Nothing Special   »   [go: up one dir, main page]

JP3729686B2 - Defect detection method for piping - Google Patents

Defect detection method for piping Download PDF

Info

Publication number
JP3729686B2
JP3729686B2 JP21163099A JP21163099A JP3729686B2 JP 3729686 B2 JP3729686 B2 JP 3729686B2 JP 21163099 A JP21163099 A JP 21163099A JP 21163099 A JP21163099 A JP 21163099A JP 3729686 B2 JP3729686 B2 JP 3729686B2
Authority
JP
Japan
Prior art keywords
pipe
defect
ultrasonic
ultrasonic wave
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21163099A
Other languages
Japanese (ja)
Other versions
JP2001041939A (en
Inventor
山 林
智啓 伊藤
紘一郎 川嶋
久志 永溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP21163099A priority Critical patent/JP3729686B2/en
Publication of JP2001041939A publication Critical patent/JP2001041939A/en
Application granted granted Critical
Publication of JP3729686B2 publication Critical patent/JP3729686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、配管の欠陥検出方法に関し、更に詳しくは、超音波を利用した配管の欠陥検出方法に関する。
【0002】
【従来の技術】
石油プラントや化学プラント等においては、所定間隔で地上に立てた架台(ラック)上に、多数の配管を並べて支持する方式が多用されている。これらの配管は、配管と架台との接触部に雨水が滞留することから、長い年月に亘って屋外で使用されることによって、特にその接触部で腐食が発生する。
【0003】
従来は、架台との接触部における配管の腐食を検出するには、配管を1本、1本架台から吊り上げて目視によって点検する手法が採用されてきた。しかし、膨大な本数の長い配管をこのような手法によって点検するのは、極めて効率が低かった。
【0004】
出願人は、上記のような配管における腐食を検出する方法の発明を、特願平10−006479号において出願している。該先願では、超音波振動子から配管内部に向けて斜めに超音波を発射し、配管を周方向に透過した超音波の受信波形から腐食の有無及びその深さを検出している。
【0005】
【発明が解決しようとする課題】
上記先願発明では、配管の肉厚全体に超音波が拡がるように、超音波ビームが拡散するタイプの超音波振動子、つまり指向性が弱い超音波振動子を使用している。また、配管を透過した超音波を受信する超音波受信子としては指向性が強い受信子を使用している。これによって、配管内を一定方向に透過する超音波の受信波形によって腐食の有無及びその量を推定する。しかし、この先願発明では、腐食の量の推定には複雑な計算が必要であった。
【0006】
また、特に大きな口径の配管で且つその内部に欠陥が存在する場合には、その補修位置を確定するために、欠陥位置の特定が重要になる。しかし、上記先願発明では、周方向における欠陥位置の検出はできなかった。
【0007】
本発明は、上記先願発明を更に改良し、配管の腐食量の検出が容易な配管の欠陥検査方法、及び、配管の欠陥位置の特定が容易な配管の欠陥検査方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の配管の欠陥検出方法は、第1の視点において、円筒形状の配管の延在方向に直交する方向で且つ配管の表面に立てた垂線から計測した配管内における入射角度が54°〜90°の範囲に収まるように超音波を配管内に向けて発射し、配管内をその周方向に伝搬する透過波又は該透過波が欠陥によって反射する反射超音波を検出し、該透過波又は反射超音波の振幅に基づいて配管の欠陥の大きさを検出することを特徴とする。
【0009】
本発明の第1の視点の配管の欠陥検出方法によると、超音波の入射角度を54°〜90°の範囲に選定したことにより、配管の内部(肉厚部分)を超音波がほぼ一様に分布して伝播するので、透過超音波又は欠陥から反射した反射超音波の振幅によって欠陥の深さが測定できる。
【0010】
また、本発明の配管の欠陥検出方法は、第2の視点において、円筒形状の配管の延在方向に直交する方向で且つ配管の表面に立てた垂線から所定の角度傾けて超音波を配管内に向けて発射し、配管内をその周方向に伝搬する超音波を検出することにより配管の欠陥を検出する方法であって、
特定の位置を通過する超音波が、欠陥によって反射し前記特定の位置に戻るまでの戻り時間に基づいて、前記特定の位置から欠陥が存在する位置までの、配管中心から見た角度を検出することを特徴とする。
【0011】
本発明の第2の視点の配管の欠陥検出方法によると、特定の位置で超音波の波形を観測し、その特定の位置を通過する超音波が欠陥によって反射してその特定の位置に戻るまでの時間を計測することにより、その特定の位置と欠陥の存在する位置との間の角度差が簡易に検出できる。
【0012】
超音波の速度を、超音波の戻り時間をt、配管の半径(外径)をRとすると、特定の位置と前記欠陥の成す角度βは
β=t×V/2R
として求められる。この速度としては、鉄鋼製円筒配管の場合は、材質的に横波の速度である3623m/sが用いられる。
【0013】
【発明の実施の形態】
図1は、本発明の一実施形態例に係る配管の欠陥検出方法の原理を示す配管の断面図である。超音波を発射する超音波振動子11は、配管20の、欠陥21が存在すると考えられる位置を通る横断面上の例えば頂部付近(点P1)に配置する。超音波振動子11は、接触子12を介して配管20の外表面に接触させ、外表面に立てた垂線から所定の角度を傾ける。
【0014】
超音波を検出する超音波受信子13は、超音波振動子11の設置点P1の近傍、及び、超音波の進行方向で欠陥21の存在すると思われる位置から約60°手前の位置である点P2に配置する。点P1に代えて、欠陥21を挟んで配管内部の点P2と対称の位置にある点P3を選んでもよい。超音波受信子13は、指向性が弱いものがよく、この場合、配管20の内部(肉厚部分)を正逆の双方向に通過(透過又は反射)する超音波を検出できる。点P2に設置する超音波受信子13は、欠陥21の存在位置の検出に特に好都合である。
【0015】
図2に示すように、超音波の配管20への入射角度としては、配管20の外部表面で配管表面に立てた垂線からの角度θiが45°となるように選定される。θi=45°の角度を選定すると、超音波振動子11の接触子2の先端に幅があること、及び、配管表面で超音波が屈折することにより、配管内に入射した直後の超音波は、配管に立てた垂線からの角度が70°を中心とし、54〜90°の広がりをもつ波になる(θa=45°、θb=90°)。配管内部での入射角が54〜90°の広がりをもつ超音波は、配管内部を全体としてほぼ一様に周方向に伝搬する。
【0016】
図3は、超音波振動子が発生する超音波の波形(力:mN)のタイミングチャートである。超音波としては、5MHzに中心周波数を有するバースト波形が好ましく、例えば0.6秒以内の継続時間を有する。本発明で利用される超音波、つまり、配管内を実際に伝搬して超音波受信子13によって検出される超音波は横波であることが、超音波の速度を測定した結果によって確認された。中心周波数が5MHzの超音波を配管内に入射させると、配管内を周方向に伝搬する超音波の中心周波数は約4.6MHzに変化する。しかし、図4に示すように、超音波の速度は、横波の速度3263m/sであり、配管内を伝搬することによっては変化しない。
【0017】
架台と接触する位置に生じる配管欠陥を例とし、図1の図面上で欠陥21を配管の底部に示している。配管20内を周方向に伝搬する超音波は、欠陥によってその一部が反射され、他の一部は欠陥を通過して超音波受信子13によって検出される。欠陥が大きいと、通過する超音波の振幅は小さくなり、逆に反射する超音波の振幅は大きくなる。従って、まず、通過する超音波又は反射する超音波の振幅を点P1又はP2において測定することによって欠陥の有無が検出できる。また、点P2を透過する際に検出された超音波が、その後に欠陥21で反射し反射波として点P2で再び検出されるまでの戻り時間を検出することにより、点P2から欠陥21が存在する位置迄の中心角度βが得られる。この場合、振幅の測定は不要である。
【0018】
上記透過波及び反射波を検出するためには、図1に示した点P2の位置に超音波受信子13を配置することが好ましい。超音波受信子13は、透過波及び反射波の双方を検出するために指向性が弱いものが望ましい。点P2の選定にあたっては、入射波及び反射波を時間的に識別するために、超音波の入射点P1と欠陥21が存在すると思われる位置の間が選定される。装置的には、反射波を幅広く検知し得るように反射波受信子13は、振動子11の近傍に設置するのが良い。
【0019】
ここで、点P2と欠陥21の存在する位置との間の角度βを検出する例を示す。超音波(横波)の速度を、点P2の位置で検出された超音波の検出時刻から、その超音波が欠陥21によって反射して点P2の位置で再び検知されるまでの時間をt、配管内部の平均半径をRとすると、点P2の位置と欠陥21の存在する位置の成す、円管中心で測った角度β(ラジアン)は、
β=t×/2R
として求められる。速度としては、横波の速度3263m/sが選ばれる。
【0020】
上記本発明における欠陥の腐食深さの検出及び欠陥位置の検出の実効性を確認するために、シミュレーションを行った。このシミュレーションでは、解析対象として、内径が54mmの鉄鋼製の円筒配管(円管)が採用され、円管の表面に、欠陥無しのもの、並びに、1mmの深さの欠陥、1.5mm深さの欠陥、及び、2mm深さの欠陥を有するものが選定された。鉄鋼製の円管は、ヤング率が206GPa、ポアソン比が0.28、密度が7700kg/cm3である。
【0021】
超音波振動子11に付属する接触子12は、ポリイミド(ヤング率が4.39GPa、ポアソン比が0.38、密度が1410kg/cm3)製とした。接触子12の前端部分の減衰係数を1.7dB、後端部分の減衰係数を前端部分の50倍とし、円管20の減衰は考慮しなかった。超音波振動子11の直径は4mm、超音波の入射角は、円管表面での屈折後に中心角度70°が生ずるように、円管外部表面で45°とした。超音波振動子11の端面の各節点上で図3に示す波形の外力を入力する。
【0022】
図5(a)〜(d)に、欠陥がない円管、深さ1mmの欠陥を持つ円管、深さ1.5mmの欠陥を持つ円管、深さ2mmの欠陥を持つ円管の各入射点(点P1)における受信波形を示す。各図で、60μs以後に観測される波形が円管を1周した後に観測される波形であり、欠陥の有無及び欠陥の大きさによって振幅が変化する様子が理解できる。
【0023】
図6(a)及び(b)は夫々、欠陥がない円管の点P2及び点P3の受信波形を示している。同図(a)から理解できるように、点P2で配管を1周した後に受信される波形A2は、最初に受信される波形A1から、その振幅が減衰している。また、これら波形A1、A2と、点P3の受信波形A3とを比較すると、この減衰が、主として配管内を透過する際に徐々に受けた減衰によるものであり、配管の透過距離にほぼ比例する旨が理解できる。
【0024】
図7(a)及び(b)は夫々、図6の(a)及び(b)の波形に、ウエーブレット変換を施した波形である。ウエーブレット変換は、一般に単発波(バースト波)の周波数分析に利用される手法であり、最大振幅の周波数を有する波の進行を示すタイミングチャートが得られる。同図から、超音波の点P2の通過時刻と点P3の通過時刻の差t=20.02μsが精度よく得られる。この超音波の通過速度は、点P2と点P3の配管内での離隔距離L及び時刻差tによって
=L/t=65.33mm/20.02μs=3263m/s
と得られ、進行する超音波が横波であることが確認できる。
【0025】
図8(a)は、欠陥1mmを有する配管において、点P2で受信される超音波波形を示している。前記のように、超音波の速度VTが測定されているので、最初に観測される超音波B1が、超音波振動子から配管内に入射し到達した透過波であることが判る。更に、次に観測される超音波B2が欠陥によって反射した反射波であることも判る。この波形をウエーブレット変換した波形を図8(b)に示す。同図から、透過波C1とその透過波が欠陥21によって反射した反射波C2との間の時間差が19.46μsと得られ、これによって、点P2の位置と欠陥21の存在する位置との間の、円管中心で見た角度βが、
β=t×/2R=19.46μs×3.263mm/μs/2×30mm
=1.0583rad=60.64°
と計算される。
【0026】
図9は、前記シミュレーションで示した形状及び材質を有する欠陥無しの円管に対して、実際に超音波を入射してこれを点P1に配置した超音波受信子13で受信した波形の例を示している。図9の波形と図6(a)や(b)の波形とを対比すると、前記シミュレーションが本実験結果をかなり精度よくシミュレーションしていることが理解できる。
【0027】
図10は、図5(a)〜(d)のシミュレーション結果から求められた、欠陥の大きさと透過超音波の振幅との関係を、実測された受信波形から得られた関係と対比して示している。横軸は、配管の全体厚みTに対する欠陥の深さDの比(欠陥比)r=D/Tであり、縦軸は欠陥を有する配管で得られた最大振幅A0と、欠陥無しの配管で得られた対応する位置での最大振幅Adとの比(振幅比)A1=Ad/A0である。同図に示すように、シミュレーションの結果と実測結果とはよく整合しており、本発明方法で欠陥の大きさの測定が可能である旨を示している。
【0028】
図11(a)〜(d)は夫々、欠陥無しの配管、及び、欠陥が1mm、1.5mm、2mmの夫々の配管について、超音波を入射してから50μs後の配管断面における振幅分布のシミュレーション結果を模式的斜視図として示している。同図から理解できるように、欠陥が大きくなるにつれて透過波の振幅が小さくなり、反射波の振幅が大きくなる。従って、図10のグラフや式(1)による欠陥の大きさの判定に代えて、反射波の振幅によっても欠陥の大きさが判定できる。このように反射波の振幅によって欠陥の大きさを判定する手法は、特定の位置P2での透過波と反射波との間の時間差によって欠陥21の位置を判定する前記手法と併せて用いることができる。特に、配管の内側表面の欠陥を検出する際には、この手法を採用することが好ましい。
【0029】
以上、本発明をその好適な実施形態例に基づいて説明したが、本発明の配管の欠陥検出方法は、上記実施形態例の構成にのみ限定されるものではなく、上記実施形態例の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。
【0030】
【発明の効果】
以上、説明したように、本発明の配管の欠陥検出方法によると、目視によっては容易に認識できない配管の腐食量の測定や欠陥位置の検出が簡易にできる利点がある。
【図面の簡単な説明】
【図1】本発明の配管の欠陥検出方法の原理を示す配管の模式的断面図。
【図2】超音波の入射角を示す配管の表面の拡大図。
【図3】配管内に入射させる超音波の波形図。
【図4】配管内を透過する超音波の周波数及び速度のグラフ。
【図5】(a)〜(d)は夫々、欠陥無し、欠陥1mm、欠陥1.5mm、及び、欠陥2.0mmの各円管の点P1における観測波形のシミュレーション図。
【図6】(a)及び(b)は夫々、欠陥無しの円管の点P2及びP3の観測波形図。
【図7】(a)及び(b)は夫々、図6(a)及び(b)の波形のウエーブレット変換後の波形図。
【図8】(a)及び(b)は夫々、欠陥1mmの配管の点P2における超音波の観測波形図及びそのウエーブレット変換後の波形図。
【図9】欠陥無しの配管の点P1における超音波の実際の観測波形図。
【図10】欠陥の大きさと観測される超音波の振幅との関係を示す実測及びシミュレーション結果のグラフ。
【図11】(a)〜(d)は夫々、欠陥無し、欠陥1mm、欠陥1.5mm、及び、結果2mmの各配管の透過波のシミュレーション結果を示す斜視図。
【符号の説明】
11 超音波振動子
12 接触子
13 超音波受信子
20 配管
21 欠陥
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piping defect detection method, and more particularly to a piping defect detection method using ultrasonic waves.
[0002]
[Prior art]
In a petroleum plant, a chemical plant, and the like, a system in which a large number of pipes are arranged and supported on a rack (rack) standing on the ground at predetermined intervals is frequently used. Since rainwater stays at the contact portion between the pipe and the pedestal, these pipes are corroded particularly at the contact portion when used outdoors for many years.
[0003]
Conventionally, in order to detect the corrosion of the pipe at the contact portion with the gantry, a technique has been adopted in which one pipe is lifted from the gantry and visually inspected. However, it was extremely inefficient to check a huge number of long pipes by such a method.
[0004]
The applicant has applied for an invention of a method for detecting corrosion in piping as described above in Japanese Patent Application No. 10-006479. In the prior application, ultrasonic waves are emitted obliquely from the ultrasonic transducer toward the inside of the pipe, and the presence or absence of corrosion and the depth thereof are detected from the received waveform of the ultrasonic wave transmitted through the pipe in the circumferential direction.
[0005]
[Problems to be solved by the invention]
In the prior invention, an ultrasonic transducer in which an ultrasonic beam is diffused, that is, an ultrasonic transducer with low directivity, is used so that the ultrasonic wave spreads over the entire thickness of the pipe. In addition, a receiver having high directivity is used as the ultrasonic receiver that receives the ultrasonic wave transmitted through the pipe. Thus, the presence or absence of corrosion and the amount thereof are estimated from the received waveform of ultrasonic waves that pass through the pipe in a certain direction. However, in this prior invention, a complicated calculation is required to estimate the amount of corrosion.
[0006]
In addition, when a pipe has a particularly large diameter and a defect exists inside the pipe, it is important to specify the defect position in order to determine the repair position. However, in the prior invention, the defect position in the circumferential direction cannot be detected.
[0007]
An object of the present invention is to further improve the above-mentioned invention of the prior application, and to provide a defect inspection method for piping in which the amount of corrosion of the piping can be easily detected, and a defect inspection method for piping in which the defect position of the piping can be easily identified. And
[0008]
[Means for Solving the Problems]
In the pipe defect detection method according to the present invention, in the first viewpoint, the incident angle in the pipe measured in a direction perpendicular to the extending direction of the cylindrical pipe and from the perpendicular standing on the pipe surface is 54 ° to 90 °. An ultrasonic wave is emitted toward the pipe so that it is within the range of °, and the transmitted wave propagating in the circumferential direction of the pipe or the reflected ultrasonic wave reflected by the defect is detected, and the transmitted wave or the reflected wave is detected. It is characterized by detecting the size of a piping defect based on the amplitude of ultrasonic waves.
[0009]
According to the pipe defect detection method of the first aspect of the present invention, the ultrasonic wave is substantially uniform inside the pipe (thick part) by selecting the incident angle of the ultrasonic wave in the range of 54 ° to 90 °. Therefore, the depth of the defect can be measured by the amplitude of the transmitted ultrasonic wave or the reflected ultrasonic wave reflected from the defect.
[0010]
In addition, according to the second aspect, the pipe defect detection method of the present invention is configured to inject ultrasonic waves into a pipe at a predetermined angle with respect to a perpendicular extending on the pipe surface in a direction orthogonal to the extending direction of the cylindrical pipe. A method of detecting defects in a pipe by detecting ultrasonic waves that are emitted toward the pipe and propagate in the circumferential direction in the pipe,
Based on the return time until the ultrasonic wave passing through a specific position is reflected by the defect and returns to the specific position, an angle from the specific position to the position where the defect exists is detected from the pipe center. It is characterized by that.
[0011]
According to the pipe defect detection method of the second aspect of the present invention, an ultrasonic waveform is observed at a specific position until the ultrasonic wave passing through the specific position is reflected by the defect and returns to the specific position. By measuring this time, it is possible to easily detect the angular difference between the specific position and the position where the defect exists.
[0012]
If the ultrasonic velocity is V , the ultrasonic return time is t, and the pipe radius (outer diameter) is R, the angle β between the specific position and the defect is β = t × V / 2R.
As required. As the speed V , in the case of a steel cylindrical pipe, 3623 m / s, which is the speed of a transverse wave in terms of material, is used.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a sectional view of a pipe showing the principle of a pipe defect detection method according to an embodiment of the present invention. The ultrasonic transducer 11 that emits ultrasonic waves is disposed, for example, near the top (point P1) on the cross section passing through the position where the defect 21 is considered to exist in the pipe 20. The ultrasonic transducer 11 is brought into contact with the outer surface of the pipe 20 via the contact 12 and is inclined at a predetermined angle from a perpendicular line standing on the outer surface.
[0014]
The ultrasonic wave receiver 13 for detecting ultrasonic waves is a position about 60 ° before the position where the defect 21 is supposed to exist in the vicinity of the installation point P1 of the ultrasonic transducer 11 and in the traveling direction of the ultrasonic wave. Place at P2. Instead of the point P1, a point P3 that is symmetrical to the point P2 inside the pipe across the defect 21 may be selected. The ultrasonic receiver 13 preferably has a weak directivity. In this case, it is possible to detect an ultrasonic wave that passes through (transmits or reflects) the pipe 20 in the forward and reverse directions (thick part). The ultrasonic receiver 13 installed at the point P2 is particularly convenient for detecting the position where the defect 21 exists.
[0015]
As shown in FIG. 2, the incident angle of the ultrasonic wave to the pipe 20 is selected so that the angle θ i from the vertical line standing on the pipe surface on the outer surface of the pipe 20 is 45 °. When an angle of θ i = 45 ° is selected, the ultrasonic wave immediately after entering the pipe is obtained because the tip of the contact 2 of the ultrasonic vibrator 11 has a width and the ultrasonic wave is refracted on the pipe surface. Becomes a wave having a spread of 54 to 90 ° centered at 70 ° from the perpendicular to the pipe (θ a = 45 °, θ b = 90 °). An ultrasonic wave having an incident angle of 54 to 90 ° inside the pipe propagates in the circumferential direction almost uniformly throughout the pipe.
[0016]
FIG. 3 is a timing chart of an ultrasonic waveform (force: mN) generated by the ultrasonic transducer. As the ultrasonic wave, a burst waveform having a center frequency of 5 MHz is preferable, and has a duration of, for example, within 0.6 seconds. The ultrasonic wave used in the present invention, that is, the ultrasonic wave actually propagated through the pipe and detected by the ultrasonic wave receiver 13 was confirmed to be a transverse wave by the result of measuring the ultrasonic velocity. When an ultrasonic wave having a center frequency of 5 MHz is incident on the pipe, the center frequency of the ultrasonic wave propagating in the circumferential direction in the pipe changes to about 4.6 MHz. However, as shown in FIG. 4, the velocity of the ultrasonic wave is a transverse wave velocity of 3263 m / s and does not change by propagating through the pipe.
[0017]
Taking a piping defect occurring at a position in contact with the gantry as an example, the defect 21 is shown at the bottom of the piping in the drawing of FIG. A part of the ultrasonic wave propagating in the circumferential direction in the pipe 20 is reflected by the defect, and the other part passes through the defect and is detected by the ultrasonic receiver 13. If the defect is large, the amplitude of the passing ultrasonic wave is reduced, and conversely, the amplitude of the reflected ultrasonic wave is increased. Accordingly, first, the presence or absence of a defect can be detected by measuring the amplitude of the passing ultrasonic wave or the reflected ultrasonic wave at the point P1 or P2. Further, the defect 21 exists from the point P2 by detecting the return time until the ultrasonic wave detected when passing through the point P2 is subsequently reflected by the defect 21 and detected again as the reflected wave at the point P2. A central angle β up to the position to be obtained is obtained. In this case, it is not necessary to measure the amplitude.
[0018]
In order to detect the transmitted wave and the reflected wave, it is preferable to arrange the ultrasonic receiver 13 at the position of the point P2 shown in FIG. The ultrasonic receiver 13 preferably has a weak directivity in order to detect both transmitted waves and reflected waves. In selecting the point P2, in order to identify the incident wave and the reflected wave in terms of time, a point between the ultrasonic incident point P1 and the position where the defect 21 is supposed to exist is selected. In terms of apparatus, the reflected wave receiver 13 is preferably installed in the vicinity of the vibrator 11 so that the reflected wave can be widely detected.
[0019]
Here, an example in which the angle β between the point P2 and the position where the defect 21 exists is detected. V is the velocity of the ultrasonic wave (transverse wave), t is the time from the detection time of the ultrasonic wave detected at the position of the point P2 until the ultrasonic wave is reflected by the defect 21 and is detected again at the position of the point P2. When the average radius inside the pipe is R, the angle β (radian) measured at the center of the circular pipe formed by the position of the point P2 and the position where the defect 21 exists is
β = t × V / 2R
As required. As the velocity V , a transverse wave velocity of 3263 m / s is selected.
[0020]
In order to confirm the effectiveness of the detection of the corrosion depth of the defect and the detection of the defect position in the present invention, a simulation was performed. In this simulation, a steel cylindrical pipe (circular pipe) having an inner diameter of 54 mm is adopted as an analysis target, and there is no defect on the surface of the circular pipe, a defect having a depth of 1 mm, and a depth of 1.5 mm. And those having a defect of 2 mm depth were selected. The steel pipe has a Young's modulus of 206 GPa, a Poisson's ratio of 0.28, and a density of 7700 kg / cm 3 .
[0021]
The contact 12 attached to the ultrasonic transducer 11 is made of polyimide (Young's modulus is 4.39 GPa, Poisson's ratio is 0.38, and density is 1410 kg / cm 3 ). The attenuation coefficient of the front end portion of the contact 12 was 1.7 dB, the attenuation coefficient of the rear end portion was 50 times that of the front end portion, and the attenuation of the circular tube 20 was not considered. The diameter of the ultrasonic transducer 11 was 4 mm, and the incident angle of the ultrasonic wave was 45 ° on the outer surface of the circular tube so that a central angle of 70 ° was generated after refraction on the surface of the circular tube. The external force having the waveform shown in FIG. 3 is input on each node on the end face of the ultrasonic transducer 11.
[0022]
5 (a) to 5 (d), each of a circular tube having no defect, a circular tube having a defect having a depth of 1 mm, a circular tube having a defect having a depth of 1.5 mm, and a circular tube having a defect having a depth of 2 mm. The received waveform at the incident point (point P1) is shown. In each figure, the waveform observed after 60 μs is the waveform observed after one round of the circular tube, and it can be understood that the amplitude changes depending on the presence or absence of the defect and the size of the defect.
[0023]
FIGS. 6 (a) and 6 (b) show the received waveforms at points P2 and P3 of the circular tube having no defect, respectively. As can be understood from FIG. 5A, the amplitude of the waveform A2 received after making one round of the pipe at the point P2 is attenuated from the waveform A1 received first. Further, comparing these waveforms A1 and A2 with the received waveform A3 at the point P3, this attenuation is mainly due to the attenuation gradually received when passing through the inside of the pipe, and is almost proportional to the transmission distance of the pipe. I can understand.
[0024]
FIGS. 7A and 7B are waveforms obtained by subjecting the waveforms of FIGS. 6A and 6B to wavelet transformation, respectively. Wavelet transform is a technique generally used for frequency analysis of a single wave (burst wave), and a timing chart showing the progress of a wave having a maximum amplitude frequency is obtained. From the figure, the difference t = 20.002 μs between the passing time of the ultrasonic point P2 and the passing time of the point P3 can be obtained with high accuracy. The ultrasonic wave passing speed V is determined by the separation distance L and the time difference t in the pipe between the points P2 and P3.
V = L / t = 65.33 mm / 20.02 μs = 3263 m / s
It can be confirmed that the traveling ultrasonic wave is a transverse wave.
[0025]
FIG. 8A shows an ultrasonic waveform received at a point P2 in a pipe having a defect of 1 mm. As described above, since the ultrasonic velocity V T is measured, it can be seen that the first observed ultrasonic wave B1 is a transmitted wave that has entered the pipe from the ultrasonic transducer and has arrived. It can also be seen that the next observed ultrasonic wave B2 is a reflected wave reflected by a defect. A waveform obtained by wavelet transform of this waveform is shown in FIG. From the figure, the time difference between the transmitted wave C1 and the reflected wave C2 of which the transmitted wave is reflected by the defect 21 is obtained as 19.46 μs, and thereby, between the position of the point P2 and the position where the defect 21 exists. The angle β seen at the center of the tube is
β = t × V / 2R = 19.46 μs × 3.263 mm / μs / 2 × 30 mm
= 1.0583 rad = 60.64 °
Is calculated.
[0026]
FIG. 9 shows an example of a waveform received by the ultrasonic receiver 13 in which an ultrasonic wave is actually incident on the defect-free circular tube having the shape and material shown in the simulation and is arranged at the point P1. Show. Comparing the waveform of FIG. 9 with the waveforms of FIGS. 6A and 6B, it can be understood that the simulation simulates the result of this experiment fairly accurately.
[0027]
FIG. 10 shows the relationship between the size of the defect and the amplitude of the transmitted ultrasonic wave obtained from the simulation results of FIGS. 5A to 5D in comparison with the relationship obtained from the actually measured received waveform. ing. The horizontal axis is the ratio of the depth D of the defect to the total thickness T of the pipe (defect ratio) r = D / T, and the vertical axis is the maximum amplitude A 0 obtained with the pipe having the defect and the pipe without the defect. The ratio (amplitude ratio) A 1 = A d / A 0 with respect to the maximum amplitude A d at the corresponding position obtained in ( 1 ). As shown in the figure, the simulation result and the actual measurement result are in good agreement, which shows that the size of the defect can be measured by the method of the present invention.
[0028]
11 (a) to 11 (d) show the amplitude distribution in the pipe cross section 50 μs after the incidence of the ultrasonic wave on the pipe with no defect and the pipe with the defects of 1 mm, 1.5 mm, and 2 mm, respectively. The simulation result is shown as a schematic perspective view. As can be understood from the figure, as the defect becomes larger, the amplitude of the transmitted wave becomes smaller and the amplitude of the reflected wave becomes larger. Therefore, the defect size can be determined by the amplitude of the reflected wave instead of the determination of the defect size by the graph of FIG. 10 or Expression (1). As described above, the method for determining the size of the defect based on the amplitude of the reflected wave is used in combination with the above-described method for determining the position of the defect 21 based on the time difference between the transmitted wave and the reflected wave at the specific position P2. it can. In particular, it is preferable to employ this method when detecting defects on the inner surface of the pipe.
[0029]
As mentioned above, although this invention was demonstrated based on the suitable embodiment example, the defect detection method of the piping of this invention is not limited only to the structure of the said embodiment example, From the structure of the said embodiment example. Various modifications and changes are also included in the scope of the present invention.
[0030]
【The invention's effect】
As described above, according to the pipe defect detection method of the present invention, there is an advantage that it is possible to easily measure the corrosion amount of the pipe and detect the defect position, which cannot be easily recognized visually.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a pipe showing the principle of a pipe defect detection method of the present invention.
FIG. 2 is an enlarged view of the surface of a pipe showing the incident angle of ultrasonic waves.
FIG. 3 is a waveform diagram of ultrasonic waves incident on a pipe.
FIG. 4 is a graph of the frequency and speed of ultrasonic waves transmitted through a pipe.
FIGS. 5A to 5D are simulation diagrams of observed waveforms at a point P1 of each circular tube having no defect, a defect of 1 mm, a defect of 1.5 mm, and a defect of 2.0 mm, respectively.
FIGS. 6A and 6B are observation waveform diagrams of points P2 and P3 of a circular tube having no defect, respectively.
7A and 7B are waveform diagrams after wavelet conversion of the waveforms of FIGS. 6A and 6B, respectively.
FIGS. 8A and 8B are a waveform chart of an ultrasonic wave observed at a point P2 of a pipe having a defect of 1 mm and a waveform chart after wavelet conversion, respectively.
FIG. 9 is an actual observation waveform diagram of ultrasonic waves at a point P1 of a pipe having no defect.
FIG. 10 is a graph of actual measurement and simulation results showing the relationship between the size of a defect and the amplitude of an observed ultrasonic wave.
FIGS. 11A to 11D are perspective views showing simulation results of transmitted waves of respective pipes having no defect, a defect of 1 mm, a defect of 1.5 mm, and a result of 2 mm, respectively.
[Explanation of symbols]
11 Ultrasonic vibrator 12 Contact 13 Ultrasonic receiver 20 Piping 21 Defect

Claims (3)

円筒形状の配管の延在方向に直交する方向で且つ配管の表面に立てた垂線から所定の角度傾けて超音波を配管内に向けて発射し、配管内をその周方向に伝搬する超音波を検出することにより配管の欠陥を検出する方法であって、
特定の位置を通過する超音波が、欠陥によって反射し前記特定の位置に戻るまでの戻り時間に基づいて、前記特定の位置から欠陥が存在する位置までの、配管中心から見た角度を検出することを特徴とする、配管の欠陥検出方法。
An ultrasonic wave is emitted into the pipe in a direction perpendicular to the extending direction of the cylindrical pipe and inclined at a predetermined angle from a vertical line standing on the pipe surface, and an ultrasonic wave propagating in the pipe in the circumferential direction is emitted. A method for detecting defects in piping by detecting,
Based on the return time until the ultrasonic wave passing through a specific position is reflected by the defect and returns to the specific position, an angle from the specific position to the position where the defect exists is detected from the pipe center. A defect detection method for piping, characterized in that.
超音波の速度を、前記戻り時間をt、配管の半径をRとすると、前記特定の位置と前記欠陥の成す角度βを
β=t×V/2R
として求める、請求項1に記載の配管の欠陥検出方法。
Assuming that the velocity of the ultrasonic wave is V , the return time is t, and the radius of the pipe is R, the angle β between the specific position and the defect is β = t × V / 2R
The piping defect detection method according to claim 1, which is obtained as follows.
前記超音波が横波である、請求項1又は2に記載の配管の欠陥検出方法。The ultrasound is shear waves, a defect detection method of a pipe according to claim 1 or 2.
JP21163099A 1999-07-27 1999-07-27 Defect detection method for piping Expired - Fee Related JP3729686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21163099A JP3729686B2 (en) 1999-07-27 1999-07-27 Defect detection method for piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21163099A JP3729686B2 (en) 1999-07-27 1999-07-27 Defect detection method for piping

Publications (2)

Publication Number Publication Date
JP2001041939A JP2001041939A (en) 2001-02-16
JP3729686B2 true JP3729686B2 (en) 2005-12-21

Family

ID=16608967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21163099A Expired - Fee Related JP3729686B2 (en) 1999-07-27 1999-07-27 Defect detection method for piping

Country Status (1)

Country Link
JP (1) JP3729686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520064A (en) * 2011-12-01 2012-06-27 北京工业大学 Time reversal focusing method-based method for judging size of pipeline defect

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5530405B2 (en) * 2011-07-25 2014-06-25 日立Geニュークリア・エナジー株式会社 Nondestructive inspection method and nondestructive inspection device
KR101646498B1 (en) * 2014-04-21 2016-08-11 부산대학교 산학협력단 System for detection of defects on high density poly-ethylene pipe and method thereof
JP7216884B2 (en) * 2019-02-28 2023-02-02 日本電信電話株式会社 Reflected wave evaluation method
CN115406383B (en) * 2021-05-28 2024-05-28 中国石油天然气股份有限公司 Method for detecting corrosion depth of top of storage tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520064A (en) * 2011-12-01 2012-06-27 北京工业大学 Time reversal focusing method-based method for judging size of pipeline defect
CN102520064B (en) * 2011-12-01 2013-10-23 北京工业大学 Time reversal focusing method-based method for judging size of pipeline defect

Also Published As

Publication number Publication date
JP2001041939A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
US4658649A (en) Ultrasonic method and device for detecting and measuring defects in metal media
US5092176A (en) Method for determining deposit buildup
US6105431A (en) Ultrasonic inspection
CN103969341B (en) The extraordinary probe of Austenitic stainless steel pipe butt girth welding seam ultrasound examination
JP4116483B2 (en) Tubular ultrasonic inspection method and apparatus
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
US12038411B2 (en) Evaluation method for reflected wave
EP1271097A2 (en) Method for inspecting clad pipe
JPS60104255A (en) Device and method for inspecting solid under nondestructive state
JP3729686B2 (en) Defect detection method for piping
JP4952489B2 (en) Flaw detection method and apparatus
CN113874721B (en) Method and apparatus for non-destructive testing of sheet material
JP4241529B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP3033438B2 (en) Ultrasonic flaw detection method for piping
JP3810661B2 (en) Defect detection method for piping
RU2621216C1 (en) Intra tube method of ultrasonic testing of welds
Burch et al. M-skip: a quantitative technique for the measurement of wall loss in inaccessible components
CN104487838A (en) Method for characterising an object comprising, at least locally, a plane of symmetry
JP3715177B2 (en) Evaluation method of circular pipe
JP2001305112A (en) Ultrasonic flaw detection method
JP6953953B2 (en) A method for evaluating the soundness of oblique ultrasonic flaw detection, and a method for oblique ultrasonic flaw detection using this method.
WO2018135242A1 (en) Inspection method
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP7252093B2 (en) Corrosion inspection method and corrosion inspection device for remote non-exposed part of inspection object
JPH09304357A (en) Method for examining filling state of filler using ultrasonic wave

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051004

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees