Nothing Special   »   [go: up one dir, main page]

JPH05175247A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05175247A
JPH05175247A JP34538591A JP34538591A JPH05175247A JP H05175247 A JPH05175247 A JP H05175247A JP 34538591 A JP34538591 A JP 34538591A JP 34538591 A JP34538591 A JP 34538591A JP H05175247 A JPH05175247 A JP H05175247A
Authority
JP
Japan
Prior art keywords
metal film
semiconductor substrate
hole
forming
via hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34538591A
Other languages
Japanese (ja)
Inventor
Akio Takagi
章雄 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP34538591A priority Critical patent/JPH05175247A/en
Publication of JPH05175247A publication Critical patent/JPH05175247A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To prevent the generation of a closed cavity when viahole structure is formed, and prevent a metal film from blistering at the time of heating in the later process. CONSTITUTION:The title method consists of the following; a process for forming a metal film 5 on one main surface of a semiconductor substrate 1, a process for alloying the semiconductor substrate 1 with the metal film 5 by heat treatment, a process for forming a through hole 7 in which the metal film 5 is exposed, by selectively etching the semiconductor substrate 1 from the other main surface, and a process for filling the through hole 7 with metal 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばGaAsを用い
た電力増幅用FET等の半導体装置の製造方法に関し、
特にビアホールと呼ばれる貫通孔に金属を充填した貫通
電極の形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device such as a power amplification FET using GaAs,
In particular, the present invention relates to a method of forming a through electrode in which a through hole called a via hole is filled with metal.

【0002】[0002]

【従来の技術】電力増幅用のFET、特に熱伝導率が比
較的悪いGaAs等を用いたものでは、放熱効率の向上
及び高周波での寄生コンダクタンス等の低減のために、
ソースパッド等の接続用電極をビアホールに充填した金
属を介してヒートシンク等に接続することが行われてい
る。
2. Description of the Related Art FETs for power amplification, particularly those using GaAs or the like having a relatively low thermal conductivity, are used to improve heat dissipation efficiency and reduce parasitic conductance at high frequencies.
Connection electrodes such as a source pad are connected to a heat sink or the like through a metal filling a via hole.

【0003】図2は、このような従来のビアホール構造
の形成方法を示している。GaAs基板21の表面に、
ソース電極22、ドレイン電極及びゲート電極が形成さ
れ、さらにソース電極22に接続されるように接続用電
極としてソースパッド電極23が形成される。このあ
と、GaAs基板21の裏面から選択エッチングが行わ
れてソースパッド電極23に達するビアホール24が形
成される(同図(a))。ビアホール24内及びGaA
s基板21の裏面にスパッタリングにより下地金属膜2
7が形成される。次いで、下地金属膜27上に電気メッ
キが行われてビアホール24内へ金属28が充填される
(同図(b))。チップに分割したのち、加熱してAu
−Sn等の共晶ハンダでパッケージのヒートシンク部に
ダイボンディングされる。
FIG. 2 shows a method of forming such a conventional via hole structure. On the surface of the GaAs substrate 21,
A source electrode 22, a drain electrode, and a gate electrode are formed, and a source pad electrode 23 is formed as a connection electrode so as to be connected to the source electrode 22. After that, selective etching is performed from the back surface of the GaAs substrate 21 to form a via hole 24 reaching the source pad electrode 23 (FIG. 9A). Inside the via hole 24 and GaA
The underlying metal film 2 is formed on the back surface of the substrate 21 by sputtering.
7 is formed. Next, electroplating is performed on the underlying metal film 27 to fill the via holes 24 with the metal 28 (FIG. 7B). After dividing into chips, heat and Au
Die-bonded to the heat sink of the package with eutectic solder such as Sn.

【0004】[0004]

【発明が解決しようとする課題】従来は、基板裏面から
の選択エッチングによりソースパッド電極に達するビア
ホールを形成する際、ビアホール底部のソースパッド電
極との境界部に異常エッチングが進行して図2(a)中
に示すような逆テーパ部25が生じ易い。このため、ス
パッタリングにより下地金属膜を形成したのち、電気メ
ッキによりビアホール内への金属充填を行ったとき、図
2(b)中に示すような閉じた空洞26が生じ、その後
のダイボンディングの加熱の際にその空洞26が熱膨張
してソースパッド電極のビアホールに接する部分が脹れ
上ってしまう場合がある。そして、このような脹れ上り
部が生じると、外観不良、さらには電気的、熱的な不良
が生じ易いという問題があった。
Conventionally, when a via hole reaching the source pad electrode is formed by selective etching from the back surface of the substrate, abnormal etching progresses at the boundary with the source pad electrode at the bottom of the via hole, as shown in FIG. The reverse taper portion 25 shown in (a) is likely to occur. Therefore, when a metal film is formed in the via hole by electroplating after forming a base metal film by sputtering, a closed cavity 26 as shown in FIG. At this time, the cavity 26 may be thermally expanded and the portion of the source pad electrode in contact with the via hole may be expanded. When such a swollen portion is generated, there is a problem that a defective appearance is likely to occur, and further an electrical or thermal defect is likely to occur.

【0005】そこで、本発明は、ビアホール構造の形成
時に閉じた空洞の発生を防止し、その後の加熱時に金属
膜に膨れが生じることのない半導体装置の製造方法を提
供することを目的とする。
Therefore, it is an object of the present invention to provide a method of manufacturing a semiconductor device which prevents the formation of closed cavities when forming a via hole structure and prevents the metal film from bulging during subsequent heating.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために、(a)半導体基板の一主面上に金属膜を形
成する工程、(b)前記半導体基板を熱処理して前記金
属膜と合金化する工程、(c)前記半導体基板を他の主
面から選択的にエッチングして前記金属膜が露出する貫
通孔を形成する工程、(d)前記貫通孔内に金属を充填
する工程を有することを要旨とする。
In order to solve the above problems, the present invention provides: (a) a step of forming a metal film on one main surface of a semiconductor substrate; (b) heat treating the semiconductor substrate to form the metal film. Alloying with a film, (c) selectively etching the semiconductor substrate from another main surface to form a through hole through which the metal film is exposed, (d) filling the through hole with a metal The point is to have a process.

【0007】金属膜としては、Ti、Au、Pt等を用
いることが望ましい。
It is desirable to use Ti, Au, Pt or the like for the metal film.

【0008】選択的エッチングは、半導体基板のみをエ
ッチングし、金属膜はエッチングしない。
The selective etching etches only the semiconductor substrate, not the metal film.

【0009】半導体基板の一主面上には半導体装置を構
成する全ての電極が形成され、前記金属膜は、その中の
少なくとも1つの電極と接続される。
All electrodes forming a semiconductor device are formed on one main surface of a semiconductor substrate, and the metal film is connected to at least one of the electrodes.

【0010】[0010]

【作用】上記構成において、熱処理により金属膜と半導
体基板の界面における反応、或いは相互拡散により、そ
の界面部が合金化され、金属膜と半導体基板の付着力が
高められる。これにより、半導体基板の選択的エッチン
グで貫通孔を形成する際、金属膜と半導体基板との界面
部へのエッチング液の浸み込みや、この部分でのエッチ
ング速度が異常に速くなることがなくなり、逆テーパ部
の発生が抑えられる。したがって、貫通孔内には閉じた
空洞が生じることなく金属が充填され、その後のダイボ
ンディング工程等における加熱の際、金属膜に膨れの生
じることがなくなる。
In the above structure, the heat treatment causes a reaction at the interface between the metal film and the semiconductor substrate, or mutual diffusion, so that the interface is alloyed and the adhesion between the metal film and the semiconductor substrate is enhanced. As a result, when the through hole is formed by the selective etching of the semiconductor substrate, the etching liquid does not soak into the interface between the metal film and the semiconductor substrate and the etching rate at this portion does not become abnormally high. The occurrence of reverse taper is suppressed. Therefore, the through hole is filled with metal without forming a closed cavity, and the metal film is prevented from bulging during heating in the subsequent die bonding process or the like.

【0011】[0011]

【実施例】以下、本発明の実施例を図1を参照して説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0012】この実施例は、GaAs基板を用いたFE
Tの製造方法に適用されている。
This embodiment is an FE using a GaAs substrate.
It is applied to the manufacturing method of T.

【0013】なお、以下の説明において、(a)〜
(c)の各項目記号は、図1の(a)〜(c)のそれぞ
れに対応する。
In the following description, (a)-
Each item symbol of (c) corresponds to each of (a) to (c) of FIG.

【0014】(a)GaAs基板1の表面上に、オーミ
ック接触するソース電極2、ドレイン電極3及びショッ
トキー接触するゲート電極4を形成する。ビアホール
(貫通孔)を形成する部分にTiからなる金属膜5を厚
さ400nm程度に形成する。金属膜5とソース電極2を
接続するソースパッド電極6をそれらの電極の上に形成
する。次いで、300〜450℃の温度で熱処理し、金
属膜5とGaAs基板1との界面部を合金化する。な
お、この合金化の熱処理の温度は、ソース電極2及びド
レイン電極3のオーミック電極(AuGe/Ni)形成
時の熱処理の温度とほぼ同じなので、両熱処理は同時に
行なってもよい。
(A) On the surface of the GaAs substrate 1, a source electrode 2 and a drain electrode 3 which are in ohmic contact and a gate electrode 4 which is in Schottky contact are formed. A metal film 5 made of Ti is formed to a thickness of about 400 nm in a portion where a via hole (through hole) is formed. A source pad electrode 6 that connects the metal film 5 and the source electrode 2 is formed on these electrodes. Then, heat treatment is performed at a temperature of 300 to 450 ° C. to alloy the interface between the metal film 5 and the GaAs substrate 1. Since the temperature of the heat treatment for alloying is almost the same as the temperature of the heat treatment for forming the ohmic electrodes (AuGe / Ni) of the source electrode 2 and the drain electrode 3, both heat treatments may be performed simultaneously.

【0015】(b)周知の技術を用いて基板裏面を削
り、全体の厚さを所要厚さとした後、GaAs基板1の
裏面に、ビアホール形成部のみに開口部を有するレジス
トマスクを形成し、H3 PO4 +H2 2 系のエッチン
グ液を用いた選択エッチングによりGaAs基板1をエ
ッチングして金属膜5の下面が露出するビアホール7を
形成する。
(B) The back surface of the substrate is ground by a well-known technique to make the entire thickness to a required thickness, and then a resist mask having an opening only in the via hole forming portion is formed on the back surface of the GaAs substrate 1. The GaAs substrate 1 is etched by selective etching using an H 3 PO 4 + H 2 O 2 system etching solution to form a via hole 7 in which the lower surface of the metal film 5 is exposed.

【0016】(c)ビアホール7内及びGaAs基板1
の裏面に、下地金属膜8としてTi/Auをスパッタリ
ングにより形成する。次いで、下地金属膜8上に電気メ
ッキを行なってビアホール7内に金属9を充填する。充
填用の金属9としてはAuが適している。このあと、個
々のチップに分割し、加熱してAu−Sn等の共晶ハン
ダ10でパッケージのヒートシンク部11にダイボンデ
ィングする。
(C) Inside via hole 7 and GaAs substrate 1
Ti / Au is formed as a base metal film 8 on the back surface of the substrate by sputtering. Then, the underlying metal film 8 is electroplated to fill the via holes 7 with the metal 9. Au is suitable as the metal 9 for filling. After that, it is divided into individual chips, heated, and die-bonded to the heat sink portion 11 of the package with the eutectic solder 10 such as Au—Sn.

【0017】なお、金属膜5としては、Tiの他にP
t、Au等を用いることもできる。但し、AuGe合金
は用いることができない。これは、上述のエッチング液
は、GaAsとAuGeとの間に選択性がなく、GaA
sをエッチングすると、これと同時にGe分もエッチン
グされてしまうからである。
As the metal film 5, in addition to Ti, P
It is also possible to use t, Au, or the like. However, AuGe alloy cannot be used. This is because the above etching solution has no selectivity between GaAs and AuGe,
This is because when s is etched, Ge is also etched at the same time.

【0018】上述したように、この実施例の半導体装置
の製造方法によれば、GaAs基板1の表面上における
ビアホール形成部にTiからなる金属膜5を形成し、熱
処理によりその金属膜5と半導体基板1の界面部を合金
化して金属膜5とGaAs基板1の付着力を高めるよう
にしたため、ウェットエッチングでGaAs基板1を選
択的にエッチングしてビアホール7を形成する際、金属
膜5とGaAs基板1との界面部へのエッチング液の浸
み込みや、この部分でのエッチング速度が異常に速くな
ることがなくなり、逆テーパ部の発生を抑えることがで
きる。したがって、ビアホール7内には、閉じた空洞を
生じさせることなく金属9を充填することができ、その
後のダイボンディング工程における加熱の際、ソースパ
ッド電極6におけるビアホール7に接する部分に膨れの
生じることがなくなる。
As described above, according to the semiconductor device manufacturing method of this embodiment, the metal film 5 made of Ti is formed in the via hole forming portion on the surface of the GaAs substrate 1, and the metal film 5 and the semiconductor are heat-treated. Since the interface portion of the substrate 1 is alloyed to increase the adhesion between the metal film 5 and the GaAs substrate 1, the metal film 5 and the GaAs substrate 1 are selectively etched by wet etching to form the via hole 7. It is possible to prevent the etching solution from penetrating into the interface with the substrate 1 and to prevent the etching rate at this portion from becoming abnormally high, and to suppress the occurrence of the inverse taper portion. Therefore, the via hole 7 can be filled with the metal 9 without forming a closed cavity, and swelling occurs in the portion of the source pad electrode 6 in contact with the via hole 7 during heating in the subsequent die bonding process. Disappears.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
半導体基板の一主面上における貫通孔の形成部に金属膜
を形成し、熱処理により金属膜と半導体基板とを合金化
するようにしたため、金属膜と半導体基板の付着力が高
められ、半導体基板の選択的エッチングで貫通孔を形成
する際、金属膜と半導体基板との界面部へのエッチング
液の浸み込みや、この部分でのエッチング速度が異常に
速くなることがなくなって、逆テーパ部の発生を抑える
ことができる。したがって、貫通孔内には閉じた空洞が
生じることなく金属を充填することができ、その後のダ
イボンディング工程等における加熱の際、金属膜に膨れ
の生じることがなくなるという利点がある。
As described above, according to the present invention,
Since the metal film is formed in the portion where the through hole is formed on the one main surface of the semiconductor substrate and the metal film and the semiconductor substrate are alloyed by heat treatment, the adhesive force between the metal film and the semiconductor substrate is increased, and the semiconductor substrate When the through holes are formed by selective etching of the reverse taper portion, the etching solution does not soak into the interface between the metal film and the semiconductor substrate, and the etching rate at this portion does not become abnormally high. Can be suppressed. Therefore, there is an advantage that the metal can be filled without forming a closed cavity in the through hole, and the metal film is prevented from bulging during heating in the subsequent die bonding process or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体装置の製造方法の実施例を
説明するための工程図である。
FIG. 1 is a process chart for explaining an embodiment of a method for manufacturing a semiconductor device according to the present invention.

【図2】従来のビアホール構造の形成方法を示す工程図
である。
FIG. 2 is a process drawing showing a conventional method for forming a via hole structure.

【符号の説明】[Explanation of symbols]

1 GaAs基板(半導体基板) 2 ソース電極 5 金属膜 6 ソースパッド電極 7 ビアホール(貫通孔) 8 下地金属膜 9 金属 1 GaAs substrate (semiconductor substrate) 2 source electrode 5 metal film 6 source pad electrode 7 via hole (through hole) 8 underlying metal film 9 metal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (a)半導体基板の一主面上に金属膜を
形成する工程、 (b)前記半導体基板を熱処理して前記金属膜と合金化
する工程、 (c)前記半導体基板を他の主面から選択的にエッチン
グして前記金属膜が露出する貫通孔を形成する工程、 (d)前記貫通孔内に金属を充填する工程 を有することを特徴とする半導体装置の製造方法。
1. (a) a step of forming a metal film on one main surface of a semiconductor substrate, (b) a step of heat-treating the semiconductor substrate to alloy it with the metal film, (c) another semiconductor substrate A method for manufacturing a semiconductor device, comprising: a step of selectively etching from the main surface of the above step to form a through hole through which the metal film is exposed; and (d) a step of filling the through hole with a metal.
JP34538591A 1991-12-26 1991-12-26 Manufacture of semiconductor device Pending JPH05175247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34538591A JPH05175247A (en) 1991-12-26 1991-12-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34538591A JPH05175247A (en) 1991-12-26 1991-12-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05175247A true JPH05175247A (en) 1993-07-13

Family

ID=18376244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34538591A Pending JPH05175247A (en) 1991-12-26 1991-12-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05175247A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900482B2 (en) 2001-03-30 2005-05-31 Fujitsu Quantum Devices Limited Semiconductor device having divided active regions with comb-teeth electrodes thereon
WO2007061062A1 (en) * 2005-11-25 2007-05-31 Matsushita Electric Works, Ltd. Method for manufacturing wafer level package structure
WO2007061059A1 (en) * 2005-11-25 2007-05-31 Matsushita Electric Works, Ltd. Sensor device and method for manufacturing same
US7288486B2 (en) 2005-12-01 2007-10-30 Mitsubishi Electric Corporation Method for manufacturing semiconductor device having via holes
US8026594B2 (en) 2005-11-25 2011-09-27 Panasonic Electric Works Co., Ltd. Sensor device and production method therefor
US8080869B2 (en) 2005-11-25 2011-12-20 Panasonic Electric Works Co., Ltd. Wafer level package structure and production method therefor
JP2013004572A (en) * 2011-06-13 2013-01-07 Mitsubishi Electric Corp Semiconductor device manufacturing method
WO2020110299A1 (en) * 2018-11-30 2020-06-04 三菱電機株式会社 Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900482B2 (en) 2001-03-30 2005-05-31 Fujitsu Quantum Devices Limited Semiconductor device having divided active regions with comb-teeth electrodes thereon
WO2007061062A1 (en) * 2005-11-25 2007-05-31 Matsushita Electric Works, Ltd. Method for manufacturing wafer level package structure
WO2007061054A1 (en) * 2005-11-25 2007-05-31 Matsushita Electric Works, Ltd. Wafer level package structure and sensor device obtained from such package structure
WO2007061059A1 (en) * 2005-11-25 2007-05-31 Matsushita Electric Works, Ltd. Sensor device and method for manufacturing same
US7674638B2 (en) 2005-11-25 2010-03-09 Panasonic Electric Works Co., Ltd. Sensor device and production method therefor
US8026594B2 (en) 2005-11-25 2011-09-27 Panasonic Electric Works Co., Ltd. Sensor device and production method therefor
US8067769B2 (en) 2005-11-25 2011-11-29 Panasonic Electric Works Co., Ltd. Wafer level package structure, and sensor device obtained from the same package structure
US8080869B2 (en) 2005-11-25 2011-12-20 Panasonic Electric Works Co., Ltd. Wafer level package structure and production method therefor
US7288486B2 (en) 2005-12-01 2007-10-30 Mitsubishi Electric Corporation Method for manufacturing semiconductor device having via holes
JP2013004572A (en) * 2011-06-13 2013-01-07 Mitsubishi Electric Corp Semiconductor device manufacturing method
WO2020110299A1 (en) * 2018-11-30 2020-06-04 三菱電機株式会社 Semiconductor device
JPWO2020110299A1 (en) * 2018-11-30 2021-02-15 三菱電機株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP2967743B2 (en) Contact electrode of n-type gallium nitride based semiconductor and method of forming the same
JP3559432B2 (en) Method of forming a semiconductor metallization system and its structure
US5047833A (en) Solderable front metal contact for MOS devices
TW560078B (en) A semiconductor device
JPH08203924A (en) Semiconductor device
JP3144387B2 (en) Method for manufacturing semiconductor device
JPH05175247A (en) Manufacture of semiconductor device
US7078329B2 (en) Method of manufacturing silicon carbide semiconductor device
JP2868008B1 (en) Semiconductor device and manufacturing method thereof
JPS60224253A (en) Semiconductor device and manufacture thereof
JPH09266215A (en) Semiconductor device for high frequency high output and manufacture thereof
JPS59500542A (en) Ohmic contact device for N-type GaAs
JP2845232B2 (en) Semiconductor device
JP2713200B2 (en) Semiconductor device and manufacturing method thereof
JPH0521474A (en) Semiconductor device
JP2629600B2 (en) Semiconductor device and manufacturing method thereof
JPH05152340A (en) Field-effect transistor
JPS60111475A (en) Semiconductor device and manufacture thereof
JPH01166556A (en) N-type gaas ohmic electrode and formation thereof
JP2006237374A (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS6351679A (en) Semicondictor device
JPH05235194A (en) Microwave monolithic integrated circuit
TW550715B (en) Method for manufacturing a microelectronic device and device manufacturing in accordance with said method
JPH0491441A (en) Manufacture of field-effect transistor
JPH0529357A (en) Field-effect transistor