫外線架橋剤を添加してレジストを調製し
た。このレジストを回転塗布法により0.5μm厚の熱酸
化シリコン層上に塗布して、膜厚0.54μmの共重合体膜
を得た。これを実施例1に準じて、プリベーク・紫外線
架橋・電子線照射・現像・リンスし、乾燥後、ポストベ
ークした。A 5 wt% cyclohexanone solution of this polymer was prepared, and an ultraviolet crosslinking agent was added thereto to prepare a resist. This resist was applied on a thermally oxidized silicon layer having a thickness of 0.5 μm by a spin coating method to obtain a copolymer film having a thickness of 0.54 μm. This was prebaked, crosslinked with ultraviolet rays, irradiated with an electron beam, developed, rinsed, dried, and postbaked according to Example 1.
このレジスト膜を実施例1の条件でエッチングしたと
ころ、このレジスト膜のエッチングレートは440Å/min
で、P−MMAより優れた耐性を示した。When this resist film was etched under the conditions of Example 1, the etching rate of this resist film was 440 Å / min.
, The resistance was superior to that of P-MMA.
なお、この系のRIEによる酸化シリコン層のパターン
ニング結果は実施例1同様0.3μmの直線状パターンが
良好な状態で形成されているのが、SEMにより観察され
た。As a result of patterning the silicon oxide layer by RIE of this system, it was observed by SEM that a linear pattern of 0.3 μm was formed in a good state as in Example 1.
実施例4 α−シアノアクリル酸2−ヒドロキシエチルとメチレ
ンマロン酸ジメチルのモル比3:7の単分散共重合体を実
施例1に準じ低温アニオン重合法により得たが、その分
子量は35.1万、分散度(w/n)=1.04であった。こ
の5重量%シクロヘキサノン溶液を作り、これに熱架橋
剤を添加してレジストを調製した。このレジストを回転
塗布法により、0.5μm厚の熱酸化シリコン層上に塗布
し、0.56μmの膜厚の共重合体膜を得た。この膜を実施
例1に準じて熱架橋・電子線照射・現像・リンス・乾
燥、ポストベークを行なった。Example 4 A monodisperse copolymer of 2-hydroxyethyl α-cyanoacrylate and dimethyl methylenemalonate in a molar ratio of 3: 7 was obtained by the low temperature anionic polymerization method according to Example 1, and its molecular weight was 351,000. The dispersity (w / n) was 1.04. This 5 wt% cyclohexanone solution was prepared, and a thermal crosslinking agent was added thereto to prepare a resist. This resist was applied on the thermally oxidized silicon layer having a thickness of 0.5 μm by a spin coating method to obtain a copolymer film having a thickness of 0.56 μm. This film was subjected to thermal crosslinking, electron beam irradiation, development, rinsing, drying, and post-baking according to Example 1.
このレジスト膜を実施例1の条件でエッチングしたと
ころ、このレジスト膜のエッチングレートは470Å/min
で、P−MMAより優れた耐性を示した。なお、このレジ
ストの解像度は0.3μmで、SEMによる観察によれば、シ
ャープなパターンエッジが確認された。When this resist film was etched under the conditions of Example 1, the etching rate of this resist film was 470 Å / min.
, The resistance was superior to that of P-MMA. The resolution of this resist was 0.3 μm, and a sharp pattern edge was confirmed by SEM observation.
比較例1 α−シアノアクリル酸トリフルオロエチルとメチレン
マロン酸ジエチルのモル比6:4の単分散共重合体を実施
例1に準じて低温アニオン重合法により得たが、その分
子量は36.1万、分散度(w/n)=1.04であった。こ
の5重量%シクロヘキサノン溶液を作り、回転塗布法に
より、0.5μm厚の熱酸化シリコン層上に塗布し、0.54
μmの膜厚の共重合体膜を得た。これを130℃、30分プ
リベークし、実施例1に準じて電子線照射・現像・リン
ス・ポストベークを行なった。このレジスト膜をエッチ
ングをしたところ、エッチングレートは885Å/minとP
−MMAより低い耐性を示した。Comparative Example 1 A monodisperse copolymer of trifluoroethyl α-cyanoacrylate and diethyl methylene malonate in a molar ratio of 6: 4 was obtained by the low temperature anionic polymerization method according to Example 1, and its molecular weight was 361,000. The dispersity (w / n) was 1.04. This 5 wt% cyclohexanone solution was prepared and applied by spin coating onto a 0.5 μm thick thermally oxidized silicon layer to give 0.54
A copolymer film having a thickness of μm was obtained. This was pre-baked at 130 ° C. for 30 minutes, and electron beam irradiation, development, rinsing and post-baking were performed according to Example 1. When this resist film was etched, the etching rate was 885Å / min and P
-Lower resistance than MMA.
この系のRIEによる酸化シリコン層のパターニング結
果をSEMで観察したところ、0.3μmのシャープな直線状
パターンの形成が確認された。When the patterning result of the silicon oxide layer by RIE of this system was observed by SEM, the formation of a 0.3 μm sharp linear pattern was confirmed.
比較例2 ビニリデンシアニド5部、α−シアノアクリル酸エチ
ル10部、酢酸3部、アゾビスイソブチロニトリル0.1部
をガラス封管に仕込み、窒素中50℃15時間重合させた。
これをエチルエーテル中にあけて、重合物を沈澱させ、
40℃で真空乾燥して白色粉末状の非単分散共重合体12.5
部を得た。この共重合体の分子量は29.3万であった。Comparative Example 2 5 parts of vinylidene cyanide, 10 parts of α-cyanoacrylate, 3 parts of acetic acid and 0.1 part of azobisisobutyronitrile were charged in a glass sealed tube and polymerized in nitrogen at 50 ° C. for 15 hours.
Pour this into ethyl ether to precipitate the polymer,
White powdery non-monodisperse copolymer 12.5 after vacuum drying at 40 ℃
I got a part. The molecular weight of this copolymer was 293,000.
この共重合体の5重量%のシクロヘキサン溶液を作
り、回転塗布法により、0.5μm厚の熱酸化シリコン層
上に塗布して0.51μmの厚さの共重合体膜を得た。これ
を130℃、30分加熱(プリベーク)後、実施例1に準じ
て、電子線照射・現像・リンス・乾燥・ポストベークを
行なった。このレジスト膜を実施例1に準じてエッチン
グしたところ、このレジストのエッチングレートは、85
0Å/minで実施例1と同様P−MMAより低い耐性を示し
た。また、RIEによりエッチングし、SEMにより観察した
ところ、0.5μmのパターンの形成が確認された。A 5 wt% cyclohexane solution of this copolymer was prepared and applied onto a 0.5 μm thick thermally oxidized silicon layer by a spin coating method to obtain a 0.51 μm thick copolymer film. After heating (pre-baking) this at 130 ° C. for 30 minutes, electron beam irradiation, development, rinsing, drying, and post-baking were carried out according to Example 1. When this resist film was etched according to Example 1, the etching rate of this resist was 85.
At 0Å / min, the resistance was lower than that of P-MMA as in Example 1. Further, etching by RIE and observation by SEM confirmed the formation of a 0.5 μm pattern.
以上、実施例1〜4と比較例1、2から、単分散ポリ
マーと架橋性α−シアノアクリル酸エステル及び増感モ
ノマー(一般式(I))の導入は、解像度と耐ドライエ
ッチング性及び感度の改善にクリチカルな効果のあるこ
とが明らかである。As described above, from Examples 1 to 4 and Comparative Examples 1 and 2, the introduction of the monodisperse polymer, the crosslinkable α-cyanoacrylic acid ester, and the sensitizing monomer (general formula (I)) resulted in resolution, dry etching resistance and sensitivity. It is clear that there is a critical effect on the improvement of
Claims (1)
Rで、Rはアルキル基またはハロゲン化アルキル基) で表されるモノマー群のうちの1種以上と、側鎖に架橋
性基を有する架橋性α−シアノアクリル酸エステルとを
反応させて得られる分散度(Mw/Mn)が1.05以下の単分
散共重合体を主剤とした高解像度ポジ型放射線感応性レ
ジスト。1. A general formula (I) (However, in the formula, X is CN, NO 2 , COOR, Y is CN, H, COO.
R, R is an alkyl group or a halogenated alkyl group) and is obtained by reacting one or more kinds of monomers represented by the following formula with a crosslinkable α-cyanoacrylic acid ester having a crosslinkable group in its side chain. High-resolution positive-working radiation-sensitive resist based on a monodisperse copolymer with a dispersity (Mw / Mn) of 1.05 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62305480A JPH087443B2 (en) | 1986-12-29 | 1987-12-01 | High resolution positive type radiation sensitive resist |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31422686 | 1986-12-29 | ||
JP61-314226 | 1986-12-29 | ||
JP62305480A JPH087443B2 (en) | 1986-12-29 | 1987-12-01 | High resolution positive type radiation sensitive resist |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63271253A JPS63271253A (en) | 1988-11-09 |
JPH087443B2 true JPH087443B2 (en) | 1996-01-29 |
Family
ID=26564313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62305480A Expired - Lifetime JPH087443B2 (en) | 1986-12-29 | 1987-12-01 | High resolution positive type radiation sensitive resist |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH087443B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9279022B1 (en) * | 2014-09-08 | 2016-03-08 | Sirrus, Inc. | Solution polymers including one or more 1,1-disubstituted alkene compounds, solution polymerization methods, and polymer compositions |
WO2013059479A2 (en) * | 2011-10-19 | 2013-04-25 | Bioformix Inc. | Methylene beta-diketone monomers, methods for making methylene beta-diketone monomers, polymerizable compositions and products formed therefrom |
US9249265B1 (en) | 2014-09-08 | 2016-02-02 | Sirrus, Inc. | Emulsion polymers including one or more 1,1-disubstituted alkene compounds, emulsion methods, and polymer compositions |
US10414839B2 (en) | 2010-10-20 | 2019-09-17 | Sirrus, Inc. | Polymers including a methylene beta-ketoester and products formed therefrom |
TW202428653A (en) * | 2022-10-11 | 2024-07-16 | 日商可樂麗股份有限公司 | Copolymer and resin composition containing copolymer |
WO2024085249A1 (en) * | 2022-10-21 | 2024-04-25 | 株式会社クラレ | Resin composition, and molded product and film using resin composition |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52132678A (en) * | 1976-04-28 | 1977-11-07 | Fujitsu Ltd | High-sensitive positive type electron beam formation |
JPS5934296B2 (en) * | 1976-06-16 | 1984-08-21 | 松下電器産業株式会社 | Electron beam resist and its usage |
JPS55105244A (en) * | 1979-02-06 | 1980-08-12 | Victor Co Of Japan Ltd | Electron beam resist |
JPS58108213A (en) * | 1981-12-22 | 1983-06-28 | Toagosei Chem Ind Co Ltd | Preparation of polymer of 2-cyanoacrylic acid ester |
JPS6045238A (en) * | 1983-08-23 | 1985-03-11 | Fujitsu Ltd | Positive type resist material and its preparation |
GB8333853D0 (en) * | 1983-12-20 | 1984-02-01 | Ciba Geigy Ag | Production of images |
-
1987
- 1987-12-01 JP JP62305480A patent/JPH087443B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63271253A (en) | 1988-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4011351A (en) | Preparation of resist image with methacrylate polymers | |
JPS6048022B2 (en) | electronic sensitive resist | |
KR100362937B1 (en) | Novel photoresist crosslinkers, photoresist polymers and photoresist compositions comprising them | |
US3770433A (en) | High sensitivity negative electron resist | |
JPH02170165A (en) | Radiation sensitive composition and pattern forming method using this composition | |
JPH087443B2 (en) | High resolution positive type radiation sensitive resist | |
JPH0119135B2 (en) | ||
JPH087441B2 (en) | Positive type high sensitivity radiation sensitive resist | |
JPH087442B2 (en) | Radiation sensitive resist | |
JPH0693122B2 (en) | Highly sensitive radiation resist | |
US4795692A (en) | Negative-working polymers useful as X-ray or E-beam resists | |
JPS5828571B2 (en) | Resist formation method for microfabrication | |
JPH0358104B2 (en) | ||
JPH0721055B2 (en) | Copolymer of Sulfur Dioxide and Nuclear Substituted Styrene Derivative | |
JPS63271254A (en) | Radiation sensitive positive type resist having high resolution | |
JPS5975244A (en) | Radiation sensitive organic polymer material | |
JPH0358103B2 (en) | ||
US4885344A (en) | Polymeric materials and their use as resists | |
JPS63271251A (en) | Radiation sensitive resist having high sensitivity and resolution | |
JP2871010B2 (en) | Positive electron beam resist solution | |
JPH021860A (en) | Radiation sensitive positive type resist high in resolution | |
JPS63271250A (en) | Positive type resist material having dry etching resistance | |
JPS5988737A (en) | Radiation sensitive organic high polymer material | |
JPS60252348A (en) | Formation of pattern | |
JPH0377985B2 (en) |