Nothing Special   »   [go: up one dir, main page]

JPH01166556A - N-type gaas ohmic electrode and formation thereof - Google Patents

N-type gaas ohmic electrode and formation thereof

Info

Publication number
JPH01166556A
JPH01166556A JP32398187A JP32398187A JPH01166556A JP H01166556 A JPH01166556 A JP H01166556A JP 32398187 A JP32398187 A JP 32398187A JP 32398187 A JP32398187 A JP 32398187A JP H01166556 A JPH01166556 A JP H01166556A
Authority
JP
Japan
Prior art keywords
layer
group
type gaas
melting point
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32398187A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Mori
森 光廣
Eiji Yanokura
矢ノ倉 栄二
Hiroshi Mizuta
博 水田
Takeyuki Hiruma
健之 比留間
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32398187A priority Critical patent/JPH01166556A/en
Publication of JPH01166556A publication Critical patent/JPH01166556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce a specific contact resistance by laminating an In layer or an In layer containing group IV or VI element, a Ge layer containing group V element, a high melting point metal or the like layer on an N-type GaAs layer, and heat treating it at a predetermined temperature. CONSTITUTION:An N-type GaAs layer 11 is continuously covered with an In layer or an alloy layer 12 of In or group IV or VI element and the In, a Ge layer 13 containing group V element, and a high melting point metal or its silicide or nitride layer 14, and heat treated at a temperature above the melting point of the In and below the melting point of the Ge for a short time. The layer 12 is alloyed with the N-type GaAs of the boundary by the heat treatment, and the InGaAs alloy having smaller forbidden band width than that of the GaAs is precipitated. Part of the layer 13 is melted in the InGaAs layer to become a high doner impurity concentration N<+> type lnGaAs layer 15, the In is partly melted in the layer 13 to form an N<+> type Ge layer, thereby forming a preferably ohmic electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はn型G a A sに対するオーム性電極に係
り、特に低接触抵抗で平坦性が良<、 AQ (アルミ
ニウム)系配線とも容易に接続可能な電極構造に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ohmic electrode for n-type GaAs, which has particularly low contact resistance, good flatness, and can be easily connected to AQ (aluminum)-based wiring. This invention relates to a connectable electrode structure.

〔従来の技術〕[Conventional technology]

従来の芽−ム性電極としては、−船内にA u /Ni
/AuGe(金/ニッケル/金・ゲルマニウム合金)が
用いられていた0例えば、ソリッド・ステート・エレク
トロニクス、第25巻、 1982年。
Conventional budding electrodes include: - A u /Ni inside the vessel;
/AuGe (gold/nickel/gold-germanium alloy) was used. For example, Solid State Electronics, Vol. 25, 1982.

第1063〜1065頁(Solid 5tateEl
ectronics、Vofi、25.p p 106
3〜1065(1982))におけるMarghall
 1.Nathan及び阿ordehai Heibl
umによるrAn Improved AuGe0h+
*ic Contact To n−CaAsJと題す
る文献において論じられている。
Pages 1063-1065 (Solid 5tateEl
electronics, Vofi, 25. p p 106
3-1065 (1982))
1. Nathan and Ordehai Heibl
rAn Improved AuGe0h+ by um
*ic Contact Ton-CaAsJ.

即ち、GaAs MESFET (Metal−3em
iconductorField Effact Tr
ansistor)等のG a A s半導体装置にお
いてはオーム性電極形成予定領域のn型GaAs表面上
に上記の三層膜を被着し、A u G a合金の共晶温
度(356℃)以上の温度で熱処理する。この熱処理に
よってGaAsとA u G eを合金化し、その冷却
過程で再結晶化したGaAs中に高濃度のGeを含有さ
せる。こうして電極−半導体界面には、Geドナー不純
物を多量に含有する層が形成され、オーム性が得られる
That is, GaAs MESFET (Metal-3em
iconductorField Effect Tr
In a GaAs semiconductor device such as A. Heat treated at temperature. Through this heat treatment, GaAs and AuGe are alloyed, and a high concentration of Ge is contained in the recrystallized GaAs during the cooling process. In this way, a layer containing a large amount of Ge donor impurities is formed at the electrode-semiconductor interface, resulting in ohmic properties.

しかし、熱処理を行なうと電極表面に凹凸が生じ、平坦
性を損なうことがしばしばあった。また電極形成後40
0℃以上の熱処理を加える工程があると、合金化反応が
過剰に進行し、平坦性および接触比抵抗が劣化する。さ
らにFETのゲート電極にAQを用いた場合、特に集積
回路の如くゲート電極とオーム性電極であるAu系のソ
ース・ドレイン電極との相互接続を必要とする場合は。
However, heat treatment often creates irregularities on the electrode surface, impairing its flatness. Also, after electrode formation, 40
If there is a step of applying heat treatment at 0° C. or higher, the alloying reaction proceeds excessively, resulting in deterioration of flatness and contact specific resistance. Furthermore, when AQ is used for the gate electrode of an FET, especially when interconnection between the gate electrode and Au-based source/drain electrodes, which are ohmic electrodes, is required, such as in an integrated circuit.

よく知られるAQ−Auの合金反応(パープルブレーク
)により、信頼性の点で問題があった。
There was a reliability problem due to the well-known alloy reaction (purple break) of AQ-Au.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、AuGe系をはじめとするAu合金
を用いるオーミック電極の場合は、オーム性の熱劣化、
平坦性の悪さ、AQ配線との相互接続の困難性の問題が
あった。
In the above conventional technology, in the case of ohmic electrodes using Au alloys such as AuGe, thermal deterioration of ohmic properties,
There were problems with poor flatness and difficulty in interconnecting with AQ wiring.

本発明の目的は、上記従来技術の欠点を解消し、接融抵
抗が小さく、電極の平坦性も良好であり、AQとの相互
接続も容易であり、素子製造のうえで適用しやすいn型
G a A sオーム性電極を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned prior art, provide low welding resistance, good electrode flatness, easy interconnection with AQ, and an n-type that is easy to apply in device manufacturing. An object of the present invention is to provide a GaAs ohmic electrode.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、第1図に示す如くn型G a A s層1
1上に第1層12としてInあるいはG a A sに
とってドナ不純物となる■族あるいは■族元素。
The above purpose is to form an n-type GaAs layer 1 as shown in FIG.
1, as a first layer 12, a group Ⅰ or group Ⅰ element which becomes a donor impurity for In or Ga As.

則ちGo、Si、Sn、Te、Ss、SとInの合金を
、第2層13としてGeとドナ不純物であるP、As、
Sbとの合金を、第3層14として高融点金属、例えば
Ti、Mo、W、Ta、Hf等やこれらの硅化物、窒化
物例えばMo5ii。
That is, an alloy of Go, Si, Sn, Te, Ss, S and In is used as the second layer 13, and Ge and donor impurities P, As,
An alloy with Sb is used as the third layer 14 using a high melting point metal such as Ti, Mo, W, Ta, Hf, etc., or a silicide or nitride thereof such as Mo5ii.

WSiz、TiN等を連続的に被着する。被着法として
は真空蒸着法、クラスタイオンビーム蒸着法、スパッタ
蒸着法等があり、実際はこれらの組合わせを用いる。こ
の多層膜を、Inの融点以上で短時間の熱処理、例えば
1秒〜100秒の間の時間を用いて行なうと平坦性の優
れた、接触比抵抗の小さな良いオーム性電極が形成され
る。
Continuously deposit WSiz, TiN, etc. Deposition methods include vacuum evaporation, cluster ion beam evaporation, sputter evaporation, and the like, and a combination of these is actually used. When this multilayer film is heat-treated for a short time at a temperature higher than the melting point of In, for example, for a period of 1 second to 100 seconds, a good ohmic electrode with excellent flatness and low contact resistivity is formed.

これまでn型G a A s上に電極を形成する場合に
ついて述べてきたが、n十型G a A s上に形成し
ても同様の作用・効果があることは言うまでもない。
Although the case where the electrode is formed on n-type GaAs has been described so far, it goes without saying that the same action and effect can be obtained even if the electrode is formed on n-type GaAs.

〔作用〕[Effect]

本電極は、前記第1〜第3層を連続的に被着後。 This electrode was formed after the first to third layers were successively deposited.

熱処理を施すことにより性能を発揮するものであり、各
層の作用について第1図を用いて以下に述べる。第1層
12のIn層は熱処理によって界面のn型GaAsと合
金化し、G a A sより禁止帯幅の小さいI nG
aAs合金を析出する。このI n G a A s層
には第2層13のGe合金層、例えばG e−P * 
G e  A a * G e  S b合金の一部分
が溶融するため、高ドナ不純物濃度のn十型I n G
 a A s層15となる。また第1層12のInMに
1v族元素又は■族元素、例えば、Si。
The performance is achieved through heat treatment, and the function of each layer will be described below with reference to FIG. The In layer of the first layer 12 is alloyed with n-type GaAs at the interface by heat treatment, and the In layer has a smaller forbidden band width than GaAs.
Deposit aAs alloy. This InGaAs layer includes a Ge alloy layer of the second layer 13, for example, Ge-P*
Since a part of the G e A a * G e S b alloy melts, the n-type I n G with a high donor impurity concentration
This becomes the aAs layer 15. Further, in the InM of the first layer 12, a 1v group element or a group 2 element, for example, Si.

Ge、Sn又はTe、Ss、Sが含有されている場合は
、これらもドナ不純物となってn十型I n G a 
A s層15の形成に役立つ、第2層13Geと■族元
素の合金層にはInが一部分とけ込みGe層中でアクセ
プタ不純物となるが、あらかじめ過剰に加えられたドナ
不純物、即ち、P。
When Ge, Sn, Te, Ss, and S are contained, these also become donor impurities and form n-type I n Ga
In the second layer 13, an alloy layer of Ge and group Ⅰ elements, which is useful for forming the As layer 15, a portion of In dissolves and becomes an acceptor impurity in the Ge layer.

Asあるいはsbによって補償されn十型Ge層ができ
る。第3層14高融点金属層は熱処理によるボールアッ
プを防止し平坦性化を保つとともに金属導通層としての
役割を果たす。高融点金属としては、Ti、Mo、W、
Ta、Hf等を用いる。
Compensated with As or sb, an n+ type Ge layer is formed. The third layer 14 high melting point metal layer prevents ball-up due to heat treatment, maintains flatness, and plays a role as a metal conduction layer. Examples of high melting point metals include Ti, Mo, W,
Ta, Hf, etc. are used.

またこれらの硅化物Ti5ii、Mo5iz。Also, these silicides Ti5ii and Mo5iz.

WS iz、 Ta S it、 Hf S is等や
、窒化層TiN、MoN、WN、TaN、HfN等を用
いても同様の効果が得られる。
A similar effect can be obtained by using WS iz, Ta S it, Hf S is, etc., or a nitride layer of TiN, MoN, WN, TaN, HfN, etc.

熱処理方法としては、水素、窒素あるいはアルゴンのよ
うな不活性なガスの雰囲気中で行なう。
The heat treatment is carried out in an atmosphere of an inert gas such as hydrogen, nitrogen or argon.

温度範囲は第1層11のInあるいはIn合金層がG 
a A sと合金化する一方で、第3層14の高融点金
属あるいはこれらの硅化物、窒化物が融けないように少
なくともGeの融点以下を用いる。
The temperature range is such that the In or In alloy layer of the first layer 11 is G
At least the melting point of Ge is used so that the high melting point metal of the third layer 14 or their silicides and nitrides do not melt while alloying with a As.

熱処理時間は1秒から100秒程度の短時間で行なうこ
とにより、合金化が第3層までに達しない′  ように
する。
The heat treatment is carried out for a short time of about 1 second to 100 seconds to prevent alloying from reaching the third layer.

以上まとめると、n型G a A s 11上に、Ga
Asより禁止帯幅の小さいn + I n G a A
 s 層15、n+Ge 層16が形成されて良好なオ
ーム性電極ができる。またAu合金層は用いないので、
Al系の配線材料との接続も容易であり、高信頼性が得
られる。
To summarize the above, on n-type GaAs 11, Ga
n + I n G a A with a smaller forbidden band width than As
An s layer 15 and an n+Ge layer 16 are formed to provide a good ohmic electrode. Also, since no Au alloy layer is used,
Connection with Al-based wiring materials is also easy, and high reliability can be obtained.

〔実施例〕〔Example〕

以下、本発明の実施例を図により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第3図を用いて説明する。Example 1 This will be explained using FIG.

(1)半絶縁性GaAs基板30上にn型GaAg31
 (キャリア濃度3×1〇五7cs−”、 S iドー
プ)tn+n型GaAg31キャリア濃度2×10”c
n−”、 S iドープ)をエピタキシャル成長したウ
ェハを用意する。この他生絶縁性GaAs基板へイオン
打込みにより、これらの層を形成したウェハを用いても
良い0次に絶縁層33゜例えばCV D  S i O
x膜を被着し、通常のホトリソグラフィー技術を用いて
ソースおよびドレイン電極(オーム性電極)を形成する
領域に開孔した(第1図(a))。
(1) N-type GaAg 31 on semi-insulating GaAs substrate 30
(Carrier concentration 3×1057cs-”, Si doped) tn+n-type GaAg31 carrier concentration 2×10”c
A wafer on which these layers are epitaxially grown is prepared.A wafer on which these layers are formed by ion implantation into this allogenic insulating GaAs substrate may also be used. SiO
x film was deposited and holes were opened in the regions where the source and drain electrodes (ohmic electrodes) were to be formed using conventional photolithography techniques (FIG. 1(a)).

(2)該ウェハ上に室温でクラスタイオン蒸着あるいは
真空蒸着により第1層34Inを100人被潰した0次
に第2層35Ge−8b合金を350人被着口た。この
時には二元蒸着を用い、組成比は3:1を用いた。最後
に第3W36Tiを1500人被着着口(第1図(b)
)。
(2) On the wafer, 100 layers of 34In first layer were crushed and 350 layers of 35Ge-8b alloy second layer were deposited on the wafer at room temperature by cluster ion deposition or vacuum deposition. At this time, binary vapor deposition was used, and the composition ratio was 3:1. Finally, the 3rd W36Ti was applied to 1,500 people (Fig. 1(b)).
).

(3)ソース・ドレイン電極37のパターンをホトリソ
グラフィー技術により形成するm T iとGe−8b
合金の不要部分の除去にはCF4ガスに、よるドライエ
ツチング法を、In層の除去には希塩酸によるウェット
エツチング法を用いた(第1図(C))。
(3) Forming the pattern of the source/drain electrode 37 using photolithography technology and Ge-8b
Dry etching using CF4 gas was used to remove unnecessary parts of the alloy, and wet etching using dilute hydrochloric acid was used to remove the In layer (FIG. 1(C)).

次に600℃〜750℃で1秒〜5秒間熱処理を行なう
、この間にIn層は溶解しInGaAs合金層38が形
成される。この時接触比抵抗は2X10″″6Ω−dで
あり、電極の凹凸は50Å以下と良好であった。
Next, heat treatment is performed at 600° C. to 750° C. for 1 second to 5 seconds, during which time the In layer is melted and an InGaAs alloy layer 38 is formed. At this time, the contact specific resistance was 2×10″″6Ω-d, and the unevenness of the electrode was 50 Å or less, which was good.

(4)リソグラフィー技術により絶縁膜14のゲート電
極部を開孔し、続いてn十型G a A s層とn型G
aAs層の一部の深さまでG a A sをエツチング
除去する(第1図(d))。
(4) A hole is formed in the gate electrode part of the insulating film 14 using lithography technology, and then an n+ type Ga As layer and an n type G layer are formed.
GaAs is etched away to a partial depth of the aAs layer (FIG. 1(d)).

A Q / T i厚さ8000人1500人を真空蒸
着後、リフトオフ法により、ゲート電極39を形成する
。このとき同時にソース・ドレイン電極のポンディング
パッドをA Q / T iにより形成することが可能
である。
After vacuum evaporating AQ/Ti to a thickness of 8,000 to 1,500, a gate electrode 39 is formed by a lift-off method. At this time, it is possible to simultaneously form bonding pads for the source and drain electrodes using AQ/Ti.

以上は本発明を用いたGaAsMESFBTについての
例であるが、この他GaAs集積回路に用いることが可
能である。
The above is an example of a GaAs MESFBT using the present invention, but it can also be used for other GaAs integrated circuits.

実施例2 実施例1の(2)において第1層34にIn−Te合金
(組成比95:5at%)100人を用いた場合、接触
比抵抗は6×10″″1!lΩ−dが得られ、In単独
で用いるよりも良好なオーミック電極が形成された。
Example 2 In Example 1 (2), when 100 In-Te alloys (composition ratio 95:5 at%) are used for the first layer 34, the contact specific resistance is 6×10''1! lΩ-d was obtained, and a better ohmic electrode was formed than when using In alone.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、オーム性電極の接触比抵抗が10−B
〜10″″6Ω−d程度の小さな値が得られる。
According to the present invention, the contact specific resistance of the ohmic electrode is 10-B.
A small value of ~10''6 Ω-d is obtained.

又従来のA u / N i / A u G e電極
に比べて電極の平坦性は50Å以下と良好である。さら
にAu合金を用いない電極なので、Al系の配線材料と
高信頼性の接続が可能であり、特にGaAs集積回路の
AQゲート電極とソース・ドレイン電極間の配線に際し
、好都合である。
In addition, the flatness of the electrode is better than the conventional A u / Ni / A u Ge electrode at 50 Å or less. Furthermore, since the electrode does not use an Au alloy, highly reliable connection with Al-based wiring materials is possible, which is particularly advantageous for wiring between the AQ gate electrode and source/drain electrodes of a GaAs integrated circuit.

また本発明はn型G a A sについて述べであるが
、n型GaAjlAs、n型G a A s P等の結
晶材料についても同様の効果がある。
Further, although the present invention has been described with respect to n-type GaAs, similar effects can be obtained with crystal materials such as n-type GaAjlAs and n-type GaAsP.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるオーム性電極の断面図、第2図は
従来法によるオーム性電極断面図および第3図は本発明
のオーム性電性形成法を用いたGaAsMESFETの
製造工程の断面図である。 11.31−n型G a A s、12.34・・・第
1層。 InMあるいは■族又は■族元素を含有するIn層、1
3.35・・・第2層、■族元素を含有するGe層、1
4.36・・・第3層、高融点金属層あるいはその硅化
物層、窒化物層、15,38・・・n÷型InGaAs
[,20,30・・・半絶縁性G a A s、22・
・・Ge膜、23・・・金属膜、21,32・・・n中
型G a A s層、33・・・絶縁膜、37・・・ソ
ース・ドレイン電極、39・・・ゲート電w4゜芽+1
!1 芽 、3 図 C久)
Fig. 1 is a cross-sectional view of an ohmic electrode according to the present invention, Fig. 2 is a cross-sectional view of an ohmic electrode according to a conventional method, and Fig. 3 is a cross-sectional view of the manufacturing process of a GaAs MESFET using the ohmic conductivity forming method of the present invention. It is. 11.31-n-type GaAs, 12.34...first layer. In layer containing InM or group II or group III elements, 1
3.35...Second layer, Ge layer containing group (■) element, 1
4.36...Third layer, high melting point metal layer or its silicide layer, nitride layer, 15,38...n÷ type InGaAs
[, 20, 30... Semi-insulating Ga As, 22.
...Ge film, 23...metal film, 21, 32...n medium-sized Ga As layer, 33...insulating film, 37...source/drain electrode, 39...gate electrode w4° Bud +1
! 1 bud, 3 Figure C Hisa)

Claims (1)

【特許請求の範囲】 1、n型GaAs層上に少なくともIV族元素あるいはV
I族元素を含有するInGaAs多結晶合金層、V族元
素を含有するGe層が順次積層されていることを特徴と
するn型GaAsオーム性電極。 2、特許請求の範囲第1項記載のn型GaAsオーム性
電極において、上記IV族元素あるいはVI族元素はGe、
Si、SnあるいはTe、Be、Sであるn型GaAs
オーム性電極。 3、特許請求の範囲第1項記載のn型GaAs性電極に
おいて、上記V族元素は、P、As、Sbであるn型G
aAsオーム性電極。 4、n型GaAs層上に第1層として、In層又はIV族
元素あるいはVI族元素を含有するIn層を、第2層とし
てV族元素を含有するGe(ゲルマニウム)層を、第3
層として高融点金属層あるいはその硅化物層、窒化物層
を少なくとも積層した後、Inの融点以上で、かつGe
の融点以下の温度で熱処理する工程を含むことを特徴と
するn型GaAsオーム性電極の形成方法。
[Claims] 1. At least a group IV element or V
An n-type GaAs ohmic electrode characterized in that an InGaAs polycrystalline alloy layer containing a group I element and a Ge layer containing a group V element are sequentially laminated. 2. In the n-type GaAs ohmic electrode according to claim 1, the group IV element or group VI element is Ge,
n-type GaAs that is Si, Sn or Te, Be, S
Ohmic electrode. 3. In the n-type GaAs electrode according to claim 1, the group V element is an n-type GaAs electrode such as P, As, or Sb.
aAs ohmic electrode. 4. On the n-type GaAs layer, the first layer is an In layer or an In layer containing a group IV element or a group VI element, the second layer is a Ge (germanium) layer containing a group V element, and the third layer is an In layer containing a group IV element or a group VI element.
After laminating at least a high melting point metal layer or its silicide layer or nitride layer as a layer,
1. A method for forming an n-type GaAs ohmic electrode, the method comprising the step of heat treatment at a temperature below the melting point of .
JP32398187A 1987-12-23 1987-12-23 N-type gaas ohmic electrode and formation thereof Pending JPH01166556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32398187A JPH01166556A (en) 1987-12-23 1987-12-23 N-type gaas ohmic electrode and formation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32398187A JPH01166556A (en) 1987-12-23 1987-12-23 N-type gaas ohmic electrode and formation thereof

Publications (1)

Publication Number Publication Date
JPH01166556A true JPH01166556A (en) 1989-06-30

Family

ID=18160783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32398187A Pending JPH01166556A (en) 1987-12-23 1987-12-23 N-type gaas ohmic electrode and formation thereof

Country Status (1)

Country Link
JP (1) JPH01166556A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649167A2 (en) * 1993-09-21 1995-04-19 Sony Corporation Method of manufacturing an ohmic electrode having a multi-layered structure
WO1997008744A1 (en) * 1995-08-24 1997-03-06 Sony Corporation Laminate for forming ohmic electrode and ohmic electrode
CN102306626A (en) * 2011-09-09 2012-01-04 电子科技大学 Method for preparing gate structure of semiconductor heterojunction field effect transistor
WO2015080107A1 (en) * 2013-11-27 2015-06-04 株式会社村田製作所 Semiconductor device and method for manufacturing semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649167A2 (en) * 1993-09-21 1995-04-19 Sony Corporation Method of manufacturing an ohmic electrode having a multi-layered structure
EP0649167A3 (en) * 1993-09-21 1997-09-24 Sony Corp Method of manufacturing an ohmic electrode having a multi-layered structure.
US5767007A (en) * 1993-09-21 1998-06-16 Sony Corporation Method for fabricating ohmic electrode and multi-layered structure for ohmic fabricating electrode
US5904554A (en) * 1993-09-21 1999-05-18 Sony Corporation Method for fabricating ohmic electrode and multi-layered structure for ohmic fabricating electrode
WO1997008744A1 (en) * 1995-08-24 1997-03-06 Sony Corporation Laminate for forming ohmic electrode and ohmic electrode
EP0789387A1 (en) * 1995-08-24 1997-08-13 Sony Corporation Laminate for forming ohmic electrode and ohmic electrode
CN102306626A (en) * 2011-09-09 2012-01-04 电子科技大学 Method for preparing gate structure of semiconductor heterojunction field effect transistor
WO2015080107A1 (en) * 2013-11-27 2015-06-04 株式会社村田製作所 Semiconductor device and method for manufacturing semiconductor device
JP6090474B2 (en) * 2013-11-27 2017-03-08 株式会社村田製作所 Semiconductor device and manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US4337476A (en) Silicon rich refractory silicides as gate metal
EP0282781B1 (en) Contact to gallium-arsenide and method of forming such
JP3559432B2 (en) Method of forming a semiconductor metallization system and its structure
NL9100334A (en) METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE IN WHICH A SELF-REGISTRATING COBALT OR NICKEL SILICIDE IS FORMED.
US5801444A (en) Multilevel electronic structures containing copper layer and copper-semiconductor layers
JPH06302542A (en) Low-resistance contact structure for semiconductor device and forming method therefor
JP3626773B2 (en) Conductive layer of semiconductor device, MOSFET, and manufacturing method thereof
JPH07161659A (en) Semiconductor device and its manufacture
JP3418849B2 (en) Method of manufacturing ohmic contact for compound semiconductor
JPH088347B2 (en) Copper-semiconductor composite that can be formed at room temperature and method for forming the same
JPH01166556A (en) N-type gaas ohmic electrode and formation thereof
JPS62113421A (en) Manufacture of semiconductor device
JPH0296374A (en) Semiconductor device and manufacture thereof
JPH10284437A (en) Method for forming metal interconnection layer of semiconductor device
JP3017810B2 (en) Method for manufacturing semiconductor device
JPS5898963A (en) Semiconductor device
JP4147441B2 (en) Compound semiconductor device
JP3220624B2 (en) Compound semiconductor device and method of manufacturing the same
JPH0287671A (en) Semiconductor device which contains high temperature-resistant shottky contact
JPS6211793B2 (en)
JPS58222565A (en) Semiconductor device
JPS5873136A (en) Method of producing semiconductor device
JP2002261044A (en) Semiconductor device and method of manufacturing the same
JPH05167063A (en) Ohmic electrode, its formation method and semiconductor device
JP3123217B2 (en) Method of forming ohmic electrode