Nothing Special   »   [go: up one dir, main page]

JPH05281201A - Method and apparatus for measurement of depth of quenched and hardened layer - Google Patents

Method and apparatus for measurement of depth of quenched and hardened layer

Info

Publication number
JPH05281201A
JPH05281201A JP4083595A JP8359592A JPH05281201A JP H05281201 A JPH05281201 A JP H05281201A JP 4083595 A JP4083595 A JP 4083595A JP 8359592 A JP8359592 A JP 8359592A JP H05281201 A JPH05281201 A JP H05281201A
Authority
JP
Japan
Prior art keywords
layer
depth
ultrasonic
wave
attenuation rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4083595A
Other languages
Japanese (ja)
Inventor
Kojiro Kodaira
小治郎 小平
Tomiyuki Ooyashiki
富幸 大屋敷
Hirotoshi Kino
裕敏 木野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd, Hitachi Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP4083595A priority Critical patent/JPH05281201A/en
Publication of JPH05281201A publication Critical patent/JPH05281201A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain a method wherein the depth of the quenched and hardened layer of forged steel or the like is measured non-destructively. CONSTITUTION:In the measuring method of the depth of a quenched and hardened layer, concentric and arbitrary multiple layers are set around the axial center in the circular cross section of a cylindrical object 1, under test, on which a quenched and hardened layer 2 has been formed in an outer-shell part. The attenuation rate of ultrasonic waves in a first layer is found from the following: the reception energy of ultrasonic beams which are transmitted in the chord direction of a depth corresponding to the depth (d1) of the first layer in the outermost layer of said object 1 under test; and the route length (between T and R) of a propagated chord. The attenuation rate of individual layers is found sequentially from the following in the same manner: the reception energy of ultrasonic beams corresponding to depths (d2), (d3) of the individual layers; and the route length of chords. The depth of the quenched and hardened layer 2 is estimated from the depth of a layer in which the attenuation rate of the ultrasonic beams is increased sharply.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外殻部のみ焼入れ硬化
した被検体の硬化層の深さ(境界部)を非破壊的に測定
する非破壊式硬化層測定方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nondestructive hardened layer measuring method and apparatus for nondestructively measuring the depth (boundary portion) of a hardened layer of an object whose outer shell is quench hardened.

【0002】[0002]

【従来の技術】圧延用鍛鋼ロール等においては、表面の
焼入れ硬化層の深さがロールの寿命を左右するので、こ
の深さを測定することは品質保証上から重要なことであ
る。
2. Description of the Related Art In a forged steel roll for rolling, etc., the depth of the quench-hardened layer on the surface affects the life of the roll, and therefore it is important to measure this depth from the viewpoint of quality assurance.

【0003】従来の電磁的な測定法による硬化層の深さ
の測定は、被検体の表面層のみか、または表面から10
〜20mm程度の比較的浅い部分までしか測定できなか
った。また、特公昭63−26340号公報に記載の方
法によれば、比較的高精度で硬化層分布を測定すること
ができるが測定に時間を要し、特に深い硬化層の測定に
は時間がかかり過ぎるきらいがある。
The depth of the hardened layer is measured by the conventional electromagnetic measurement method only on the surface layer of the sample or from the surface.
It was possible to measure only a relatively shallow portion of about 20 mm. Further, according to the method described in Japanese Patent Publication No. 63-26340, the distribution of the hardened layer can be measured with relatively high accuracy, but it takes a long time for the measurement, and particularly for the deep hardened layer, it takes time. I have a tendency to pass.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、前記
の欠点を除き、被検体の表層部から内層部にわたる比較
的広い範囲で、硬化層の深さを非破壊的に測定する方法
並びにその装置を提供するにある。
DISCLOSURE OF THE INVENTION The object of the present invention is to eliminate the above-mentioned drawbacks and a method for non-destructively measuring the depth of a hardened layer in a relatively wide range from the surface layer portion to the inner layer portion of an object. The equipment is provided.

【0005】[0005]

【課題を解決するための手段】被検体として表層部を焼
入れ硬化させた鍛鋼ロール切り出し試験材を用いて、超
音波の特性を調べたところ、図1の模式図に示すように
焼入れ硬化層と内部の非硬化層との境界部で超音波の急
激な減衰が認められた。前記鍛鋼ロール切り出し試験材
を用いて横断面の硬さ分布と超音波の減衰率との関係を
調べた結果、図2に示すように硬さが急激に低下する焼
入れ硬化層と内部の非硬化層の境界部で超音波の急激な
減衰が認められた。
[Means for Solving the Problems] The characteristics of ultrasonic waves were investigated using a forged steel roll cut test material whose surface layer was quenched and hardened as a test object. As a result, as shown in the schematic diagram of FIG. A rapid attenuation of ultrasonic waves was observed at the boundary with the uncured layer inside. As a result of investigating the relationship between the hardness distribution of the cross section and the attenuation factor of ultrasonic waves using the forged steel roll cut test material, as shown in FIG. 2, the quench hardened layer in which the hardness sharply decreases and the internal non-hardened layer A rapid attenuation of ultrasonic waves was observed at the boundary of the layers.

【0006】本発明は、この特性に着目し、物体内を伝
播する超音波の減衰率を深さ方向に対して求められるよ
うに工夫し、該減衰率の変化より焼入れ硬化層と非硬化
層との境界部を測定し、硬化層の深さを推定するもの
で、その要旨は次のとおりである。
The present invention pays attention to this characteristic, devises so that the attenuation factor of the ultrasonic wave propagating in the object can be obtained in the depth direction, and the quench hardening layer and the non-hardening layer are determined from the change of the attenuation factor. The depth of the hardened layer is estimated by measuring the boundary part between and, and the summary is as follows.

【0007】(1)外殻部に焼入れ硬化層が形成された
円柱状被検体の円形断面の軸心に同心の任意な多重層を
設定し、前記被検体の最表層部の第1層の深さに相当す
る深さの弦方向に透過する超音波ビームの受信エネルギ
ーと伝播した弦の経路長から第1層での超音波の減衰率
を求め、順次同様な方法で各層の深さに対応する超音波
ビームの受信エネルギーと伝播した弦の経路長とから各
層の減衰率を求め、超音波ビームの減衰率が急激に増加
する層の深さから焼入れ硬化層の深さを推定する焼入れ
硬化層深さの測定方法。
(1) Arbitrary multiple layers concentric to the axis of the circular cross-section of a cylindrical object having a quench-hardened layer formed on the outer shell are set, and the first outermost layer of the object is The attenuation factor of the ultrasonic wave in the first layer is calculated from the received energy of the ultrasonic beam transmitted in the chord direction of the depth corresponding to the depth and the path length of the propagating chord, and the depth of each layer is sequentially determined by the same method. Quenching to estimate the depth of the quench hardening layer from the depth of the layer where the attenuation rate of the ultrasonic beam increases sharply by obtaining the attenuation rate of each layer from the received energy of the corresponding ultrasonic beam and the path length of the propagated string Hardened layer depth measurement method.

【0008】(2)超音波の送受する超音波送受信部
と、該超音波送受信部からの送信パルスにより被検体内
に超音波ビームを送波する送波子と、前記被検体内を伝
播した超音波ビームを受波する受波子を備え、前記超音
波ビームが前記被検体内の任意に設定した深さの層を透
過するよう前記送波子および受波子を設置する保持具
と、前記送波子および受波子の相対的な位置から被検体
内に入射した超音波ビームの経路長を演算する経路長演
算部と、前記受波子の受波信号から受波エネルギーを演
算する受信エネルギー演算部と、前記受信エネルギー演
算部の出力と前記経路長演算部の出力に基づき該エネル
ギーの減衰率を演算する減衰率演算部と、該減衰率演算
部で演算された前記エネルギーの減衰率を記録読出しで
きるメモリー部を備えた焼入れ硬化層深さの測定装置。
(2) An ultrasonic wave transmitting / receiving unit for transmitting / receiving ultrasonic waves, a wave transmitter for transmitting an ultrasonic beam into the subject by a transmission pulse from the ultrasonic wave transmitting / receiving unit, and an ultrasonic wave propagating in the subject. A holder that includes a wave receiver that receives a sound wave beam, and the ultrasonic wave beam is a holder that installs the wave transmitter and the wave receiver so that the ultrasonic wave penetrates a layer having an arbitrarily set depth in the subject, and the wave transmitter and A path length calculation unit that calculates the path length of the ultrasonic beam that has entered the subject from the relative position of the wave receiver, a received energy calculation unit that calculates the received energy from the received signal of the wave receiver, and An attenuation rate calculator for calculating the attenuation rate of the energy based on the output of the received energy calculator and the output of the path length calculator, and a memory section capable of recording and reading the attenuation rate of the energy calculated by the attenuation rate calculator. Equipped with Quench hardened layer depth of the measuring device.

【0009】ところで、圧延ロールのように円柱面を有
する被検体においては、図3に示すように硬化層2は被
検体1の軸心Oに対してほゞ同心円状に分布しており、
表面近傍が最も硬く、軸心Oに近づくに従って硬さは低
下し、焼入れ硬化層2と非硬化層3との境界部(k層)
で急激に硬さが低下する傾向にある。
By the way, in an object having a cylindrical surface such as a rolling roll, as shown in FIG. 3, the hardened layer 2 is distributed substantially concentrically with respect to the axis O of the object 1.
The hardest part is near the surface, and the hardness decreases as it approaches the axis O, and the boundary part (k layer) between the quench-hardened layer 2 and the non-hardened layer 3
The hardness tends to decrease sharply.

【0010】一方、圧延ロール等は、軸方向にかなりの
長さを有するほかに、ロール端面は熱処理効果の影響を
受け、ロール端部の情報だけから全ロールの硬化層の状
態を知ることはできない。
On the other hand, the rolling roll has a considerable length in the axial direction, and the end face of the roll is affected by the heat treatment effect, and the state of the hardened layer of all rolls cannot be known only from the information of the end of the roll. Can not.

【0011】従って、このような円柱形状の被検体の場
合には、軸心Oに同心円状で任意の間隔の多重層(I、
II、III…)を仮想し、送波子から送出される超音波ビ
ームが被検体1内の所望の深さ(d)の部分を通って受
波子に受波されるようにするため、送波子および受波子
の間隔を任意に設定できるようにし、被検体1の円周面
上の二点間T,Rにそれぞれ設置し、所望の深さ(d)
における弦方向(T−R間)の超音波減衰率を求める。
そのときの超音波減衰率が最も大きくなるT,R間の距
離から境界部(k)を推定し、硬化層の深さdを非破壊
的に求めることができる。
Therefore, in the case of such a cylindrical object, the multiple layers (I,
II, III ...), so that the ultrasonic beam emitted from the wave transmitter is received by the wave receiver through a portion of the desired depth (d) in the object 1 to be transmitted. And the distance between the wave receivers can be arbitrarily set, and they are installed at two points T and R on the circumferential surface of the subject 1 to a desired depth (d).
The ultrasonic attenuation factor in the chord direction (between T and R) at is obtained.
The boundary portion (k) can be estimated from the distance between T and R at which the ultrasonic attenuation factor becomes the largest, and the depth d of the hardened layer can be obtained nondestructively.

【0012】[0012]

【作用】前記実体ロールの硬化層は、表面の最も近い任
意に設定した第1層から順次、第2、第3、……、第n
層の各層をそれぞれ貫通する弦(図3のT−R)を伝播
する超音波の減衰率を測定する。第1層から第n層まで
の各層のピッチは任意に設定するものとし、特に、焼入
れ硬化層と非硬化層の境界層近傍はピッチを細かくそれ
以外はピッチを粗くして、測定時間の短縮をはかる。
The hardened layer of the solid roll is the second layer, the third layer ,.
The attenuation factor of the ultrasonic wave propagating through the string (TR in FIG. 3) penetrating each of the layers is measured. The pitch of each layer from the 1st layer to the nth layer shall be set arbitrarily, and in particular, the pitch should be fine in the vicinity of the boundary layer between the quench-hardened layer and the non-hardened layer, and the pitch should be made coarse in other areas to shorten the measurement time. Measure

【0013】焼入れ硬化層と非硬化層との境界層に相当
する層(図3のk層)では、そこを弦方向に透過する超
音波の減衰率が最も大きくなるので、これから境界層が
推定され硬化層の深さを求めることができる。
In the layer corresponding to the boundary layer between the quench-hardened layer and the non-hardened layer (layer k in FIG. 3), the attenuation rate of the ultrasonic waves transmitted in the chord direction is the largest, so the boundary layer is estimated from this. The depth of the hardened layer can be obtained.

【0014】[0014]

【実施例】次に本発明を実施例に基づき説明する。EXAMPLES The present invention will now be described based on examples.

【0015】図4は、被検体1の表面に超音波ビームの
収束点を有する凹面振動子が組み込まれた収束型の送波
子4および受波子5を用いている点が特徴である。
FIG. 4 is characterized in that a converging type transmitting element 4 and a receiving element 5 in which a concave vibrator having a converging point of an ultrasonic beam is incorporated on the surface of the subject 1 are used.

【0016】本装置によれば、被検体1の表面で超音波
ビームが集束されることにより、入射点から受波子に至
る被検体1内の経路長が精度よく測定できる。また、被
検体1内では超音波ビームが拡散されて各深さの層を伝
播するために超音波の減衰率を求める際にその都度集束
型の送波子4および受波子5の入射角度を変化させる必
要がなく、しかも両者の位置決めが精度よく行うことが
できる。
According to this apparatus, the ultrasonic beam is focused on the surface of the subject 1, so that the path length in the subject 1 from the incident point to the wave receiver can be accurately measured. In addition, since the ultrasonic beam is diffused in the subject 1 and propagates through the layers of each depth, the incident angle of the focusing type transmitter 4 and the receiver 5 is changed each time when the attenuation rate of the ultrasonic wave is obtained. It is not necessary to do so, and moreover, both can be positioned with high accuracy.

【0017】図5は、非破壊式硬化層深さ測定が可能な
測定装置の実施例を示す模式図である。図において、集
束型の送波子4から送出され超音波ビームが被検体1内
の所望する深さの位置を通って集束型の受波子5に受波
されるように両者を保持具6によって被検体1の円周面
上に保持してある。
FIG. 5 is a schematic view showing an embodiment of a measuring device capable of non-destructive hardened layer depth measurement. In the figure, both are covered by a holder 6 so that the ultrasonic beam emitted from the focusing type transducer 4 passes through a position of a desired depth in the subject 1 and is received by the focusing type transducer 5. It is held on the circumferential surface of the sample 1.

【0018】超音波送受信部7からの受信パルスを受け
て集束型送波子4から送出された超音波ビームは被検体
1の入射点Tで一旦集束された後被検体1内で拡散され
る。このうち集束型受波子5の受波点Rnに向かう超音
波ビームが受波され超音波送受信部7の増幅回路を経
て、全波整流回路8へ入力される。超音波波形は両振れ
振幅波形であるので、全波整流回路部8では超音波受信
波形を全波整流して出力し、次の超音波減衰率演算部1
0へ入力される。
The ultrasonic beam emitted from the focusing type transmitter 4 in response to the received pulse from the ultrasonic transmitting / receiving section 7 is once focused at the incident point T of the subject 1 and then diffused in the subject 1. Of these, the ultrasonic beam heading to the wave receiving point Rn of the focusing type wave receiver 5 is received and is input to the full-wave rectifying circuit 8 via the amplification circuit of the ultrasonic wave transmitting / receiving unit 7. Since the ultrasonic waveform is a double swing amplitude waveform, the full-wave rectification circuit unit 8 full-wave rectifies and outputs the received ultrasonic waveform, and the next ultrasonic attenuation rate calculation unit 1
Input to 0.

【0019】一方、経路長演算部9では、被検体1の半
径rや超音波ビームの経路長内の最大深さdなどを入力
して、幾何学的に各層での経路長を演算し電気信号とし
て出力する、なお、集束型の送波子4および受波子5の
設定位置と連動させて経路長を自動的に演算する場合
は、設定間隔Lや設定角θに対応する電気信号をポテン
ショメータ等によってとり出し、経路長演算部9で演算
することも可能である。第1層から第n層までの超音波
の減衰率は全てメモリー部11に記憶され、必要に応じ
出力される。そして、この出力表示から深さ方向の減衰
率の変化点の位置を求め、焼入れ硬化境界層を求め、硬
化層の深さを求める。
On the other hand, the path length calculation unit 9 inputs the radius r of the subject 1 and the maximum depth d within the path length of the ultrasonic beam, and geometrically calculates the path length in each layer to obtain an electric value. When the path length is output automatically as a signal, and the path length is automatically calculated in conjunction with the set positions of the focusing type transmitter 4 and the wave receiver 5, an electric signal corresponding to the set interval L and the set angle θ is output by a potentiometer or the like. It is also possible to take out the data and calculate it in the path length calculation unit 9. The attenuation rates of the ultrasonic waves from the first layer to the nth layer are all stored in the memory unit 11 and output as needed. Then, the position of the change point of the attenuation rate in the depth direction is obtained from this output display, the quench hardening boundary layer is obtained, and the depth of the hardened layer is obtained.

【0020】[0020]

【発明の効果】本発明により被検体を全く損傷すること
なく、表層部から内部に至る広い範囲で硬化層の深さを
容易にかつ迅速に測定することができるので、鍛鋼ロー
ル等の品質管理手段として優れている。
As described above, according to the present invention, the depth of the hardened layer can be easily and quickly measured in a wide range from the surface layer to the inside without damaging the specimen at all. Excellent as a means.

【図面の簡単な説明】[Brief description of drawings]

【図1】ロール試験材の断面状況と超音波減衰率との関
係を示す模式図である。
FIG. 1 is a schematic diagram showing a relationship between a cross-sectional condition of a roll test material and an ultrasonic attenuation rate.

【図2】ロール試験材の硬さ分布と超音波減衰率との関
係を示すグラフである。
FIG. 2 is a graph showing the relationship between the hardness distribution of a roll test material and the ultrasonic attenuation rate.

【図3】円柱断面の被検体の硬化層の分布状態を示す模
式図である。
FIG. 3 is a schematic diagram showing a distribution state of a hardened layer of a subject having a cylindrical cross section.

【図4】本発明の一実施例の超音波による硬化層測定法
を説明する模式図である。
FIG. 4 is a schematic diagram illustrating a method of measuring a hardened layer by ultrasonic waves according to an embodiment of the present invention.

【図5】本発明の一実施例の超音波硬化層測定装置の概
念図である。
FIG. 5 is a conceptual diagram of an ultrasonic hardening layer measuring apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…被検体、2…焼入れ硬化層、3…非硬化層、4…集
束型の送波子、5…集束型の受波子、6…保持具、7…
超音波送受信部、8…全波整流回路部、9…経路長演算
部、10…超音波減衰率演算部、11…メモリー部。
DESCRIPTION OF SYMBOLS 1 ... Subject, 2 ... Quench hardening layer, 3 ... Non-hardening layer, 4 ... Focusing type | formula wave element, 5 ... Focusing type wave element, 6 ... Holding tool, 7 ...
Ultrasonic wave transmission / reception unit, 8 ... Full wave rectification circuit unit, 9 ... Path length calculation unit, 10 ... Ultrasonic attenuation factor calculation unit, 11 ... Memory unit.

フロントページの続き (72)発明者 木野 裕敏 茨城県土浦市神立町650番地 日立建機株 式会社FA工場部内Front Page Continuation (72) Inventor Hirotoshi Kino 650, Kazunachi-cho, Tsuchiura-shi, Ibaraki Hitachi Construction Machinery Co., Ltd. FA Factory Department

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】外殻部に焼入れ硬化層が形成された円柱状
被検体の円形断面の軸心に同心の任意な多重層を設定
し、前記被検体の最表層部の第1層の深さに相当する深
さの弦方向に透過する超音波ビームの受信エネルギーと
伝播した弦の経路長から第1層での超音波の減衰率を求
め、順次同様な方法で各層の深さに対応する超音波ビー
ムの受信エネルギーと伝播した弦の経路長とから各層の
減衰率を求め、超音波ビームの減衰率が急激に増加する
層の深さから焼入れ硬化層の深さを推定することを特徴
とする焼入れ硬化層深さの測定方法。
1. An arbitrary multi-layer concentric with the axis of a circular cross-section of a cylindrical test object having a quench-hardened layer formed on the outer shell thereof, and the depth of the first layer of the outermost surface of the test object is set. The attenuation factor of the ultrasonic wave in the first layer is calculated from the received energy of the ultrasonic beam transmitted in the chord direction of the depth corresponding to the depth and the path length of the propagating chord, and the depth of each layer is sequentially corresponded by the same method. The attenuation rate of each layer is calculated from the received energy of the ultrasonic beam and the path length of the propagated string, and the depth of the quench hardening layer is estimated from the depth of the layer where the attenuation rate of the ultrasonic beam rapidly increases. Characteristic method for measuring the depth of quench hardened layer.
【請求項2】超音波の送受する超音波送受信部と、該超
音波送受信部からの送信パルスにより被検体内に超音波
ビームを送波する送波子と、前記被検体内を伝播した超
音波ビームを受波する受波子を備え、前記超音波ビーム
が前記被検体内の任意に設定した深さの層を透過するよ
う前記送波子および受波子を設置する保持具と、前記送
波子および受波子の相対的な位置から被検体内に入射し
た超音波ビームの経路長を演算する経路長演算部と、前
記受波子の受波信号から受波エネルギーを演算する受信
エネルギー演算部と、前記受信エネルギー演算部の出力
と前記経路長演算部の出力に基づき該エネルギーの減衰
率を演算する減衰率演算部と、該減衰率演算部で演算さ
れた前記エネルギーの減衰率を記録読出しできるメモリ
ー部を備えたことを特徴とする焼入れ硬化層深さの測定
装置。
2. An ultrasonic wave transmitting / receiving unit for transmitting and receiving ultrasonic waves, a wave transmitter for transmitting an ultrasonic beam into a subject by a transmission pulse from the ultrasonic wave transmitting / receiving unit, and an ultrasonic wave propagated in the subject. A holder for receiving the beam, and a holder for installing the wave transmitter and the wave receiver so that the ultrasonic beam penetrates a layer having an arbitrarily set depth in the subject, and the wave transmitter and the wave receiver. A path length calculation unit that calculates the path length of the ultrasonic beam that has entered the subject from the relative position of the wave element, a reception energy calculation unit that calculates the received energy from the received signal of the wave receiver, and the reception An attenuation rate calculation section for calculating the attenuation rate of the energy based on the output of the energy calculation section and the output of the path length calculation section; and a memory section capable of recording and reading the attenuation rate of the energy calculated by the attenuation rate calculation section. Having prepared Quench hardened layer depth of the measuring device according to claim.
JP4083595A 1992-04-06 1992-04-06 Method and apparatus for measurement of depth of quenched and hardened layer Pending JPH05281201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4083595A JPH05281201A (en) 1992-04-06 1992-04-06 Method and apparatus for measurement of depth of quenched and hardened layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4083595A JPH05281201A (en) 1992-04-06 1992-04-06 Method and apparatus for measurement of depth of quenched and hardened layer

Publications (1)

Publication Number Publication Date
JPH05281201A true JPH05281201A (en) 1993-10-29

Family

ID=13806847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4083595A Pending JPH05281201A (en) 1992-04-06 1992-04-06 Method and apparatus for measurement of depth of quenched and hardened layer

Country Status (1)

Country Link
JP (1) JPH05281201A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329513A (en) * 2002-05-15 2003-11-19 Koyo Seiko Co Ltd Measuring method for propagation speed of ultrasonic waves in inner ring of cylindrical roller bearing and measuring method for degree of fatigue
JP2004184378A (en) * 2002-12-06 2004-07-02 Koyo Seiko Co Ltd Inspection method of decarbonization or burn mark of steel component
JP2004233144A (en) * 2003-01-29 2004-08-19 Daido Steel Co Ltd Method and apparatus for inspecting junction part
JP2010256279A (en) * 2009-04-28 2010-11-11 Ihi Corp Method and apparatus for measuring carburized depth
JP2011058980A (en) * 2009-09-10 2011-03-24 Sankyu Inc Method and device for measuring carburized layer of tubular body
CN114250343A (en) * 2021-12-10 2022-03-29 浙江欧迪恩传动科技股份有限公司 Production, calculation, heating and verification method for reducing strength difference of mandrel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329513A (en) * 2002-05-15 2003-11-19 Koyo Seiko Co Ltd Measuring method for propagation speed of ultrasonic waves in inner ring of cylindrical roller bearing and measuring method for degree of fatigue
JP2004184378A (en) * 2002-12-06 2004-07-02 Koyo Seiko Co Ltd Inspection method of decarbonization or burn mark of steel component
JP2004233144A (en) * 2003-01-29 2004-08-19 Daido Steel Co Ltd Method and apparatus for inspecting junction part
JP2010256279A (en) * 2009-04-28 2010-11-11 Ihi Corp Method and apparatus for measuring carburized depth
JP2011058980A (en) * 2009-09-10 2011-03-24 Sankyu Inc Method and device for measuring carburized layer of tubular body
CN114250343A (en) * 2021-12-10 2022-03-29 浙江欧迪恩传动科技股份有限公司 Production, calculation, heating and verification method for reducing strength difference of mandrel
CN114250343B (en) * 2021-12-10 2023-10-31 浙江欧迪恩传动科技股份有限公司 Production, calculation, heating and verification method for reducing mandrel strength difference

Similar Documents

Publication Publication Date Title
US4658649A (en) Ultrasonic method and device for detecting and measuring defects in metal media
CA2258439C (en) Ultrasonic lamb wave technique for measurement of pipe wall thickness at pipe supports
CA2679297A1 (en) Quality control method and manufacturing method for pipe
US20190242854A1 (en) Ultrasonic flaw detection device, ultrasonic flaw detection method, method of manufacturing welded steel pipe, and welded steel pipe quality control method
US4574637A (en) Method for measuring surface and near surface properties of materials
US5404754A (en) Ultrasonic detection of high temperature hydrogen attack
CA2258913C (en) Ultrasonic technique for inspection of weld and heat-affected zone for localized high temperature hydrogen attack
EP0053034B1 (en) Method of determining stress distribution in a solid body
Heinlein et al. Improved thickness measurement on rough surfaces by using guided wave cut-off frequency
JPH05281201A (en) Method and apparatus for measurement of depth of quenched and hardened layer
EP3100041B1 (en) Device and method for the non-destructive testing of a test object by means of ultrasound in accordance with the reference body method
JPH0614026B2 (en) Ultrasonic measurement of the depth of the hardened layer
Hislop Flaw size evaluation in immersed ultrasonic testing
JP3729686B2 (en) Defect detection method for piping
JPS6326340B2 (en)
JPH095309A (en) Sensor for diagnosing surface deterioration and fatigue, device for diagnosing surface deterioration and fatigue and its diagnostic method
JPH08145965A (en) Ultrasonic cured layer measuring apparatus by electronic scanning
JPH10153585A (en) Surface layer evaluating method and apparatus therefor
JPH09236585A (en) Diagnostic measurement sensor for surface degradation, hardening, fatigue, etc., and diagnostic device and diagnostic method
JPH0618487A (en) Method and apparatus for measuring depth of hardening
JP3463729B2 (en) Non-destructive inspection method of internal organization
CA3108661C (en) Ultrasonic testing using a phased array
SU1244576A2 (en) Acoustic method of checking physical-mechanical properties of surface layer of solids
JP3246859B2 (en) Method and apparatus for evaluating material deterioration
JPS59122944A (en) Probe and ultrasonic wave flaw detecting method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101129

LAPS Cancellation because of no payment of annual fees