Nothing Special   »   [go: up one dir, main page]

JP3673452B2 - Pollution-resistant porous filtration membrane - Google Patents

Pollution-resistant porous filtration membrane Download PDF

Info

Publication number
JP3673452B2
JP3673452B2 JP2000200521A JP2000200521A JP3673452B2 JP 3673452 B2 JP3673452 B2 JP 3673452B2 JP 2000200521 A JP2000200521 A JP 2000200521A JP 2000200521 A JP2000200521 A JP 2000200521A JP 3673452 B2 JP3673452 B2 JP 3673452B2
Authority
JP
Japan
Prior art keywords
membrane
water
porous
filtration device
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000200521A
Other languages
Japanese (ja)
Other versions
JP2002018245A (en
Inventor
大地 坂下
淳一 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000200521A priority Critical patent/JP3673452B2/en
Publication of JP2002018245A publication Critical patent/JP2002018245A/en
Application granted granted Critical
Publication of JP3673452B2 publication Critical patent/JP3673452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、用水や排水等の流体中に存在する粒子を濾過除去するために用いられる多孔質濾過膜及びその運用方法に関するものである。
【0002】
【従来の技術】
従来、工業用水や排水中の微粒子を除去する手段としては、凝集沈殿や濾過をそれぞれ単独で又は組み合わせて用いられてきた。しかしながら、これら従来の除去技術では、除去できる粒子径に限界があり、せいぜい10μm程度の大きさの粒子までを除去できる程度で、それ以下の微粒子の除去には適用できなかった。
【0003】
近年、半導体産業等の精密産業に用いられる超純水処理装置などにおいては、直径1μm以下の微粒子まで濾過除去することのできる有機高分子の中空糸やフィルム状の微多孔膜が多用されている。
【0004】
一方、飲料水の安全性に対する関心の高まり、環境汚染に対する危惧、省資源・省エネルギー・省スペースを求める社会的背景、そして技術的な進歩により、従来の凝集沈殿や濾過プロセスに代わって、多孔膜による処理プロセスを導入する気運が高まっている。しかしながら、純水や超純水など比較的清澄な水の濾過に用いられてきた多孔膜を、より汚染されている排水などの濾過に使用するにあたっては、その耐汚染性が問題となる。
【0005】
純水・超純水処理に用いられてきた多孔膜は有機高分子のものが多い。これらの膜は、処理対象水の水質、膜の構造や材質などによって汚染の度合いは若干異なるが、概して汚染し易く、及び/又は、逆洗により初期差圧まで回復しないので、汚染度の高い排水等の濾過処理に用いた場合には、定期的に逆洗を行いながら運転を行っても、徐々に運転差圧が上昇して通水不能に陥ってしまう場合が多かった。このような状況に至った膜は、薬液洗浄を行うのが通常であるが、この場合、膜は次亜塩素酸ナトリウムのような強力な酸化剤に高濃度で曝されるので、膜の劣化が起こる場合も多かった。
【0006】
膜を親水化処理することによりその耐汚染性が高められるという知見があり、多孔膜の構成材料の中に親水性の高分子を混合したり、親水性の高分子を膜表面に塗布することにより膜の耐汚染性を高めることが提案されている。しかしながら、前者の場合には、親水性高分子の割合を増加させると膜の強度が低下するといった問題があり、また後者の場合には、当該膜を繰り返し使用するにつれて塗布された高分子が流失して、表面親水化の効果が持続しないなどの問題点があった。
【0007】
また膜基材を親水化する手段としては、プラズマグラフトや光グラフト等により親水性のモノマーをグラフトする手段が考えられる。この方法では基材の多孔膜と親水性のグラフト鎖が共有結合するので、グラフト部分の脱落はない。また、基材表面にしかラジカルが生成しないので、表面の改質に向いている。しかしながら、プラズマや光ではエネルギーが小さいので、孔の内部にまで親水性モノマーをグラフトすることができない。したがって、孔の内部の親水化が不十分になるために、孔の内部で微粒子の閉塞が起き易く、耐汚染性の向上にはあまり有効でない。
【0008】
【発明が解決しようとする課題】
以上のような状況のため、優れた耐汚染性を具備した多孔質濾過膜に対する要求が高まっている。
【0009】
【課題を解決するための手段】
本発明は、上記の課題を解決するものであり、その要旨は、有機高分子よりなる多孔膜に、特にその表面のみならず孔の内部にも負の電荷を付与したことを特徴とする耐汚染性多孔質濾過膜に関する。
【0010】
水中に存在する微粒子は、通常、負に帯電している。したがって、多孔膜の表面及び孔内部に負の電荷を付与しておけば、微粒子は静電的に反発し、これにより汚染物質が多孔膜に蓄積することを抑えることができる。また、微粒子が蓄積しても、逆洗等の洗浄操作により汚染物質を容易に除去することができる。
【0011】
本発明において多孔膜基材として用いることのできるものとしては、多孔性中空糸膜、多孔性平膜、織布又は不織布を挙げることができる。また、本発明を適用することのできる濾過膜の分離粒径としては、500μm以下、好ましくは10μm以下、更に好ましくは0.5μm以下のものが好ましい。多孔性中空糸膜、多孔性平膜が、本発明の効果を最も大きく発揮するものであるが、織布や不織布を多孔膜基材として用いても、本発明の効果を発揮することができる。これは、織布や不織布は孔のサイズが数μm〜数千μmであり、多孔性中空糸膜、多孔性平膜の1μm以下と比べてかなり大きいので、微粒子の閉塞の効果は異なるが、表面を負に帯電させて微粒子の蓄積を抑える効果は同様のためである。したがって、織布や不織布を多孔膜基材として用いる態様も本発明の範囲内に含まれる。
【0012】
本発明において、多孔膜基材に負の電荷を付与する手段としては、放射線グラフト重合法を利用して、カチオン交換基を有するモノマーを多孔質基材にグラフト重合するか、或いはカチオン交換基に転換可能な基を有するモノマーを多孔膜基材にグラフト重合した後にこれをカチオン交換基に転換することにより、カチオン交換基を多孔膜基材に導入するという方法を採用することができる。
【0013】
本発明において多孔膜基材に負の電荷を付与するために導入するカチオン交換基としては、カルボキシル基、スルホン酸基、リン酸基を挙げることができる。これらカチオン交換基を多孔膜に導入すると、膜が負の電荷を持つようになる。これらの中で、電荷の強さはカルボキシル基が一番弱く、スルホン酸基が最も大きい。
【0014】
本発明の目的のために好適に用いることのできる放射線グラフト重合法において、用いることのできる放射線としては、α線、β線、γ線、電子線、紫外線などを挙げることができるが、本発明において用いるのにはγ線や電子線が適している。γ線や電子線は、エネルギーが数百keV〜数MeVと非常に高く、多孔膜基材の表面のみならず孔の内部においても均一にラジカルを生成させてグラフト重合の場を生成させることができるので、微細孔の内部にまでカチオン交換基を導入して負の電荷を付与することができる。
【0015】
放射線グラフト重合法には、グラフト用基材に予め放射線を照射した後、重合性単量体(グラフトモノマー)と接触させて反応させる前照射グラフト重合法と、基材とモノマーの共存下に放射線を照射する同時照射グラフト重合法とがあるが、いずれの方法も本発明において用いることができる。また、モノマーと基材との接触方法により、モノマー溶液に基材を浸漬させたまま重合を行う液相グラフト重合法、モノマーの蒸気に基材を接触させて重合を行う気相グラフト重合法、基材をモノマー溶液に浸漬した後、モノマー溶液から取り出して気相中で反応を行わせる含浸気相グラフト重合法などが挙げられるが、いずれの方法も本発明において用いることができる。
【0016】
上述したように、本発明において多孔膜基材として用いることのできる有機高分子材料としては、ポリオレフィン系の有機高分子基材が好ましく用いられる。ポリオレフィン系の有機高分子基材は、放射線に対して崩壊性ではないので、放射線グラフト重合法によってグラフト側鎖を導入する目的に用いるのに適している。本発明において多孔膜基材を構成する有機高分子材料として好適に用いることのできるポリオレフィン系高分子材料の具体例としては、ポリエチレン及びポリプロピレンに代表されるポリオレフィン類、PTFE、塩化ビニル等に代表されるハロゲン化ポリオレフィン類、エチレン−四フッ化エチレン共重合体及びエチレン−ビニルアルコール共重合体(EVA)等に代表されるオレフィン−ハロゲン化オレフィン共重合体などが挙げられるが、これらに限定されない。
【0017】
本発明において用いることのできるカチオン交換基を有するモノマーとしては、アクリル酸、メタクリル酸、スチレンスルホン酸ナトリウム、メタリルスルホン酸ナトリウム、アリルスルホン酸ナトリウムなどを挙げることができる。これらのモノマーを用いて放射線グラフト重合を行うことにより、多孔膜基材に直接カチオン交換基を導入することができる。また、本発明において用いることのできるカチオン交換基に転換可能な基を有するモノマーとしては、アクリロニトリル、アクロレイン、スチレン、クロロメチルスチレン、メタクリル酸グリシジルなどが挙げられる。例えば、メタクリル酸グリシジルを放射線グラフト重合によって不織布基材に導入し、次に亜硫酸ナトリウムなどのスルホン化剤を反応させることによってスルホン酸基を導入することができる。
【0018】
本発明に係る耐汚染性多孔質濾過膜においては、カチオン交換基を導入して負の電荷を付与することにより、負に帯電した微粒子を反発させ、膜表面に蓄積するのを妨げる。更に、同種の電荷の反発によって多孔膜基材に導入されたグラフト鎖が立ち上がる。このため、以下に説明するように、多孔膜を洗浄する際に洗浄水のpH及び/又は塩濃度を適宜変化させることによって、洗浄を極めて効率よく行うことが可能になる。
【0019】
膜処理プロセスにおいて、通水時にグラフト鎖を膨潤させておき、逆洗等の洗浄時に収縮させることができれば、多孔膜の孔径を、通水時には小さく、逆洗時には大きくすることができ、濾過性能の向上と逆洗効率の向上という通常は相反する目的を同時に達成することができる。例えば、カチオン交換基がカルボキシル基の場合、通水時にNa型やK型に調製しておき、逆洗時に逆洗水のpHを、pH4以下、好ましくはpH3以下程度の酸性にして逆洗を行うと、多孔膜の孔径が広がり、逆洗時の水量を通水時よりも大きくすることができる。これは、通水時にカルボキシル基をNa型又はK型に調製することにより、−COO-基同士が反発して隣接するカルボキシル基はもとより、周辺のグラフト鎖のカルボキシル基との間をも反発させ、更にNaイオン又はKイオンがその周りに水を配位させたまま吸着するので、グラフト鎖全体が膨潤し、この結果通水時に孔径が小さくなるのに対して、逆洗水をpH4以下、好ましくはpH3以下程度の酸性にすると、カルボキシル基が−COOH型に変化し、周辺の−COOH基と水素結合を形成するためグラフト鎖が収縮し、この結果孔径が大きくなって逆洗時の水量が通水時よりも大きくなるためである。ここで重要なことは、放射線グラフト重合の反応場が多孔膜基材の表面ばかりでなく、微細孔の内部にも存在することである。これは、多孔膜の孔径の変化には、多孔膜基材表面のグラフト鎖の膨潤・収縮だけでなく、基材の微細孔内部に生成したグラフト鎖の膨潤・収縮も大きく関与しているからである。洗浄水(逆洗水)のpHを上記に示すような酸性pHに調節するために用いることのできる酸としては特に限定されないが、鉱酸が望ましく、具体例としては、塩酸、硫酸、硝酸、リン酸などが挙げられる。
【0020】
スルホン酸基は、pHの値如何に関わらず解離しているので、pHの変化に伴う孔径の変化は小さい。しかし、通水時と逆洗時の水の溶解塩類濃度を変化させることにより、孔径を変化させることができる。これは、逆洗水の溶解塩類濃度を高くすると、浸透圧によりイオン交換基の周りに配位していた水が奪われるので、グラフト鎖が収縮するためである。リン酸基は、中酸性で、カルボキシル基とスルホン酸基の中間に位置するので、逆洗水のpHや溶解塩類濃度を適宜選択することができる。もちろん、逆洗水のpHと溶解塩類濃度とを同時に変化させてもよい。なお、この目的で用いることのできる塩類としては、食塩などのアルカリ金属塩を挙げることができる。逆洗水の溶解塩類濃度は、0.1〜10重量%、好ましくは0.2〜5重量%に調節することが好ましい。
【0021】
このように、本発明に係る耐汚染性多孔質濾過膜は、通水時に汚染物質の蓄積が起こりにくいのみならず、洗浄の際には、洗浄水のpH及び/又は塩濃度を適宜変化させることによって、洗浄を極めて効率よく行うことが可能である。即ち、孔の中に侵入した汚染物質を、濾過膜の孔径を変化(拡大)させることによって、洗浄によって離脱され易くすることができる。また、酸による有機物などの分解による化学的洗浄効果と、上記孔径変化による物理的洗浄効果とが同時に得られ、洗浄効率が格段に向上する。更には、グラフト率を変えることにより、上記の効果の度合いを容易に変化させることができるので、用途に応じた濾過膜の性能設計が可能になる。
【0022】
なお、グラフト鎖を膨潤させたまま通水を行うと、グラフト重合前の通水流量よりも小さくなるので、予め多孔膜基材の通水流量が大きいものを選択するなどの考慮が必要である。
【0023】
なお、本発明に係る濾過膜を組込んだ膜濾過装置において、上記のように洗浄水のpH及び/又は溶解塩類濃度を適宜調節するためには、膜濾過装置を、本発明に係る耐汚染性多孔質濾過膜、前記濾過膜を通して被処理流体を通過させるための通液手段、並びに前記濾過膜の2次側に洗浄水を供給して逆洗を行うための膜洗浄手段を具備すると共に、前記洗浄水に酸及び/又は塩類を供給する酸/塩類供給手段を有するように構成すればよい。また、濾過装置を簡便なものにするために、膜の洗浄は膜を取り外して行うように構成することもできる。
【0024】
【実施例】
以下の実施例によって、本発明をより具体的に説明する。これらの実施例は、本発明を限定するものではない。
【0025】
実施例1
グラフト中空糸の製造
市販のポリエチレン中空糸フィルタを解体し、その中から中空糸を取り出した。この中空糸に、窒素雰囲気下でガンマ線を160kGy照射した。次に、中空糸を、予め窒素バブリングにより酸素を除いたアクリル酸50%水溶液に浸漬し、40℃で3時間グラフト重合反応させた。反応後の中空糸を80℃の温水で洗浄し、乾燥後の重量よりグラフト率(重量増加率)を算出した。グラフト率は43%であった。
【0026】
このグラフト中空糸を、5%水酸化ナトリウム水溶液に浸漬し、カルボキシル基をNa型に変換した。
【0027】
中空糸モジュールの製造
グラフト処理済みのNa型中空糸を1本取り出し、20cmにカットした後、内径5mmの塩ビチューブ内に入れた。両端を図1のようにエポキシ系の接着剤で接着して、中空糸の一端が接着剤によって閉じられており、他端はチューブより約15mm長く外側に出るように配置して固定された、外圧式の1本中空糸モジュールを作成した。このモジュールは、チューブ内に原水を導入すると、中空糸の外側から内側に通水されて、中空糸の他端から流出されるように構成されている。また、比較用として、グラフト処理を行っていない中空糸を用いて同様の1本中空糸モジュールを作成した。
【0028】
濾過試験
実験系統図を図2に示す。原水として藤沢市の水道水を用いた。この水道水を、窒素によって加圧できるようになっている原水タンクに入れた。このタンクから中空糸モジュールへ配管し、1kg/cm2の圧力で24時間濾過を行った。透過水量を、通水開始から30分の時点と24時間経過後の時点で測定して、透過水量の低下率を算出した。なお、タンクから中空糸モジュールへの配管を複数分岐して、同時に複数の濾過試験が実施できるようにした。結果を表1に示す。
【0029】
逆洗による性能回復試験
濾過の終了した中空糸モジュールを取り外し、濾過水流出側にシリンジを挿入し、予め調製済みの逆洗水を圧力3kg/cm2で5分間注入した。逆洗水としては、(1)水道水;(2)塩酸でpH3に調製した水道水;(3)食塩を0.5%となるように溶解した水道水;(4)食塩を加えて0.5%とした水道水に塩酸を加えてpH3に調製した水道水;をそれぞれ用いた。
【0030】
濾過−逆洗のサイクルを10回繰り返し、逆洗後の透過水量が1サイクル目の初期透過水量と比べてどの程度低下するかを測定した。なお、透過水量として、モジュールへ通水開始後30分の透過水量(初期透過水量)と24時間経過後の透過水量の2点を測定した。結果を表1に示す。
【0031】
【表1】

Figure 0003673452
【0032】
モジュールNo.1〜4は未グラフト中空糸を用いたものであるが、10サイクル目の初期透過水量の回復率は、逆洗水として食塩水を用いた場合にやや良い値が得られているが、それでも約30%と小さい値であった。
【0033】
グラフト中空糸は、グラフトによる膨潤のため、未使用時での透過水量は約170ml/h(未グラフト中空糸では約250ml/h)に低下した。
【0034】
グラフト中空糸では、水道水を逆洗水として用いたNo.5〜7の初期透過水量の回復率が約40%と、No.1〜4の比較例よりも大きな値であった。更に、逆洗水として、酸性水(No.8〜10)、食塩水(No.11〜13)、酸性とした食塩水(No.14〜15)を使用した場合には、いずれも初期透過水量の回復率が約50%と、比較例よりも高い値を示した。なお、グラフト中空糸モジュールの1サイクル目の初期透過水量は約170ml/hと比較例の約250ml/hと比較して小さかったが、10サイクル目では70〜80ml/hと、未グラフト中空糸モジュールの約60〜75ml/hと比較してむしろ高い値になった。これは、更にサイクルを重ねた場合に、本発明のグラフト中空糸モジュールの方が初期透過水量の回復率が高くなることを示唆している。
【0035】
これらの結果により、グラフト後の初期透過水量を所定量確保できるように、多孔膜基材の材質、装置条件を設定すれば、本発明により、長期間透過水量の維持ができることが明らかとなった。
【0036】
【発明の効果】
本発明によれば、耐汚染性が向上すると共に、逆洗による性能回復能力に優れた多孔質濾過膜が提供され、飲料水の安全性に対する関心の高まり、環境汚染に対する危惧、省資源・省エネルギー・省スペースを求める社会的背景、そして技術的な進歩に基づいて、より高性能の多孔膜による用水・排水等の濾過処理プロセスへの要求が高まっている現在においてその産業的価値は大である。
【図面の簡単な説明】
【図1】本発明の実施例において用いた1本中空糸モジュールの概念図である。
【図2】本発明の実施例において用いた濾過逆洗試験装置の系統図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous filtration membrane used for filtering and removing particles present in a fluid such as irrigation water and wastewater, and an operation method thereof.
[0002]
[Prior art]
Conventionally, as a means for removing fine particles in industrial water and waste water, coagulation precipitation and filtration have been used alone or in combination. However, these conventional removal techniques have a limit in the particle size that can be removed, and can only be removed up to a particle size of about 10 μm, and cannot be applied to the removal of fine particles smaller than that.
[0003]
In recent years, in an ultrapure water treatment apparatus used in the precision industry such as the semiconductor industry, an organic polymer hollow fiber or a film-like microporous membrane capable of filtering and removing fine particles having a diameter of 1 μm or less is frequently used. .
[0004]
On the other hand, due to the growing concern about the safety of drinking water, the fear of environmental pollution, the social background for resource saving, energy saving and space saving, and technological advancement, the porous membrane has replaced the conventional coagulation sedimentation and filtration process. Motivation to introduce a treatment process by is increasing. However, when a porous membrane that has been used for filtering relatively clear water such as pure water and ultrapure water is used for filtering more contaminated wastewater, the contamination resistance becomes a problem.
[0005]
Many porous membranes that have been used for pure water / ultra pure water treatment are organic polymers. The degree of contamination of these membranes varies slightly depending on the quality of the water to be treated, the structure and material of the membrane, but is generally easily contaminated and / or does not recover to the initial differential pressure by backwashing, so the degree of contamination is high. When used for filtration of waste water or the like, even if the operation was performed while regularly backwashing, the operation differential pressure gradually increased and water could not pass. A membrane that has reached such a situation is usually washed with a chemical solution. In this case, the membrane is exposed to a strong oxidizing agent such as sodium hypochlorite at a high concentration. Often occurred.
[0006]
There is knowledge that the membrane can be improved in soil resistance by hydrophilizing, and mixing hydrophilic polymer in the constituent material of the porous membrane or applying hydrophilic polymer to the membrane surface It has been proposed to improve the contamination resistance of the film. However, in the former case, there is a problem that the strength of the film decreases when the ratio of the hydrophilic polymer is increased. In the latter case, the applied polymer is washed away as the film is repeatedly used. Thus, there is a problem that the effect of surface hydrophilization is not sustained.
[0007]
As a means for hydrophilizing the membrane substrate, a means for grafting a hydrophilic monomer by plasma grafting, photografting or the like can be considered. In this method, since the porous membrane of the substrate and the hydrophilic graft chain are covalently bonded, the graft portion does not fall off. Further, since radicals are generated only on the surface of the substrate, it is suitable for surface modification. However, since the energy is small in plasma or light, the hydrophilic monomer cannot be grafted into the pores. Therefore, the pores are not sufficiently hydrophilized, so that the fine particles are easily clogged inside the pores, which is not very effective for improving the stain resistance.
[0008]
[Problems to be solved by the invention]
Due to the above situation, there is an increasing demand for porous filtration membranes with excellent contamination resistance.
[0009]
[Means for Solving the Problems]
The present invention solves the above problems, and the gist of the present invention is that a negative charge is imparted not only to the surface of the porous film made of an organic polymer, but also to the inside of the pores. The present invention relates to a fouling porous filtration membrane.
[0010]
The fine particles present in the water are usually negatively charged. Therefore, if a negative charge is imparted to the surface of the porous film and the inside of the pores, the fine particles repel electrostatically, thereby suppressing the accumulation of contaminants in the porous film. Even if the fine particles accumulate, contaminants can be easily removed by a washing operation such as back washing.
[0011]
Examples of the porous membrane substrate that can be used in the present invention include a porous hollow fiber membrane, a porous flat membrane, a woven fabric, and a nonwoven fabric. Further, the separation particle size of the filtration membrane to which the present invention can be applied is preferably 500 μm or less, preferably 10 μm or less, more preferably 0.5 μm or less. The porous hollow fiber membrane and the porous flat membrane exhibit the effects of the present invention to the greatest extent. Even if a woven fabric or a nonwoven fabric is used as the porous membrane substrate, the effects of the present invention can be exhibited. . This is because the woven fabric and non-woven fabric have a pore size of several μm to several thousand μm, which is considerably larger than 1 μm or less of the porous hollow fiber membrane and the porous flat membrane, but the effect of blocking fine particles is different. The effect of suppressing the accumulation of fine particles by negatively charging the surface is the same. Therefore, the aspect using a woven fabric or a nonwoven fabric as a porous membrane base material is also included in the scope of the present invention.
[0012]
In the present invention, as a means for imparting a negative charge to the porous membrane substrate, a monomer having a cation exchange group is graft-polymerized to the porous substrate using a radiation graft polymerization method, or the cation exchange group is converted into a cation exchange group. A method of introducing a cation exchange group into a porous membrane substrate by graft-polymerizing a monomer having a convertible group onto the porous membrane substrate and then converting the monomer into a cation exchange group can be employed.
[0013]
In the present invention, examples of the cation exchange group introduced for imparting a negative charge to the porous membrane substrate include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. When these cation exchange groups are introduced into the porous membrane, the membrane becomes negatively charged. Among these, the strength of the charge is the weakest in the carboxyl group and the largest in the sulfonic acid group.
[0014]
Examples of radiation that can be used in the radiation graft polymerization method that can be suitably used for the purpose of the present invention include α rays, β rays, γ rays, electron beams, and ultraviolet rays. Γ rays and electron beams are suitable for use in the above. γ rays and electron beams have very high energy of several hundred keV to several MeV, and can generate radicals uniformly in the pores as well as the surface of the porous membrane substrate to generate a graft polymerization field. Therefore, a negative charge can be imparted by introducing a cation exchange group into the micropores.
[0015]
The radiation graft polymerization method includes a pre-irradiation graft polymerization method in which a graft substrate is irradiated with radiation in advance and then brought into contact with a polymerizable monomer (graft monomer) to react with the radiation. There are simultaneous irradiation graft polymerization methods of irradiating any one of them, and any method can be used in the present invention. In addition, by the contact method of the monomer and the base material, a liquid phase graft polymerization method for performing polymerization while the base material is immersed in the monomer solution, a gas phase graft polymerization method for performing the polymerization by contacting the base material with the vapor of the monomer, Examples of the method include an impregnation gas phase graft polymerization method in which a substrate is immersed in a monomer solution and then taken out from the monomer solution and reacted in a gas phase. Any method can be used in the present invention.
[0016]
As described above, as the organic polymer material that can be used as the porous membrane substrate in the present invention, a polyolefin-based organic polymer substrate is preferably used. Since the polyolefin-based organic polymer base material is not disintegratable with respect to radiation, it is suitable for the purpose of introducing a graft side chain by a radiation graft polymerization method. Specific examples of polyolefin polymer materials that can be suitably used as the organic polymer material constituting the porous membrane substrate in the present invention include polyolefins represented by polyethylene and polypropylene, PTFE, vinyl chloride and the like. Examples thereof include, but are not limited to, olefin-halogenated olefin copolymers such as ethylene-tetrafluoroethylene copolymer and ethylene-vinyl alcohol copolymer (EVA).
[0017]
Examples of the monomer having a cation exchange group that can be used in the present invention include acrylic acid, methacrylic acid, sodium styrenesulfonate, sodium methallylsulfonate, and sodium allylsulfonate. By performing radiation graft polymerization using these monomers, a cation exchange group can be directly introduced into the porous membrane substrate. Examples of the monomer having a group that can be converted into a cation exchange group that can be used in the present invention include acrylonitrile, acrolein, styrene, chloromethylstyrene, and glycidyl methacrylate. For example, glycidyl methacrylate can be introduced into a nonwoven fabric substrate by radiation graft polymerization and then sulfonic acid groups can be introduced by reacting with a sulfonating agent such as sodium sulfite.
[0018]
In the contamination-resistant porous filtration membrane according to the present invention, by introducing a cation exchange group and imparting a negative charge, the negatively charged fine particles are repelled and prevented from accumulating on the membrane surface. Furthermore, the graft chain introduced into the porous membrane substrate rises due to repulsion of the same kind of charge. For this reason, as will be described below, cleaning can be performed very efficiently by appropriately changing the pH and / or salt concentration of the cleaning water when cleaning the porous membrane.
[0019]
In the membrane treatment process, if the graft chain is swollen during water flow and can be shrunk during backwashing, etc., the pore size of the porous membrane can be reduced during water flow and increased during backwashing, and filtration performance. It is possible to achieve the contradictory objectives of improving the efficiency and backwashing efficiency at the same time. For example, when the cation exchange group is a carboxyl group, it is prepared in Na type or K type at the time of passing water, and the backwash water is made acidic at pH 4 or less, preferably about pH 3 or less during backwashing. If it carries out, the hole diameter of a porous film will spread, and the water quantity at the time of backwashing can be made larger than at the time of water flow. This is because by preparing the carboxyl group to Na type or K type during water flow, the -COO - groups repel each other and repel not only the adjacent carboxyl groups but also the carboxyl groups of the surrounding graft chains. Furthermore, since Na ions or K ions are adsorbed while water is coordinated around them, the entire graft chain swells, and as a result, the pore size is reduced when water is passed, whereas the backwash water is pH 4 or less, Preferably, when the pH is set to about 3 or less, the carboxyl group changes to -COOH type, and the graft chain shrinks to form a hydrogen bond with the surrounding -COOH group. As a result, the pore size increases and the amount of water during backwashing This is because is larger than when water is passed. What is important here is that the reaction field of radiation graft polymerization exists not only on the surface of the porous membrane substrate but also inside the micropores. This is because not only the swelling / shrinkage of the graft chain on the surface of the porous membrane substrate but also the swelling / shrinkage of the graft chain formed inside the micropores of the substrate is greatly involved in the change in the pore size of the porous membrane. It is. The acid that can be used to adjust the pH of the wash water (backwash water) to an acidic pH as shown above is not particularly limited, but a mineral acid is desirable, and specific examples include hydrochloric acid, sulfuric acid, nitric acid, Examples thereof include phosphoric acid.
[0020]
Since the sulfonic acid group is dissociated regardless of the pH value, the change in the pore diameter accompanying the change in pH is small. However, the pore size can be changed by changing the dissolved salt concentration of water during water flow and backwashing. This is because when the concentration of dissolved salt in the backwash water is increased, the water coordinated around the ion exchange group is taken away by osmotic pressure, and the graft chain contracts. Since the phosphoric acid group is intermediately acidic and located between the carboxyl group and the sulfonic acid group, the pH of the backwash water and the concentration of dissolved salts can be appropriately selected. Of course, the pH of the backwash water and the dissolved salt concentration may be changed simultaneously. Examples of salts that can be used for this purpose include alkali metal salts such as sodium chloride. The dissolved salt concentration of the backwash water is preferably adjusted to 0.1 to 10% by weight, preferably 0.2 to 5% by weight.
[0021]
As described above, the contamination-resistant porous filtration membrane according to the present invention not only hardly accumulates contaminants during water flow, but also appropriately changes the pH and / or salt concentration of washing water during washing. Therefore, cleaning can be performed very efficiently. That is, contaminants that have entered the pores can be easily removed by washing by changing (enlarging) the pore diameter of the filtration membrane. In addition, a chemical cleaning effect due to decomposition of an organic substance or the like by an acid and a physical cleaning effect due to the change in pore diameter can be obtained at the same time, and the cleaning efficiency is remarkably improved. Furthermore, since the degree of the above effect can be easily changed by changing the graft ratio, the performance of the filtration membrane can be designed according to the application.
[0022]
In addition, if water is passed while the graft chains are swollen, the flow rate before graft polymerization is smaller than that before graft polymerization, so it is necessary to consider in advance the selection of a porous membrane substrate having a high flow rate. .
[0023]
In the membrane filtration device incorporating the filtration membrane according to the present invention, in order to adjust the pH and / or the dissolved salt concentration of the washing water as described above, the membrane filtration device should be And a membrane washing means for supplying washing water to the secondary side of the filtration membrane to perform backwashing. What is necessary is just to comprise so that it may have an acid / salt supply means which supplies an acid and / or salt to the said washing water. In addition, in order to simplify the filtration device, the membrane can be cleaned by removing the membrane.
[0024]
【Example】
The following examples illustrate the present invention more specifically. These examples do not limit the invention.
[0025]
Example 1
Production of graft hollow fiber A commercially available polyethylene hollow fiber filter was disassembled, and the hollow fiber was taken out of the filter. The hollow fiber was irradiated with gamma rays at 160 kGy in a nitrogen atmosphere. Next, the hollow fiber was immersed in a 50% aqueous solution of acrylic acid from which oxygen was previously removed by nitrogen bubbling, and a graft polymerization reaction was carried out at 40 ° C. for 3 hours. The hollow fiber after the reaction was washed with warm water at 80 ° C., and the graft ratio (weight increase ratio) was calculated from the weight after drying. The graft rate was 43%.
[0026]
This graft hollow fiber was immersed in a 5% aqueous sodium hydroxide solution to convert the carboxyl group into Na type.
[0027]
Production of Hollow Fiber Module One Na-type hollow fiber that had been grafted was taken out, cut into 20 cm, and placed in a PVC tube with an inner diameter of 5 mm. As shown in FIG. 1, both ends were bonded with an epoxy-based adhesive, one end of the hollow fiber was closed by the adhesive, and the other end was arranged and fixed so that it protruded about 15 mm longer than the tube. An external pressure type single hollow fiber module was prepared. This module is configured such that when raw water is introduced into a tube, water is passed from the outside to the inside of the hollow fiber and flows out from the other end of the hollow fiber. For comparison, a similar single hollow fiber module was prepared using a hollow fiber that was not grafted.
[0028]
A filtration test experiment system diagram is shown in FIG. Fujisawa city tap water was used as raw water. The tap water was placed in a raw water tank that can be pressurized with nitrogen. The tank was piped to a hollow fiber module and filtered at a pressure of 1 kg / cm 2 for 24 hours. The permeated water amount was measured at a time point of 30 minutes from the start of water flow and at a time point after 24 hours, and the reduction rate of the permeated water amount was calculated. A plurality of pipes from the tank to the hollow fiber module were branched so that a plurality of filtration tests could be performed simultaneously. The results are shown in Table 1.
[0029]
Performance recovery test by backwashing The hollow fiber module after filtration was removed, a syringe was inserted on the filtered water outflow side, and backwashing water prepared in advance was injected at a pressure of 3 kg / cm 2 for 5 minutes. As backwash water, (1) tap water; (2) tap water adjusted to pH 3 with hydrochloric acid; (3) tap water in which salt is dissolved to 0.5%; (4) salt is added to 0 Tap water adjusted to pH 3 by adding hydrochloric acid to tap water adjusted to 5%.
[0030]
The filtration-backwash cycle was repeated 10 times, and the degree to which the permeated water amount after backwashing decreased compared to the initial permeated water amount in the first cycle was measured. In addition, as the permeated water amount, two points of a permeated water amount (initial permeated water amount) 30 minutes after the start of water flow to the module and a permeated water amount after 24 hours were measured. The results are shown in Table 1.
[0031]
[Table 1]
Figure 0003673452
[0032]
Module No. 1-4 are those using ungrafted hollow fibers, but the recovery rate of the initial permeated water amount at the 10th cycle is somewhat good when saline is used as backwash water, but still The value was as small as about 30%.
[0033]
The grafted hollow fiber swelled by grafting, so that the amount of permeated water when not used was reduced to about 170 ml / h (about 250 ml / h for the ungrafted hollow fiber).
[0034]
In the graft hollow fiber, No. 1 using tap water as backwash water. The recovery rate of the initial permeated water amount of 5 to 7 is about 40%. It was a larger value than the comparative examples of 1-4. Further, when acid water (No. 8 to 10), saline (No. 11 to 13), or acidic saline (No. 14 to 15) is used as backwash water, all of them are initially transmitted. The water recovery rate was about 50%, which was higher than that of the comparative example. The initial permeated water amount in the first cycle of the graft hollow fiber module was about 170 ml / h, which was small compared with about 250 ml / h in the comparative example. However, in the 10th cycle, 70-80 ml / h, the ungrafted hollow fiber It was rather high compared to about 60-75 ml / h of the module. This suggests that when the cycle is repeated, the graft hollow fiber module of the present invention has a higher recovery rate of the initial permeate flow rate.
[0035]
From these results, it has been clarified that the permeated water amount can be maintained for a long time according to the present invention by setting the material of the porous membrane substrate and the apparatus conditions so that a predetermined amount of the initial permeated water amount after grafting can be secured. .
[0036]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the present invention, a porous filtration membrane having improved anti-contamination properties and excellent performance recovery ability by backwashing is provided, increasing interest in safety of drinking water, fear of environmental contamination, resource saving and energy saving. -Based on the social background for space saving and technological advancement, the industrial value is large at the present time when the demand for filtration treatment processes such as water and wastewater with higher performance porous membrane is increasing. .
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a single hollow fiber module used in an example of the present invention.
FIG. 2 is a system diagram of a filtration backwash test apparatus used in an example of the present invention.

Claims (8)

有機高分子よりなる多孔膜の表面及び孔内部に負の電荷を付与した耐汚染性多孔質濾過膜、前記濾過膜を通して被処理流体を通過させるための通液手段、並びに前記濾過膜の2次側に洗浄水を供給して逆洗を行うための膜洗浄手段を具備する膜濾過装置であって、前記洗浄水に酸及び/又は塩類を供給する酸/塩類供給手段を有することを特徴とする膜濾過装置。A surface of a porous membrane made of an organic polymer and a stain-resistant porous filtration membrane having a negative charge applied to the inside of the pores, a liquid passing means for allowing a fluid to be treated to pass through the filtration membrane, A membrane filtration device comprising a membrane washing means for supplying washing water to the side to perform back washing, characterized by comprising an acid / salt supply means for supplying an acid and / or salt to the washing water Membrane filtration device. 前記多孔膜の表面及び孔内部への負の電荷の付与が、前記有機高分子の主鎖に導入された側鎖分子を介して行われている請求項1に記載の膜濾過装置。The membrane filtration device according to claim 1, wherein the negative charge is imparted to the surface of the porous membrane and the inside of the pores through side chain molecules introduced into the main chain of the organic polymer. 前記多孔膜の表面及び孔内部への負の電荷の付与が、放射線グラフト重合法を利用して、カチオン交換基を有するモノマーを多孔質基材にグラフト重合するか、或いはカチオン交換基に転換可能な基を有するモノマーを多孔膜基材にグラフト重合した後にこれをカチオン交換基に転換することにより、カチオン交換基を多孔膜基材の表面及び孔内部に導入することによって行われる請求項1又は2に記載の膜濾過装置。A negative charge can be imparted to the surface of the porous membrane and the inside of the pores by using a radiation graft polymerization method, and a monomer having a cation exchange group can be graft-polymerized on a porous substrate or converted to a cation exchange group. The method according to claim 1, wherein the monomer having a suitable group is graft-polymerized on the porous membrane substrate and then converted into a cation exchange group, thereby introducing the cation exchange group into the surface of the porous membrane substrate and inside the pores. 2. The membrane filtration device according to 2. 前記カチオン交換基が、カルボキシル基、スルホン酸基、リン酸基より選択される請求項3に記載の膜濾過装置。The membrane filtration device according to claim 3, wherein the cation exchange group is selected from a carboxyl group, a sulfonic acid group, and a phosphoric acid group. 請求項1に記載の膜濾過装置の運転方法であって、逆洗時に膜の通水量が上昇するように、洗浄水のpH及び/又は溶解塩類濃度を調節することを特徴とする前記膜濾過装置の運転方法。2. The operation method of the membrane filtration device according to claim 1, wherein the pH of the washing water and / or the dissolved salt concentration is adjusted so that the amount of water passing through the membrane increases during backwashing. How to operate the device. 前記洗浄水のpHを、pH4以下に調節する請求項5に記載の膜濾過装置の運転方法。The operation method of the membrane filtration device according to claim 5, wherein the pH of the washing water is adjusted to pH 4 or less. 前記塩類が食塩である請求項5又は6に記載の膜濾過装置の運転方法。The method for operating a membrane filtration device according to claim 5 or 6, wherein the salt is sodium chloride. 前記洗浄水中の前記塩類として、洗浄水中の食塩濃度を0.1重量% 〜10重量%に調節する請求項7に記載の膜濾過装置の運転方法。The method for operating a membrane filtration device according to claim 7, wherein the salt concentration in the wash water is adjusted to 0.1 wt% to 10 wt% as the salts in the wash water.
JP2000200521A 2000-07-03 2000-07-03 Pollution-resistant porous filtration membrane Expired - Fee Related JP3673452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000200521A JP3673452B2 (en) 2000-07-03 2000-07-03 Pollution-resistant porous filtration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000200521A JP3673452B2 (en) 2000-07-03 2000-07-03 Pollution-resistant porous filtration membrane

Publications (2)

Publication Number Publication Date
JP2002018245A JP2002018245A (en) 2002-01-22
JP3673452B2 true JP3673452B2 (en) 2005-07-20

Family

ID=18698387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000200521A Expired - Fee Related JP3673452B2 (en) 2000-07-03 2000-07-03 Pollution-resistant porous filtration membrane

Country Status (1)

Country Link
JP (1) JP3673452B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184071A (en) * 2012-03-05 2013-09-19 Chiba Univ Separation membrane and method for manufacturing the same
KR20170060642A (en) * 2015-11-24 2017-06-02 한국기계연구원 Cermic membrane having excellent fouling resistance by surface modification and water treatment method using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3966501B2 (en) * 2002-03-18 2007-08-29 オルガノ株式会社 Ultrapure water production equipment
JP4896783B2 (en) * 2007-03-20 2012-03-14 株式会社東芝 Membrane filtration system and membrane cleaning method
CN102151495B (en) * 2011-01-20 2013-04-03 银永发 Preparation method of Polyvinyl Butyral (PVB) microfiltration membrane
CN102151496B (en) * 2011-01-20 2013-04-03 成都市青白江区富发膜过滤器材有限公司 Method for preparing polyvinyl formal (PVF) micro-filtration membrane
KR101491782B1 (en) 2012-12-03 2015-02-11 롯데케미칼 주식회사 Polymer resin composition for preparing of microfilter membrane or ultrafilter membrane, preparation method of polymer filter membrane, and polymer filter membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184071A (en) * 2012-03-05 2013-09-19 Chiba Univ Separation membrane and method for manufacturing the same
KR20170060642A (en) * 2015-11-24 2017-06-02 한국기계연구원 Cermic membrane having excellent fouling resistance by surface modification and water treatment method using the same
KR102006133B1 (en) 2015-11-24 2019-08-02 한국기계연구원 Cermic membrane having excellent fouling resistance by surface modification and water treatment method using the same

Also Published As

Publication number Publication date
JP2002018245A (en) 2002-01-22

Similar Documents

Publication Publication Date Title
CN105289316B (en) A kind of preparation method of interpenetration network hydrogel filled composite seperation film
JP2749094B2 (en) Method for producing multifunctional filtration membrane having iminodiacetic acid group
JP3312634B2 (en) Chelate-type ion-adsorbing membrane and manufacturing method
JP7108622B2 (en) Method for producing ultrapure water
CN101203554A (en) Cross linking treatment of polymer membranes
WO2004099086A1 (en) Filter cartridge for fluid for treating surface of electronic device substrate
JP4064046B2 (en) Organic polymer material, method for producing the same, and heavy metal ion removing agent composed thereof
JP2003251118A (en) Filter cartridge having high performance metal capturing capacity
JP3673452B2 (en) Pollution-resistant porous filtration membrane
US20050218068A1 (en) Filter cartridge
JP2011156519A (en) Polymer water treatment film, water treatment method, and method for maintaining polymer water treatment film
JP2003251120A (en) Filter cartridge for precise filtering of fine particles/ metal impurities
CN113083030A (en) Anti-pollution high-flux modified polymer separation membrane and preparation method thereof
Cohen et al. Membrane surface nanostructuring with terminally anchored polymer chains
JP2011167606A (en) Method for producing chelate forming group-containing adsorbing material
JPH11279945A (en) Polyethylene material graft-polymerized with radiation
JPH0321390A (en) Removal of heavy metal ion in water
KR100454093B1 (en) Ion exchange textile for electrodeionization process
JP3386929B2 (en) Method for producing separation functional fiber and ion exchange fiber and gas adsorbent produced using the same
JPH05131120A (en) Electric regeneration type desalting apparatus
JPS63240902A (en) Treating method
JP2014133225A (en) Method for removing urea within pure water
JP2002346400A (en) Anion exchanger and method for manufacturing the same
JPH07106304B2 (en) Cobalt ion removal method
KR100542297B1 (en) Ultraviolet irradiation grafted ion-exchange textile and its preparing method for electrodeionization equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees