Nothing Special   »   [go: up one dir, main page]

JPH0483585A - Purification of ultra-pure water - Google Patents

Purification of ultra-pure water

Info

Publication number
JPH0483585A
JPH0483585A JP19477190A JP19477190A JPH0483585A JP H0483585 A JPH0483585 A JP H0483585A JP 19477190 A JP19477190 A JP 19477190A JP 19477190 A JP19477190 A JP 19477190A JP H0483585 A JPH0483585 A JP H0483585A
Authority
JP
Japan
Prior art keywords
membrane
ultra
pure water
pores
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19477190A
Other languages
Japanese (ja)
Inventor
Kazuo Toyomoto
豊本 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP19477190A priority Critical patent/JPH0483585A/en
Publication of JPH0483585A publication Critical patent/JPH0483585A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To remove the heavy metal ion of a ppt level contained in ultra-pure water used in the semiconductor industry to purify said ultra-pure water by filtering ultra-pure water by a specific porous membrane with a specific apparent stagnation time. CONSTITUTION:Ultra-pure water whose electric specific resistance value at 25 deg.C is 17.0mOMEGA.cm or more is filtered by a porous membrane having a functional group capable of bonding a heavy metal ion in a chelated state on the surface thereof and the surfaces of the pores thereof in such a state that the apparent stagnation time of the ultra-pure water in the membrane is set to 0.1-300 sec. A chelate group is pref. bonded to the surface of the porous base membrane and the surfaces of the pores thereof. The base membrane pref. has a three- dimensional reticulated structure formed by a microphase separation method or a mixing extraction method rather than a structure having orthogonal piercing type pores obtained by a stretching method or an etching method. The apparent stagnation time is shown by T/F when filtering speed is set to Fcm/sec and membrane thickness is set to Tcm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体工業、特に高集積度半導体を製造する
際に用いられる超純水の精製に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the semiconductor industry, particularly to the purification of ultrapure water used in manufacturing highly integrated semiconductors.

〔従来技術] 半導体製造に用いられる超純水は、極めて高品質のもの
が要求される。
[Prior Art] Ultrapure water used in semiconductor manufacturing is required to be of extremely high quality.

すなわち、一般工業用水等を凝集沈澱及び砂濾過で処理
したのち、酸素および炭酸ガス等のガスを抜き、紫外線
照射し、ついで逆浸透膜で処理し、その後低圧UVで照
射酸化し、イオン交換樹脂等で処理する。さらに限外濾
過膜で微粒子、パイロジエン等を完全に除去し、ユース
ポイントに送り、ファイナルフィルター(主にミクロフ
ィルター)で処理したのち使用される。
That is, after treating general industrial water etc. with coagulation sedimentation and sand filtration, gases such as oxygen and carbon dioxide are removed, UV irradiation is performed, then treatment with a reverse osmosis membrane, and then irradiation with low pressure UV oxidation is performed to produce an ion exchange resin. Process with etc. Furthermore, fine particles, pyrogen, etc. are completely removed using an ultrafiltration membrane, and the product is sent to the point of use where it is processed by a final filter (mainly a microfilter) before being used.

最近、半導体製造技術は集積度が16Mbit等精密化
するにつれますます高度化し、pptオーダー(10”
分の1のオーダー)レベルのメタルイオンも問題視され
るようになった。さらに、最近の報告では、アルカリ金
属類よりも超純水製造に用いられる逆浸透膜の運転に用
いられる高圧ポンプから発生する重金属イオン等の存在
がより問題にされている。また、半導体ウェハーの加工
においても重金属イオンの影響が重大視されている。
Recently, semiconductor manufacturing technology has become more and more sophisticated as the degree of integration has become more precise, such as 16 Mbit, and
Metal ions on the order of 1/2 of that) have also come to be seen as a problem. Furthermore, recent reports have focused more on the presence of heavy metal ions generated from high-pressure pumps used to operate reverse osmosis membranes used in ultrapure water production than on alkali metals. Furthermore, the influence of heavy metal ions is considered to be important in the processing of semiconductor wafers.

このようなごく微量存在する重金属を除去する方法とし
て、前記の処理方法ではすでに不満足とな7てきており
、特に末端の部分で使用される限外濾過やミクロフィル
ターではこのレベルに到達するのはむずかしい。
The above-mentioned treatment methods have already become unsatisfactory as methods for removing such extremely small amounts of heavy metals, and in particular, ultrafiltration and microfilters used in the terminal parts cannot reach this level. It's difficult.

また、限外濾過膜の前に使用されるイオン交換樹脂(ポ
リラシャ−)でもpptレベル以下を除去する事はむず
かしいのが現状である。
Furthermore, even with the ion exchange resin (Polylasha) used before the ultrafiltration membrane, it is currently difficult to remove less than the ppt level.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、半導体工業等において使用される超純
水中に含まれるpptレベル以下の重金属イオンを除去
精製する方法を提供することである。
An object of the present invention is to provide a method for removing and purifying heavy metal ions below the ppt level contained in ultrapure water used in the semiconductor industry and the like.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の超純水精製方法は、25℃における電気比抵抗
価が17.0mΩ・1以上の超純水を、重金属イオンと
キレート的に結合しうる官能基を膜および孔の表面に有
する多孔性膜を用いて、膜の内部での上記超純水のみか
けの滞留時間を0.1〜300秒として濾過することを
特徴とする。
The ultrapure water purification method of the present invention uses ultrapure water with an electrical resistivity value of 17.0 mΩ·1 or more at 25°C through porous membranes and pores having functional groups capable of chelating with heavy metal ions on the surface of the membrane and pores. The method is characterized in that the ultrapure water is filtered using a transparent membrane with an apparent residence time of 0.1 to 300 seconds inside the membrane.

本発明の方法は、従来の精製方法のできるだけ後段、す
なわち従来方法のポリラシャ−のあとに使用される限外
濾過膜またはユースポイントで使用されるミクロフィル
タ一部分の代替として採用されるのが好ましい。また、
25℃における電気比抵抗値が17.5mΩ・1以上の
水質を有する高純度水を処理するには、やはりできるだ
け後段で高精度に精製するのが好ましい。
The method of the present invention is preferably employed as late as possible in the conventional purification process, ie as a replacement for the ultrafiltration membrane used after the polyurethane of the conventional process or for the part of the microfilter used at the point of use. Also,
In order to treat high-purity water having an electrical resistivity value of 17.5 mΩ·1 or more at 25° C., it is preferable to purify the water with high precision as late as possible.

本発明で用いられる多孔性膜は1、膜表面および孔の表
面に、重金属と結合することのできるキレート基を有す
る。好ましくは、多孔質の基材膜の膜表面および孔の表
面に、多孔性膜1g当り0.3 ミリ当量以上のキレー
トMが結合した、平均孔径が0901〜5μm、空孔率
20〜90%、厚み10μm〜5■の多孔性膜が用いら
れる。
The porous membrane used in the present invention has 1. chelate groups capable of binding heavy metals on the membrane surface and the pore surfaces. Preferably, chelate M is bonded to the membrane surface and the pore surface of the porous base membrane in an amount of 0.3 milliequivalent or more per 1 g of the porous membrane, the average pore diameter is 0901 to 5 μm, and the porosity is 20 to 90%. , a porous membrane having a thickness of 10 μm to 5 μm is used.

基材膜の材質としてはポリオレフィン、オレフィンとハ
ロゲン化オレフィンの共重合体、ポリフッ化ビニリデン
またはポリスルホンからなる膜が用いられ、ポリオレフ
ィンまたはオレフィンとハロゲン化オレフィンの共重合
体からなる膜が好ましく用いられる。
As the material of the base film, a film made of polyolefin, a copolymer of an olefin and a halogenated olefin, a polyvinylidene fluoride, or a polysulfone is used, and a film made of a polyolefin or a copolymer of an olefin and a halogenated olefin is preferably used.

ポリオレフィンの例としては、ポリエチレン、ポリプロ
ピレン、ポリブテンおよびこれらの混合物があげられる
。オレフィンとハロゲン化オレフィンの共重合体の例と
しては、エチレン、プロピレン、ブテン、ペンテンおよ
びヘキサンから選ばれる少なくとも1つと、例えばテト
ラフルオロエチレンやクロロトリフルオロエチレンなど
のハロゲン化オレフィンとの共重合体があげられる。
Examples of polyolefins include polyethylene, polypropylene, polybutene and mixtures thereof. Examples of copolymers of olefins and halogenated olefins include copolymers of at least one selected from ethylene, propylene, butene, pentene, and hexane and halogenated olefins such as tetrafluoroethylene and chlorotrifluoroethylene. can give.

基材膜の構造は、延伸法やエツチング法により得られる
直孔貫通型の孔を有するものよりも、ミクロ相分離法や
混合抽出法などにより形成される三次元網目構造が好ま
しい。特に、特開昭55131028号公報に示された
膜構造が好ましい。
The structure of the base film is preferably a three-dimensional network structure formed by a microphase separation method, a mixed extraction method, or the like, rather than one having straight through-holes obtained by a stretching method or an etching method. Particularly preferred is the membrane structure shown in Japanese Patent Application Laid-Open No. 55131028.

基材膜の形状は、平膜状膜(プリーツ状、スパイラル状
を含む)、チューブ状膜、中空糸状膜のいずれでもよい
が、中空糸状膜が好ましい。
The shape of the base membrane may be any of a flat membrane (including pleated and spiral shapes), a tubular membrane, and a hollow fiber membrane, but a hollow fiber membrane is preferable.

基材膜へのキレート基の結合は、キレート基が化学的に
結合したものを用いるのがよく、その結合は直接でもよ
く、またキレート基を含有する重合体が結合されていて
もよい。
For bonding the chelate group to the base film, it is preferable to use a chemically bonded chelate group, and the bond may be direct, or a polymer containing a chelate group may be bonded.

場合によっては、キレート基は基材膜に直接結合させず
に、コーティング、表面架橋重合体等への直接付加など
の手段により、間接的に膜に含有させてもよい。しかし
、最も好ましいのは、キレート基がグラフト鎖を介して
膜に化学的に結合されたものである。
In some cases, the chelate group may not be directly bonded to the base membrane, but may be incorporated into the membrane indirectly by means such as coating, direct addition to a surface crosslinked polymer, or the like. Most preferred, however, are those in which the chelating group is chemically bonded to the membrane via a graft chain.

超純水中に存在する重金属イオンとは、具体的には鉄、
ニンケル、銅、コバルト、亜鉛等のイオン類である。し
たがって、本発明に用いられるキレート基として最も好
ましい例は、イミノジ酢酸基(N (CJCOOH)z
 )を官能基とする場合である。キレート基は乾燥状態
での多孔性膜1g当り0.3ミリ当量以上となるよう結
合されている。好ましくは1.5ミリ当量以上10ミリ
当量以下のキレート基を含有した多孔性膜が使用可能で
ある。
Heavy metal ions that exist in ultrapure water include iron,
These are ions such as nickel, copper, cobalt, and zinc. Therefore, the most preferable example of the chelate group used in the present invention is iminodiacetic acid group (N (CJCOOH)z
) is used as a functional group. The chelate groups are bonded in an amount of 0.3 milliequivalent or more per gram of the porous membrane in a dry state. Preferably, a porous membrane containing chelate groups in an amount of 1.5 to 10 mequivalents can be used.

この範囲外では膜のイオン除去能力または透水能力の低
下を招くことがある。ここでミリ当量とは官能基のミリ
当量をさしており、たとえばイミノジ酢酸1ミリモルは
2ミリ当量である。
Outside this range, the ion removal ability or water permeation ability of the membrane may decrease. Milliequivalents here refer to milliequivalents of functional groups; for example, 1 mmole of iminodiacetic acid is 2 milliequivalents.

本発明におけるキレート基の量は、多孔性膜1g当りの
ミリ当量を指すが、ここで膜1gとは、膜のかなりマク
ロ的な重量を基準にした値のことであり、例えば、膜表
面の一部、又は内部の一部だけを取り出した重量のこと
ではない。膜の優れた機械的性質を保持したままキレー
ト基を結合させるには、出来るだけ膜及び孔の表面に均
一に、より優先的にキレート基を存在させた方が好まし
いので、当然部分的な不均質性は許容される。従って、
ここで言う膜1gと言う意味は、膜の全面にわたって平
等に加味測定された値を示しており、極く微視的な観点
での重量を意味していない。
The amount of chelate groups in the present invention refers to milliequivalents per gram of porous membrane, but 1 gram of membrane here refers to a value based on the fairly macroscopic weight of the membrane, for example, It does not refer to the weight of only a part or part of the inside. In order to bond the chelate group while maintaining the excellent mechanical properties of the membrane, it is preferable to have the chelate group present as uniformly and preferentially on the surface of the membrane and pores as possible. Homogeneity is acceptable. Therefore,
The meaning of 1 g of membrane here indicates a value measured evenly over the entire surface of the membrane, and does not mean the weight from an extremely microscopic viewpoint.

多孔性膜の平均孔径は0.01〜5μm、好ましくは0
.01μm〜1μmの範囲から選ばれる。この範囲より
小さい場合は透水能力が実用性能上充分でなく、またこ
れより大きいところではイオン除去性が問題となってく
る。
The average pore diameter of the porous membrane is 0.01 to 5 μm, preferably 0.01 to 5 μm.
.. The diameter is selected from the range of 0.01 μm to 1 μm. If it is smaller than this range, the water permeability is not sufficient for practical performance, and if it is larger than this range, ion removal becomes a problem.

平均孔径の測定には多くの方法があるが、本発明におい
ては、ASTM  F−316−70に記載されている
通常エアーフロー法と呼ばれる空気圧を変えた場合の乾
燥膜と湿潤膜の空気透過流束から測定する方法に準拠す
る。
There are many methods for measuring the average pore size, but in the present invention, we use the air permeation flow between dry and wet membranes when changing the air pressure, which is usually called the air flow method described in ASTM F-316-70. Comply with the method of measuring from a bundle.

多孔性膜の空孔率は20%〜90%、好ましくは50%
〜80%の範囲にあるものが用いられる。
The porosity of the porous membrane is 20% to 90%, preferably 50%
-80% is used.

ここで空孔率とは、あらかじめ膜を水等の液体に浸漬し
、その後乾燥させて、その前後の重量変化から測定した
ものである。空孔率が上記範囲以外においては、それぞ
れ透過速度、機械的性質の点で好ましくない。
Here, the porosity is measured by immersing the membrane in a liquid such as water in advance, then drying it, and measuring the weight change before and after that. Porosity values outside the above range are unfavorable in terms of permeation rate and mechanical properties.

基材膜を構成する重合体の側鎖にキレート基を導入する
方法、例えば、ポリエチレンの側鎖にイミノジ酢酸基を
導入する方法としては、ポリエチレン膜を電子線等で照
射した後、スチレンを気相中でグラフトさせ、その後イ
ミノジ酢酸を反応させる方法などが採用される。
A method for introducing a chelate group into the side chain of the polymer constituting the base film, for example, a method for introducing iminodiacetic acid groups into the side chain of polyethylene, is to irradiate the polyethylene film with an electron beam or the like, and then evaporate the styrene. A method of grafting in a phase and then reacting with iminodiacetic acid is adopted.

また、あらかじめポリエチレン膜に電子線等を照射後、
グリシジルメタクリレートを気相中でグラフトさせ、そ
の後イミノジ酢酸を付加する方法も好ましい方法である
In addition, after irradiating the polyethylene film with an electron beam, etc.,
Another preferred method is to graft glycidyl methacrylate in the gas phase and then add iminodiacetic acid.

前記キレート基を基材膜へ導入するには、膜に成形する
前の重合体に導入することもできるが、膜に成形した後
膜の内外面及び孔の表面部に化学的に付加結合させる方
法が好ましい。キレート基は出来るだけ均一に、膜の各
表面に結合させるのが望ましいが、膜の孔の表面に優先
的に結合させた方が良い場合もある。
In order to introduce the chelate group into the base membrane, it is possible to introduce it into the polymer before it is formed into a membrane, but after it is formed into a membrane, it can be chemically added and bonded to the inner and outer surfaces of the membrane and the surface of the pores. The method is preferred. It is desirable that the chelate group be bonded to each surface of the membrane as uniformly as possible, but it may be preferentially bonded to the pore surfaces of the membrane in some cases.

キレート基を膜に結合するグラフト鎖としては、グリシ
ジルメタクリレートに由来するものが好ましい。
The graft chain that binds the chelate group to the membrane is preferably derived from glycidyl methacrylate.

前記キレート基を有する多孔性膜は、イオン交換樹脂に
比して比較にならないほど孔径が小さい(樹脂は数十μ
mから百μmであるのに対し、膜は5μm以下)。した
がって、前記膜のイオン除去性能(率)はイオン交換樹
脂と比べものにならないほどすぐれており、放射性同位
元素法で測定した場合、o、oippt以下まで除去可
能である。
The porous membrane having the chelate group has an incomparably smaller pore diameter than that of an ion exchange resin (the resin has a pore size of several tens of μm).
m to 100 μm, whereas the membrane is less than 5 μm). Therefore, the ion removal performance (rate) of the membrane is incomparably superior to that of ion exchange resins, and when measured by a radioisotope method, it is possible to remove ions of less than 0,00 ppt.

この事は、イオンの膜への吸着挙動がイオン交換樹脂の
場合とは大ぎく異なり、複数の重金属イオンが原水側か
ら濾水側へ層状に時間と共に膜へ吸着されること、およ
び、キレート基との吸着平衡性の相当異なる複数の重金
属イオンが含有されていても、等しく効率良く除去され
る事を示している。
This is because the adsorption behavior of ions to the membrane is very different from that of ion exchange resins, and multiple heavy metal ions are adsorbed onto the membrane over time in a layered manner from the raw water side to the filtered water side, and the chelate group This shows that even if multiple heavy metal ions are contained with considerably different adsorption equilibrium properties, they can be removed equally efficiently.

この事実は膜性での、複数の重金属イオンの除去精製の
優秀性を示すものである。膜中でのイオンと水素の平衡
による律速効果は、イオン交換樹脂の場合に比し、相当
に小さい。
This fact indicates the superiority of membrane-based purification in removing multiple heavy metal ions. The rate-limiting effect due to the balance of ions and hydrogen in the membrane is considerably smaller than in the case of ion exchange resins.

本発明では、前記キレート基を有する多孔性膜を用いて
、25℃における電気比抵抗値が17.0mΩ・011
1以上の超純水を、膜中での前記超純水のみかけの滞留
時間を0.1〜300秒、好ましくは0.2〜100秒
として濾過する。
In the present invention, using the porous membrane having the chelate group, the electrical resistivity value at 25° C. is 17.0 mΩ·011
One or more ultrapure waters are filtered with an apparent residence time of the ultrapure water in the membrane of 0.1 to 300 seconds, preferably 0.2 to 100 seconds.

みかけの滞留時間とは、濾過速度Fcv/sec、膜厚
Tcmとしたとき、T/Fで示される。
The apparent residence time is expressed as T/F, where the filtration rate is Fcv/sec and the film thickness is Tcm.

このいわゆるみかけの滞留時間の制限条件は、一般にイ
オン交換樹脂の場合に比し、圧倒的に高透過速度側にあ
ることが多い。
This so-called apparent residence time limiting condition is generally on the overwhelmingly higher permeation rate side than in the case of ion exchange resins.

T/Fが0.10秒未満では得られる水の電気比抵抗値
は目的レベルに達しない。また、300秒を越える場合
は経済性の点で好ましくない。
If the T/F is less than 0.10 seconds, the electrical resistivity value of the water obtained will not reach the desired level. Moreover, if it exceeds 300 seconds, it is not preferable from the economic point of view.

以下に本発明を実施例によって説明するが、これらは本
発明を限定するものではない。
EXAMPLES The present invention will be explained below with reference to examples, but these are not intended to limit the invention.

〔実施例〕〔Example〕

実施例 1 微粉硅酸にプシルVN3LP)22.1重量部、ジブチ
ルフタレー)(DBP)55.0重量部、ポリエチレン
樹脂粉末〔旭化成■製 5H−800グレード)23.
0重量部の組成物を予備混合した後、30ミリ2軸押出
機で中空糸状に押出した後、1゜1.1−)Uクロロエ
タン〔クロロセンVC,(商品名)〕中に60分間浸漬
し、DBPを抽出した。
Example 1 In fine powder silicic acid, 22.1 parts by weight of Psil VN3LP), 55.0 parts by weight of dibutyl phthalate (DBP), polyethylene resin powder (manufactured by Asahi Kasei ■, 5H-800 grade) 23.
After premixing 0 parts by weight of the composition, it was extruded into a hollow fiber shape using a 30 mm twin-screw extruder, and then immersed in 1°1.1-)U chloroethane [Chlorocene VC, (trade name)] for 60 minutes. , DBP was extracted.

更に温度60℃の苛性ソーダ40%水溶液中に約20分
浸漬して微粉珪酸を抽出した後、水洗、乾燥した。
Further, it was immersed in a 40% aqueous solution of caustic soda at a temperature of 60° C. for about 20 minutes to extract fine powder silicic acid, followed by washing with water and drying.

得られた多孔質の基材膜に電子加速機(加圧電圧1.5
Meν電子線電流1mA)を用いて窒素雰囲気下100
KGyで電子線を照射した後、グリシジルメタクリレー
トを気相中でほぼ完全にグラフトさせて洗浄乾燥した。
An electron accelerator (pressure voltage 1.5
Meν electron beam current 1 mA) under nitrogen atmosphere
After irradiating with an electron beam using KGy, glycidyl methacrylate was almost completely grafted in the gas phase, followed by washing and drying.

グリシジルメタクリレートの付加量はもとの基材膜1グ
ラム当り1 g (7,0ミリ当量)であった(重量法
によった)。
The amount of glycidyl methacrylate added was 1 g (7.0 meq.) per gram of the original base film (according to the gravimetric method).

つぎに、炭酸ナトリウムでpHを12に調整したイミノ
ジ酢酸ナトリウムの0.4mol/1水溶液中に、この
グラフト膜を浸して80℃で24時間反応させ、中和後
水洗してイミノジ酢酸基が多孔性膜Ig(乾燥状態での
測定値)当り0.7ミリモル(1,4ミリ当量)結合し
た多孔性膜を得た。得られた多孔性膜は内径0.7wu
n、厚さ0.25mm、空孔率50%、平均孔径肌20
μmであった。なお、イミノジ酢酸基の定量は、重量法
とコバルトイオン吸着平衡法の2つから計算した。
Next, this graft membrane was immersed in a 0.4 mol/1 aqueous solution of sodium iminodiacetate whose pH was adjusted to 12 with sodium carbonate, and reacted at 80°C for 24 hours. After neutralization, the membrane was washed with water to form porous iminodiacetic acid groups. A porous membrane was obtained in which 0.7 mmol (1.4 milliequivalent) was bound per membrane Ig (measured in dry state). The obtained porous membrane had an inner diameter of 0.7 wu.
n, thickness 0.25mm, porosity 50%, average pore size 20
It was μm. Note that the quantitative determination of iminodiacetic acid groups was calculated using two methods: a gravimetric method and a cobalt ion adsorption equilibrium method.

上記中空糸状多孔性膜2000本を、2コのノズルを有
する外径3インチのポリスルホン製外筒へ収納し、膜の
有効長110cmのモジュールを組み立てた。ここでモ
ジュールとは、膜の両端部において膜束と外筒端部がエ
ポキシ樹脂で液密にシールされ、膜は両端面において開
口して、外筒端部に0リングを介して取り付けられたノ
ズルを有するキャップか形成する空間と連通し、かつ外
部と通じている従来より公知の濾過装置である。
2,000 of the above hollow fiber porous membranes were housed in a polysulfone outer cylinder having an outer diameter of 3 inches and having two nozzles, and a module with an effective membrane length of 110 cm was assembled. Here, the module refers to a membrane bundle and an outer cylinder end that are liquid-tightly sealed with epoxy resin at both ends of the membrane, and the membrane is open at both end faces and attached to the outer cylinder end via an O-ring. This is a conventionally known filtration device that communicates with a space formed by a cap with a nozzle and communicates with the outside.

供給用水として、前処理後逆浸透膜、UV、ポリンシャ
ーおよび限外濾過膜で処理された、以下の水質を有する
超純水を使用した。
As the feed water, ultrapure water having the following water quality was used, which had been pretreated with a reverse osmosis membrane, UV, Porinscher, and an ultrafiltration membrane.

第 表 供給用超純水の水質 25℃における電気比抵抗値”  17.5 mΩ・1
Feイオン濃度” (ppt)       45Cu
イオン濃度 (ppt)      20Znイオン濃
度 (ppt)       251)栗田工業■製 
KX−4による測定値2) 1.C,P、質量分析計(
セイコー電子工業型5PQ6500 )による測定値 この超純水を前記モジュールへ供給し、下記の条件で濾
過処理した。濾過精製したのちの水質を第1表に示す。
Table 1: Water quality of ultrapure water for supply Electrical specific resistance value at 25℃ 17.5 mΩ・1
Fe ion concentration” (ppt) 45Cu
Ion concentration (ppt) 20Zn ion concentration (ppt) 251) Manufactured by Kurita Industries ■
Measured value by KX-4 2) 1. C, P, mass spectrometer (
This ultrapure water was supplied to the module and filtered under the following conditions. Table 1 shows the water quality after filtration and purification.

注)検出限界値 : 数pp+ (1,C,P、質量分
析計による)比較例 1 濾過条件を第1表のようにした以外は実施例1を繰返し
た。結果を第1表に示す。
Note) Detection limit value: several pp+ (1, C, P, by mass spectrometer) Comparative Example 1 Example 1 was repeated except that the filtration conditions were changed as shown in Table 1. The results are shown in Table 1.

比較例2 モジュールのかわりに、ミリポア社製のミクロフィルタ
ー、デュラポアCVGL 、01 TP3を用いた以外
は実施例1と同一の濾過を行った。結果を第1表に示す
Comparative Example 2 Filtration was performed in the same manner as in Example 1, except that a microfilter manufactured by Millipore, Durapore CVGL, 01 TP3 was used instead of the module. The results are shown in Table 1.

〔本発明の効果〕[Effects of the present invention]

本発明によって、半導体工業における今後の高集積化に
適応した超純水の製造が可能になり、該工業における物
の品質向上に役立つ事が期待される。
The present invention makes it possible to produce ultrapure water that is compatible with future high integration in the semiconductor industry, and is expected to be useful in improving the quality of products in this industry.

特許出願人  旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】 1、25℃における電気比抵抗値が17.0mΩ・cm
以上の超純水を、重金属イオンとキレート的に結合しう
る官能基を膜および孔の表面に有する多孔性膜を用いて
、膜の内部での上記超純水のみかけの滞留時間を0.1
〜300秒として濾過する超純水精製方法 2、多孔性膜が、膜1g当り0.3ミリ当量以上のイミ
ノジ酢酸基が膜および孔の表面に化学的に結合されたも
のである請求項1記載の方法
[Claims] Electrical specific resistance value at 1.25°C is 17.0 mΩ・cm
Using a porous membrane having functional groups capable of chelating with heavy metal ions on the surface of the membrane and pores, the ultrapure water has an apparent residence time of 0. 1
Ultrapure water purification method 2, in which the porous membrane is filtered for ~300 seconds, Claim 1, wherein the porous membrane has iminodiacetic acid groups chemically bonded to the surface of the membrane and the pores in an amount of 0.3 milliequivalent or more per gram of the membrane. How to describe
JP19477190A 1990-07-25 1990-07-25 Purification of ultra-pure water Pending JPH0483585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19477190A JPH0483585A (en) 1990-07-25 1990-07-25 Purification of ultra-pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19477190A JPH0483585A (en) 1990-07-25 1990-07-25 Purification of ultra-pure water

Publications (1)

Publication Number Publication Date
JPH0483585A true JPH0483585A (en) 1992-03-17

Family

ID=16329973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19477190A Pending JPH0483585A (en) 1990-07-25 1990-07-25 Purification of ultra-pure water

Country Status (1)

Country Link
JP (1) JPH0483585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884721B2 (en) * 1997-12-25 2005-04-26 Shin-Etsu Handotai Co., Ltd. Silicon wafer storage water and silicon wafer storage method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884721B2 (en) * 1997-12-25 2005-04-26 Shin-Etsu Handotai Co., Ltd. Silicon wafer storage water and silicon wafer storage method

Similar Documents

Publication Publication Date Title
US5087372A (en) Method for removing heavy metal ions from contaminated water and a porous membrane usable therefor
WO2014192883A1 (en) Composite semipermeable membrane
US10918998B2 (en) Functionalized single-layer graphene-based thin film composite and method of producing the same
EP1827664B1 (en) Membrane post treatment
CA2633936A1 (en) Hydrophilic, composite, microporous membrane and its production method
KR20180123663A (en) Ultrapure water production system
KR20110056672A (en) High chlorine resistant and hydrophilic reverse osmosis membrane and method of preparing the same
JP2686949B2 (en) Selective adsorption functional microfilter and its manufacturing method
JP2796995B2 (en) Anion-selective adsorptive porous membrane and its production method
JPH0321390A (en) Removal of heavy metal ion in water
JPH0483585A (en) Purification of ultra-pure water
JP3673452B2 (en) Pollution-resistant porous filtration membrane
JPS63240902A (en) Treating method
JP3602637B2 (en) Manufacturing method of hollow fiber membrane for water purifier
JP3017244B2 (en) Method for simultaneously removing multiple heavy metal ions
JP2733287B2 (en) Method for simultaneously removing multiple heavy metal ions
AU2005312347B2 (en) Membrane post treatment
JPH02293083A (en) Production of ultrapure water
JPH02233193A (en) Pure water preparation method
CN113385048B (en) High-performance composite nanofiltration membrane and preparation method thereof
JP2802648B2 (en) Cation-selective adsorptive porous membrane and its production method
JPH022863A (en) Production of anion-charged polyolefin resin porous film
JPH0463195A (en) Production of ultrapure water
JPH06343843A (en) Fluorinated hydrophilic fine porous membrane and water treating method using the same
JPS62201604A (en) Method for removing cobalt ion