Nothing Special   »   [go: up one dir, main page]

JPH0766384A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0766384A
JPH0766384A JP5207687A JP20768793A JPH0766384A JP H0766384 A JPH0766384 A JP H0766384A JP 5207687 A JP5207687 A JP 5207687A JP 20768793 A JP20768793 A JP 20768793A JP H0766384 A JPH0766384 A JP H0766384A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
heat dissipation
main surface
opening mask
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5207687A
Other languages
Japanese (ja)
Inventor
Masaaki Nishijima
将明 西嶋
Masahiro Maeda
昌宏 前田
Hiromasa Fujimoto
裕雅 藤本
Osamu Ishikawa
修 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5207687A priority Critical patent/JPH0766384A/en
Publication of JPH0766384A publication Critical patent/JPH0766384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

(57)【要約】 【目的】 半導体装置のバイアホールと放熱ホールとを
一工程で形成する。 【構成】 半絶縁性GaAs基板1の主面に、高周波・
高出力のFET(図示せず)、ゲート電極2、ソース電
極3、ドレイン電極4を形成し、絶縁膜5で覆う。つぎ
に、半絶縁性GaAs基板1の裏面を薄化した後、半絶
縁性GaAs基板の裏面に、バイアホール形成用のマス
クパターン6bの寸法を放熱ホール形成用のマスクパタ
ーン6bの寸法より大きく形成し、マスクパターン6b
に対して半絶縁性GaAs基板1をソース電極3が露出
するまでエッチングしバイアホール形成する。これによ
り、マスクパターン6aに対しては半絶縁性GaAs基
板1に未貫通の放熱ホール7が形成される。つぎに、裏
面全面に所望のメッキ下地金属層9を形成し、さらにA
uメッキ10を施す。
(57) [Summary] [Purpose] A via hole and a heat dissipation hole of a semiconductor device are formed in one step. [Structure] On the main surface of the semi-insulating GaAs substrate 1,
A high output FET (not shown), a gate electrode 2, a source electrode 3 and a drain electrode 4 are formed and covered with an insulating film 5. Next, after thinning the back surface of the semi-insulating GaAs substrate 1, the size of the mask pattern 6b for forming a via hole is formed larger than the size of the mask pattern 6b for forming a heat dissipation hole on the back surface of the semi-insulating GaAs substrate. Mask pattern 6b
On the other hand, the semi-insulating GaAs substrate 1 is etched until the source electrode 3 is exposed to form a via hole. As a result, a semi-insulating GaAs substrate 1 is provided with a non-penetrating heat dissipation hole 7 for the mask pattern 6a. Next, a desired plating base metal layer 9 is formed on the entire back surface, and A
u plating 10 is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電界効果トランジス
タ、バイポーラトランジスタ等の能動素子や、インダク
タンス、キャパシタ等の受動素子から構成された電力用
高周波デバイス等のバイアホールと放熱ホールとを備え
た半導体装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor provided with a via hole and a heat dissipation hole for a high frequency power device or the like which is composed of active elements such as field effect transistors and bipolar transistors and passive elements such as inductance and capacitors. The present invention relates to a method for manufacturing a device.

【0002】[0002]

【従来の技術】電界効果トランジスタ(以下FETと記
す)、バイポーラトランジスタ等の電力用高周波半導体
は、その高速性、高効率性から移動体通信、衛星通信用
の半導体装置として利用されている。情報通信システム
の拡大に伴い、より高周波帯域で動作する高出力半導体
装置が望まれている。
2. Description of the Related Art High-frequency power semiconductors such as field effect transistors (hereinafter referred to as FETs) and bipolar transistors are used as semiconductor devices for mobile communication and satellite communication because of their high speed and high efficiency. With the expansion of information communication systems, high-power semiconductor devices that operate in a higher frequency band are desired.

【0003】この目的を達成するためには、放熱効率の
向上や寄生容量・インダクタンスの低減化を図る必要が
ある。放熱が不十分であると、電力増幅用半導体が加熱
し電流が流れにくくなるため出力電力が減少し、ボンデ
ィングワイヤの配線長が素子の電気特性に大きく影響し
てくる。特に電力増幅用半導体の接地に際し、半導体基
板上での配線の引き回しや、ボンディングワイヤがイン
ダクタンスとして見え、完全な接地が得られず、半導体
装置の高周波特性の劣化を招く。
In order to achieve this purpose, it is necessary to improve heat dissipation efficiency and reduce parasitic capacitance and inductance. If the heat dissipation is insufficient, the semiconductor for power amplification heats up, and it becomes difficult for current to flow, so the output power decreases, and the wiring length of the bonding wire greatly affects the electrical characteristics of the element. In particular, when the power amplification semiconductor is grounded, the wiring is laid out on the semiconductor substrate and the bonding wire appears as an inductance, so that complete grounding cannot be obtained, leading to deterioration of the high frequency characteristics of the semiconductor device.

【0004】例えば、GaAsを用いたマイクロウェー
ブモノリシックIC(MMIC)では、GaAs基板の
熱伝導率が低いので、熱抵抗低減のためにGaAs基板
を100μm以下に薄化しヒートシンクを設けたり、接
地インダクタンスを低減するためにFETのソース電極
にバイアホールを開け、その内部を熱伝導率の高い金属
(金など)でメタライズする方法がとられている。
For example, in a microwave monolithic IC (MMIC) using GaAs, the thermal conductivity of the GaAs substrate is low. Therefore, in order to reduce the thermal resistance, the GaAs substrate is thinned to 100 μm or less and a heat sink is provided, or the ground inductance is reduced. In order to reduce the number, a method of opening a via hole in the source electrode of the FET and metallizing the inside with a metal (gold or the like) having a high thermal conductivity is used.

【0005】以下図面を参照しながら、上記した従来の
半導体装置の製造方法について説明する。図3は従来の
バイアホールと放熱ホールとを有する半導体装置の製造
方法を説明するための製造工程の断面概略図である。ま
ず、図3(a)に示すように、半絶縁性GaAs基板1
の一主面に高周波・高出力FET(図示せず)、および
ゲート電極2、ソース電極3、ドレイン電極4を形成
し、絶縁膜5で覆う。
A conventional method of manufacturing the above-described semiconductor device will be described below with reference to the drawings. FIG. 3 is a schematic cross-sectional view of a manufacturing process for explaining a conventional method for manufacturing a semiconductor device having a via hole and a heat dissipation hole. First, as shown in FIG. 3A, the semi-insulating GaAs substrate 1
A high-frequency / high-power FET (not shown), a gate electrode 2, a source electrode 3, and a drain electrode 4 are formed on one main surface and covered with an insulating film 5.

【0006】つぎに、図3(b)に示すように、図3
(a)の半絶縁性GaAs基板1の裏面をメカニカルあ
るいはケミカルに所望の厚さに薄化し、薄化された半絶
縁性GaAs基板1の裏面に前記ドレイン電極4の位置
に合わせて、レジストあるいは絶縁膜を用いてパターン
6aを形成し、これをマスクにしてエッチングにより半
絶縁性GaAs基板1に未貫通の放熱ホール7を形成
し、パターン6aを除去する。
Next, as shown in FIG.
The back surface of the semi-insulating GaAs substrate 1 of (a) is mechanically or chemically thinned to a desired thickness, and a resist or a resist is formed on the back surface of the thinned semi-insulating GaAs substrate 1 according to the position of the drain electrode 4. A pattern 6a is formed using an insulating film, and a non-penetrating heat dissipation hole 7 is formed in the semi-insulating GaAs substrate 1 by etching using this as a mask, and the pattern 6a is removed.

【0007】つぎに、図3(c)に示すように、半絶縁
性GaAs基板1の裏面(反対主面)に前記ソース電極
3の位置に合わせて、レジストあるいは絶縁膜を用いて
パターン6bを形成し、これをマスクにして半絶縁性G
aAs基板1をソース電極3が露出するまでエッチング
し、バイアホール8を形成する。つぎに、図3(d)に
示すように、マスクに用いたパターン6bを除去し、裏
面全面に所望のメッキ下地金属層9を形成し、Auメッ
キ10を施す。
Next, as shown in FIG. 3 (c), a pattern 6b is formed on the back surface (opposite main surface) of the semi-insulating GaAs substrate 1 in accordance with the position of the source electrode 3 using a resist or an insulating film. Formed and used as a mask for semi-insulating G
The aAs substrate 1 is etched until the source electrode 3 is exposed to form a via hole 8. Next, as shown in FIG. 3D, the pattern 6b used for the mask is removed, a desired plating base metal layer 9 is formed on the entire back surface, and Au plating 10 is applied.

【0008】図4は別の従来例の半導体装置の製造方法
を説明するための製造工程の断面概略図である。図4に
おいて、図3と同一符号は、同一または相当部分を示し
ている。まず、図4(a)に示すように、半絶縁性Ga
As基板1の一主面に高周波・高出力FET、およびゲ
ート電極2、ソース電極3、ドレイン電極4を形成し、
絶縁膜5で覆う。
FIG. 4 is a sectional schematic view of a manufacturing process for explaining another conventional method for manufacturing a semiconductor device. 4, the same reference numerals as those in FIG. 3 indicate the same or corresponding portions. First, as shown in FIG. 4A, semi-insulating Ga
A high-frequency / high-power FET, a gate electrode 2, a source electrode 3, and a drain electrode 4 are formed on one main surface of the As substrate 1.
Cover with insulating film 5.

【0009】つぎに、図4(b)に示すように、図4
(a)の半絶縁性GaAs基板1の一主面側をワックス
13を用いて石英基板等の支持板12に貼付け、半絶縁
性GaAs基板1の裏面(反対主面)をメカニカルある
いはケミカルに所望の厚さに薄化し、薄化された半絶縁
性GaAs基板1の裏面(反対主面)にドレイン電極4
の位置に合わせて、レジストあるいは絶縁膜を用いてマ
スクパターン6aを形成し、これをマスクにしてエッチ
ングにより半絶縁性GaAs基板1に未貫通の放熱ホー
ル7を形成し、マスクパターン6aを除去する。
Next, as shown in FIG.
The main surface side of the semi-insulating GaAs substrate 1 of (a) is attached to a supporting plate 12 such as a quartz substrate using wax 13, and the back surface (opposite main surface) of the semi-insulating GaAs substrate 1 is mechanically or chemically desired. The drain electrode 4 on the back surface (opposite main surface) of the thinned semi-insulating GaAs substrate 1.
A mask pattern 6a is formed by using a resist or an insulating film in accordance with the position of 1), and a non-penetrating heat dissipation hole 7 is formed in the semi-insulating GaAs substrate 1 by etching using this as a mask, and the mask pattern 6a is removed. .

【0010】つぎに、図4(c)に示すように、半絶縁
性GaAs基板1の裏面に前記ソース電極3の位置に合
わせて、レジストあるいは絶縁膜を用いてマスクパター
ン6bを形成し、これをマスクにして半絶縁性GaAs
基板1をソース電極3が露出するまでエッチングし、バ
イアホール8を形成し、マスクパターン6bを除去す
る。
Next, as shown in FIG. 4 (c), a mask pattern 6b is formed on the back surface of the semi-insulating GaAs substrate 1 by using a resist or an insulating film in accordance with the position of the source electrode 3, and As a mask for semi-insulating GaAs
The substrate 1 is etched until the source electrode 3 is exposed, the via hole 8 is formed, and the mask pattern 6b is removed.

【0011】つぎに、図4(d)に示すように、半絶縁
性GaAs基板1の裏面(反対主面)全面に所望のメッ
キ下地金属層9を形成し、Auメッキ10を施す。つぎ
に、図4(e)に示すように半絶縁性GaAs基板1を
支持板12から剥した後、半絶縁性GaAs基板1を固
定させるために半絶縁性GaAs基板1の反対主面側に
ビニールシート14を貼付け、ダイシング領域11にお
いてチップ分割する。
Next, as shown in FIG. 4D, a desired plating base metal layer 9 is formed on the entire back surface (opposite main surface) of the semi-insulating GaAs substrate 1, and Au plating 10 is applied. Next, as shown in FIG. 4E, after the semi-insulating GaAs substrate 1 is peeled from the support plate 12, the semi-insulating GaAs substrate 1 is fixed to the opposite main surface side in order to fix the semi-insulating GaAs substrate 1. A vinyl sheet 14 is attached and chips are divided in the dicing area 11.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、図3お
よび図4に示した従来の半導体装置の製造方法では、放
熱ホールとバイアホールとを別々に形成するため、工程
の複雑度が増し、工程の信頼性・歩留まりの低下、およ
び素子特性の劣化を招くという問題点を有していた。
However, in the conventional method of manufacturing a semiconductor device shown in FIGS. 3 and 4, since the heat dissipation hole and the via hole are formed separately, the complexity of the process increases and the process There are problems that the reliability and yield are deteriorated and the device characteristics are deteriorated.

【0013】この発明は上記問題点に鑑み、バイアホー
ルと放熱ホールとを有する半導体装置を容易に製造する
ことができる半導体装置の製造方法を提供することを目
的とする。
In view of the above problems, it is an object of the present invention to provide a semiconductor device manufacturing method capable of easily manufacturing a semiconductor device having a via hole and a heat dissipation hole.

【0014】[0014]

【課題を解決するための手段】請求項1記載の半導体装
置の製造方法は、半導体基板の一主面に能動素子を形成
する工程と、半導体基板の反対主面に、能動素子の接地
電極のバイアホール用開口マスクと能動素子の直下領域
の放熱ホール用開口マスクを、バイアホール用開口マス
クの寸法が放熱ホール用開口マスクの寸法より大きくな
るように形成する工程と、半導体基板の反対主面をバイ
アホール用開口マスクおよび放熱ホール用開口マスクを
通してエッチングすることにより能動素子の接地電極が
露出したバイアホールと半導体基板未貫通の放熱ホール
とを同時に形成する工程と、半導体基板の反対主面に裏
面金属層を形成する工程とを含む。
According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor device, wherein a step of forming an active element on one main surface of a semiconductor substrate and a step of forming a ground electrode of the active element on an opposite main surface of the semiconductor substrate. The step of forming the via-hole opening mask and the heat-dissipating hole opening mask in the region directly below the active element so that the size of the via-hole opening mask is larger than that of the heat-dissipating hole opening mask, and the opposite main surface of the semiconductor substrate. Through the opening mask for the via hole and the opening mask for the heat dissipation hole to simultaneously form the via hole in which the ground electrode of the active element is exposed and the heat dissipation hole not penetrating the semiconductor substrate, and on the opposite main surface of the semiconductor substrate. Forming a backside metal layer.

【0015】請求項2記載の半導体装置の製造方法は、
半導体基板の一主面に能動素子を形成する工程と、半導
体基板を支持板に貼付ける工程と、支持板に貼付けられ
た状態で半導体基板の反対主面に、能動素子の接地電極
のバイアホール用開口マスクと能動素子の直下領域の放
熱ホール用開口マスクを、バイアホール用開口マスクの
寸法が放熱ホール用開口マスクの寸法より大きくなるよ
うに形成する工程と、支持板に貼付けられた状態で半導
体基板の反対主面をバイアホール用開口マスクおよび放
熱ホール用開口マスクを通してエッチングすることによ
り能動素子の接地電極が露出したバイアホールと半導体
基板未貫通の放熱ホールとを同時に形成する工程と、支
持板に貼付けられた状態で半導体基板の反対主面に裏面
金属層を形成する工程と、支持板に貼付けられた状態で
半導体基板の反対主面にチップのエキスパンド用のシー
トを貼付ける工程と、半導体基板を支持板から剥がす工
程と、シートに貼付けられた状態で半導体基板をダイシ
ングする工程とを含む。
A method of manufacturing a semiconductor device according to claim 2 is
A step of forming an active element on one main surface of the semiconductor substrate, a step of attaching the semiconductor substrate to a supporting plate, and a via hole for the ground electrode of the active element on the opposite main surface of the semiconductor substrate while being attached to the supporting plate. Forming the opening mask for heat dissipation holes and the opening mask for heat dissipation holes in the region directly below the active element so that the size of the opening mask for via holes is larger than the size of the opening mask for heat dissipation holes, and with the state of being attached to the support plate. A step of simultaneously forming a via hole in which the ground electrode of the active element is exposed by etching the opposite main surface of the semiconductor substrate through an opening mask for a via hole and an opening mask for a heat dissipation hole and a heat dissipation hole not penetrating the semiconductor substrate, and supporting the same. The step of forming a backside metal layer on the opposite main surface of the semiconductor substrate when it is attached to the plate, and the opposite of the semiconductor substrate when it is attached to the support plate. And a step Keru sticking a sheet for expanding the chip surface, a step of peeling the semiconductor substrate from the support plate, and a step of dicing the semiconductor substrate in a state attached on the sheet.

【0016】[0016]

【作用】請求項1記載の半導体装置の製造方法によれ
ば、半導体基板の一主面に能動素子を形成して、半導体
基板の反対主面に、能動素子の接地電極のバイアホール
用開口マスクと能動素子の直下領域の放熱ホール用開口
マスクをバイアホール用開口マスクの寸法が放熱ホール
用開口マスクの寸法より大きくなるように形成し、半導
体基板の反対主面をバイアホール用開口マスクおよび放
熱ホール用開口マスクを通してエッチングすることによ
り能動素子の接地電極が露出したバイアホールと半導体
基板未貫通の放熱ホールとを同時に形成し、半導体基板
の反対主面に裏面金属層を形成するので、バイアホール
と放熱ホールとを別々に形成した場合に比べて、工程の
簡略化が可能となり、工程の信頼性・歩留まりが向上
し、素子特性が安定する。
According to the method of manufacturing a semiconductor device of claim 1, an active element is formed on one main surface of a semiconductor substrate, and an opening mask for a via hole of a ground electrode of the active element is formed on the other main surface of the semiconductor substrate. And the heat dissipation hole opening mask immediately below the active element so that the size of the via hole opening mask is larger than that of the heat dissipation hole, and the opposite main surface of the semiconductor substrate is connected to the via hole opening mask and the heat dissipation hole. By etching through the hole opening mask, a via hole in which the ground electrode of the active element is exposed and a heat dissipation hole not penetrating the semiconductor substrate are formed at the same time, and a back surface metal layer is formed on the opposite main surface of the semiconductor substrate. Compared to the case where the heat dissipation hole and the heat dissipation hole are formed separately, the process can be simplified, the process reliability and yield are improved, and the element characteristics are stable. .

【0017】請求項2記載の半導体装置の製造方法によ
れば、支持板に貼付けられた状態で半導体基板の反対主
面をバイアホール用開口マスクおよび放熱ホール用開口
マスクを通してエッチングすることにより半導体基板に
バイアホールと放熱ホールとを同時に形成し、支持板に
貼付けられた状態で半導体基板の裏面にチップのエキス
パンド用のシートを貼付け、半導体基板を支持板から剥
がし、半導体基板をダイシングするので、バイアホール
と放熱ホールとを別々に形成した場合に比べて、工程の
簡略化が可能となり、工程の信頼性・歩留まりが向上
し、素子特性に優れたチップを得ることができる。
According to a second aspect of the method of manufacturing a semiconductor device, the semiconductor substrate is attached to the supporting plate and the opposite main surface of the semiconductor substrate is etched through the opening mask for via holes and the opening mask for heat dissipation holes. Since a via hole and a heat dissipation hole are simultaneously formed on the substrate, a sheet for expanding the chip is attached to the back surface of the semiconductor substrate while being attached to the support plate, the semiconductor substrate is peeled from the support plate, and the semiconductor substrate is diced. Compared to the case where the holes and the heat dissipation holes are formed separately, the process can be simplified, the process reliability and yield are improved, and a chip having excellent element characteristics can be obtained.

【0018】[0018]

【実施例】この発明の半導体装置の製造方法について、
図面を参照しながら説明する。図1(a)〜(d)はこ
の発明の第1の実施例を示すバイアホールと放熱ホール
とを備えた半導体装置の製造工程の断面構造図である。
図1において、図3および図4と同一符号は同一または
相当部分を示している。以下この第1の実施例を図面を
参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor device manufacturing method according to the present invention will be described.
A description will be given with reference to the drawings. 1 (a) to 1 (d) are sectional structural views of a manufacturing process of a semiconductor device having a via hole and a heat dissipation hole showing a first embodiment of the present invention.
1, the same reference numerals as those in FIGS. 3 and 4 denote the same or corresponding parts. The first embodiment will be described below with reference to the drawings.

【0019】まず、図1(a)に示すように、半絶縁性
GaAs基板1の一主面に高周波・高出力FET(図示
せず)、およびゲート電極2、ソース電極3、ドレイン
電極4を形成し、絶縁膜5で覆う。つぎに、図1(b)
に示すように、半絶縁性GaAs基板1の裏面(反対主
面)をメカニカルあるいはケミカルに所望の厚さ(数十
μm)に薄化した後、半絶縁性GaAs基板1の裏面
(反対主面)にバイアホール形成用として、ソース電極
3に位置合わせしてレジストあるいは絶縁膜を用いてパ
ターン6bを形成し、放熱ホール形成用として、ドレイ
ン電極4に位置合わせしてレジストあるいは絶縁膜を用
いてマスクパターン6aを形成する。ここで、マスクパ
ターン6bの寸法はマスクパターン6aの寸法に比べて
大きくしてあるので、マスクパターン6bに対して半絶
縁性GaAs基板1をソース電極3が露出するまでエッ
チングしてバイアホール8を開けると、マスクパターン
6aに対しては半絶縁性GaAs基板1に未貫通の放熱
ホール7が形成される。
First, as shown in FIG. 1A, a high frequency / high power FET (not shown), a gate electrode 2, a source electrode 3 and a drain electrode 4 are provided on one main surface of a semi-insulating GaAs substrate 1. It is formed and covered with the insulating film 5. Next, FIG. 1 (b)
As shown in FIG. 5, after the back surface (opposite main surface) of the semi-insulating GaAs substrate 1 is mechanically or chemically thinned to a desired thickness (tens of μm), the back surface (opposite main surface) of the semi-insulating GaAs substrate 1 is thinned. ), A pattern 6b is formed using a resist or an insulating film aligned with the source electrode 3 for forming a via hole, and a resist or an insulating film is aligned with the drain electrode 4 for forming a heat dissipation hole. The mask pattern 6a is formed. Since the size of the mask pattern 6b is larger than that of the mask pattern 6a, the semi-insulating GaAs substrate 1 is etched with respect to the mask pattern 6b until the source electrode 3 is exposed, and the via hole 8 is formed. When opened, a radiating hole 7 is formed in the semi-insulating GaAs substrate 1 so as not to penetrate the mask pattern 6a.

【0020】つぎに、図1(c)に示すように、パター
ン6a,6bを除去し、裏面(反対主面)全面に所望の
メッキ下地金属層9、例えばTi(チタン)、Au
(金)を形成し、Auメッキ10を施す。この実施例に
示したとおり、バイアホール8と放熱ホール7とを同時
に形成することにより、工程の簡略化が可能となり、工
程の信頼性・歩留まりの向上、素子特性の安定が望め
る。
Next, as shown in FIG. 1C, the patterns 6a and 6b are removed, and a desired plating base metal layer 9, such as Ti (titanium) or Au, is formed on the entire back surface (opposite main surface).
(Gold) is formed and Au plating 10 is applied. As shown in this embodiment, by forming the via hole 8 and the heat dissipation hole 7 at the same time, the process can be simplified, the process reliability and yield can be improved, and the element characteristics can be stabilized.

【0021】図2(a)〜(e)はこの発明の第2の実
施例を示すバイアホールと放熱ホールとを備えた半導体
装置の製造工程の断面構造図である。図2において、図
3および図4の従来例と同一符号は同一または相当部分
を示している。以下、この第2の実施例を図面を参照し
ながら説明する。まず、図2(a)に示すように、半絶
縁性GaAs基板1の一主面に高周波・高出力FET
(図示せず)、およびゲート電極2、ソース電極3、ド
レイン電極4を形成し、絶縁膜5で覆う。
2 (a) to 2 (e) are cross-sectional structural views of a manufacturing process of a semiconductor device having a via hole and a heat dissipation hole showing a second embodiment of the present invention. 2, the same reference numerals as those in the conventional example of FIGS. 3 and 4 indicate the same or corresponding portions. The second embodiment will be described below with reference to the drawings. First, as shown in FIG. 2A, a high frequency / high power FET is formed on one main surface of the semi-insulating GaAs substrate 1.
A gate electrode 2, a source electrode 3, and a drain electrode 4 (not shown) are formed and covered with an insulating film 5.

【0022】つぎに、図2(b)に示すように、図2
(a)の半絶縁性GaAs基板1の一主面側をワックス
13を用いて支持板12、例えば石英基板あるいはシリ
コン基板に貼付けておき、この状態で半絶縁性GaAs
基板1の裏面(反対主面)をメカニカルあるいはケミカ
ルに所望の厚さ(数十μm)に薄化した後、半絶縁性G
aAs基板1の裏面(反対主面)にバイアホール形成用
として、ソース電極3に位置合わせしてレジストあるい
は絶縁膜を用いてパターン6bを形成し、放熱ホール形
成用として、ドレイン電極4に位置合わせしてレジスト
あるいは絶縁膜を用いてパターン6aを形成する。ここ
で、パターン6bの寸法はパターン6aの寸法に比べて
大きくしてあるので、パターン6bに対して半絶縁性G
aAs基板1をソース電極3が露出するまでエッチング
してバイアホール8を開けると、パターン6aに対して
は半絶縁性GaAs基板1に未貫通の放熱ホール7が形
成される。
Next, as shown in FIG.
One main surface side of the semi-insulating GaAs substrate 1 of (a) is pasted on a supporting plate 12, for example, a quartz substrate or a silicon substrate using a wax 13, and in this state, the semi-insulating GaAs substrate 1 is formed.
After the back surface (opposite main surface) of the substrate 1 is mechanically or chemically thinned to a desired thickness (tens of μm), semi-insulating G
On the back surface (opposite main surface) of the aAs substrate 1, a pattern 6b is formed using a resist or an insulating film in alignment with the source electrode 3 for forming a via hole, and in alignment with a drain electrode 4 for forming a heat dissipation hole. Then, the pattern 6a is formed using a resist or an insulating film. Here, since the size of the pattern 6b is larger than that of the pattern 6a, the semi-insulating G
When the via hole 8 is opened by etching the aAs substrate 1 until the source electrode 3 is exposed, the semi-insulating GaAs substrate 1 is provided with a non-penetrating heat dissipation hole 7 for the pattern 6a.

【0023】つぎに、図2(c)に示すように、パター
ン6a,6bを除去し、裏面(反対主面)全面に所望の
メッキ下地金属層9、例えばTi(チタン)、Au
(金)を形成し、メッキ下地金属層9上にAuメッキ1
0を施す。つぎに、図2(d)に示すように、支持板1
2が貼付いた状態で、半絶縁性GaAs基板1の放熱電
極が形成された裏面(反対主面)にエキスパンド用のビ
ニールシート14を貼付けた後、半絶縁性GaAs基板
1を支持板12から剥し、ダイシング領域11において
チップ分割し、ビニールシート14をエキスパンドする
ことにより所望のチップが得られる。
Next, as shown in FIG. 2C, the patterns 6a and 6b are removed, and a desired plating base metal layer 9, such as Ti (titanium) or Au, is formed on the entire back surface (opposite main surface).
(Gold) is formed, and Au plating is performed on the plating base metal layer 9 1
0 is applied. Next, as shown in FIG. 2D, the support plate 1
2 is attached, a vinyl sheet 14 for expanding is attached to the back surface (opposite main surface) of the semi-insulating GaAs substrate 1 on which the heat dissipation electrode is formed, and then the semi-insulating GaAs substrate 1 is peeled from the support plate 12. By dividing the chip in the dicing area 11 and expanding the vinyl sheet 14, a desired chip is obtained.

【0024】[0024]

【発明の効果】請求項1記載の半導体装置の製造方法に
よれば、半導体基板の一主面に能動素子を形成して、半
導体基板の反対主面に、能動素子の接地電極のバイアホ
ール用開口マスクと能動素子の直下領域の放熱ホール用
開口マスクを、バイアホール用開口マスクの寸法が放熱
ホール用開口マスクの寸法より大きくなるように形成
し、半導体基板の反対主面をバイアホール用開口マスク
および放熱ホール用開口マスクを通してエッチングする
ことにより能動素子の接地電極が露出したバイアホール
と半導体基板未貫通の放熱ホールとを同時に形成し、半
導体基板の反対主面に裏面金属層を形成するので、バイ
アホールと放熱ホールとを別々に形成した場合に比べ
て、工程の簡略化が可能となり、工程の信頼性・歩留ま
りが向上し、素子特性が安定する。
According to the method of manufacturing a semiconductor device of the first aspect, an active element is formed on one main surface of a semiconductor substrate, and a via hole for a ground electrode of the active element is formed on the other main surface of the semiconductor substrate. The opening mask and the opening mask for the heat dissipation hole in the region directly below the active element are formed so that the size of the opening mask for the via hole is larger than that of the opening mask for the heat dissipation hole, and the opposite main surface of the semiconductor substrate is opened for the via hole. By etching through the mask and the heat dissipation hole opening mask, the via hole in which the ground electrode of the active element is exposed and the heat dissipation hole not penetrating the semiconductor substrate are simultaneously formed, and the back surface metal layer is formed on the opposite main surface of the semiconductor substrate. Compared to the case where via holes and heat dissipation holes are formed separately, the process can be simplified, the process reliability and yield are improved, and the device characteristics are improved. Stable.

【0025】請求項2記載の半導体装置の製造方法によ
れば、半導体基板の反対主面をバイアホール用開口マス
クおよび放熱ホール用開口マスクを通してエッチングす
ることにより支持板に貼付けられた半導体基板に裏面
(反対主面)からバイアホールと放熱ホールとを同時に
形成して、支持板に貼付けられた状態で半導体基板の裏
面(反対主面)にチップのエキスパンド用のシートを貼
付け、半導体基板を支持板から剥がし、チップをダイシ
ングしエキスパンド用シートをエキスパンドするので、
バイアホールと放熱ホールとを別々に形成した場合に比
べて、工程の簡略化が可能となり、工程の信頼性・歩留
まりが向上し、素子特性に優れたチップを得ることがで
きる。
According to the method of manufacturing the semiconductor device of the second aspect, the back surface of the semiconductor substrate attached to the supporting plate is obtained by etching the opposite main surface of the semiconductor substrate through the opening mask for via holes and the opening mask for radiation holes. A via hole and a heat dissipation hole are simultaneously formed from (opposite main surface), and a sheet for expanding the chip is attached to the back surface (opposite main surface) of the semiconductor substrate while being attached to the support plate, and the semiconductor substrate is attached to the support plate. Peel it off, dice the chip and expand the expanding sheet,
Compared to the case where the via hole and the heat dissipation hole are formed separately, the process can be simplified, the process reliability and yield are improved, and a chip having excellent element characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の半導体装置の製造工程の第1の実施
例を示す断面構造図である。
FIG. 1 is a sectional structural view showing a first embodiment of a manufacturing process of a semiconductor device of the present invention.

【図2】この発明の半導体装置の製造工程の第2の実施
例を示す断面構造図である。
FIG. 2 is a sectional structural view showing a second embodiment of the manufacturing process of the semiconductor device of the present invention.

【図3】第1の従来の半導体装置の製造方法を示す断面
構造図である。
FIG. 3 is a cross-sectional structure diagram showing a first conventional semiconductor device manufacturing method.

【図4】第2の従来の半導体装置の製造方法を示す断面
構造図である。
FIG. 4 is a cross-sectional structure diagram showing a second conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1 半絶縁性GaAs基板 2 ゲート電極 3 ソース電極 4 ドレイン電極 5 絶縁膜 6a パターン 6b パターン 7 放熱ホール 8 バイアホール 9 メッキ下地金属層 10 Auメッキ 11 ダイシング領域 12 支持板 13 ワックス 14 ビニールシート 1 Semi-Insulating GaAs Substrate 2 Gate Electrode 3 Source Electrode 4 Drain Electrode 5 Insulating Film 6a Pattern 6b Pattern 7 Heat Dissipation Hole 8 Via Hole 9 Plating Base Metal Layer 10 Au Plating 11 Dicing Area 12 Supporting Plate 13 Wax 14 Vinyl Sheet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 修 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Ishikawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一主面に能動素子を形成す
る工程と、 前記半導体基板の反対主面に、前記能動素子の接地電極
のバイアホール用開口マスクと前記能動素子の直下領域
の放熱ホール用開口マスクを、前記バイアホール用開口
マスクの寸法が前記放熱ホール用開口マスクの寸法より
大きくなるように形成する工程と、 前記半導体基板の反対主面を前記バイアホール用開口マ
スクおよび前記放熱ホール用開口マスクを通してエッチ
ングすることにより前記能動素子の接地電極が露出した
前記バイアホールと前記半導体基板未貫通の前記放熱ホ
ールとを同時に形成する工程と、 前記半導体基板の反対主面に裏面金属層を形成する工程
とを含む半導体装置の製造方法。
1. A step of forming an active element on one main surface of a semiconductor substrate, and an opening mask for a via hole of a ground electrode of the active element and heat radiation on a region directly below the active element on the opposite main surface of the semiconductor substrate. Forming an opening mask for holes so that the dimensions of the opening mask for via holes are larger than the dimensions of the opening mask for heat dissipation holes; and forming an opposite main surface of the semiconductor substrate on the opening mask for via holes and the heat dissipation. Simultaneously forming the via hole in which the ground electrode of the active element is exposed by etching through a hole opening mask and the heat dissipation hole not penetrating the semiconductor substrate, and a back metal layer on the opposite main surface of the semiconductor substrate. And a step of forming a semiconductor device.
【請求項2】 半導体基板の一主面に能動素子を形成す
る工程と、 前記半導体基板を支持板に貼付ける工程と、 前記支持板に貼付けられた状態で前記半導体基板の反対
主面に、前記能動素子の接地電極のバイアホール用開口
マスクと前記能動素子の直下領域の放熱ホール用開口マ
スクを、前記バイアホール用開口マスクの寸法が前記放
熱ホール用開口マスクの寸法より大きくなるように形成
する工程と、 前記支持板に貼付けられた状態で前記半導体基板の反対
主面を前記バイアホール用開口マスクおよび前記放熱ホ
ール用開口マスクを通してエッチングすることにより前
記能動素子の接地電極が露出した前記バイアホールと前
記半導体基板未貫通の前記放熱ホールとを同時に形成す
る工程と、 前記支持板に貼付けられた状態で前記半導体基板の反対
主面に裏面金属層を形成する工程と、 前記支持板に貼付けられた状態で前記半導体基板の反対
主面にチップのエキスパンド用のシートを貼付ける工程
と、 前記半導体基板を前記支持板から剥がす工程と、 前記シートに貼付けられた状態で前記半導体基板をダイ
シングする工程とを含む半導体装置の製造方法。
2. A step of forming an active element on one main surface of a semiconductor substrate, a step of attaching the semiconductor substrate to a support plate, and a step of attaching the semiconductor element to the support plate on the opposite main surface of the semiconductor substrate in a state of being attached to the support plate, The via hole opening mask of the ground electrode of the active element and the heat dissipation hole opening mask in the region directly below the active element are formed such that the size of the via hole opening mask is larger than the size of the heat dissipation hole opening mask. And a via electrode in which the ground electrode of the active element is exposed by etching the opposite main surface of the semiconductor substrate attached to the support plate through the via hole opening mask and the heat dissipation hole opening mask. Forming a hole and the heat dissipation hole that does not penetrate the semiconductor substrate at the same time, and the semiconductor substrate in a state of being attached to the support plate. A step of forming a backside metal layer on the opposite main surface, a step of attaching a sheet for expanding a chip to the opposite main surface of the semiconductor substrate in a state of being attached to the support plate, and the semiconductor substrate on the support plate. And a step of dicing the semiconductor substrate while being attached to the sheet.
JP5207687A 1993-08-23 1993-08-23 Method for manufacturing semiconductor device Pending JPH0766384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5207687A JPH0766384A (en) 1993-08-23 1993-08-23 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5207687A JPH0766384A (en) 1993-08-23 1993-08-23 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH0766384A true JPH0766384A (en) 1995-03-10

Family

ID=16543920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5207687A Pending JPH0766384A (en) 1993-08-23 1993-08-23 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0766384A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440822B1 (en) 2000-07-10 2002-08-27 Nec Corporation Method of manufacturing semiconductor device with sidewall metal layers
JP2009206496A (en) * 2008-01-30 2009-09-10 Panasonic Corp Semiconductor chip and semiconductor device
JP2014521211A (en) * 2011-07-06 2014-08-25 ノースロップ グラマン システムズ コーポレーション Via-extending via for substrate mode suppression
US8937368B2 (en) 2010-11-19 2015-01-20 Panasonic Corporation Semiconductor device
DE102014221620A1 (en) 2013-11-29 2015-06-03 Mitsubishi Electric Corporation Semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440822B1 (en) 2000-07-10 2002-08-27 Nec Corporation Method of manufacturing semiconductor device with sidewall metal layers
JP2009206496A (en) * 2008-01-30 2009-09-10 Panasonic Corp Semiconductor chip and semiconductor device
US8937368B2 (en) 2010-11-19 2015-01-20 Panasonic Corporation Semiconductor device
JP2014521211A (en) * 2011-07-06 2014-08-25 ノースロップ グラマン システムズ コーポレーション Via-extending via for substrate mode suppression
DE102014221620A1 (en) 2013-11-29 2015-06-03 Mitsubishi Electric Corporation Semiconductor device
KR20150062963A (en) 2013-11-29 2015-06-08 미쓰비시덴키 가부시키가이샤 Semiconductor device
US9355937B2 (en) 2013-11-29 2016-05-31 Mitsubishi Electric Corporation Semiconductor device
DE102014221620B4 (en) 2013-11-29 2018-08-02 Mitsubishi Electric Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
JP2001185519A (en) Semiconductor device and manufacturing method thereof
JPH065881A (en) Semiconductor device and its manufacturing method
JP2003007706A (en) Method for manufacturing semiconductor device
JP2002026270A (en) Method for manufacturing semiconductor device
US12015004B2 (en) Hybrid device assemblies and method of fabrication
JPH0766384A (en) Method for manufacturing semiconductor device
US5880517A (en) Microwave power transistor having matched impedance with integrated DC blocking capacitor and manufacturing method therefor
US8426290B1 (en) Suspended-membrane/suspended-substrate monolithic microwave integrated circuit modules
JPH065880A (en) Method for manufacturing semiconductor device
JPS61111584A (en) Monolithic semiconductor structure and making thereof
JP2606940B2 (en) Semiconductor device and manufacturing method thereof
JP2991168B2 (en) Semiconductor device and manufacturing method thereof
US6501182B2 (en) Semiconductor device and method for making the same
JP2746483B2 (en) High frequency semiconductor device
JP3490851B2 (en) Circuit board
JPS63276276A (en) Manufacture of semiconductor device
JP2833788B2 (en) Method for manufacturing semiconductor device
JPH09266215A (en) High frequency and high power semiconductor device and manufacturing method thereof
JPS62211962A (en) Manufacture of high-frequency semiconductor device
JP2629600B2 (en) Semiconductor device and manufacturing method thereof
JPH11150113A (en) Manufacture of semiconductor device
JPH0228335A (en) Manufacture of monolithic integrated circuit element
JP2001267331A (en) Method for manufacturing semiconductor device
JP2002217194A (en) Semiconductor device
JP3196752B2 (en) Semiconductor integrated circuit device and manufacturing method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term