JPH087441B2 - Positive type high sensitivity radiation sensitive resist - Google Patents
Positive type high sensitivity radiation sensitive resistInfo
- Publication number
- JPH087441B2 JPH087441B2 JP62304713A JP30471387A JPH087441B2 JP H087441 B2 JPH087441 B2 JP H087441B2 JP 62304713 A JP62304713 A JP 62304713A JP 30471387 A JP30471387 A JP 30471387A JP H087441 B2 JPH087441 B2 JP H087441B2
- Authority
- JP
- Japan
- Prior art keywords
- resist
- sensitivity
- film
- copolymer
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般式(I)で表わされるモノマーと架橋性
α−シアノアクリル酸エステルとの共重合体を主剤とし
たポジ型高感度放射線感応性レジストに関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is a positive type high-sensitivity radiation-sensitive compound containing a copolymer of a monomer represented by the general formula (I) and a crosslinkable α-cyanoacrylate as a main component. The present invention relates to a positive resist.
半導体集積回路は光学式露光の限界である0.5μm以
下のレベルのリソグラフィー技術として電子ビーム直接
描画,X線リソグラフィーなどの技術が開発されている
が、これに適合するレジストの開発もまた急を要する段
階になっている。For semiconductor integrated circuits, techniques such as electron beam direct writing and X-ray lithography have been developed as a lithography technique at a level of 0.5 μm or less, which is the limit of optical exposure, but the development of a resist suitable for this is also urgent. It is in stages.
これらレジスト材料には放射線を照射することにより
架橋反応を起し、現像液に不溶化するネガ型レジストと
放射線を照射することにより、レジストの主剤ポリマー
が主鎖分裂を起し、現像液に易溶化するポジ型レジスト
がある。When these resist materials are exposed to radiation, they undergo a cross-linking reaction and become insoluble in the developing solution.When exposed to radiation, the main polymer of the resist undergoes main chain splitting and becomes readily soluble in the developing solution. There is a positive type resist.
ネガ型レジストの特徴は高感度で耐エッチング性に優
れているが、解像度が低いことである。The characteristics of the negative resist are high sensitivity and excellent etching resistance, but low resolution.
これに対し、ポジ型レジストの特徴は高解像度である
が、感度と耐エッチング性はネガ型レジストより劣るこ
とである。On the other hand, the positive resist is characterized by high resolution, but is inferior to the negative resist in sensitivity and etching resistance.
産業界の半導体集積回路の高集積化に対する要望は最
近ますます強くなって来ているので、高感度で生産性の
優れたネガ型レジストもその低解像度の故に後退を余儀
なくされている。然しながら、解像度の優れたポジ型レ
ジストは低感度と耐エッチング性の不足と云う難問を解
決しなければ実用化は困難である。Since the demand for higher integration of semiconductor integrated circuits in the industry has become stronger and stronger recently, negative resists with high sensitivity and excellent productivity are also forced to retreat because of their low resolution. However, it is difficult to put a positive resist having excellent resolution into practical use unless the problems of low sensitivity and lack of etching resistance are solved.
ポジ型レジストとしては代表的主剤としてポリメチル
メタクリレート(P−MMA)があり、解像度は0.3〜0.5
μmと優れているが、電子ビームに対する感度が5×10
-5C/cm2と著しく劣り、耐エッチング性も低く実用レジ
ストには程遠い。この放射線に対する感度と耐エッチン
グ性は互いに相反する機能で両立は困難である。レジス
トの感度向上には一般にCl,F,Br,S,O,Nなどの電子吸引
基を導入する方法が試みられ、ポリヘキサフルオロブチ
ルメタクリレート、ポリトリクロロエチルメタクリレー
トなどの主剤ポリマーが提案されているが感度は改善さ
れたが、耐エッチング性の低下は不可避であった。ま
た、耐エッチング性の改善には側鎖にベンゼン環の導
入分子量の大きなアルキル基の導入架橋基の導入
ラジカル捕捉剤の添加などが提案されているが、感度低
下を招くケースが多く、解像度,感度,耐エッチング性
の3大特性を兼ね備えたレジストは極めて少ない。Polymethylmethacrylate (P-MMA) is a typical main component for positive resist, and its resolution is 0.3-0.5.
Excellent at μm, but sensitivity to electron beam is 5 × 10
It is markedly inferior to -5 C / cm 2 , has low etching resistance, and is far from a practical resist. This sensitivity to radiation and etching resistance are contradictory functions, and it is difficult to achieve both at the same time. In order to improve the sensitivity of the resist, a method of introducing an electron withdrawing group such as Cl, F, Br, S, O, N is generally tried, and a base polymer such as polyhexafluorobutyl methacrylate or polytrichloroethyl methacrylate is proposed. However, the sensitivity was improved, but the reduction in etching resistance was unavoidable. In order to improve the etching resistance, introduction of a benzene ring into the side chain, introduction of an alkyl group having a large molecular weight, introduction of a cross-linking group, addition of a radical scavenger, etc. have been proposed. Very few resists have the three major characteristics of sensitivity and etching resistance.
α−シアノアクリル酸エステルはその分子内に電子吸
引基CN基を有し、放射線に対する感応性が優れており、
解像度も優れているが耐エッチング性が劣る。耐エッチ
ング性の改善が当面の目標であるが、これに加えて感度
を更に改善できれば生産性の向上につながる。α-Cyanoacrylic acid ester has an electron-withdrawing group CN group in its molecule and has excellent sensitivity to radiation,
Excellent resolution but poor etching resistance. Improving etching resistance is an immediate goal, but if sensitivity can be further improved in addition to this, productivity will be improved.
本発明は、感度特性は極めて優れている一般式(I)
のモノマーと架橋性α−シアノアクリル酸エステルを共
重合させ、感度特性を改善するとともに、架橋させるこ
とにより耐エッチング性を向上させ、生産性に優れた例
えば16メガビットD−RAM以降の大規模集積回路用レジ
ストの提供を目的としている。INDUSTRIAL APPLICABILITY The present invention provides a compound represented by the general formula (I) which has extremely excellent sensitivity characteristics
Copolymerization of monomer and crosslinkable α-cyanoacrylic acid ester to improve sensitivity characteristics and crosslink to improve etching resistance, resulting in high productivity, for example, large-scale integration after 16-megabit D-RAM. The purpose is to provide circuit resists.
本発明は感度特性は極めて優れているがレジスト主剤
としてはそれぞれ、難溶性,耐熱性,耐エッチング性が
劣るなど使用困難な一般式(I) (ただし、式中のXは、CH3,Cl,F,Br,CN,NO2,COOR,YはC
N,H,COORでRはアルキル基またはハロゲン化アルキル
基)のモノマーに架橋性α−シアノアクリル酸エステル
を共重合させることにより一般式(I)のモノマーの最
大長所である感度特性を引き出し、α−シアノアクリル
酸エステルの感度特性との相乗効果により感度向上を果
し、耐熱性,耐ドライエッチング性の改良には架橋性α
−シアノアクリル酸エステルの架橋により果した。In the present invention, the sensitivity characteristics are extremely excellent, but as the main component of the resist, the general formula (I) is difficult to use, such as poor solubility, heat resistance and etching resistance. (However, X in the formula is CH 3 , Cl, F, Br, CN, NO 2 , COOR, Y is C
N, H, COOR, R is an alkyl group or a halogenated alkyl group), and a crosslinkable α-cyanoacrylate ester is copolymerized with the monomer to bring out the sensitivity characteristic which is the maximum advantage of the monomer of the general formula (I). A synergistic effect with the sensitivity characteristics of α-cyanoacrylic acid ester improves sensitivity, and crosslinkability α is used to improve heat resistance and dry etching resistance.
-Achieved by cross-linking of cyanoacrylates.
本発明で用いられる架橋性α−シアノアクリル酸エス
テルは次式で表わされるものである。The crosslinkable α-cyanoacrylic acid ester used in the present invention is represented by the following formula.
ただし、式中のRは,アルコキシアルキル基,ヒドロキ
シアルキル基,アルキニル基,アリル基などの架橋基で
あり、具体的には,α−シアノアクリル酸2メトキシエ
チル,α−シアノアクリル酸ヒドロキシエチル,α−シ
アノアクリル酸プロパギル,α−シアノアクリル酸アリ
ル等である。これに対応する一般式(I)のモノマーは
具体的にはビニリデンシアニド,ニトロエチレン,メチ
レンマロン酸ジエチル、メタクリル酸トリクロロエチ
ル,メタクリル酸ヘキサフルオロブチルなどである。こ
れらのモノマーは通常の合成法で得られたもので良く、
アニオン重合抑制剤を混入したままで良い。 However, R in the formula is a cross-linking group such as an alkoxyalkyl group, a hydroxyalkyl group, an alkynyl group, and an allyl group, and specifically, 2-methoxyethyl α-cyanoacrylate, hydroxyethyl α-cyanoacrylate, Examples include α-propanoyl cyanoacrylate and allyl α-cyanoacrylate. Corresponding monomers of general formula (I) are specifically vinylidene cyanide, nitroethylene, diethyl methylenemalonate, trichloroethyl methacrylate, hexafluorobutyl methacrylate and the like. These monomers may be those obtained by a usual synthetic method,
The anionic polymerization inhibitor may remain mixed.
以上の共重合体は通常、分子量2万〜200万である
が、好ましくは20万〜100万のものが使用される。The above copolymers usually have a molecular weight of 20,000 to 2,000,000, but those having a molecular weight of 200,000 to 1,000,000 are preferably used.
本発明の耐ドライエッチング性ポジ型レジスト材料は
従来のP−MMAレジストに比して1/100以下の放射線照射
量で足りる極めて感度特性のすぐれたレジスト材料であ
り、これに加えて、耐ドライエッチング性は上記P−MM
Aレジストより優れた耐性を持つ、本格的なポジ型レジ
ストであり、16メガビットD−RAM以降の半導体大規模
集積回路製造の際の高い生産性とコスト低減に大きな効
果をもたらすものである。The dry-etching-resistant positive resist material of the present invention is a resist material having an extremely excellent sensitivity characteristic that a radiation dose of 1/100 or less is sufficient as compared with the conventional P-MMA resist. Etching property is the above P-MM
It is a full-scale positive resist that has better resistance than A-resist, and has a great effect on high productivity and cost reduction when manufacturing large-scale semiconductor integrated circuits after 16 megabit D-RAM.
以下、この発明の実施例を示すが、電子線もX線リソ
グラフィーに使用される軟X線(波長4〜10Å)も物質
に及ぼす化学作用は同じであり、レジストの電子線に対
する感度とX線に対する感度とは比例関係(例えば10-7
C/cm2=10mJ/cm2)にあることが、Proc International
Conf.Microlithography,Paris,July,261(1977)等で公
知になっているので、煩雑を避けるため、電子線照射に
よる結果を実施例とすることにした。Examples of the present invention will be shown below, but the chemical action of the electron beam and the soft X-ray (wavelength 4 to 10Å) used in X-ray lithography on the substance is the same, and the sensitivity of the resist to the electron beam and the X-ray are the same. Is proportional to the sensitivity to (eg 10 -7
C / cm 2 = 10mJ / cm 2 ), Proc International
Since it is well known in Conf. Microlithography, Paris, July, 261 (1977), etc., in order to avoid complication, it was decided to use the result of electron beam irradiation as an example.
以下に実施例を挙げて本発明を更に説明するが、本発
明はこれらの実施例に限定されるものではないことは云
うまでもない。Hereinafter, the present invention will be further described with reference to examples, but it goes without saying that the present invention is not limited to these examples.
実施例A α−シアノアクリル酸プロパギル1部,ビニリデンシ
アニド13部,酢酸3部,アゾビスイソブチロニトリル0.
1部をガラス封管に仕込み、窒素中50℃15時間重合させ
た。これをエチルエーテル中にあけて、重合物を沈殿さ
せ、40℃で真空乾燥して白色粉末状の共重合体12.8部を
得た。この共重合体をゲルパーミエーション・クロマト
グラフィー(GPC)一光散乱法で測定したところ、分子
量は約31.5万であった。Example A Propagyl α-cyanoacrylate 1 part, vinylidene cyanide 13 parts, acetic acid 3 parts, azobisisobutyronitrile 0.
One part was placed in a glass sealed tube and polymerized in nitrogen at 50 ° C. for 15 hours. This was poured into ethyl ether to precipitate a polymer, which was vacuum dried at 40 ° C. to obtain 12.8 parts of a white powdery copolymer. When this copolymer was measured by gel permeation chromatography (GPC) single light scattering method, the molecular weight was about 315,000.
なお、以下実施例及び比較例中の重合体の分子量測定
はいずれもGPC一光散乱法によった。The molecular weights of the polymers in the following Examples and Comparative Examples were measured by the GPC single light scattering method.
実施例B α−シアノアクリル酸2−ヒドロキシエチル5部とニ
トロエチレン12部,酢酸3部、アゾビスイソブチロニト
リル0.1部を実施例Aと同様に、重合,精製を行ない、
淡黄色粉末状の共重合体11.6部を得た。この共重合体の
分子量は約29万であった。Example B 5 parts of 2-hydroxyethyl α-cyanoacrylate, 12 parts of nitroethylene, 3 parts of acetic acid and 0.1 part of azobisisobutyronitrile were polymerized and purified in the same manner as in Example A,
11.6 parts of a pale yellow powdery copolymer was obtained. The molecular weight of this copolymer was about 290,000.
実施例C α−シアノアクリル酸アリル1部とα−クロルアクリ
ル酸ヘキサフルオロブチル13部,酢酸3部,アゾビスイ
ソブチロニトリル0.1部を実施例Aと同様に、重合,精
製を行ない、白色粉末状の共重合体12.1部を得た。この
共重合体の分子量は約33.5万であった。Example C 1 part of allyl α-cyanoacrylate, 13 parts of α-chloroacrylate hexafluorobutyl, 3 parts of acetic acid and 0.1 part of azobisisobutyronitrile were polymerized and purified in the same manner as in Example A, and white 12.1 parts of a powdery copolymer was obtained. The molecular weight of this copolymer was about 335,000.
実施例D α−シアノアクリル酸2−ヒドロキシエチル1部,メ
タクリル酸トリクロロエチル13部,酢酸3部,アゾビス
イソブチロニトリル0.1部を実施例Aと同様に、重合精
製を行ない、白色粉末状の共重合体11.8部を得た。この
共重合体の分子量は約35.3万であった。Example D 2-hydroxyethyl α-cyanoacrylate 1 part, trichloroethyl methacrylate 13 parts, acetic acid 3 parts, and azobisisobutyronitrile 0.1 part were polymerized and purified in the same manner as in Example A to give a white powder. 11.8 parts of a copolymer of The molecular weight of this copolymer was about 353,000.
比較例A α−シアノアクリル酸エチル15部,酢酸3部,アゾビ
スイソブチロニトリル0.1部を実施例Aと同様に、重合
精製を行ない、白色粉末状の単独重合体12.2部を得た。
この重合体の分子量は約27.5万であった。Comparative Example A 15 parts of ethyl α-cyanoacrylate, 3 parts of acetic acid and 0.1 part of azobisisobutyronitrile were polymerized and purified in the same manner as in Example A to obtain 12.2 parts of a white powdery homopolymer.
The molecular weight of this polymer was about 275,000.
比較例B メチレンマロン酸ジエチル15部,酢酸3分,アゾビス
イソブチロニトリル0.1部を実施例Aと、同様に、重合
精製を行ない、白色粉末状の単独重合体12.1部を得た。
この共重合体の分子量は約33万であった。Comparative Example B 15 parts of diethyl methylenemalonate, 3 minutes of acetic acid and 0.1 part of azobisisobutyronitrile were subjected to polymerization purification in the same manner as in Example A to obtain 12.1 parts of a white powdery homopolymer.
The molecular weight of this copolymer was about 330,000.
実施例1 実施例Aによって得られた共重合体の5重量%のシク
ロヘキサノン溶液に熱架橋剤を添加してレジストを調製
した。このレジストを回転塗布法により0.5μm厚の熱
酸化シリコン層上に塗布し、約0.54μmの共重合体膜を
得た。この膜を160℃,30分間熱処理、熱架橋後、加速電
圧10KV、4×10-7C/cm2の電子ビームを照射した。照射
後、取り出してシクロヘキサノンとメチルイソブチルケ
トンの1:2の現像液に25℃で2分間浸漬して現像後、イ
ソプロピルアルコールでリンス乾燥し、130℃,30分加熱
処理(ポストベーク)した。このレジスト膜をCF4−反
応性イオンエッチング装置で、CF4+5%O2 10SCCM 60m
torr,印加パワー13.56MHz,150Wの条件でエッチングした
ところ、P−MMAのエッチングレート750Å/minであった
のに対し、このレジスト膜のエッチングレートは450Å/
minで、P−MMAより優れた耐性を示した。一方、電子ビ
ームが照射された領域はレジストが除去され、ポジティ
ブ像が形成され、これを走査型電子顕微鏡(SEM)で観
察したところ、残膜もなく、エッジがシャープなパター
ンでレジストの酸化シリコン層との接着性も良好であっ
た。Example 1 A resist was prepared by adding a thermal crosslinking agent to a 5 wt% cyclohexanone solution of the copolymer obtained in Example A. This resist was applied on a thermally oxidized silicon layer having a thickness of 0.5 μm by a spin coating method to obtain a copolymer film having a thickness of about 0.54 μm. This film was heat-treated at 160 ° C. for 30 minutes, thermally crosslinked, and then irradiated with an electron beam having an accelerating voltage of 10 KV and 4 × 10 −7 C / cm 2 . After irradiation, the film was taken out, immersed in a 1: 2 developer of cyclohexanone and methyl isobutyl ketone for 2 minutes at 25 ° C., developed, rinsed with isopropyl alcohol, and heat-treated (post-baked) at 130 ° C. for 30 minutes. This resist film is CF 4 + 5% O 2 10SCCM 60m with CF 4 -reactive ion etching equipment.
When etching was performed under the conditions of torr, applied power 13.56MHz, 150W, the etching rate of P-MMA was 750Å / min, whereas the etching rate of this resist film was 450Å / min.
At min, the resistance was superior to that of P-MMA. On the other hand, in the area irradiated with the electron beam, the resist was removed and a positive image was formed. When this was observed with a scanning electron microscope (SEM), there was no residual film, and the silicon oxide of the resist had a sharp edge pattern. The adhesiveness with the layer was also good.
実施例2 実施例Bによって得られた共重合体の5重量%のシク
ロヘキサノン溶液に熱架橋剤を添加してレジストを調製
した。このレジストを回転塗布法より0.5μm厚の熱酸
化シリコン層上に塗布し、約0.49μm厚の共重合体膜を
得た。この膜を、実施例1に準じて熱架橋・電子熱照射
・現像・リンス・ポストベークを行なった。このレジス
ト膜を実施例1と同一条件でエッチングし、このレジス
ト膜のエッチングレートを求めたところ、470Å/min
で、P−MMAより優れた耐性を示した。一方、電子ビー
ムが照射された領域はレジストが除去され、ポジティブ
像が形成された。これをSEMで観察したところ、残膜も
なくシャープなパターンが確認された。Example 2 A resist was prepared by adding a thermal crosslinking agent to a 5 wt% cyclohexanone solution of the copolymer obtained in Example B. This resist was applied onto a thermally oxidized silicon layer having a thickness of 0.5 μm by a spin coating method to obtain a copolymer film having a thickness of about 0.49 μm. This film was subjected to thermal crosslinking, electron heat irradiation, development, rinsing, and post-baking according to Example 1. This resist film was etched under the same conditions as in Example 1, and the etching rate of this resist film was determined to be 470 Å / min.
, The resistance was superior to that of P-MMA. On the other hand, the resist was removed from the region irradiated with the electron beam, and a positive image was formed. When this was observed by SEM, a sharp pattern was confirmed without a residual film.
実施例3 実施例Cによって得られた共重合体の5重量%のシク
ロヘキサノン溶液をに紫外線架橋剤を添加してレジスト
を調製した。このレジストを回転塗布により0.5μm厚
の熱酸化シリコン層上に塗布し、0.57μmの膜厚の共重
合体膜を得た。この膜を130℃30分間加熱処理後、紫外
線架橋させ実施例1に準じて電子線照射・現像・リンス
・ポストベークを行なった。このレジスト膜を実施例1
と同一条件でエッチングし、このレジストのエッチング
レートを求めたところ、550Å/minでP−MMAより優れた
耐性を示した。一方、電子線が照射された領域はレジス
トが除去され、ポジティブ像が形成された。これをSEM
で観察したところ、残膜もなくシャープなパターンが確
認された。Example 3 A resist was prepared by adding an ultraviolet crosslinking agent to a 5 wt% cyclohexanone solution of the copolymer obtained in Example C. This resist was spin-coated on the thermally oxidized silicon layer having a thickness of 0.5 μm to obtain a copolymer film having a thickness of 0.57 μm. This film was heat-treated at 130 ° C. for 30 minutes, crosslinked with ultraviolet rays, and subjected to electron beam irradiation, development, rinsing, and post-baking according to Example 1. This resist film was used in Example 1.
When the etching rate of this resist was determined by etching under the same conditions as above, it showed a resistance higher than that of P-MMA at 550 Å / min. On the other hand, the resist was removed from the area irradiated with the electron beam, and a positive image was formed. SEM this
As a result, it was confirmed that there was no residual film and a sharp pattern was observed.
実施例4 実施例Dによって得られた共重合体の5重量%のシク
ロヘキサノン溶液に熱架橋剤を添加してレジストを調製
した。このレジストを実施例1と同様に0.5μm厚の熱
酸化シリコン層上に塗布し0.55μmの膜厚の共重合体膜
を得た。この膜を実施例1に準じて熱架橋・電子線照射
・現像・リンス・ポストベークを行なった。このレジス
ト膜を実施例1と同一条件でエッチングし、このレジス
トのエッチングレートを求めたところ、520Å/minとP
−MMAのより優れた耐性を示した。Example 4 A resist was prepared by adding a thermal crosslinking agent to a 5 wt% cyclohexanone solution of the copolymer obtained in Example D. This resist was coated on a 0.5 μm thick thermally oxidized silicon layer in the same manner as in Example 1 to obtain a copolymer film having a thickness of 0.55 μm. This film was subjected to thermal crosslinking, electron beam irradiation, development, rinsing, and post-baking according to Example 1. This resist film was etched under the same conditions as in Example 1, and the etching rate of this resist was determined to be 520Å / min and P
-Showed better resistance of MMA.
一方、電子ビームが照射された領域は残膜もなくシャ
ープなパターンが確認された。On the other hand, a sharp pattern was confirmed in the area irradiated with the electron beam without a residual film.
比較例1 比較例Aによって得られた単独重合体の5重量%のシ
クロヘキサノン溶液を実施例1と同様に、0.5μmの熱
酸化シリコン層上に塗布し、0.47μmの膜厚の重合体膜
を得た。これを130℃、30分熱処理後、加速電圧10KV、
6×10-7C/cm2の電子ビームを照射した。Comparative Example 1 A 5% by weight solution of the homopolymer obtained in Comparative Example A in cyclohexanone was coated on a 0.5 μm thermally oxidized silicon layer in the same manner as in Example 1 to form a polymer film having a thickness of 0.47 μm. Obtained. After heat-treating this at 130 ℃ for 30 minutes, accelerating voltage 10KV,
Irradiation with an electron beam of 6 × 10 −7 C / cm 2 was performed.
照射後、実施例1に準じて現像・リンス・加熱処理を
行った。このレジスト膜を実施例1と同一条件でエッチ
ングし、このレジストのエッチングレートを求めたとこ
ろ、820Å/minで、P−MMAより低い耐性を示した。ま
た、電子ビームで照射された領域はレジストが除去され
SEMによる観察結果も良好であった。After irradiation, development, rinsing, and heat treatment were performed according to Example 1. When this resist film was etched under the same conditions as in Example 1 and the etching rate of this resist was determined, it was 820 Å / min, which was lower than that of P-MMA. Also, the resist is removed from the area irradiated with the electron beam.
The observation result by SEM was also good.
比較例2 比較例Bによって得られたメチレンマロン酸ジエチル
の単独重合体の5重量%のトルエン溶液を作り、回転塗
布法により0.5μm厚の熱酸化シリコン層上に塗布し、
約0.54μmのレジスト膜を得た。この膜を140℃,30分間
加熱処理(プリベーク)し、加速電圧10KV,6×10-7C/cm
2の電子線を照射した。照射後に取り出して、エチルセ
ロソルブとブチルセロソルブの混合溶媒で現像し、130
℃30分加熱処理(ポストベーク)した。このレジスト膜
を実施例1と同一条件でエッチングしたところ、このレ
ジスト膜のエッチングレートは780Å/minで、P−MMAよ
り低い耐性を示した。Comparative Example 2 A 5% by weight toluene solution of the homopolymer of diethyl methylenemalonate obtained in Comparative Example B was prepared and applied onto a 0.5 μm thick thermally oxidized silicon layer by spin coating.
A resist film of about 0.54 μm was obtained. This film is heat-treated (pre-baked) at 140 ℃ for 30 minutes, acceleration voltage 10KV, 6 × 10 -7 C / cm
Irradiated with 2 electron beams. After irradiation, it was taken out and developed with a mixed solvent of ethyl cellosolve and butyl cellosolve.
Heat treatment (post-baking) was performed at 30 ° C for 30 minutes. When this resist film was etched under the same conditions as in Example 1, the etching rate of this resist film was 780 Å / min, which was lower than that of P-MMA.
なお、このレジストの電子線照射領域はシャープなポ
ジティブ像が得られた。A sharp positive image was obtained in the electron beam irradiation region of this resist.
比較例1、2と実施例1〜4の結果は、感度特性の優
れた一般式(I)のモノマーの導入と架橋性α−シアノ
アクリル酸エステルの導入が感度と耐ドライエッチング
性の顕著な改善をもたらすことを示すものである。The results of Comparative Examples 1 and 2 and Examples 1 to 4 show that the introduction of the monomer of the general formula (I) having excellent sensitivity characteristics and the introduction of the crosslinkable α-cyanoacrylate ester are remarkable in sensitivity and dry etching resistance. It shows that it brings improvement.
Claims (1)
O2、YはCN、H、COORで、Rはアルキル基またはハロゲ
ン化アルキル基)で表されるモノマー群のうちの1種以
上と、側鎖に架橋性基を有する架橋性α−シアノアクリ
ル酸エステルとを反応させて得られる共重合体を主剤と
したポジ型高感度放射線感応性レジスト。1. A general formula (I) (However, X in the formula is CH 3 , C 1, F, Br, CN, COOR, N
O 2 , Y is CN, H, COOR, R is an alkyl group or a halogenated alkyl group) and a crosslinkable α-cyanoacryl having a crosslinkable group in the side chain A positive-type highly sensitive radiation-sensitive resist whose main component is a copolymer obtained by reacting with an acid ester.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62304713A JPH087441B2 (en) | 1986-12-29 | 1987-12-02 | Positive type high sensitivity radiation sensitive resist |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61-314227 | 1986-12-29 | ||
JP31422786 | 1986-12-29 | ||
JP62304713A JPH087441B2 (en) | 1986-12-29 | 1987-12-02 | Positive type high sensitivity radiation sensitive resist |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63271249A JPS63271249A (en) | 1988-11-09 |
JPH087441B2 true JPH087441B2 (en) | 1996-01-29 |
Family
ID=26564017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62304713A Expired - Lifetime JPH087441B2 (en) | 1986-12-29 | 1987-12-02 | Positive type high sensitivity radiation sensitive resist |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH087441B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023176893A1 (en) | 2022-03-18 | 2023-09-21 | Ube株式会社 | Silicon nitride powder and method for producing silicon nitride sintered body |
WO2023176889A1 (en) | 2022-03-18 | 2023-09-21 | Ube株式会社 | Silicon nitride powder and method for producing silicon nitride sintered body |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000017712A1 (en) | 1998-09-23 | 2000-03-30 | E.I. Du Pont De Nemours And Company | Photoresists, polymers and processes for microlithography |
US6849377B2 (en) | 1998-09-23 | 2005-02-01 | E. I. Du Pont De Nemours And Company | Photoresists, polymers and processes for microlithography |
WO2024116797A1 (en) * | 2022-11-30 | 2024-06-06 | 富士フイルム株式会社 | Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern-forming method, and electronic device production method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5484978A (en) * | 1977-12-20 | 1979-07-06 | Cho Lsi Gijutsu Kenkyu Kumiai | Method of forming pattern |
JPS58108213A (en) * | 1981-12-22 | 1983-06-28 | Toagosei Chem Ind Co Ltd | Preparation of polymer of 2-cyanoacrylic acid ester |
-
1987
- 1987-12-02 JP JP62304713A patent/JPH087441B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023176893A1 (en) | 2022-03-18 | 2023-09-21 | Ube株式会社 | Silicon nitride powder and method for producing silicon nitride sintered body |
WO2023176889A1 (en) | 2022-03-18 | 2023-09-21 | Ube株式会社 | Silicon nitride powder and method for producing silicon nitride sintered body |
Also Published As
Publication number | Publication date |
---|---|
JPS63271249A (en) | 1988-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4011351A (en) | Preparation of resist image with methacrylate polymers | |
US4156745A (en) | Electron sensitive resist and a method preparing the same | |
JP3368888B2 (en) | Organometallic polymers and uses thereof | |
US3770433A (en) | High sensitivity negative electron resist | |
US4289842A (en) | Negative-working polymers useful as electron beam resists | |
US4096290A (en) | Resist mask formation process with haloalkyl methacrylate copolymers | |
JPH0119135B2 (en) | ||
JPS608494B2 (en) | Formation method of positive resist image | |
JPH087441B2 (en) | Positive type high sensitivity radiation sensitive resist | |
EP0119017B1 (en) | Electron-beam and x-ray sensitive polymers and resists | |
JPH087443B2 (en) | High resolution positive type radiation sensitive resist | |
JPS58192035A (en) | Polymer composition | |
JPS62240953A (en) | Resist | |
JPH0693122B2 (en) | Highly sensitive radiation resist | |
US4795692A (en) | Negative-working polymers useful as X-ray or E-beam resists | |
JPS5828571B2 (en) | Resist formation method for microfabrication | |
JPH0358104B2 (en) | ||
JPS63271250A (en) | Positive type resist material having dry etching resistance | |
JPH087442B2 (en) | Radiation sensitive resist | |
JP2871010B2 (en) | Positive electron beam resist solution | |
JPH0377985B2 (en) | ||
US4885344A (en) | Polymeric materials and their use as resists | |
JPH0358103B2 (en) | ||
JPS60252348A (en) | Formation of pattern | |
JPS60254041A (en) | Formation of pattern |