Nothing Special   »   [go: up one dir, main page]

JP2011058980A - Method and device for measuring carburized layer of tubular body - Google Patents

Method and device for measuring carburized layer of tubular body Download PDF

Info

Publication number
JP2011058980A
JP2011058980A JP2009209739A JP2009209739A JP2011058980A JP 2011058980 A JP2011058980 A JP 2011058980A JP 2009209739 A JP2009209739 A JP 2009209739A JP 2009209739 A JP2009209739 A JP 2009209739A JP 2011058980 A JP2011058980 A JP 2011058980A
Authority
JP
Japan
Prior art keywords
tubular body
carburized layer
ultrasonic
measuring
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009209739A
Other languages
Japanese (ja)
Inventor
Tatsuya Yoshimoto
辰也 吉本
Hideki Horikawa
英樹 堀川
Tomiko Yamaguchi
富子 山口
Kazumasa Nishio
一政 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Sankyu Inc
Original Assignee
Kyushu Institute of Technology NUC
Sankyu Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Sankyu Inc filed Critical Kyushu Institute of Technology NUC
Priority to JP2009209739A priority Critical patent/JP2011058980A/en
Publication of JP2011058980A publication Critical patent/JP2011058980A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for measuring a carburized layer of a tubular body capable of measuring the carburized layer accurately and precisely, while guaranteeing high measurement accuracy. <P>SOLUTION: The carburized layer formed on a prescribed portion of the tubular body 101 is measured by using an ultrasonic wave. One or a pair of probes 11 are moved along the outer circumference of the tubular body 101, and a change of an ultrasonic characteristic caused by passing through the tubular body is detected, and the carburized layer depth is measured based on the detection result. The ultrasonic wave is transmitted from the transmission side to the reception side of the pair of probes 11 so that an ultrasonic route propagating inside the tubular body 101 passes an approximately plate thickness center part of the tubular body 101. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋼管や圧力容器等の管状体の内表面に形成される浸炭層を測定する方法及び装置に関するものである。   The present invention relates to a method and apparatus for measuring a carburized layer formed on the inner surface of a tubular body such as a steel pipe or a pressure vessel.

例えばエチレン製造装置において分解炉管の管内表面に浸炭が生じると、管外表面側との熱膨張差に起因する割れが発生する。その浸炭層深さを測定するために従来、電磁式浸炭計を用いて測定していた。この種の分解炉管として使用される耐熱遠心鋳造管は、材料の経時変化として浸炭の他に、管外表面側に窒化物が析出する。   For example, when carburization occurs on the inner surface of a cracking furnace tube in an ethylene production apparatus, cracks are generated due to a difference in thermal expansion from the outer surface side of the tube. In order to measure the depth of the carburized layer, it has been conventionally measured using an electromagnetic carburization meter. In a heat-resistant centrifugal cast tube used as this kind of cracking furnace tube, nitride is precipitated on the outer surface side of the tube in addition to carburizing as a change with time of the material.

この管外表面側の窒化物は電磁式浸炭計の測定値に影響を与える。また、電磁式浸炭計の測定値から浸炭層の深さを測定する場合の測定精度は必ずしも高くなく、これらの理由から近年では超音波を利用した浸炭層の測定方法が研究されてきている。例えば特許文献1に記載の浸炭層の検出方法では、送信側探触子は試験体に対して横波縦波モード変換を起こし易いパルスを出射し、受信側探触子は試験体の底面からモード変換したモード変換パルスが入射するようにしている。また、特許文献2にもこの種の検出方法、装置が開示されている。   The nitride on the outer surface side of the tube affects the measured value of the electromagnetic carburization meter. In addition, the measurement accuracy in measuring the depth of the carburized layer from the measured value of the electromagnetic carburizer is not necessarily high, and for these reasons, a method for measuring the carburized layer using ultrasonic waves has been recently studied. For example, in the carburized layer detection method described in Patent Document 1, the transmitting probe emits a pulse that easily causes a transverse wave / longitudinal wave mode conversion to the specimen, and the receiving probe detects the mode from the bottom surface of the specimen. The converted mode conversion pulse is incident. Patent Document 2 also discloses this type of detection method and apparatus.

特開2006−29939号公報JP 2006-29939 A 特開2005−345138号公報JP 2005-345138 A

しかしながら、上述した特許文献1等を含む従来技術は、超音波探触子を管軸方向に配置し、管内表面で反射した超音波を受信する透過法であり、あるいはまた、管外表面側の未浸炭部と管内表面側浸炭部との境界で反射する超音波を受信する方法である。更には、後方散乱エコーを解析する方法であり、これら従来技術はいずれも管内表面の腐食や減肉がある場合にはその影響を受け、良好な測定精度を確保することができない。   However, the prior art including the above-described Patent Document 1 is a transmission method in which an ultrasonic probe is arranged in the tube axis direction and ultrasonic waves reflected by the inner surface of the tube are received, or alternatively, on the outer surface side of the tube. This is a method of receiving ultrasonic waves reflected at the boundary between the uncarburized portion and the pipe inner surface side carburized portion. Furthermore, there is a method for analyzing backscattered echo, and any of these conventional techniques is affected by corrosion or thinning of the inner surface of the tube, and it is impossible to ensure good measurement accuracy.

本発明はかかる実情に鑑み、高い測定精度を保証し、浸炭層を精度よく的確に測定可能な管状体の浸炭層測定方法及び装置を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a method and an apparatus for measuring a carburized layer of a tubular body that guarantees high measurement accuracy and can accurately measure a carburized layer with high accuracy.

本発明の管状体の浸炭層測定方法は、超音波を用いて管状体の所定部位に形成される浸炭層を測定するための管状体の浸炭層測定方法であって、
前記管状体の外周に沿って一又は一対の探触子を移動させ、浸炭層の通過による超音波特性の変化を検出し、この検出結果に基づき浸炭層深さを測定するようにしたことを特徴とする。
The tubular body carburized layer measuring method of the present invention is a tubular body carburized layer measuring method for measuring a carburized layer formed in a predetermined portion of the tubular body using ultrasonic waves,
One or a pair of probes are moved along the outer periphery of the tubular body, a change in ultrasonic characteristics due to the passage of the carburized layer is detected, and the carburized layer depth is measured based on the detection result. Features.

また、本発明の管状体の浸炭層測定方法において、前記管状体内を伝播する超音波経路が前記管状体の略板厚中央部を通過するように、前記一対の探触子の発信側から受信側へと超音波を発信することを特徴とする。   In the method for measuring a carburized layer of a tubular body according to the present invention, the ultrasonic path propagating through the tubular body is received from the transmitting side of the pair of probes so that it passes through a substantially central portion of the tubular body. It is characterized by transmitting ultrasonic waves to the side.

また、本発明の管状体の浸炭層測定方法において、前記探触子が、前記管状体の全周に亘って走行走査することを特徴とする。   In the method for measuring a carburized layer of a tubular body according to the present invention, the probe travels and scans over the entire circumference of the tubular body.

また、本発明の管状体の浸炭層測定装置は、超音波を用いて管状体の所定部位に形成される浸炭層を測定するための管状体の浸炭層測定装置であって、
一又は一対の探触子が所定の位置及び角度で超音波を発信及び受信し得るように、前記探触子を保持する探触子ホルダと、
前記探触子ホルダを介して前記探触子が前記管状体の周囲を移動するのをガイドする走行ガイドとを含むことを特徴とする。
The tubular body carburized layer measuring device of the present invention is a tubular body carburized layer measuring device for measuring a carburized layer formed in a predetermined portion of the tubular body using ultrasonic waves,
A probe holder for holding the probe so that one or a pair of probes can transmit and receive ultrasonic waves at a predetermined position and angle;
And a traveling guide for guiding the probe to move around the tubular body via the probe holder.

また、本発明の管状体の浸炭層測定装置において、前記ホルダは、前記一対の探触子の発信側から受信側へと発信される前記管状体内を伝播する超音波経路が、前記管状体の略板厚中央部を通過するように前記一対の探触子を保持することを特徴とする。   Further, in the tubular body carburized layer measuring apparatus according to the present invention, the holder has an ultrasonic path propagating through the tubular body transmitted from the transmitting side to the receiving side of the pair of probes. The pair of probes is held so as to pass through a substantially central portion of the plate thickness.

本発明によれば、その典型的態様において透過法を適用し、これにより超音波の主ビームが管肉厚の中央部付近を通過することで、管内表面側の形状が均一でなくても、浸炭層を精度よく的確に測定することができる。また、未浸炭部と浸炭部の超音波音速値又は減衰定数を比較することによって、浸炭層深さを精度よく評価することができる。   According to the present invention, the transmission method is applied in the typical embodiment, and thereby the ultrasonic main beam passes near the center of the tube thickness, so that the shape on the tube inner surface side is not uniform, The carburized layer can be accurately and accurately measured. Moreover, the carburized layer depth can be accurately evaluated by comparing the ultrasonic velocity values or attenuation constants of the uncarburized part and the carburized part.

本発明に係るエチレン製造装置における分解炉まわりの概略構成を示す図である。It is a figure which shows schematic structure around the decomposition furnace in the ethylene manufacturing apparatus which concerns on this invention. 本発明に係るエチレン製造装置の分解炉における分解炉管とバーナーとの配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship between the cracking furnace tube and the burner in the cracking furnace of the ethylene manufacturing apparatus which concerns on this invention. 本発明による透過法による浸炭層測定装置を示す斜視図である。It is a perspective view which shows the carburized layer measuring apparatus by the permeation | transmission method by this invention. 本発明による垂直法による浸炭層測定装置を示す斜視図である。It is a perspective view which shows the carburized layer measuring apparatus by the vertical method by this invention. 本発明の浸炭層測定装置における浸炭層測定に使用する試験片を示す図である。It is a figure which shows the test piece used for the carburized layer measurement in the carburized layer measuring apparatus of this invention. 本発明による垂直法による浸炭層測定において、浸炭部を通過した超音波ビームの経路と超音波音速との関係を示す図である。It is a figure which shows the relationship between the path | route of the ultrasonic beam which passed the carburized part, and ultrasonic sound velocity in the carburized layer measurement by the vertical method by this invention. 本発明による垂直法による浸炭層測定における試験板厚と減衰定数との関係を示す図である。It is a figure which shows the relationship between the test plate thickness and attenuation constant in the carburized layer measurement by the vertical method by this invention. 本発明による透過法による浸炭層測定において、浸炭部を通過した超音波ビームの経路と超音波音速との関係を示す図である。It is a figure which shows the relationship between the path | route of the ultrasonic beam which passed the carburized part, and ultrasonic sound velocity in the carburized layer measurement by the transmission method by this invention. 本発明の透過法による浸炭層測定装置の探触子及び探触子ホルダの構成例を示す図である。It is a figure which shows the structural example of the probe and probe holder of the carburized layer measuring apparatus by the transmission method of this invention. 本発明の垂直法による浸炭層測定装置の探触子及び探触子ホルダの構成例を示す図である。It is a figure which shows the structural example of the probe and probe holder of the carburized layer measuring apparatus by the vertical method of this invention. 本発明の浸炭層測定装置の走行ガイドの構成例を示す図である。It is a figure which shows the structural example of the traveling guide of the carburized layer measuring apparatus of this invention.

以下、図面に基づき、本発明による管状体の浸炭層測定方法及び装置の好適な実施の形態を説明する。
先ず、本発明に係るエチレン製造装置における分解炉まわりについて概略説明する。図1は分解炉100の要部を示しており、分解炉100には複数の分解炉管101が列設され、各分解炉管101は炉床100aと天井部100bの間に鉛直方向に配置される。また、分解炉管101の列設方向に対して図2のように左右両側には複数のバーナー102が配置され、各分解炉管101を左右から加熱するようになっている。ナフサ等の原材料が分解炉管101に投入され、図1の矢印のように分解炉管101内を流通する過程でエチレンが分解生成され、生成されたエチレンはクエンチボイラー103へと送られる。
Hereinafter, preferred embodiments of a tubular body carburized layer measuring method and apparatus according to the present invention will be described with reference to the drawings.
First, the outline of the cracking furnace in the ethylene production apparatus according to the present invention will be described. FIG. 1 shows a main part of the cracking furnace 100. A plurality of cracking furnace tubes 101 are arranged in the cracking furnace 100, and each cracking furnace tube 101 is arranged vertically between the hearth 100a and the ceiling portion 100b. Is done. Further, as shown in FIG. 2, a plurality of burners 102 are arranged on both the left and right sides with respect to the direction in which the cracking furnace tubes 101 are arranged, and each cracking furnace tube 101 is heated from the left and right. Raw materials such as naphtha are charged into the cracking furnace tube 101, and ethylene is decomposed and generated as it flows through the cracking furnace tube 101 as indicated by the arrows in FIG. 1, and the generated ethylene is sent to the quench boiler 103.

次に、図3及び図4は本発明による浸炭層測定装置10を示している。図3は透過法を適用した例を、図4は垂直法を適用した例をそれぞれ示している。本発明装置は、分解炉管101に代表される管状体の所定部位、即ち管内表面に形成された浸炭層を、超音波を用いて測定する。透過法による浸炭層測定装置10は図3のように、一対の探触子11(発信側及び受信側)を有し、垂直法による浸炭層測定装置10は図4のように、単一の探触子11を有する。   Next, FIG.3 and FIG.4 has shown the carburized layer measuring apparatus 10 by this invention. FIG. 3 shows an example in which the transmission method is applied, and FIG. 4 shows an example in which the vertical method is applied. The apparatus of the present invention measures a carburized layer formed on a predetermined portion of a tubular body typified by the cracking furnace tube 101, that is, an inner surface of the tube, using ultrasonic waves. The carburized layer measuring device 10 by the transmission method has a pair of probes 11 (transmitting side and receiving side) as shown in FIG. 3, and the carburized layer measuring device 10 by the vertical method is a single unit as shown in FIG. It has a probe 11.

これらの探触子11は探触子ホルダ12によって、分解炉管101に対して所定の位置及び角度となるように保持される。また、探触子ホルダ12を介して探触子11が分解炉管101の周囲を移動する(図3及び図4、矢印参照)のをガイドする走行ガイド13を有している。これらの詳細については後述するものとする。図3及び図4に示されるように探触子11には超音波探傷器14が接続され、超音波探傷器14には更にペンレコーダ15が接続される。   These probes 11 are held by a probe holder 12 so as to have a predetermined position and angle with respect to the decomposition furnace tube 101. In addition, a traveling guide 13 is provided for guiding the probe 11 to move around the cracking furnace tube 101 via the probe holder 12 (see arrows in FIGS. 3 and 4). These details will be described later. As shown in FIGS. 3 and 4, an ultrasonic flaw detector 14 is connected to the probe 11, and a pen recorder 15 is further connected to the ultrasonic flaw detector 14.

ここで、本発明の基本構成につき、これを原理的に説明する。エチレン製造装置の分解炉管の管内表面側に浸炭が生じると管外表面側との熱膨張差に起因する割れが発生し、この浸炭層深さを超音波法で測定するが、図5に示すような耐熱遠心鋳造管の局部強制浸炭試験片1を製作し、その浸炭部及び未浸炭部の超音波特性値(音速値ならびに減衰定数)を測定した。その測定結果から、浸炭層深さを評価するのに有効な超音波特性を検討した。   Here, the basic configuration of the present invention will be described in principle. When carburization occurs on the inner surface side of the cracking furnace tube of the ethylene production equipment, cracks due to the difference in thermal expansion from the outer surface side of the tube occur, and this carburized layer depth is measured by the ultrasonic method. A locally forced carburized test piece 1 of a heat-resistant centrifugal cast tube as shown in the drawing was manufactured, and the ultrasonic characteristic values (sonic velocity value and attenuation constant) of the carburized portion and the uncarburized portion were measured. From the measurement results, the ultrasonic characteristics effective for evaluating the carburized layer depth were examined.

図5に示す試験片1において、浸炭層2(2A〜2C)の深さは、エッチングした管断面のマクロ組織から測定した。次に、超音波法の探触子は垂直法では5MHzを用い、透過法では2.25MHzを用いた。更に、図5の局部浸炭層深さを順次変化させ、垂直法で超音波特性を測定するために、管内表面1a側を段階的に減肉加工する研削機械加工をした(平坦化した内表面1a′)。   In the test piece 1 shown in FIG. 5, the depth of the carburized layer 2 (2A to 2C) was measured from the macro structure of the etched pipe cross section. Next, the ultrasonic probe used 5 MHz in the vertical method and 2.25 MHz in the transmission method. Further, in order to change the local carburized layer depth in FIG. 5 sequentially and measure the ultrasonic characteristics by the vertical method, grinding machining was performed to reduce the thickness of the inner surface 1a side of the pipe in stages (flattened inner surface). 1a ′).

垂直法による超音波特性
新材の縦波音速値を測定した結果、5751m/S(平均値)であった(図6、◆印)。図6に試験片1の縦波音速値を測定した結果を示す。浸炭層深さが大きくなる程、音速が速くなる傾向が認められた。その傾向は、管内表面側に粒状晶組織を有しない柱状晶組織の方が顕著であった。図7は、浸炭部の減衰定数を測定した結果を示している。管内表面側に粒状晶を有しない柱状晶組織は、浸炭層深さが大きくなる程、減衰定数が小さくなる傾向が認められた。
As a result of measuring the longitudinal wave sound velocity value of the new ultrasonic characteristic material by the vertical method, it was 5751 m / S (average value) (FIG. 6, mark ♦). FIG. 6 shows the results of measuring the longitudinal wave sound velocity value of the test piece 1. As the carburized layer depth increased, the sound velocity tended to increase. The tendency was more remarkable in the columnar crystal structure having no granular crystal structure on the tube inner surface side. FIG. 7 shows the result of measuring the attenuation constant of the carburized part. In the columnar crystal structure having no granular crystals on the inner surface side of the tube, the damping constant tended to decrease as the carburized layer depth increased.

透過法による超音波特性
上述の垂直法は管内面側の影響(腐食減肉等)を受けるので、超音波の主ビームが管の板厚中央部を通過するようにすれば、管内面側の影響を受けないと考えられる。そこで、主ビームが板厚中央部を通過するように探触子ホルダの探触子取付位置をスネルの式から計算した。図8は、試験片1の縦波音速を測定した結果を示している。超音波が局部浸炭部を通過する距離が長い程、音速値が増加する傾向が認められた。なお、図8(a)は浸炭部を通過した超音波ビームの経路と音速との関係を示し、図8(b)は図8(a)に対応する超音波ビームの経路を示している。
Ultrasonic characteristics by transmission method The vertical method described above is affected by the inner surface of the tube (such as corrosion thinning), so if the ultrasonic main beam passes through the center of the tube thickness, Unaffected. Therefore, the probe mounting position of the probe holder was calculated from Snell's equation so that the main beam passed through the central part of the plate thickness. FIG. 8 shows the result of measuring the longitudinal wave sound velocity of the test piece 1. It was recognized that the longer the distance that the ultrasonic wave passes through the local carburized portion, the higher the sound speed value. 8A shows the relationship between the path of the ultrasonic beam that has passed through the carburized portion and the speed of sound, and FIG. 8B shows the path of the ultrasonic beam corresponding to FIG. 8A.

さて、本発明の浸炭層測定装置10は透過法及び垂直法とも、上述したように超音波が局部浸炭部を通過する距離が長い程、音速値が増加するという原理に基づき構成される。
本発明ではエチレン製造装置にける分解炉の管列側(未浸炭部)の超音波特性値(縦波音速値又は減衰定数等)とバーナー側(浸炭部)の超音波特性値を比較することによって、その変化量から浸炭層深さを測定する。エチレン製造装置の分解炉はコイル状の管が鉛直方向に配置されているので、管列側よりもバーナー側(火炎側)の方が高温になり易い。そのためバーナー側に管内表面側からの浸炭が起こり易い(局部浸炭)。
The carburized layer measuring apparatus 10 according to the present invention is configured based on the principle that both the transmission method and the vertical method increase the speed of sound as the distance that the ultrasonic wave passes through the local carburized portion increases.
In the present invention, the ultrasonic characteristic value (longitudinal wave sonic value or attenuation constant, etc.) on the tube row side (uncarburized part) of the cracking furnace in the ethylene production apparatus is compared with the ultrasonic characteristic value on the burner side (carburized part). Then, the carburized layer depth is measured from the amount of change. Since the cracking furnace of the ethylene production apparatus has coiled tubes arranged in the vertical direction, the burner side (flame side) tends to be hotter than the tube row side. Therefore, carburization from the inner surface side of the pipe tends to occur on the burner side (local carburization).

本発明装置を更に具体的に説明する。先ず、透過法による浸炭層測定装置10において図9に示されるように一対の探触子11が探触子ホルダ12によって、分解炉管101の円周上に配置される。本発明では特に一方の探触子11(11A)から発信された超音波Sの主ビームが、分解炉管101の管肉厚中央部付近を通過した後、他方の探触子11(11B)に受信されるようになっている。なお、探触子ホルダ12は好適にはアクリル製とする。   The device of the present invention will be described more specifically. First, in the carburized layer measuring apparatus 10 by the transmission method, as shown in FIG. 9, a pair of probes 11 are arranged on the circumference of the decomposition furnace tube 101 by the probe holder 12. In the present invention, in particular, after the main beam of the ultrasonic wave S transmitted from one probe 11 (11A) passes near the central portion of the tube thickness of the cracking furnace tube 101, the other probe 11 (11B). To be received. The probe holder 12 is preferably made of acrylic.

上記の場合、エチレン製造装置の分解炉管101(耐熱遠心鋳造管(JISのSCH24相当品)、25%Cr−35%Ni鋼等)の浸炭層深さが、管肉厚中央部に達したときを分解炉管取替時期とする場合が多い。そこで、浸炭層深さが管肉厚中央部付近まで達しているかどうかを評価対象とした。そのため探触子ホルダ12により、超音波の主ビームが管肉厚中央部を透過するようにする。探触子11の取付位置は、スネルの式(超音波の反射・屈折の式)から計算した。超音波の主ビームが管内表面側で反射しないので、管内面側の形状(腐食・減肉又は螺旋状フィンなど)の影響を受け難いという利点がある。   In the above case, the carburized layer depth of the cracking furnace tube 101 (heat-resistant centrifugal cast tube (JIS SCH24 equivalent), 25% Cr-35% Ni steel, etc.) of the ethylene production equipment reached the tube thickness center. In many cases, it is time to replace the cracking furnace tube. Therefore, whether the carburized layer depth has reached the vicinity of the center of the tube thickness was evaluated. For this reason, the probe holder 12 allows the ultrasonic main beam to pass through the central portion of the tube thickness. The mounting position of the probe 11 was calculated from Snell's formula (ultrasonic reflection / refraction formula). Since the main beam of ultrasonic waves is not reflected on the inner surface side of the tube, there is an advantage that it is difficult to be affected by the shape on the inner surface side of the tube (such as corrosion / thinning or spiral fins).

垂直法による浸炭層測定装置10において、図10に示されるように単一の探触子11が探触子ホルダ12によって、分解炉管101の円周上に配置される。垂直法の場合の探触子ホルダ12は、超音波の音圧が均一な遠距離音場域となるものを用いる。超音波探触子11を被検体である分解炉管101に直接接触させたとき、超音波の音圧が複雑な近距離音場限界距離内で超音波特性の変化量を評価することになるので、遠距離音場域となる探触子ホルダ12とする。   In the carburized layer measuring apparatus 10 by the vertical method, a single probe 11 is arranged on the circumference of the cracking furnace tube 101 by a probe holder 12 as shown in FIG. As the probe holder 12 in the vertical method, a probe holder 12 in which the sound pressure of an ultrasonic wave is a far-field sound field region is used. When the ultrasonic probe 11 is brought into direct contact with the decomposition furnace tube 101 that is the subject, the amount of change in ultrasonic characteristics is evaluated within the near field limit distance where the sound pressure of the ultrasonic wave is complex. Therefore, it is set as the probe holder 12 which becomes a long-distance sound field region.

なお、垂直法の場合、管列側(未浸炭部)及びバーナー側(浸炭部)の管内面形状が同一であることが必要になる。また、分解炉管101の肉厚が局部的に異なると、超音波縦波音速値や減衰定数の測定に大きく影響する。   In the case of the vertical method, it is necessary that the tube inner surface shapes of the tube row side (uncarburized portion) and the burner side (carburized portion) are the same. Further, if the thickness of the cracking furnace tube 101 is locally different, it greatly affects the measurement of the ultrasonic longitudinal wave sound velocity value and the attenuation constant.

更に、本発明の浸炭層測定装置10は透過法及び垂直法とも、探触子ホルダ12を介して探触子11が分解炉管101の周囲を走行移動するのをガイドする走行ガイド13を有する。
図11は、走行ガイド13の具体的構成例を示している。この走行ガイド13は、2つ割り可能なアクリル製の環状体により構成され、そのハーフパーツを一体的に結合するための連結具もしくはバインダ16を含む。このバインダ16としてはクランプ式のものであってよい。更に走行ガイド13の内周面に沿って、ゴム製の当て材17が添着する。走行ガイド13は図3等に示すように、その上に探触子ホルダ12を載置し、分解炉管101の同一円周上において探触子ホルダ12(従って探触子11)を手動で回転するための固定治具として機能する。
Further, the carburized layer measuring apparatus 10 of the present invention includes a traveling guide 13 for guiding the probe 11 to travel around the cracking furnace tube 101 via the probe holder 12 in both the transmission method and the vertical method. .
FIG. 11 shows a specific configuration example of the travel guide 13. The traveling guide 13 is formed of an acrylic annular body that can be divided into two parts, and includes a connector or a binder 16 for integrally joining the half parts. The binder 16 may be a clamp type. Further, along the inner peripheral surface of the travel guide 13, a rubber contact material 17 is attached. As shown in FIG. 3 and the like, the traveling guide 13 has a probe holder 12 mounted thereon, and the probe holder 12 (and hence the probe 11) is manually placed on the same circumference of the decomposition furnace tube 101. Functions as a fixing jig for rotation.

なお、探触子ホルダ12を自動で分解炉管101の周囲を回転させるための回転治具(被検体に着脱可能な固定部と、探触子ホルダ12を回転させるモーター駆動部から構成された自動回転治具)を適用することも可能である。このような自動回転治具によれば、探触子ホルダ12を手動で回転させた場合よりも、局部浸炭範囲をより正確に推定できる。   It should be noted that a rotation jig for automatically rotating the probe holder 12 around the decomposition furnace tube 101 (consisting of a fixed part that can be attached to and detached from the subject and a motor driving part that rotates the probe holder 12). It is also possible to apply an automatic rotating jig). According to such an automatic rotating jig, the local carburizing range can be estimated more accurately than when the probe holder 12 is manually rotated.

本発明の浸炭層測定装置10によれば、先ず透過法の場合図3に示されるようにペンレコーダ15の波形(この場合、横軸は管円周上の探触子ホルダ12の中心位置、縦軸は着目する透過エコー波形のエコー高さ(超音波探傷器のゲート位置におけるエコー高さの出力値))から、局部浸炭部の範囲を正確に推定することができる。
また、図4に示す垂直法の場合にも透過法の場合と同様に、ペンレコーダ15の波形から、局部浸炭部の範囲を推定することができる。
According to the carburized layer measuring apparatus 10 of the present invention, first, in the case of the transmission method, as shown in FIG. 3, the waveform of the pen recorder 15 (in this case, the horizontal axis is the center position of the probe holder 12 on the pipe circumference, The vertical axis can accurately estimate the range of the local carburized portion from the echo height of the focused transmitted echo waveform (the output value of the echo height at the gate position of the ultrasonic flaw detector).
Also in the case of the vertical method shown in FIG. 4, the range of the local carburized portion can be estimated from the waveform of the pen recorder 15 as in the case of the transmission method.

さて、本発明による効果を従来技術(超音波法を用いたもの)との関係で説明すると、先ず従来技術の透過法においては2個の超音波探触子を管軸方向に配置しており、超音波の主ビームが管内表面において反射させる方法を採用している。そのため内面螺旋状フィン付チューブ及び内面ひれ付押出し管に適用できないと考える。また、浸炭層深さを測定するために、浸炭層境界面からの反射エコーを利用している。この場合、浸炭が生じると、炭素原子の拡散モデルによる炭素濃度プロファイルになるため、超音波法で識別できる浸炭層境界面を定義できない。   Now, the effect of the present invention will be described in relation to the prior art (using the ultrasonic method). First, in the transmission method of the prior art, two ultrasonic probes are arranged in the tube axis direction. In this method, the ultrasonic main beam is reflected on the inner surface of the tube. Therefore, it cannot be applied to the inner spiral finned tube and the inner fin-extruded tube. In addition, in order to measure the carburized layer depth, a reflection echo from the carburized layer boundary surface is used. In this case, when carburization occurs, a carbon concentration profile based on a diffusion model of carbon atoms is formed, so that a carburized layer boundary surface that can be identified by an ultrasonic method cannot be defined.

本発明によれば、特に透過法を用いることで、内面螺旋状フィン付チューブ及び内面ひれ付押出し管に適用できる。つまり超音波の主ビームが管肉厚中央部付近を通過するので、管内表面側の形状が均一でなくても適用可能である。
また、管列側(未浸炭部)とバーナー側(浸炭部)の超音波音速値又は減衰定数を比較することによって、浸炭層深さを評価できる。なお、浸炭層深さを評価する場合は、反応管の材質ごとに、超音波音速値又は減衰定数と浸炭層深さとの相関性を示すマスター・カーブを予め作成する必要がある。
更に、超音波音速値又は減衰定数に影響する因子のうち、管外表面側に析出する窒化物や酸化スケールの影響は、管列側(未浸炭部)とバーナー側とで略同一であると推察されるので、超音波音速値又は減衰定数の変化量が浸炭層深さのみに影響されると考えられる。
According to the present invention, by using the permeation method in particular, the present invention can be applied to the inner surface spiral finned tube and the inner surface finned extruded tube. That is, since the ultrasonic main beam passes near the central portion of the tube thickness, the present invention can be applied even if the shape on the tube inner surface side is not uniform.
Further, the depth of the carburized layer can be evaluated by comparing the ultrasonic sound velocity values or attenuation constants on the tube row side (uncarburized portion) and the burner side (carburized portion). When evaluating the carburized layer depth, it is necessary to create in advance a master curve indicating the correlation between the ultrasonic sound velocity value or attenuation constant and the carburized layer depth for each material of the reaction tube.
Further, among the factors affecting the ultrasonic sound velocity value or the attenuation constant, the influence of the nitride and oxide scale deposited on the outer surface side of the tube is substantially the same on the tube row side (uncarburized portion) and the burner side. It is assumed that the amount of change in the ultrasonic sound velocity value or attenuation constant is influenced only by the carburized layer depth.

以上、本発明を種々の実施形態と共に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。
石油精製装置等の加熱炉管(5%Cr−0.5%Mo鋼、9%Cr−1%Mo鋼又はSUS310等)に対して、管内表面側から浸炭が生じる場合にも、原理的には適用可能である。即ち、遠心鋳造管以外の加熱炉管にも、本技術を適用できる。また、ボイラー・チューブの管内表面側に生じる脱炭層(管内流体スチームとの反応)の検出にも、原理的には本発明を適用可能である。
As mentioned above, although this invention was demonstrated with various embodiment, this invention is not limited only to these embodiment, A change etc. are possible within the scope of the present invention.
In principle, even when carburization occurs from the inside surface of a heating furnace tube (5% Cr-0.5% Mo steel, 9% Cr-1% Mo steel, SUS310, etc.) such as an oil refinery. Is possible. That is, the present technology can be applied to a heating furnace tube other than the centrifugal cast tube. In principle, the present invention can also be applied to detection of a decarburized layer (reaction with in-pipe fluid steam) generated on the inner surface side of the boiler tube.

10 浸炭層測定装置
11 探触子
12 探触子ホルダ
13 走行ガイド
14 超音波探傷器
15 ペンレコーダ
16 バインダ
17 当て材
DESCRIPTION OF SYMBOLS 10 Carburized layer measuring apparatus 11 Probe 12 Probe holder 13 Running guide 14 Ultrasonic flaw detector 15 Pen recorder 16 Binder 17

Claims (5)

超音波を用いて管状体の所定部位に形成される浸炭層を測定するための管状体の浸炭層測定方法であって、
前記管状体の外周に沿って一又は一対の探触子を移動させ、浸炭層の通過による超音波特性の変化を検出し、この検出結果に基づき浸炭層深さを測定するようにした管状体の浸炭層測定方法。
A method for measuring a carburized layer of a tubular body for measuring a carburized layer formed in a predetermined portion of the tubular body using ultrasonic waves,
A tubular body in which one or a pair of probes are moved along the outer periphery of the tubular body, a change in ultrasonic characteristics due to the passage of the carburized layer is detected, and the depth of the carburized layer is measured based on the detection result. Carburized layer measurement method.
前記管状体内を伝播する超音波経路が前記管状体の略板厚中央部を通過するように、前記一対の探触子の発信側から受信側へと超音波を発信することを特徴とする請求項1に記載の管状体の浸炭層測定方法。   The ultrasonic wave is transmitted from the transmitting side of the pair of probes to the receiving side so that an ultrasonic path propagating through the tubular body passes through a substantially central thickness portion of the tubular body. Item 2. A method for measuring a carburized layer of a tubular body according to Item 1. 前記探触子が、前記管状体の全周に亘って走行走査することを特徴とする請求項1又は2に記載の管状体の浸炭層測定方法。   The method of measuring a carburized layer of a tubular body according to claim 1 or 2, wherein the probe travels and scans the entire circumference of the tubular body. 超音波を用いて管状体の所定部位に形成される浸炭層を測定するための管状体の浸炭層測定装置であって、
一又は一対の探触子が所定の位置及び角度で超音波を発信及び受信し得るように、前記探触子を保持する探触子ホルダと、
前記探触子ホルダを介して前記探触子が前記管状体の周囲を移動するのをガイドする走行ガイドとを含むことを特徴とする管状体の浸炭層測定装置。
A carburized layer measuring device for a tubular body for measuring a carburized layer formed at a predetermined portion of the tubular body using ultrasonic waves,
A probe holder for holding the probe so that one or a pair of probes can transmit and receive ultrasonic waves at a predetermined position and angle;
An apparatus for measuring a carburized layer of a tubular body, comprising: a traveling guide for guiding the probe to move around the tubular body through the probe holder.
前記ホルダは、前記一対の探触子の発信側から受信側へと発信される前記管状体内を伝播する超音波経路が、前記管状体の略板厚中央部を通過するように前記一対の探触子を保持することを特徴とする請求項4に記載の管状体の浸炭層測定装置。   The holder is configured so that an ultrasonic path propagating through the tubular body transmitted from the transmitting side to the receiving side of the pair of probes passes through a substantially central portion of the tubular body. 5. The tubular carburized layer measuring device according to claim 4, wherein the tentacle is held.
JP2009209739A 2009-09-10 2009-09-10 Method and device for measuring carburized layer of tubular body Pending JP2011058980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209739A JP2011058980A (en) 2009-09-10 2009-09-10 Method and device for measuring carburized layer of tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209739A JP2011058980A (en) 2009-09-10 2009-09-10 Method and device for measuring carburized layer of tubular body

Publications (1)

Publication Number Publication Date
JP2011058980A true JP2011058980A (en) 2011-03-24

Family

ID=43946783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209739A Pending JP2011058980A (en) 2009-09-10 2009-09-10 Method and device for measuring carburized layer of tubular body

Country Status (1)

Country Link
JP (1) JP2011058980A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010526A1 (en) * 2013-09-10 2015-03-13 Thales Sa METAL WELD CONTROL DEVICE, SYSTEM AND METHOD THEREOF
US10431861B2 (en) 2013-09-10 2019-10-01 Flextronics International Kft. Cooling structure for an energy storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259861U (en) * 1985-10-02 1987-04-14
JPH05281201A (en) * 1992-04-06 1993-10-29 Hitachi Ltd Method and apparatus for measurement of depth of quenched and hardened layer
JPH10293124A (en) * 1997-04-17 1998-11-04 Hitachi Constr Mach Co Ltd Inspecting equipment of depth of quench hardened layer
JP2007187631A (en) * 2006-01-16 2007-07-26 Non-Destructive Inspection Co Ltd Method and apparatus for detecting position of boundary surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259861U (en) * 1985-10-02 1987-04-14
JPH05281201A (en) * 1992-04-06 1993-10-29 Hitachi Ltd Method and apparatus for measurement of depth of quenched and hardened layer
JPH10293124A (en) * 1997-04-17 1998-11-04 Hitachi Constr Mach Co Ltd Inspecting equipment of depth of quench hardened layer
JP2007187631A (en) * 2006-01-16 2007-07-26 Non-Destructive Inspection Co Ltd Method and apparatus for detecting position of boundary surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010526A1 (en) * 2013-09-10 2015-03-13 Thales Sa METAL WELD CONTROL DEVICE, SYSTEM AND METHOD THEREOF
WO2015036407A1 (en) * 2013-09-10 2015-03-19 Thales Metal weld inspection device, associated system and method
US10161913B2 (en) 2013-09-10 2018-12-25 Thales Metal weld inspection device, associated system and method
US10431861B2 (en) 2013-09-10 2019-10-01 Flextronics International Kft. Cooling structure for an energy storage device

Similar Documents

Publication Publication Date Title
US8225665B2 (en) Method and system of measuring material loss from a solid structure
CN108548869B (en) Nuclear power station polyethylene pipe phased array ultrasonic detection method
JP2018059800A (en) Flexible probe sensitivity calibration method, and ultrasonic wave flaw detection-purpose reference test piece as well as ultrasonic wave flaw detection method
WO2020250378A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP5132886B2 (en) Boundary surface position detection method and boundary surface position detection device
JP2003004710A (en) Method for inspecting padded pipe
JP2010236941A (en) Lifetime evaluation method of pipe weld zone
WO2020250379A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP2011058980A (en) Method and device for measuring carburized layer of tubular body
JP5730644B2 (en) Ultrasonic measurement method and apparatus for surface crack depth
JP5297791B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP4363699B2 (en) Method for detecting carburized layer and measuring thickness thereof
WO2023274089A1 (en) Curved-surface sonolucent wedge design method for circumferential ultrasonic detection of small-diameter tube
CN108072339A (en) A kind of technology that can eliminate self-correcting ultrasonic ripple thickness measuring system interference noise
CN111256630B (en) Method for rapidly measuring thickness of metal plate by utilizing electromagnetic ultrasonic guided wave frequency dispersion characteristic
JP2004205430A (en) Ultrasonic inspection method
KR20040056821A (en) Ultrasonic evaluation system for internal deposit layer in a pipe
JP5504482B2 (en) Ultrasonic wall thickness measuring device and ultrasonic wall thickness measuring method
JPH058778B2 (en)
JPS60205254A (en) Ultrasonic flaw detection for pipe
CN117761165B (en) Pipeline crack positioning method based on electromagnetic ultrasonic array torsion guided wave
RU2717557C1 (en) Method for evaluation of residual life of coils of reaction furnaces
JP3556826B2 (en) Ultrasonic flaw detection method for tubes
CN213398342U (en) Ultrasonic contrast test block for calibrating crack depth of sliding pair weld toe of boiler heated surface pipe
JP2002243705A (en) Method and device for inspecting welded part in thin- walled pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029