Nothing Special   »   [go: up one dir, main page]

JPH0721055B2 - Copolymer of Sulfur Dioxide and Nuclear Substituted Styrene Derivative - Google Patents

Copolymer of Sulfur Dioxide and Nuclear Substituted Styrene Derivative

Info

Publication number
JPH0721055B2
JPH0721055B2 JP3313629A JP31362991A JPH0721055B2 JP H0721055 B2 JPH0721055 B2 JP H0721055B2 JP 3313629 A JP3313629 A JP 3313629A JP 31362991 A JP31362991 A JP 31362991A JP H0721055 B2 JPH0721055 B2 JP H0721055B2
Authority
JP
Japan
Prior art keywords
formula
copolymer
mol
styrene derivative
tertiary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3313629A
Other languages
Japanese (ja)
Other versions
JPH05331289A (en
Inventor
實 松田
小野  浩
清樹 伊藤
年治 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP3313629A priority Critical patent/JPH0721055B2/en
Publication of JPH05331289A publication Critical patent/JPH05331289A/en
Publication of JPH0721055B2 publication Critical patent/JPH0721055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二酸化硫黄とスチレン誘
導体との新規な共重合体に関する。更に詳しくは光、電
子線またはX線に高感度に感応し、高解像度で且つ耐ド
ライエッチング性に優れたレジスト材料として有用な該
共重合体に関する。光の波長を特定すれば200nm〜
300nmの遠紫外線光を用いる場合に好適である。
FIELD OF THE INVENTION The present invention relates to a novel copolymer of sulfur dioxide and a styrene derivative. More specifically, it relates to the copolymer which is sensitive to light, electron beams or X-rays, has a high resolution and is excellent in dry etching resistance, and is useful as a resist material. If you specify the wavelength of light,
It is suitable when using deep UV light of 300 nm.

【0002】[0002]

【従来の技術とその問題点】近年半導体素子や集積回路
の集積度の向上はめざましく、それに伴いリソグラフィ
技術による微細加工への要求は年々厳しくなってきてい
る。この要求を充すものとして遠紫外線領域において感
応する高感度、高解像度、耐ドライエッチング性を兼ね
備えたレジスト材料の開発が要望されている。この要求
を充すものとして既に種々の提案がなされており高感度
レジストとしての化学増幅型レジストである poly(p-t-
butoxycarbonyloxystyrene)USP 4,491,628 Jan 1,1985
や poly(p-t-butoxycarbonyloxystyrene sulfone)EP 33
0,386(priority US 160,368)等が知られている。
2. Description of the Related Art In recent years, the degree of integration of semiconductor elements and integrated circuits has been remarkably improved, and accordingly, the demand for fine processing by a lithography technique has become stricter year by year. In order to meet this requirement, there is a demand for the development of a resist material having high sensitivity, high resolution, and resistance to dry etching, which is sensitive in the deep ultraviolet region. Various proposals have already been made to meet this requirement, and poly (pt- is a chemically amplified resist as a highly sensitive resist.
butoxycarbonyloxystyrene) USP 4,491,628 Jan 1,1985
And poly (pt-butoxycarbonyloxystyrene sulfone) EP 33
0,386 (priority US 160,368) is known.

【0003】従来の化学増幅型ポジ型レジスト例えば p
oly(p-t-butoxycarbonyloxystyrene), poly(p-t-butoxy
carbonyloxystyrene sulfone) 等のヒドロキシスチレン
誘導体を構造単位とするレジストは露光、露光后ベイク
で発生した酸により脱保護基されて生成したポリヒドロ
キシスチレンが、現像時、通常用いられるTMAH(テトラ
メチルアンモニウムヒト゛ロキシト゛)水溶液で現像されポジ像が生じる
が、この際未露光部分が一部溶解し、膜減りを起こした
り、パターンが細って基板から剥離するという問題があ
った。
Conventional chemically amplified positive resists such as p
oly (pt-butoxycarbonyloxystyrene), poly (pt-butoxy
A resist containing a hydroxystyrene derivative such as carbonyloxystyrene sulfone) as a structural unit is exposed to light, and polyhydroxystyrene produced by deprotection by an acid generated by baking after exposure is usually used at the time of development, TMAH (tetramethylammonium human oxide). ) A positive image is formed by developing with an aqueous solution, but at this time, there is a problem in that the unexposed portion is partially dissolved to cause film reduction or the pattern becomes thin and peels from the substrate.

【0004】[0004]

【発明が解決しようとする問題点】本発明者等は、上述
のような従来の化学増幅型ポジ型レジストの保有する欠
点のないレジスト材料を見出すべく鋭意研究を行った。
その結果、後述の(式3)で示される二酸化硫黄と特定
の核置換スチレン誘導体との二元共重合体または(式
4)で示される二酸化硫黄と特定の2種類の核置換スチ
レン誘導体との三元共重合体が上述の問題点を解決しう
ることを見出し、この知見に基づいて本発明を完成し
た。すなわち、本発明の共重合体は上述の公知技術の問
題点を解決したもので、アルカリに対して溶解阻止力が
すぐれており、レジストとして用いた場合、TMAH現
像時に未露光部の膜減りの発生が殆どなく、また基板と
の接着性に優れており何ら特別な基板処理を施さずとも
剥離が生じることなく、容易にサブミクロンの微細パタ
ーンを得ることができる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The inventors of the present invention have conducted diligent research to find a resist material which does not have the drawbacks possessed by the conventional chemically amplified positive type resist as described above.
As a result, a binary copolymer of sulfur dioxide represented by the following (formula 3) and a specific nuclear-substituted styrene derivative or a sulfur dioxide represented by (formula 4) and the specific two types of nuclear-substituted styrene derivatives It was found that a terpolymer can solve the above-mentioned problems, and the present invention was completed based on this finding. That is, the copolymer of the present invention solves the above-mentioned problems of the known art, has an excellent ability to inhibit dissolution against alkali, and when used as a resist, causes film loss in unexposed areas during TMAH development. Almost no generation occurs, and the adhesiveness with the substrate is excellent, and even if no special substrate treatment is performed, peeling does not occur, and a submicron fine pattern can be easily obtained.

【0005】以上の記述から明らかなように、本発明の
目的は下記のとおりである。すなわちその1は新規な共
重合体を提供することであり、その2は高感度、高解像
度で且つ耐ドライエッチング性に優れた光、電子線また
はX線に感応するレジスト材料として有用な共重合体を
提供することである。その3はアルカリに対する溶解阻
止力が優れており、アルカリ現像時に膜減りの発生が殆
どなくまた基板の接着力が優れており何ら特別な基板処
理を施さずとも容易にサブミクロンの微細パターンを得
ることができうるレジスト材料を提供することである。
本発明は二酸化硫黄とスチレン誘導体との共重合体であ
って、共重合体の構造単位として本願モノマー即ちアル
キル化されたスチレン誘導体を用いることによって共重
合体のアルカリに対する溶解耐性を向上させレジストと
しての実用化を可能にした。
As is clear from the above description, the objects of the present invention are as follows. That is, the first is to provide a novel copolymer, and the second is a copolymer which is useful as a resist material sensitive to light, electron beams or X-rays, which has high sensitivity, high resolution and excellent dry etching resistance. It is to provide a coalesce. No. 3 has an excellent ability to prevent dissolution against alkali, hardly causes film loss during alkali development, and has excellent substrate adhesion, so that submicron fine patterns can be easily obtained without any special substrate treatment. It is to provide a resist material that can be used.
The present invention is a copolymer of sulfur dioxide and a styrene derivative, and by using the monomer of the present application, that is, an alkylated styrene derivative as a structural unit of the copolymer, the solubility resistance of the copolymer to alkali is improved and a resist is obtained. Enabled the practical application of.

【0006】[0006]

【問題点を解決するための手段】本発明は、下記(1)
〜(3)の構成を有する。 (1)1〜50モル%の−SO2 −で示される構造単位
と50〜99モル%の下記(式1)で示される核置換ス
チレン誘導体を構造単位とし、線状化合物であって数平
均分子量が2.000〜2.000.000で下記(式
3)の構造式を有する二酸化硫黄と核置換スチレン誘導
体との二元共重合体。
The present invention includes the following (1).
To (3). (1) 1 to 50 mol% of a structural unit represented by —SO 2 — and 50 to 99 mol% of a nuclear-substituted styrene derivative represented by the following (formula 1) as a structural unit, and is a linear compound and has a number average. A binary copolymer of sulfur dioxide having a molecular weight of 2.00 to 2.000.00 and having the following structural formula (formula 3) and a nucleus-substituted styrene derivative.

【化6】 ここでR1 およびR2 はメタ位でH、炭素数1〜4のア
ルキル基若しくは[Si(CH32y CH3 であ
り、yは1〜3の整数である。また、R1 とR2とは同
一であっても異ってもよい。R3 はパラ位で(CH2
m、m=0またはm=1〜3のアルキレン基を表わし、
XはOH、ターシャリーブトキシ基若しくはターシャリ
ーブトキシカルボニルオキシ基を表す。ただし、R1
よびR2 がHでm=0の場合を除く。
[Chemical 6] Here, R 1 and R 2 are H at the meta position, an alkyl group having 1 to 4 carbon atoms or [Si (CH 3 ) 2 ] y CH 3 , and y is an integer of 1 to 3. Further, R 1 and R 2 may be the same or different. R 3 is in para position (CH 2 )
m, m = 0 or m = 1 to 3 represents an alkylene group,
X represents OH, a tertiary butoxy group or a tertiary butoxycarbonyloxy group. However, the case where R 1 and R 2 are H and m = 0 is excluded.

【化7】 ここで、R 1,R2 ,R3 およびXの意味は(式1)の
場合と同様であり、pは1〜99の任意の整数、nは1
0以上10,000以下の整数である。 (2)1〜50モル%の−SO2 −で示される構造単位
と15〜98モル%の下記(式1)で示される核置換ス
チレン誘導体ならびに1〜84モル%の下記(式2)で
示される核置換スチレン誘導体を構造単位とし、線状化
合物であって数平均分子量が2,000〜2,000,
000で下記(式4)の構造式を有する二酸化硫黄と核
置換スチレン誘導体との三元共重合体。
[Chemical 7] Here, the meanings of R 1 , R 2 , R 3 and X are the same as in the case of (Formula 1), p is an arbitrary integer from 1 to 99, and n is 1
It is an integer of 0 or more and 10,000 or less. (2) 1 to 50 mol% of a structural unit represented by —SO 2 —, 15 to 98 mol% of a nucleus-substituted styrene derivative represented by the following (formula 1) and 1 to 84 mol% of the following (formula 2) A linear compound having a number average molecular weight of 2,000 to 2,000, which is a structural unit of the nuclear-substituted styrene derivative shown below.
A terpolymer of sulfur dioxide having a structural formula of (Formula 4) below at 000 and a nucleus-substituted styrene derivative.

【化8】 ここでR1 およびR2 はメタ位でH、炭素数1〜4のア
ルキル基若しくは[Si(CH32y CH3 であ
り、yは1〜3の整数である。また、R1 とR2とは同
一であっても異ってもよい。R3 はパラ位で(CH2
m、m=0またはm=1〜3のアルキレン基を表わし、
XはOH、ターシャリーブトキシ基若しくはターシャリ
ーブトキシカルボニルオキシ基を表す。ただし、R1
よびR2 がHでm=0の場合を除く。
[Chemical 8] Here, R 1 and R 2 are H at the meta position, an alkyl group having 1 to 4 carbon atoms or [Si (CH 3 ) 2 ] y CH 3 , and y is an integer of 1 to 3. Further, R 1 and R 2 may be the same or different. R 3 is in para position (CH 2 )
m, m = 0 or m = 1 to 3 represents an alkylene group,
X represents OH, a tertiary butoxy group or a tertiary butoxycarbonyloxy group. However, the case where R 1 and R 2 are H and m = 0 is excluded.

【化9】 ここでXはOH,ターシャリーブトキシ基若しくはター
シャリーブトキシカルボニルオキシ基を表す。
[Chemical 9] Here, X represents OH, a tertiary butoxy group or a tertiary butoxycarbonyloxy group.

【化10】 ここで、R1 ,R2 ,R3 およびXの意味は(式1)の
場合と同様であり、pおよびqは1〜10であり、さら
にl,mは共重合体のモル分率に相当し、lは15〜9
9モル%、mは1〜85モル%、(p+q)は50〜9
9モル%であって、それぞれの構造単位は共重合体中に
不規則に分布して共重合体主鎖を構成している。nは5
以上5,000以下の整数である。 (3)前記(1)若しくは(2)に記載の共重合体を有
効成分とするレジスト材料。
[Chemical 10] Here, the meanings of R 1 , R 2 , R 3 and X are the same as in the case of (Formula 1), p and q are 1 to 10, and l and m are the molar fractions of the copolymer. Corresponding, l is 15-9
9 mol%, m is 1 to 85 mol%, (p + q) is 50 to 9
It is 9 mol%, and each structural unit is irregularly distributed in the copolymer to form the main chain of the copolymer. n is 5
It is an integer not less than 5,000. (3) A resist material containing the copolymer according to (1) or (2) as an active ingredient.

【0007】以下、本発明の構成と効果について詳細に
説明する。本発明の二酸化硫黄と核置換スチレン誘導体
との二元共重合体は(式3)によって表される。
The structure and effects of the present invention will be described in detail below. The binary copolymer of sulfur dioxide and the nucleus-substituted styrene derivative of the present invention is represented by (Formula 3).

【化11】 ここでR1 およびR2 はメタ位でH,CH3 ,CH2
3,イソプロピル,ターシャリーブチルその他C1〜C
4のアルキル基または[Si(CH32yCH3
yは1から3を表す。R1 およびR2 は同じであっても
異なってもよい。R3 はパラ位で(CH2 )m,m=0
〜3のアルキレン基を表す。XはOH、ターシャリーブ
トキシ若しくはターシャリーブトキシカルボニルオキシ
を表す。但しR1 およびR2 がHで、m=0の場合を除
く。pは核置換スチレン誘導体とSO2 とのモル比を示
しており、1〜99の任意の値を示す。pが1の時は交
互共重合体を表す。
[Chemical 11] Here, R 1 and R 2 are H, CH 3 , CH 2 C in the meta position.
H 3, isopropyl, tert-butyl, etc. C1-C
4 alkyl group or [Si (CH 3 ) 2 ] y CH 3 and y represents 1 to 3. R 1 and R 2 may be the same or different. R 3 is in para position (CH 2 ) m, m = 0
Represents the alkylene group of ~ 3. X represents OH, tertiary butoxy or tertiary butoxycarbonyloxy. However, the case where R 1 and R 2 are H and m = 0 is excluded. p represents the molar ratio of the nucleus-substituted styrene derivative and SO 2, and represents an arbitrary value of 1 to 99. When p is 1, it represents an alternating copolymer.

【0008】本発明の二酸化硫黄と核置換スチレン誘導
体との三元共重合体は(式4)によって表される。
The terpolymer of sulfur dioxide and the nucleus-substituted styrene derivative of the present invention is represented by the formula (4).

【化12】 ここでR1 ,R2 ,R3 およびXは(式3)の場合と同
じである。
[Chemical 12] Here, R 1 , R 2 , R 3 and X are the same as in the case of (Equation 3).

【0009】本発明に係る核置換スチレン誘導体の具体
例としては (式1)の例として m,m−ジメチル−p−ヒドロキシスチレン m−メチル−p−tert−ブトキシスチレン m−tert−ブチル−p−tert−ブトキシスチレ
ン m−メチル−p−tert−ブトキシカルボニルオキシ
スチレン m−トリメチルシリル−p−tert−ブトキシスチレ
ン m−トリメチルシリル−p−tert−ブトキシカルボ
ニルオキシスチレン p−tert−ブトキシカルボニオキシメチルスチレン p−tert−ブトキシカルボニオキシエチルスチレン p−tert−ブトキシエチルスチレン等があげられ
る。
Specific examples of the nucleus-substituted styrene derivative according to the present invention include the following formula (1): m, m-dimethyl-p-hydroxystyrene m-methyl-p-tert-butoxystyrene m-tert-butyl-p -Tert-butoxystyrene m-methyl-p-tert-butoxycarbonyloxystyrene m-trimethylsilyl-p-tert-butoxystyrene m-trimethylsilyl-p-tert-butoxycarbonyloxystyrene p-tert-butoxycarbonioxymethylstyrene p -Tert-butoxycarbonioxyethylstyrene p-tert-butoxyethylstyrene and the like.

【0010】また、(式2)の例として p−ヒドロキシスチレン p−tert−ブトキシスチレン p−tert−ブトキシカルボニルオキシスチレン等を
あげることができる。そして共重合体中(式1)で示さ
れる構造単位を少なくとも15モル%以上含むことで本
発明の目的を達することができる。
As an example of the formula (2), p-hydroxystyrene, p-tert-butoxystyrene, p-tert-butoxycarbonyloxystyrene and the like can be mentioned. The object of the present invention can be achieved by including at least 15 mol% of the structural unit represented by the formula (1) in the copolymer.

【0011】本発明の共重合体は公知のラジカル重合法
もしくはレドックス系重合法によって得ることができ
る。即ち、(式1)および(式2)に示したモノマー
(1ないし2種類)と反応開始剤(アゾビスイソブチロ
ニトリル,tert−ブチルヒドロペルオキシド,ジ−
tert−ブチルヒドロペルオキシド等)とを耐圧反応
器に入れ、真空ラインにて脱気后、五酸化二燐で乾燥し
た二酸化硫黄を所定量加え、十分攪拌して均一溶液とし
たのち所定温度で所定時間重合させる。二酸化硫黄とモ
ノマーとの配合組成,反応開始剤の種類と量,重合溶剤
の種類と量,重合温度と時間等によって得られる共重合
体の組成,分子量,分子量分布は異なってくる。例えば
核置換スチレン誘導体とSO2 とのモル比が1の交互共
重合体を得る場合には重合温度は−50℃以下が好まし
い。
The copolymer of the present invention can be obtained by a known radical polymerization method or redox polymerization method. That is, the monomers (1 to 2 types) shown in (Formula 1) and (Formula 2) and the reaction initiator (azobisisobutyronitrile, tert-butylhydroperoxide, di-
(tert-butyl hydroperoxide, etc.) in a pressure resistant reactor, degassed in a vacuum line, add a predetermined amount of sulfur dioxide dried with diphosphorus pentoxide, sufficiently stir to form a uniform solution, and then predetermined temperature Polymerize for a time. The composition, molecular weight, and molecular weight distribution of the copolymer obtained will vary depending on the composition of sulfur dioxide and the monomer, the type and amount of the reaction initiator, the type and amount of the polymerization solvent, the polymerization temperature and the time, and the like. For example, in the case of obtaining an alternating copolymer in which the molar ratio of the nucleus-substituted styrene derivative and SO 2 is 1, the polymerization temperature is preferably −50 ° C. or lower.

【0012】ここで二酸化硫黄の共重合体の特徴は、
(式1)に示したモノマーの単独重合では高分子量体が
得られ難いのに対し、二酸化硫黄と共重合させることに
より(式1)に示したバルキーなモノマーとも比較的容
易に共重合し高分子量体が得られる点である。一般的に
ポジ型レジストとしての性能は高分子量体の方が優れて
いると言える。共重合体組成に関して言えば、(式1)
に示したモノマー単位とスルホン単位との比率がポジ型
レジストの感度と関連があり、特に電子線レジストとし
ての性能はこの比率が1:1の交互共重合体に近いほど
高感度となる。
The characteristics of the sulfur dioxide copolymer are as follows:
Although it is difficult to obtain a high molecular weight product by homopolymerization of the monomer represented by (Formula 1), it is relatively easy to copolymerize with the bulky monomer represented by (Formula 1) by copolymerization with sulfur dioxide. This is the point where a molecular weight product is obtained. Generally, it can be said that the high molecular weight polymer is superior in performance as a positive resist. Regarding the copolymer composition, (formula 1)
The ratio of the monomer unit to the sulfone unit shown in 1) is related to the sensitivity of the positive resist, and the performance as an electron beam resist becomes higher as the ratio becomes closer to an alternating copolymer having a ratio of 1: 1.

【0013】このようにして得られた共重合体を溶解溶
剤(好ましくはメチルセロソルブアセテート,シクロヘ
キサノン)に溶解し、(好ましくは5〜20wt%濃
度)必要に応じて酸発生剤(好ましくはオニウム塩−ト
リフェニルスルホニウム塩,ジフェニルヨードニウム
塩)を、共重合体に対して3〜12wt%加え、均一溶
液とし、0.5μm以下のフィルターにて濾過する。該
溶液を以後レジスト溶液という。こうして得られたレジ
スト溶液をシリコンウエハー上にスピンコーターで塗布
しプリベイクして試験板(以後レジストフィルムまたは
フィルムという)とする。このフィルム膜厚は0.2〜
2.0μmが好ましい。
The copolymer thus obtained is dissolved in a dissolving solvent (preferably methyl cellosolve acetate, cyclohexanone) (preferably 5 to 20 wt% concentration), and if necessary, an acid generator (preferably onium salt). (Triphenylsulfonium salt, diphenyliodonium salt) is added to the copolymer in an amount of 3 to 12 wt% to form a uniform solution, which is then filtered with a filter of 0.5 μm or less. The solution is hereinafter referred to as a resist solution. The resist solution thus obtained is applied onto a silicon wafer with a spin coater and prebaked to obtain a test plate (hereinafter referred to as a resist film or film). The film thickness is 0.2-
2.0 μm is preferable.

【0014】こうして得られたフィルムにパターンを描
いたマスクを通して遠紫外線(以後deepUVまたは
DUVという)、電子線(以後EBという)、X線露光
を行い、ポストベイク(以後PEBという)を行う。
(電子線露光の場合は直接描画)こうして得られたフィ
ルムを現像液に浸し現像する。現像液にアルカリ水溶液
(好ましくはテトラメチルアンモニウムヒドロキシド水
溶液(以後TMAHという))を用いたときには露光部
分が溶解したポジ像が、現像液に有機溶剤を用いた時に
は未露光部分が溶解したネガ像が得られる。
A far ultraviolet ray (hereinafter referred to as deepUV or DUV), an electron beam (hereinafter referred to as EB), an X-ray exposure is performed through a mask having a pattern drawn on the film thus obtained, and post-baking (hereinafter referred to as PEB) is performed.
(Direct writing in the case of electron beam exposure) The film thus obtained is immersed in a developing solution for development. When an alkaline aqueous solution (preferably tetramethylammonium hydroxide aqueous solution (hereinafter referred to as TMAH)) is used as a developing solution, a positive image in which an exposed portion is dissolved is formed, and when an organic solvent is used in a developing solution, a negative image in which an unexposed portion is dissolved Is obtained.

【0015】以下実施例により本発明を説明する。 実施例1 100mlの耐圧ガラス反応管に蒸留したパラ−ter
t−ブトキシカルボニルオキシエチルスチレン10.0
gとtert−ブチルヒドロペルオキシド(3モルトル
エン溶液)0.14mlを加え混合し真空脱気した。次
いでドライアイス/アセトンで冷却し、この反応管に五
酸化二燐で乾燥した二酸化硫黄(−10℃で)10.5
mlを真空ラインにて加え、よく混合した。この反応管
を−50℃の低温恒温槽に入れ、20時間反応させた。
該時間経過後、未反応の二酸化硫黄を除去した後反応管
を開封した。該管内に残った反応液に少量のアセトンを
加えて均一溶液とし、該均一溶液を多量のメタノール中
に攪拌下投入すると白色のポリマーが沈澱した。このポ
リマーをガラスフィルター上で集めメタノールで洗浄
し、24時間減圧乾燥した。このようにして3.1gの
ポリマーを得た。このポリマーはIRスペクトル分析に
よりパラ−tert−ブトキシカルボニルオキシエチル
スチレンスルホン共重合体であり、その元素分析よりこ
のポリマー組成はパラ−tert−ブトキシカルボニル
オキシエチルスチレン単位が48モル%でスルホン単位
が52モル%であり、ほぼ1:1の交互共重合体である
ことが判った。また、このポリマーの分子量はGPC分
析によるポリスチレン換算値で数平均分子量(Mn)=
154,000、分散度(d)=1.8であった。
The present invention will be described below with reference to examples. Example 1 Para-ter distilled into a 100 ml pressure-resistant glass reaction tube.
t-Butoxycarbonyloxyethylstyrene 10.0
g and tert-butyl hydroperoxide (3 mol toluene solution) (0.14 ml) were added and mixed, and the mixture was degassed in vacuo. It was then cooled with dry ice / acetone and the reaction tube was dried over phosphorous pentoxide with sulfur dioxide (at -10 ° C) 10.5.
ml was added in a vacuum line and mixed well. This reaction tube was placed in a low temperature constant temperature bath of -50 ° C and reacted for 20 hours.
After the passage of time, unreacted sulfur dioxide was removed and the reaction tube was opened. A small amount of acetone was added to the reaction solution remaining in the tube to make a homogeneous solution, and the homogeneous solution was poured into a large amount of methanol with stirring to precipitate a white polymer. The polymer was collected on a glass filter, washed with methanol, and dried under reduced pressure for 24 hours. In this way 3.1 g of polymer was obtained. This polymer was found to be a para-tert-butoxycarbonyloxyethylstyrenesulfone copolymer by IR spectrum analysis, and the polymer composition was found to have a para-tert-butoxycarbonyloxyethylstyrene unit content of 48 mol% and a sulfone unit content of 52% by sulfone unit. It was found to be an alternating copolymer having a molar ratio of about 1: 1. Further, the molecular weight of this polymer is the number average molecular weight (Mn) = in terms of polystyrene by GPC analysis.
The dispersion was 154,000 and the dispersity (d) was 1.8.

【0016】実施例2 100mlの耐圧ガラス反応管に蒸留したメタ−メチル
−パラ−tert−ブトキシスチレン11.4gとアゾ
ビスイソブチロニトリル(AIBN)28mgを加え混
合し真空脱気した。次いでドライアイス/アセトンで冷
却し、この反応管に五酸化二燐で乾燥した二酸化硫黄
(−10℃で)5.4mlを真空ラインにて加え、よく
混合した。この反応管を60℃の恒温槽に入れ5時間反
応させた。該時間経過後、反応管を室温まで冷却し、未
反応の二酸化硫黄を除去した後反応管を開封した。該管
内に残った反応液に少量のアセトンを加えて均一溶液と
し、該均一溶液を多量のメタノール中に攪拌下投入する
と白色のポリマーが沈澱した。このポリマーをガラスフ
ィルター上で集めメタノールで洗浄し、24時間減圧乾
燥した。このようにして4.8gのポリマーを得た。こ
のポリマーはIRスペクトル分析および元素分析よりメ
タ−メチル−パラ−tert−ブトキシスチレンスルホ
ン(2:1)共重合体であり、またこのポリマーの分子
量はGPC分析によるポリスチレン換算値で数平均分子
量(Mn)=267,000、分散度(d)=1.4で
あった。
Example 2 11.4 g of distilled meta-methyl-para-tert-butoxystyrene and 28 mg of azobisisobutyronitrile (AIBN) were added to a 100 ml pressure-resistant glass reaction tube, mixed and deaerated under vacuum. Then, it was cooled with dry ice / acetone, and 5.4 ml of sulfur dioxide (at -10 ° C) dried with phosphorous pentoxide was added to the reaction tube through a vacuum line and mixed well. This reaction tube was placed in a constant temperature bath at 60 ° C. and reacted for 5 hours. After the passage of time, the reaction tube was cooled to room temperature, unreacted sulfur dioxide was removed, and then the reaction tube was opened. A small amount of acetone was added to the reaction solution remaining in the tube to make a homogeneous solution, and the homogeneous solution was poured into a large amount of methanol with stirring to precipitate a white polymer. The polymer was collected on a glass filter, washed with methanol, and dried under reduced pressure for 24 hours. In this way 4.8 g of polymer was obtained. This polymer was a meta-methyl-para-tert-butoxystyrene sulfone (2: 1) copolymer by IR spectrum analysis and elemental analysis, and the molecular weight of this polymer was the number average molecular weight (Mn by polystyrene conversion by GPC analysis). ) = 267,000 and polydispersity (d) = 1.4.

【0017】実施例3 100mlの耐圧ガラス反応管に蒸留したメタ−トリメ
チルシリル−パラ−tert−ブトキシカルボニルオキ
シスチレン7.3gとパラ−tert−ブトキシカルボ
ニルオキシスチレン5.5gとtert−ブチルヒドロ
ペルオキシド(3モルトルエン溶液)0.16mlを加
え混合し真空脱気した。次いでドライアイス/アセトン
で冷却し、この反応管に五酸化二燐で乾燥した二酸化硫
黄(−10℃で)11.0mlを真空ラインにて加え、
よく混合した。この反応管を−60℃の低温恒温槽に入
れ、8時間反応させた。該時間経過後、未反応の二酸化
硫黄を除去した後反応管を開封した。該管内に残った反
応液に少量のアセトンを加えて均一溶液とし、該均一溶
液を多量のメタノール中に攪拌下投入すると白色のポリ
マーが沈澱した。このポリマーをガラスフィルター上で
集めメタノールで洗浄し、24時間減圧乾燥した。この
ようにして2.8gのポリマーを得た。このポリマーは
IRスペクトル分析および元素分析よりメタ−トリメチ
ルシリル−パラ−tert−ブトキシカルボニルオキシ
スチレン・パラ−tert−ブトキシカルボニルオキシ
スチレン・スルホン三元共重合体であり、このポリマー
組成はメタ−トリメチルシリル−パラ−tert−ブト
キシカルボニルオキシスチレン単位が23モル%、パラ
−tert−ブトキシカルボニルオキシスチレン単位が
28モル%でスルホン単位が49モル%であった。また
このポリマーの分子量はGPC分析によるポリスチレン
換算値で数平均分子量(Mn)=194,000、分散
度(d)=3.2であった。
Example 3 7.3 g of meta-trimethylsilyl-para-tert-butoxycarbonyloxystyrene, 5.5 g of para-tert-butoxycarbonyloxystyrene and tert-butyl hydroperoxide (3) distilled in a 100 ml pressure-resistant glass reaction tube. 0.16 ml of a molar toluene solution) was added and mixed, and the mixture was deaerated under vacuum. Then, it was cooled with dry ice / acetone, and 11.0 ml of sulfur dioxide (at -10 ° C) dried with diphosphorus pentoxide was added to the reaction tube through a vacuum line,
Mixed well. This reaction tube was placed in a low temperature constant temperature bath of -60 ° C and reacted for 8 hours. After the passage of time, unreacted sulfur dioxide was removed and the reaction tube was opened. A small amount of acetone was added to the reaction solution remaining in the tube to make a homogeneous solution, and the homogeneous solution was poured into a large amount of methanol with stirring to precipitate a white polymer. The polymer was collected on a glass filter, washed with methanol, and dried under reduced pressure for 24 hours. Thus 2.8 g of polymer was obtained. This polymer is a terpolymer of meta-trimethylsilyl-para-tert-butoxycarbonyloxystyrene / para-tert-butoxycarbonyloxystyrene / sulfone according to IR spectrum analysis and elemental analysis. The content of -tert-butoxycarbonyloxystyrene unit was 23 mol%, the content of para-tert-butoxycarbonyloxystyrene unit was 28 mol%, and the sulfone unit was 49 mol%. Further, the molecular weight of this polymer was a polystyrene reduced value by GPC analysis and was number average molecular weight (Mn) = 194,000 and dispersity (d) = 3.2.

【0018】実施例4 実施例1で得られたポリマーをシクロヘキサノンに溶解
して10.0%の溶液とし該溶液を0.2μmのフィル
ターで濾過した。この溶液をシリコンウエハー上に回転
数3500rpmで30秒間スピン塗布し、ホットプレ
ート上105℃で2分間プリベイクした。プリベイク後
の膜厚は0.3μmであった。このものに加速電圧20
kvで露光量を変化させ電子線照射を行い、次いでホッ
トプレート上110℃で30秒間ベイクを行った。該ウ
エハーを1.5%のTMAH中で30秒間浸漬現像し蒸
留水で60秒間リンスした。このようにして得られたそ
れぞれのパターンの残膜を触針段差計で測定し残膜が完
全に除去されている部分の露光量(分解感度)を求めた
所、20μC/cm2 の値が得られた。また未露光部分
の膜減りは殆どなかった。
Example 4 The polymer obtained in Example 1 was dissolved in cyclohexanone to form a 10.0% solution, which was filtered through a 0.2 μm filter. This solution was spin-coated on a silicon wafer at a rotation speed of 3500 rpm for 30 seconds, and prebaked on a hot plate at 105 ° C. for 2 minutes. The film thickness after prebaking was 0.3 μm. Accelerating voltage of 20
The exposure amount was changed by kv, electron beam irradiation was performed, and then baking was performed on a hot plate at 110 ° C. for 30 seconds. The wafer was immersion developed in 1.5% TMAH for 30 seconds and rinsed with distilled water for 60 seconds. The residual film of each pattern thus obtained was measured with a stylus profilometer, and the exposure dose (decomposition sensitivity) of the portion where the residual film was completely removed was determined. As a result, a value of 20 μC / cm 2 was obtained. Was obtained. In addition, there was almost no film loss in the unexposed portion.

【0019】実施例5 実施例1で得られたポリマー1gと0.05gのトリフ
ェニルスルホニウムトリフレートとを10mlのシクロ
ヘキサノンに溶解し該溶液を0.2μmのテフロンフィ
ルターで濾過した。この溶液をシリコンウエハー上に回
転数2500rpmで30秒間スピン塗布し、ホットプ
レート上105℃で2分間プリベイクした。この時の膜
厚は0.5μmであった。このものにマスクを通し、露
光量を変化させてDeepUV露光を行い(光源として
ウシオ製の500W Xe−Hgランプを,照明系はキ
ャノンPLA−520,コールドミラーCM250を使
用)、次いでホットプレート上110℃で30秒間ベイ
クを行った。該ウエハーを1.5%のTMAH中で30
秒間浸漬現像し蒸留水で60秒間リンスした。このよう
にして得られたそれぞれのパターンを顕微鏡で観察しそ
の解像性から最適露光量(分解感度)と解像度を求めた
所、感度10mJ/cm2 ,解像度0.4μmの値が得
られた。また未露光部分の膜減りは殆どなかった。
Example 5 1 g of the polymer obtained in Example 1 and 0.05 g of triphenylsulfonium triflate were dissolved in 10 ml of cyclohexanone, and the solution was filtered through a 0.2 μm Teflon filter. This solution was spin-coated on a silicon wafer at a rotation speed of 2500 rpm for 30 seconds, and prebaked at 105 ° C. for 2 minutes on a hot plate. The film thickness at this time was 0.5 μm. A deep UV exposure is performed by passing a mask through this and changing the exposure amount (using a Ushio 500W Xe-Hg lamp as a light source, using Canon PLA-520 and cold mirror CM250 as an illumination system), and then 110 on a hot plate. Baking was performed at 30 ° C. for 30 seconds. The wafer in 30% TMAH at 30%
Immersion development was performed for 2 seconds, and rinsed with distilled water for 60 seconds. The respective patterns thus obtained were observed with a microscope and the optimum exposure dose (decomposition sensitivity) and the resolution were determined from the resolution, and a value of sensitivity of 10 mJ / cm 2 and a resolution of 0.4 μm was obtained. . In addition, there was almost no film loss in the unexposed portion.

【0020】実施例6 実施例5と同じレジスト溶液をシリコンウエハー上に回
転数1500rpmで30秒間スピン塗布し、ホットプ
レート上105℃で2分間プリベイクした。この時の膜
厚は0.95μmであった。このものに実施例5と同様
にDeepUV露光を行い、次いでホットプレート上1
10℃で30秒間ベイクを行った。該ウエハーをジクロ
ロメタン:シクロヘキサノン=1:1の溶剤で60秒間
浸漬現像しイソプロパノールで60秒間リンスした。
(この場合、未露光部が現像液で溶解除去されネガ像を
与える)このようにして得られたそれぞれのパターンの
残膜を触針計で測定し残膜がほぼ一定値に飽和する点の
露光量(ネガ感度)を求めた所、20mJ/cm2 の値
が得られた。
Example 6 The same resist solution as in Example 5 was spin-coated on a silicon wafer at a rotation speed of 1500 rpm for 30 seconds, and prebaked on a hot plate at 105 ° C. for 2 minutes. The film thickness at this time was 0.95 μm. This was subjected to Deep UV exposure in the same manner as in Example 5, and then on a hot plate.
Baking was performed at 10 ° C. for 30 seconds. The wafer was immersion developed for 60 seconds in a solvent of dichloromethane: cyclohexanone = 1: 1 and rinsed for 60 seconds with isopropanol.
(In this case, the unexposed portion is dissolved and removed by the developer to give a negative image.) The residual film of each pattern thus obtained is measured with a stylus meter and the residual film is saturated to a substantially constant value. When the exposure amount (negative sensitivity) was determined, a value of 20 mJ / cm 2 was obtained.

【0021】比較例1 実施例2と同様の方法で、パラ−tert−ブトキシス
チレン10.6gとAIBN26mgと二酸化硫黄(−
10℃で)5.4mlとよりパラ−tert−ブトキシ
スチレンスルホン(2:1)共重合体4.3gを得た。
このポリマーの分子量は数平均分子量(Mn)=24
3,000、分散度(d)=1.5であった。次いで実
施例5と同様に、ここで得られたポリマー1gと0.0
5gのトリフェニルスルホニウムトリフレートとを10
mlのシクロヘキサノンに溶解しレジスト溶液を作成し
た。この溶液をヘキサメチルジシラザン(以後HMDS
という)処理したシリコンウエハー上に回転数2700
rpmで30秒間スピン塗布し、ホットプレート上で1
05℃、2分間プリベイクし、膜厚0.8μmのフィル
ムを得た。実施例5と同様にしてDUV露光を行い、1
10℃で30秒間ベイクを行った後、該ウエハーを1.
5%のTMAH中で30秒間浸漬現像し蒸留水で60秒
間リンスした。この結果、感度はおよそ10mJ/cm
2 と良好であったが解像性は1.0μm以下のパターン
に剥離が生じ不良であった。また未露光部分の膜減りは
8%であった。
Comparative Example 1 In the same manner as in Example 2, 10.6 g of para-tert-butoxystyrene, 26 mg of AIBN and sulfur dioxide (-
(10 ° C.) and 5.4 ml gave 4.3 g of para-tert-butoxystyrene sulfone (2: 1) copolymer.
The molecular weight of this polymer is number average molecular weight (Mn) = 24.
It was 3,000 and the degree of dispersion (d) was 1.5. Then, in the same manner as in Example 5, 1 g of the polymer obtained here and 0.0
5 g of triphenylsulfonium triflate and 10
A resist solution was prepared by dissolving it in ml of cyclohexanone. This solution was added to hexamethyldisilazane (hereinafter HMDS
2700 rpm on the processed silicon wafer
Spin coating at rpm for 30 seconds, 1 on hot plate
Prebaking was performed at 05 ° C. for 2 minutes to obtain a film having a thickness of 0.8 μm. DUV exposure was performed in the same manner as in Example 5, and 1
After baking at 10 ° C. for 30 seconds, the wafer was 1.
Immersion development was carried out for 30 seconds in 5% TMAH and rinsed with distilled water for 60 seconds. As a result, the sensitivity is about 10 mJ / cm
2 was good, but the resolution was poor because peeling occurred in a pattern of 1.0 μm or less. The film loss in the unexposed portion was 8%.

【0022】比較例2 実施例1と同様の方法で、パラーtert−ブトキシカ
ルボニルオキシスチレン10.0gとtert−ブチル
ヒドロペルオキシド(3モルトルエン溶液)0.15m
lと二酸化硫黄(−10℃で)12mlとよりパラ−t
ert−ブトキシカルボニルオキシスチレンスルホン
(1:1)交互共重合体2.7gを得た。このポリマー
の分子量は数平均分子量(Mn)=200,000、分
散度(d)=2.5であった。実施例5と同様にここで
得られたポリマー1gと0.05gのトリフェニルスル
ホニウムトリフレートとを10mlのシクロヘキサノン
に溶解しレジスト溶液を作成した。この溶液をHMDS
処理したシリコンウエハー上に回転数1800rpmで
30秒間スピン塗布し、ホットプレート上105℃で2
分間プリベイクし膜厚0.8μmのフィルムを得た。実
施例5と同様にDUV露光を行い、次いで110℃で3
0秒間ベイクを行った後、該ウエハーを1.5%のTM
AH中で30秒間浸漬現像し蒸留水で60秒間リンスし
た。この結果、感度はおよそ10mJ/cm2 と良好で
あったが解像度は1.0μm以下のパターンに剥離が生
じ不良であった。また未露光部分の膜減りは12%であ
った。
Comparative Example 2 In the same manner as in Example 1, 10.0 g of para-tert-butoxycarbonyloxystyrene and tert-butyl hydroperoxide (3 mol toluene solution) 0.15 m were used.
and 12 ml of sulfur dioxide (at -10 ° C) and more para-t.
2.7 g of an ert-butoxycarbonyloxystyrene sulfone (1: 1) alternating copolymer was obtained. The polymer had a number average molecular weight (Mn) of 200,000 and a dispersity (d) of 2.5. In the same manner as in Example 5, 1 g of the polymer obtained here and 0.05 g of triphenylsulfonium triflate were dissolved in 10 ml of cyclohexanone to prepare a resist solution. This solution is HMDS
Spin treatment is performed on the treated silicon wafer at a rotation speed of 1800 rpm for 30 seconds, and then is applied on a hot plate at 105 ° C. for 2 seconds.
It was pre-baked for a minute to obtain a film having a film thickness of 0.8 μm. DUV exposure is carried out as in Example 5, then 3 hours at 110 ° C.
After baking for 0 seconds, the wafer is 1.5% TM
Immersion development was carried out in AH for 30 seconds and rinsed with distilled water for 60 seconds. As a result, the sensitivity was good at about 10 mJ / cm 2 , but peeling occurred in the pattern having a resolution of 1.0 μm or less, which was not good. The film loss in the unexposed portion was 12%.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る二元共重合体の赤外線吸収スペ
クトル図である。
FIG. 1 is an infrared absorption spectrum diagram of a binary copolymer according to the present invention.

【図2】 本発明に係る三元共重合体の赤外線吸収スペ
クトル図である。
FIG. 2 is an infrared absorption spectrum diagram of the terpolymer according to the present invention.

フロントページの続き (56)参考文献 特開 昭62−215628(JP,A) 特開 昭63−10634(JP,A) 特開 平1−131246(JP,A) 特開 昭63−319(JP,A)Continuation of front page (56) Reference JP 62-215628 (JP, A) JP 63-10634 (JP, A) JP 1-131246 (JP, A) JP 63-319 (JP , A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1〜50モル%の−SO2 −で示される
構造単位と50〜99モル%の下記(式1)で示される
核置換スチレン誘導体を構造単位とし、線状化合物であ
って数平均分子量が2,000〜2,000,000で
下記(式3)の構造式を有する二酸化硫黄と核置換スチ
レン誘導体との二元共重合体。 【化1】 ここでR1 およびR2 はメタ位でH、炭素数1〜4のア
ルキル基若しくは[Si(CH32y CH3 であ
り、yは1〜3の整数である。また、R1 とR2とは同
一であっても異ってもよい。R3 はパラ位で(CH2
m 、m=0またはm=1〜3のアルキレン基を表わし、
XはOH、タ−シャリ−ブトキシ基若しくはタ−シャリ
−ブトキシカルボニルオキシ基を表す。ただし、R1
よびR2 がHでm=0の場合を除く。 【化2】 ここで、R1 ,R2 ,R3 およびXの意味は(式1)の
場合と同様であり、pは1〜99の任意の整数、nは1
0以上10,000以下の整数である。
1. A linear compound comprising 1 to 50 mol% of a structural unit represented by —SO 2 — and 50 to 99 mol% of a nuclear-substituted styrene derivative represented by the following (formula 1) as a structural unit. A binary copolymer of sulfur dioxide having a number average molecular weight of 2,000 to 2,000,000 and a structural formula (formula 3) below and a nucleus-substituted styrene derivative. [Chemical 1] Here, R 1 and R 2 are H at the meta position, an alkyl group having 1 to 4 carbon atoms or [Si (CH 3 ) 2 ] y CH 3 , and y is an integer of 1 to 3. Further, R 1 and R 2 may be the same or different. R 3 is in para position (CH 2 )
m represents an alkylene group of m = 0 or m = 1 to 3,
X represents OH, a tertiary-butoxy group or a tertiary-butoxycarbonyloxy group. However, the case where R 1 and R 2 are H and m = 0 is excluded. [Chemical 2] Here, the meanings of R 1 , R 2 , R 3 and X are the same as in the case of (Formula 1), p is an arbitrary integer from 1 to 99, and n is 1
It is an integer of 0 or more and 10,000 or less.
【請求項2】 1〜50モル%の−SO2 −で示される
構造単位と15〜98モル%の下記(式1)で示される
核置換スチレン誘導体ならびに1〜84モル%の下記
(式2)で示される核置換スチレン誘導体を構造単位と
し、線状化合物であって数平均分子量が2,000〜
2,000,000で下記(式4)の構造式を有する二
酸化硫黄と核置換スチレン誘導体との三元共重合体。 【化3】 ここでR1 およびR2 はメタ位でH、炭素数1〜4のア
ルキル基若しくは[Si(CH32y CH3 であ
り、yは1〜3の整数である。また、R1 とR2とは同
一であっても異ってもよい。R3 はパラ位で(CH2
m 、m=0またはm=1〜3のアルキレン基を表わし、
XはOH、タ−シャリ−ブトキシ基若しくはタ−シャリ
−ブトキシカルボニルオキシ基を表す。ただし、R1
よびR2 がHでm=0の場合を除く。 【化4】 ここでXはOH、ターシャリーブトキシ基若しくはター
シャリーブトキシカルボニルオキシ基を表す。 【化5】 ここで、R1 ,R2 ,R3 およびXの意味は(式1)の
場合と同様であり、pおよびqは1〜10であり、さら
にl,mは共重合体のモル分率に相当し、lは15〜9
9モル%、mは1〜85モル%、(p+q)は50〜9
9モル%であって、それぞれの構造単位は共重合体中に
不規則に分布して共重合体主鎖を構成している。nは5
以上5,000以下の整数である。
2. A structural unit represented by 1 to 50 mol% of --SO 2- , 15 to 98 mol% of a nucleus-substituted styrene derivative represented by the following (formula 1) and 1 to 84 mol% of the following (formula 2 ) Is a linear compound having a number average molecular weight of 2,000 to
A terpolymer of sulfur dioxide having a structural formula of the following (formula 4) at 2,000,000 and a nucleus-substituted styrene derivative. [Chemical 3] Here, R 1 and R 2 are H at the meta position, an alkyl group having 1 to 4 carbon atoms or [Si (CH 3 ) 2 ] y CH 3 , and y is an integer of 1 to 3. Further, R 1 and R 2 may be the same or different. R 3 is in para position (CH 2 )
m represents an alkylene group of m = 0 or m = 1 to 3,
X represents OH, a tertiary-butoxy group or a tertiary-butoxycarbonyloxy group. However, the case where R 1 and R 2 are H and m = 0 is excluded. [Chemical 4] Here, X represents OH, a tertiary butoxy group or a tertiary butoxycarbonyloxy group. [Chemical 5] Here, the meanings of R 1 , R 2 , R 3 and X are the same as in the case of (Formula 1), p and q are 1 to 10, and l and m are the molar fractions of the copolymer. Corresponding, l is 15-9
9 mol%, m is 1 to 85 mol%, (p + q) is 50 to 9
It is 9 mol%, and each structural unit is irregularly distributed in the copolymer to form the main chain of the copolymer. n is 5
It is an integer not less than 5,000.
【請求項3】 請求項(1)若しくは(2)に記載の共
重合体を有効成分とするレジスト材料。
3. A resist material containing the copolymer according to claim 1 or 2 as an active ingredient.
JP3313629A 1991-10-31 1991-10-31 Copolymer of Sulfur Dioxide and Nuclear Substituted Styrene Derivative Expired - Lifetime JPH0721055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3313629A JPH0721055B2 (en) 1991-10-31 1991-10-31 Copolymer of Sulfur Dioxide and Nuclear Substituted Styrene Derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3313629A JPH0721055B2 (en) 1991-10-31 1991-10-31 Copolymer of Sulfur Dioxide and Nuclear Substituted Styrene Derivative

Publications (2)

Publication Number Publication Date
JPH05331289A JPH05331289A (en) 1993-12-14
JPH0721055B2 true JPH0721055B2 (en) 1995-03-08

Family

ID=18043624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3313629A Expired - Lifetime JPH0721055B2 (en) 1991-10-31 1991-10-31 Copolymer of Sulfur Dioxide and Nuclear Substituted Styrene Derivative

Country Status (1)

Country Link
JP (1) JPH0721055B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW211080B (en) * 1991-12-12 1993-08-11 American Telephone & Telegraph
JP4019403B2 (en) * 1999-03-08 2007-12-12 Jsr株式会社 Method for forming resist pattern
US6537736B1 (en) 1999-03-12 2003-03-25 Matsushita Electric Industrial Co., Ltd. Patten formation method
US7759046B2 (en) * 2006-12-20 2010-07-20 Az Electronic Materials Usa Corp. Antireflective coating compositions

Also Published As

Publication number Publication date
JPH05331289A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
KR100301354B1 (en) Resist Composition and Resist Pattern Formation Method
JP2664475B2 (en) Method for producing radiation-sensitive mixture and relief pattern
US5665518A (en) Photoresist and monomer and polymer for composing the photoresist
KR100271420B1 (en) Chemically Amplified Positive Photoresist Composition
US7776505B2 (en) High resolution resists for next generation lithographies
JP3785846B2 (en) Chemically amplified positive resist composition
JP3368888B2 (en) Organometallic polymers and uses thereof
JP2002088124A (en) Photosensitive polymer having protective group containing condensed aromatic ring, and resist composition containing the same
KR19980076578A (en) Copolymer for preparing positive photoresist and chemically amplified positive photoresist composition containing same
JPH05265212A (en) Resist material and pattern forming using it
JP3341466B2 (en) Photoresist composition
EP0645679B1 (en) Resist material and pattern forming process
KR100750077B1 (en) Chemical amplification type positive resist composition
EP1830229A2 (en) Photosensitive polymer including copolymer of alkyl vinyl ether and resist composition containing the same
EP0921439B1 (en) Photosensitive polymer and chemically amplified resist composition using the same
JP2008045125A (en) Photosensitive polymer for extreme ultraviolet ray and deep ultraviolet ray and photoresist composition containing the same
US5962191A (en) Resist compositions for forming resist patterns
EP0546703A1 (en) Lithographic material and processes involved in their use
US20030108812A1 (en) Silicon-containing resist for photolithography
US20030235788A1 (en) Negative resist composition comprising hydroxy-substituted base polymer and si-containing crosslinker having epoxy ring and a method for patterning semiconductor devices using the same
US20030215758A1 (en) Photosensitive polymer and chemically amplified resist composition comprising the same
JPH0721055B2 (en) Copolymer of Sulfur Dioxide and Nuclear Substituted Styrene Derivative
KR100669188B1 (en) Hydroxyphenyl copolymers and photoresists comprising same
KR100265940B1 (en) Styren-acrylic copolymer for photoresist and chemical amplified positive photoresist composition containing the same
KR100270352B1 (en) Copolymer for Chemically Amplified Photoresist Preparation and Chemically Amplified Positive Photoresist Composition Containing the Same