JPS63276276A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS63276276A JPS63276276A JP62111908A JP11190887A JPS63276276A JP S63276276 A JPS63276276 A JP S63276276A JP 62111908 A JP62111908 A JP 62111908A JP 11190887 A JP11190887 A JP 11190887A JP S63276276 A JPS63276276 A JP S63276276A
- Authority
- JP
- Japan
- Prior art keywords
- electrodes
- substrate
- region
- insulating film
- gaas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 238000005530 etching Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 8
- 239000008188 pellet Substances 0.000 abstract description 8
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 8
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 5
- 229910052681 coesite Inorganic materials 0.000 abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 229910052682 stishovite Inorganic materials 0.000 abstract description 3
- 229910052905 tridymite Inorganic materials 0.000 abstract description 3
- 239000010453 quartz Substances 0.000 abstract description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 12
- 238000001039 wet etching Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Dicing (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体装置の製造方法に関に、特に、ソースイ
ンダクタンスを低減し、高周波領域での動作が可能な電
界効果トランジスタの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a field effect transistor that can reduce source inductance and operate in a high frequency region.
近年、マイクロ波増幅用の素子として、従来のガリウム
砒素を用いた電界効果トランジスタ(以下GaAsFE
Tと記す)に替り、アルミガリウム砒素/ガリウム砒素
系のへテロ接合型電界効果トランジスタ(以下HE M
Tと記す)が注目されている。特に、低雑音増幅用素
子としては、高電子移動度、高電子速度等により、Ga
AsFETを凌駕する優れた性能が実現されている。ま
た、より高周波領域での動作が期待されている。In recent years, field effect transistors (hereinafter referred to as GaAsFE) using conventional gallium arsenide have been used as devices for microwave amplification.
Instead of the aluminum gallium arsenide/gallium arsenide type heterojunction field effect transistor (hereinafter referred to as HE M
(denoted as T) is attracting attention. In particular, as a low-noise amplification element, Ga
Excellent performance surpassing that of AsFET has been achieved. It is also expected to operate in a higher frequency range.
この、より高周波領域での性能改善では、ゲート長(L
g) 、ゲート幅(Wg)の短絡等が有効であるが、そ
の他の重要な要素としてソースインダクタンス(Ls)
の低減がある。HEMTの場合、GaAsFETと比較
し、より高周波(>20GHz)での動作が期待されて
おり、Lsの低減はより重要である。In order to improve performance in this higher frequency region, gate length (L
g) Shorting the gate width (Wg) is effective, but source inductance (Ls) is another important factor.
There is a reduction in In the case of HEMTs, operation at higher frequencies (>20 GHz) is expected compared to GaAsFETs, and reduction of Ls is more important.
Lsの低減法としては、GaAsFETと同様に、第2
図に示す様に、基板1の裏面よりソース電極2の接地を
行なうバイア・ホール法、あるいは、第3図に示す様に
、基板1の側面より接地を行なう方法がある。As a method for reducing Ls, the second
As shown in the figure, there is a via hole method in which the source electrode 2 is grounded from the back surface of the substrate 1, or a method in which the source electrode 2 is grounded from the side surface of the substrate 1 as shown in FIG.
上述した従来の方法には、以下に示す様な問題点がある
。The conventional method described above has the following problems.
まず、第2図に示す様な裏面より接地を行なう方法であ
るが、通常、低雑音要素子では、基板1の厚さは150
μm程度である。この場合、裏面より基板1 (GaA
s)をエツチングし、ソース電極2を露出させた後、メ
タライズ(Au)を行なう。この時のGaAsのエツチ
ングは、ウェットエツチングでは制御性が悪く、通常ド
ライエツチングにて行なうが、エツチングの終点検出、
形状、エツチング時間等に問題が残る。また、メタライ
ズ時のカバーレッジ等に問題がある。First, there is a method of grounding from the back side as shown in FIG.
It is about μm. In this case, the substrate 1 (GaA
After etching s) to expose the source electrode 2, metallization (Au) is performed. At this time, wet etching has poor controllability when etching GaAs, so dry etching is usually used.
Problems remain with the shape, etching time, etc. Additionally, there is a problem with coverage during metallization.
また、第3図示す様な基板1の側面へのメタライズの方
法では、従来は、ウェーハよりベレットへ分離した後に
ペレット個々にAuめっき等によりメタライズ層の形成
を行なっている。この為に、多くの工数を要し、製造歩
留を向上させることが困難である。Furthermore, in the method of metallizing the side surface of the substrate 1 as shown in FIG. 3, conventionally, after the wafer is separated into pellets, a metallized layer is formed on each pellet by Au plating or the like. For this reason, many man-hours are required and it is difficult to improve manufacturing yield.
本発明の目的は、ソース電極と裏面電極との接続が容易
で製造歩留りの向上した半導体装置の製造方法を提供す
ることにある。An object of the present invention is to provide a method for manufacturing a semiconductor device in which connection between a source electrode and a back electrode is facilitated and manufacturing yield is improved.
本発明の半導体装置の製造方法は、表面に絶縁膜を介し
てソース、ドレイン、ゲート電極を有し、裏面に電極層
を有する半導体基板を支持基板に接着する工程と、前記
半導体基板のスクライブ領域にある絶縁膜を選択的に除
去したのち残された絶縁膜をマスクとして半導体基板を
選択的にエツチングし前記電極層を露出させる工程と、
前記ソース電極と裏面の電極層を接続する金属層を設け
た後前記半導体基板を分割する工程とを含んで構成され
る。The method for manufacturing a semiconductor device of the present invention includes the steps of bonding a semiconductor substrate having source, drain, and gate electrodes on the front surface through an insulating film and an electrode layer on the back surface to a support substrate, and a scribe area of the semiconductor substrate. selectively removing the insulating film on the semiconductor substrate and selectively etching the semiconductor substrate using the remaining insulating film as a mask to expose the electrode layer;
The method includes a step of providing a metal layer connecting the source electrode and an electrode layer on the back surface and then dividing the semiconductor substrate.
次に、本発明の実施例について図面を参照して詳細に説
明する。Next, embodiments of the present invention will be described in detail with reference to the drawings.
第1図は、本発明の一実施例を説明する為に工程順に示
した半導体チップの断面図である。FIG. 1 is a cross-sectional view of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention.
まず第1図(a)に示すように、GaAs基板1表面に
S i 02等からなる絶縁膜3を介してソース電極2
.ドレイン電極及びゲート電極(図示せず)を形成した
のち、このGaAs基板1をSi、石英からなる支持基
板5にエレクトロンワックス等で接着する。First, as shown in FIG. 1(a), a source electrode 2 is placed on the surface of a GaAs substrate 1 via an insulating film 3 made of SiO2 or the like.
.. After forming a drain electrode and a gate electrode (not shown), this GaAs substrate 1 is bonded to a support substrate 5 made of Si or quartz using electron wax or the like.
次に第1図(b)に示すように、フオトレジト膜6をマ
スクとし、GaAs基板のスクライブ領域の絶縁膜3及
びGaAs基板1を選択的にエツチングし満7を形成す
る。このGaAs基板1のエツチングでは、エツチング
液として、例えばH2S 04 、 H202、H20
混合液を組成比3:1:1とし、60℃で用いれば、エ
ツチング速度は約10μm/分であり、絶縁膜3をマス
クとしている為、サイドエツチングが押えられ、60″
程度の傾斜を有する断面形状の溝7が得られる。この場
合GaAs基板1の厚さを150人とすれば、横方向法
がりを考慮し、50人程度までエツチングする。Next, as shown in FIG. 1(b), using the photoresist film 6 as a mask, the insulating film 3 and the GaAs substrate 1 in the scribe area of the GaAs substrate are selectively etched to form a pattern 7. In this etching of the GaAs substrate 1, for example, H2S04, H202, H20 is used as an etching solution.
If the mixed solution has a composition ratio of 3:1:1 and is used at 60°C, the etching rate is about 10 μm/min, and since the insulating film 3 is used as a mask, side etching is suppressed, and the etching speed is approximately 10 μm/min.
A groove 7 having a cross-sectional shape having a certain degree of inclination is obtained. In this case, if the thickness of the GaAs substrate 1 is 150, etching is performed to about 50, taking into account the lateral slope.
次に第1図(C)に示すように、ダイサーを用いて溝を
形成し、ベレットの分離領域8を形成する。この場合、
GaAs基板1を完全には分離しない様にする。Next, as shown in FIG. 1C, a groove is formed using a dicer to form the separation region 8 of the pellet. in this case,
The GaAs substrate 1 is not completely separated.
次に、第1図(d)に示すように、ウェットエツチング
によりGaAs層を完全に除去し、裏面電極4を露出さ
せる。このウェットエツチングはダイシング時の形状を
緩かにする効果も持つ。その後、バッフアート弗酸を用
いたウェットエツチングにより講7上の5t02膜3を
除去した後、フォトレジスト層6を除去する。その後再
びフォトレジスト層を形成したのち、ソース電極2の一
部が露出する様にフォトレジスト層6Aのパターニング
を行ないマスクを形成する、
次に第1図(e)に示すように、Auめつきによりソー
ス電極2と裏面電極4とを接続する接地用電極10を形
成する。次に第1図(f)に示すように、ダイサーによ
り、溝を形成しベレットの完全な分離領域8Aを形成す
る。この場合前工程の分離領域8よりも幅が狭くなる様
にする。Next, as shown in FIG. 1(d), the GaAs layer is completely removed by wet etching to expose the back electrode 4. This wet etching also has the effect of making the shape looser during dicing. Thereafter, the 5t02 film 3 on the layer 7 is removed by wet etching using buffered hydrofluoric acid, and then the photoresist layer 6 is removed. After that, a photoresist layer is formed again, and a mask is formed by patterning the photoresist layer 6A so that a part of the source electrode 2 is exposed.Next, as shown in FIG. 1(e), Au plating is applied. Thus, a grounding electrode 10 connecting the source electrode 2 and the back electrode 4 is formed. Next, as shown in FIG. 1(f), a groove is formed using a dicer to form a complete isolation region 8A of the pellet. In this case, the width is made narrower than the separation region 8 in the previous step.
次に第1図(g>に示すように、洗浄を行ない、フオト
レジス1−6Aを除去し、支持基板5よりペレットを分
離する。Next, as shown in FIG. 1 (g), cleaning is performed to remove the photoresist 1-6A and separate the pellet from the support substrate 5.
このように本実施例においては接地用電極10をウェー
ハ上で形成するため、従来のようにペレット個々にメタ
ライズする場合の様な工数及び歩留の問題は少なく、ま
た、直接裏面より、素子部のソース電極へ接地用電極を
形成する場合の様な制御性の困難さはない。As described above, in this embodiment, since the grounding electrode 10 is formed on the wafer, there are fewer man-hours and yield problems, which are required when metalizing individual pellets as in the conventional method. There is no difficulty in controllability as in the case of forming a grounding electrode on the source electrode of the source electrode.
尚、上記実施例においては接地用電極10をめっきによ
り形成した場合について説明したが、スパッタ法等によ
り形成してもよい。In the above embodiment, the case where the grounding electrode 10 is formed by plating has been described, but it may be formed by sputtering method or the like.
以上説明した様に本発明は、半導体基板−Fのスクライ
ブ領域を利用し、絶縁膜をマスクとして半導体基板をエ
ツチングした後ダイサーにより分離領域を形成した後、
ソース電極と裏面電極を接続する様接地用電極を形成す
る工程を用いることにより、高歩留で接地電極の形成が
可能となり、低ソースインダクタンスの高周波用途に適
し々半導体装置が得られる。As explained above, the present invention utilizes the scribe region of the semiconductor substrate -F, etches the semiconductor substrate using the insulating film as a mask, and then forms the isolation region with a dicer.
By using the step of forming a grounding electrode to connect the source electrode and the back electrode, the grounding electrode can be formed with high yield, and a semiconductor device with low source inductance suitable for high frequency applications can be obtained.
第1図(a)〜<g>は本発明の一実施例をitt明す
る為の工程順に示した半導体チップの断面図、第2図及
び第3図は従来の半導体装置の製造方法を説明する為の
断面図である。
1・・・GaAs基板、2・・・ソース電極、3・・・
絶縁膜、4・・・裏面電極、5・・・支持基板、6,6
A・・・フォトレジスト層、8,8A・・・分離領域、
1o・・・接地用電極。
代理人 弁理士 内 原 昔ヒ”こ
と′ )
箭1図FIGS. 1(a) to <g> are cross-sectional views of a semiconductor chip shown in order of steps to explain an embodiment of the present invention, and FIGS. 2 and 3 illustrate a conventional method of manufacturing a semiconductor device. FIG. 1...GaAs substrate, 2...source electrode, 3...
Insulating film, 4... Back electrode, 5... Support substrate, 6, 6
A... Photoresist layer, 8,8A... Separation region,
1o...Grounding electrode. Agent Patent Attorney Uchihara Uchihara
Claims (1)
有し、裏面に電極層を有する半導体基板を支持基板に接
着する工程と、前記半導体基板のスクライブ領域にある
絶縁膜を選択的に除去したのち残された絶縁膜をマスク
として半導体基板を選択的にエッチングし前記電極層を
露出させる工程と、前記ソース電極と裏面の電極層を接
続する金属層を設けた後前記半導体基板を分割する工程
とを有することを特徴とする半導体装置の製造方法。A step of bonding a semiconductor substrate having source, drain, and gate electrodes on the front surface through an insulating film and an electrode layer on the back surface to a supporting substrate, and selectively removing the insulating film in the scribe area of the semiconductor substrate. A step of selectively etching the semiconductor substrate using the remaining insulating film as a mask to expose the electrode layer, and a step of dividing the semiconductor substrate after providing a metal layer connecting the source electrode and the electrode layer on the back surface. A method for manufacturing a semiconductor device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62111908A JPS63276276A (en) | 1987-05-08 | 1987-05-08 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62111908A JPS63276276A (en) | 1987-05-08 | 1987-05-08 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63276276A true JPS63276276A (en) | 1988-11-14 |
Family
ID=14573137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62111908A Pending JPS63276276A (en) | 1987-05-08 | 1987-05-08 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63276276A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03129855A (en) * | 1989-10-16 | 1991-06-03 | Sanyo Electric Co Ltd | Semiconductor device and manufacture thereof |
US5259925A (en) * | 1992-06-05 | 1993-11-09 | Mcdonnell Douglas Corporation | Method of cleaning a plurality of semiconductor devices |
US5302554A (en) * | 1992-02-06 | 1994-04-12 | Mitsubishi Denki Kabushiki Kaisha | Method for producing semiconductor device |
JPH06326064A (en) * | 1993-05-14 | 1994-11-25 | Nec Corp | Semiconductor device and its manufacture |
US5786266A (en) * | 1994-04-12 | 1998-07-28 | Lsi Logic Corporation | Multi cut wafer saw process |
US6440822B1 (en) | 2000-07-10 | 2002-08-27 | Nec Corporation | Method of manufacturing semiconductor device with sidewall metal layers |
JP2003532291A (en) * | 2000-04-26 | 2003-10-28 | テレフオンアクチーボラゲツト エル エム エリクソン(パブル) | Method of forming conductive paint in semiconductor device |
JP2009212458A (en) * | 2008-03-06 | 2009-09-17 | Sumitomo Electric Ind Ltd | Semiconductor device, electronic apparatus and method of manufacturing the same |
-
1987
- 1987-05-08 JP JP62111908A patent/JPS63276276A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03129855A (en) * | 1989-10-16 | 1991-06-03 | Sanyo Electric Co Ltd | Semiconductor device and manufacture thereof |
US5302554A (en) * | 1992-02-06 | 1994-04-12 | Mitsubishi Denki Kabushiki Kaisha | Method for producing semiconductor device |
US5259925A (en) * | 1992-06-05 | 1993-11-09 | Mcdonnell Douglas Corporation | Method of cleaning a plurality of semiconductor devices |
JPH06326064A (en) * | 1993-05-14 | 1994-11-25 | Nec Corp | Semiconductor device and its manufacture |
US5786266A (en) * | 1994-04-12 | 1998-07-28 | Lsi Logic Corporation | Multi cut wafer saw process |
JP2003532291A (en) * | 2000-04-26 | 2003-10-28 | テレフオンアクチーボラゲツト エル エム エリクソン(パブル) | Method of forming conductive paint in semiconductor device |
US6440822B1 (en) | 2000-07-10 | 2002-08-27 | Nec Corporation | Method of manufacturing semiconductor device with sidewall metal layers |
JP2009212458A (en) * | 2008-03-06 | 2009-09-17 | Sumitomo Electric Ind Ltd | Semiconductor device, electronic apparatus and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003007706A (en) | Manufacturing method of semiconductor device | |
JPS63276276A (en) | Manufacture of semiconductor device | |
JPH0732257B2 (en) | Monolithic semiconductor structure | |
JPH0472381B2 (en) | ||
JPS62211962A (en) | Manufacture of high-frequency semiconductor device | |
JP3365380B2 (en) | High frequency semiconductor device and manufacturing method thereof | |
JPS62122279A (en) | Manufacture of field effect transistor | |
JPH03102839A (en) | Semiconductor device | |
JPH0228335A (en) | Manufacture of monolithic integrated circuit element | |
JP3353767B2 (en) | Method for manufacturing semiconductor device | |
JPS63124465A (en) | Manufacture of bipolar transistor | |
JP2000277530A (en) | Semiconductor device and manufacture thereof | |
JP3393797B2 (en) | Field effect transistor | |
JPH11150113A (en) | Manufacture of semiconductor device | |
JPS5961073A (en) | Manufacture of semiconductor device | |
JP2863216B2 (en) | Method for manufacturing semiconductor device | |
JPS63193545A (en) | Manufacture of semiconductor integrated circuit | |
JPS5994818A (en) | Manufacture of semiconductor device | |
JP2513801B2 (en) | Method for manufacturing semiconductor device | |
JPS6386479A (en) | Manufacture of field effect transistor | |
JP2877322B2 (en) | InP substrate etching method | |
JPH0228334A (en) | Integrated circuit device having substrate through-hole and metallized rear and manufacture of the device | |
JPH06244277A (en) | Manufacture of semiconductor device | |
JPH0352239A (en) | Manufacture of semiconductor device | |
JPS59955A (en) | Manufacture of semiconductor device |