JP2686949B2 - Selective adsorption functional microfilter and its manufacturing method - Google Patents
Selective adsorption functional microfilter and its manufacturing methodInfo
- Publication number
- JP2686949B2 JP2686949B2 JP63045929A JP4592988A JP2686949B2 JP 2686949 B2 JP2686949 B2 JP 2686949B2 JP 63045929 A JP63045929 A JP 63045929A JP 4592988 A JP4592988 A JP 4592988A JP 2686949 B2 JP2686949 B2 JP 2686949B2
- Authority
- JP
- Japan
- Prior art keywords
- microfilter
- tannin
- porous membrane
- water
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001179 sorption measurement Methods 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000012528 membrane Substances 0.000 claims description 21
- 239000001648 tannin Substances 0.000 claims description 20
- 235000018553 tannin Nutrition 0.000 claims description 20
- 229920001864 tannin Polymers 0.000 claims description 20
- 150000001336 alkenes Chemical class 0.000 claims description 12
- 239000011148 porous material Substances 0.000 claims description 12
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 7
- 229920001577 copolymer Polymers 0.000 claims description 6
- 229920000098 polyolefin Polymers 0.000 claims description 4
- 239000002033 PVDF binder Chemical class 0.000 claims description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims description 3
- 230000005865 ionizing radiation Effects 0.000 claims description 3
- 229920002981 polyvinylidene fluoride Chemical class 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 30
- 229910052742 iron Inorganic materials 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- -1 iron ions Chemical class 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 239000010419 fine particle Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000012510 hollow fiber Substances 0.000 description 4
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000674 effect on sodium Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000007447 staining method Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/34—Polyvinylidene fluoride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/26—Polyalkenes
- B01D71/261—Polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/40—Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
- B01D71/401—Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/76—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/76—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
- B01D71/78—Graft polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Filtering Materials (AREA)
- Filtration Of Liquid (AREA)
- Artificial Filaments (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般産業用水及び廃水、例えば除鉄を特に必
要とする日本酒の精製用に使用される洗米水や清酒のオ
リ下ゲ(除蛋白質)に、又は特に鉄イオンの除去が要請
される原子力復水に、微量含まれる鉄イオンと、同時に
含まれるコロイド状物質、菌、クラツド等の微粒子を同
時に除去できる有用で新規な選択吸着機能性ミクロフィ
ルターおよびその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to general industrial water and waste water, for example, washing rice water used for the purification of sake that requires iron removal in particular, or squeegee of sake (deproteinized protein). ), Or especially in nuclear condensate where removal of iron ions is required, a useful and novel selective adsorption functionality capable of simultaneously removing trace amounts of iron ions and fine particles such as colloidal substances, bacteria, and clats that are simultaneously included. The present invention relates to a microfilter and a method for manufacturing the same.
従来、たとえば、清酒製造に用いられるプロセス用水
は、極めて微量の鉄分を含んでいても清酒の風味に影響
し、従って極めて良質の水源からの水を用水としてい
た。Conventionally, for example, process water used for sake production affects the flavor of sake even if it contains an extremely small amount of iron, and therefore water from an extremely high-quality water source has been used.
やむをえず、都市近郊の地下水を利用せざるを得ない
場合は、近年の土壌の汚れによって水中に混入された鉄
を除去するために、活性炭や、タンニン製品(たとえば
田辺製薬の固定化タンニン)が使用されてきた。用水中
にはその他菌や微粒子等が含まれ、これらも除去する必
要がある。If it is unavoidable to use underground water near the city, activated carbon or tannin products (such as immobilized tannin from Tanabe Seiyaku) are used to remove iron mixed in the water due to soil contamination in recent years. Has been used. Other water and other micro-organisms are contained in the water and it is necessary to remove these as well.
一方、水中に含まれる微量の金属イオン、たとえばナ
トリウムイオン、カルシウムイオン等はそのまま除去す
る必要がない場合が多い。On the other hand, it is often not necessary to remove trace amounts of metal ions contained in water, such as sodium ions and calcium ions.
これまでは、特に鉄イオン等の特殊イオンと、菌、微
粒子とを同時に効率良く除去する方法が知られていなか
った。Up to now, a method for efficiently removing special ions such as iron ions, bacteria, and fine particles at the same time has not been known.
本発明の目的は、水中に含まれる微量の鉄イオン等お
よび(又は)蛋白質と微粒子などを効率良く同時に除去
することが可能な新規で有用な選択吸着機能性ミクロフ
ィルターおよびその製造方法を提供するものである。An object of the present invention is to provide a novel and useful selective adsorption functional microfilter capable of efficiently removing a trace amount of iron ions and / or proteins and fine particles contained in water at the same time, and a method for producing the same. It is a thing.
本発明者らは、以下の手段によって上記の目的を達成
できることを見出した。The present inventors have found that the above objects can be achieved by the following means.
すなわち、本発明は、ポリオレフィン、オレフィンと
ハロゲン化オレフィンとの共重合体、またはポリフッ化
ビニリデンからなる平均孔径0.01〜5μ、空孔率20〜80
%の実質的に三次元網目構造を有する多孔膜に、1〜25
重量%のタンニンが少なくとも多孔膜の孔の表面部分に
優先的に分布固定された内径0.05〜10mm、肉厚0.05〜5m
mの中空糸状の選択吸着機能性ミクロフィルター、およ
び上記多孔膜に電離性放射線を照射後、グリンジルメタ
クリレートをグラフトさせ、ついでタンニンを反応付加
させることを特徴とする上記ミクロフィルターの製造方
法に関する。That is, the present invention comprises a polyolefin, a copolymer of an olefin and a halogenated olefin, or polyvinylidene fluoride having an average pore diameter of 0.01 to 5 µ and a porosity of 20 to 80.
% To a porous membrane having a substantially three-dimensional network structure,
Weight% tannin is preferentially distributed and fixed at least on the surface of the pores of the porous membrane. Inner diameter 0.05-10 mm, wall thickness 0.05-5 m
The present invention relates to a hollow fiber-shaped selective adsorption functional microfilter of m, and a method for producing the above microfilter, which comprises irradiating the porous membrane with ionizing radiation, grafting grindyl methacrylate, and then reacting and adding tannin.
以下、本発明についてさらに詳細に説明を行う。 Hereinafter, the present invention will be described in more detail.
本発明に用いられる多孔膜の材質は、ポリオレフィ
ン、オレフィンとハロゲン化オレフィンとの共重合体、
又はポリフッ化ビニリデン等から構成されていて疎水性
を有することが必要であって、これは基材膜として必要
な機械的性質の保持に役立つ。The material of the porous membrane used in the present invention is polyolefin, a copolymer of olefin and halogenated olefin,
Alternatively, it needs to be made of polyvinylidene fluoride or the like and have hydrophobicity, which helps maintain the mechanical properties required as a base film.
ポリオレフィン、オレフィンとハロゲン化オレフィン
との共重合体としては、具体例には、ポリオレフィン樹
脂、たとえばポリエチレン、ポリプロピレン、ポリブチ
レンなどのオレフィンの単独重合体又はそれら2種以上
の重合体混合物;あるいはエチレン、プロピレン、ブテ
ン、ペンテン、ヘキセンなどのオレフィンの2種以上の
共重合体;前記オレフィンの1種又は2種以上とテトラ
フルオロエチレン、クロロトリフルオロエチレンなどの
ハロゲン化オレフィンとの共重合体などが採用される。Specific examples of polyolefins and copolymers of olefins and halogenated olefins include polyolefin resins, for example, homopolymers of olefins such as polyethylene, polypropylene and polybutylene, or a mixture of two or more thereof; or ethylene and propylene. , A copolymer of two or more kinds of olefins such as butene, pentene, and hexene; a copolymer of one or more kinds of the above olefins and a halogenated olefin such as tetrafluoroethylene or chlorotrifluoroethylene. It
本発明のミクロフィルターは、平均孔径0.01μないし
5μの範囲にあることが、イオン吸着とコロイド状物質
除去性及び透過速度の点で好ましい。The microfilter of the present invention preferably has an average pore size in the range of 0.01 μ to 5 μ in terms of ion adsorption, colloidal substance removability and permeation rate.
ここで平均孔径とは、ASTMF316−70に記載されている
方法で得られた値を示しており、通常エアーフロー法と
呼ばれ、空気圧を変えて乾燥膜と湿潤膜の空気透過流束
を測定し、その比から求めるものである。Here, the average pore size indicates the value obtained by the method described in ASTM F316-70, which is usually called the air flow method, and the air permeation flux of a dry membrane and a wet membrane is measured by changing the air pressure. Then, it is obtained from the ratio.
本発明における平均孔径の範囲は、実用性能上から設
定されたものであり、これ以外の範囲では、透過速度も
しくは微粒子除去効果等の点で不適当である。The range of the average pore size in the present invention is set from the viewpoint of practical performance, and in the range other than this range, it is inappropriate in terms of the transmission rate or the effect of removing fine particles.
空孔率は20ないし80%の範囲にあることが好ましい。
ここで空孔率とは、あらかじめミクロフィルターを水等
の液体に浸漬し、そののち乾燥させて、その前後の重量
変化から測定したものである。The porosity is preferably in the range of 20 to 80%.
Here, the porosity is measured by previously immersing the microfilter in a liquid such as water, drying it, and measuring the weight change before and after the drying.
空孔率が本発明の範囲以外においては、それぞれ透過
速度、機械的性質等の点で好ましくない。When the porosity is out of the range of the present invention, it is not preferable in terms of the transmission speed, mechanical properties, and the like.
本発明のミクロフィルターのベースとなる基材多孔膜
の孔構造は、種々の成型加工手段によって得ることがで
きる。The pore structure of the substrate porous membrane which is the base of the microfilter of the present invention can be obtained by various molding processing means.
具体的には、延伸法や、電子線照射後に、化学処理に
より作られる、いわゆるエツチング法等も適用可能であ
るが、多孔膜の孔構造としては延伸法やエツチング法な
どにより得られた直孔貫通型の空孔構造よりも、たとえ
ば特公昭40−957号公報、特公昭47−17460号公報および
特公昭59−37292号公報に示されたミクロ相分離法や混
合抽出法などにより形成される三次元網目構造を有する
ものが好ましい。Specifically, a stretching method or a so-called etching method, which is produced by chemical treatment after electron beam irradiation, is also applicable, but the pore structure of the porous membrane is a straight hole obtained by the stretching method or etching method. Rather than the through-hole structure, it is formed by the microphase separation method or the mixed extraction method disclosed in, for example, Japanese Patent Publication No. 40-957, Japanese Patent Publication No. 47-17460 and Japanese Patent Publication No. 59-37292. Those having a three-dimensional network structure are preferable.
ミクロフィルターの形状は、平膜状、チューブ状、中
空糸膜状のいずれも適用可能であるが、本発明の目的に
は、内径0.05ないし10ミリ、厚さ0.05ないし5ミリの形
状を有する中空糸状のものを用いる。The shape of the microfilter may be a flat membrane, a tube, or a hollow fiber membrane, and for the purpose of the present invention, a hollow having an inner diameter of 0.05 to 10 mm and a thickness of 0.05 to 5 mm. Use a thread-shaped one.
本発明のミクロフィルターには、1ないし25重量%の
タンニンが固定されていなければならない。ここでミク
ロフィルターのタンニン含有率は (W2−W1)/W2×100 で示される。The microfilter of the present invention must have 1 to 25% by weight of tannin immobilized. Here, the tannin content of the microfilter is represented by (W 2 −W 1 ) / W 2 × 100.
上記式のW1、W2は、それぞれタンニンを反応させる前
後の膜の重量である。In the above formula, W 1 and W 2 are the weights of the film before and after the reaction with tannin.
タンニン含有率が1重量%より低いと吸着機能が小さ
く、25重量%以上になると吸着機能の効果よりも水の濾
過速度の低下が生じ、ミクロフィルターの機能低下が大
となる。When the tannin content is less than 1% by weight, the adsorption function is small, and when it is 25% by weight or more, the filtration rate of water is decreased more than the effect of the adsorption function, and the function of the microfilter is greatly deteriorated.
ここで、タンニン含有率とは、膜のかなりマクロ的な
重量を基準にした値のことであり、たとえば、膜表面の
一部、または内部の一部だけを取り出した重量のことで
はない。基材としての多孔膜の優れた機械的性質を保持
したまま処理するには、できるだけ孔の表面に、より優
先的にタンニンを反応附加(グラフト)したほうが目的
を達しやすい。したがって、ここで言うタンニン含有率
の意味は膜の全面にわたって平均的に加味測定された値
を示しており、ごく微視的な観点での重量(%)を意味
していない。Here, the tannin content is a value based on a considerably macroscopic weight of the film, and does not mean, for example, a weight obtained by taking out only a part of the film surface or a part of the inside. In order to treat the porous membrane as a substrate while maintaining the excellent mechanical properties, it is easier to achieve the purpose by preferentially reacting (grafting) tannin to the surface of the pores as much as possible. Therefore, the meaning of the tannin content referred to here is a value which is averaged and measured over the entire surface of the film, and does not mean the weight (%) from a microscopic viewpoint.
本発明のミクロフィルターは、多孔膜に電離性放射
線、好ましくはγ線又は電子線を照射させたのち、グリ
シジルメタクリレートをグラフト重合させ、その後タン
ニン、たとえば5倍子タンニンを反応附加させることに
より得られる。The microfilter of the present invention is obtained by irradiating a porous membrane with ionizing radiation, preferably γ-rays or electron beams, and then graft-polymerizing glycidyl methacrylate, and then adding tannin, for example, quintuple tannin to the reaction. .
γ線又は電子線による照射は通常、真空中又は不活性
ガス中でおこなわれる。また、グラフト重合は気相重合
で行われるのが好ましい。さらに必要によっては、他の
共重合しうる2個以上の重合反応基を有するトリエチレ
ングリコールジメタクリレートのような官能性モノマー
を一緒に加えても良い。Irradiation with γ-rays or electron beams is usually performed in vacuum or in an inert gas. The graft polymerization is preferably carried out by gas phase polymerization. Further, if necessary, another functional monomer such as triethylene glycol dimethacrylate having two or more polymerization groups capable of copolymerization may be added together.
タンニンとの反応は不活性ガス下で溶液中で行われ、
その後水洗、乾燥される。The reaction with tannin is carried out in solution under inert gas,
After that, it is washed with water and dried.
このようにして得られる本発明の選択吸着機能性ミク
ロフィルターは、鉄イオン等と特異的に吸着反応し、か
つ同時に菌、微粒子等を効率良く除去する。The thus-obtained selective adsorption functional microfilter of the present invention specifically adsorbs and reacts with iron ions and at the same time efficiently removes bacteria, fine particles and the like.
以下、実施例により本発明の構成及び効果を具体的に
述べるが、いずれも本発明を限定するものではない。Hereinafter, the configuration and effects of the present invention will be specifically described by way of examples, but they do not limit the present invention.
微粉珪酸(ニプシルVN3LP)22.1重量部、ジオクチル
フタレート(DOP)55.4重量部、ポリエチレン樹脂粉末
〔旭化成SH−800グレード〕22.5重量部の組成物を予備
混合した後、30ミリ2軸押出機内で内径0.7mm、厚み0.2
5mmの中空糸状に押出した後、 1,1,1−トリクロルエタン〔クロロセンVG(商品名)〕
中に60分間浸漬し、DOPを抽出した。さらに温度60℃の
苛性ソーダ40%水溶液中に約20分浸漬して微粉珪酸を抽
出したあと、水洗、乾燥した。22.1 parts by weight of finely powdered silicic acid (Nipsil VN3LP), 55.4 parts by weight of dioctyl phthalate (DOP), and 22.5 parts by weight of polyethylene resin powder [Asahi Kasei SH-800 grade] are premixed and then the inner diameter is 0.7 in a 30 mm twin-screw extruder. mm, thickness 0.2
After extrusion into a 5 mm hollow fiber, 1,1,1-trichloroethane [chlorocene VG (trade name)]
It was immersed in the solution for 60 minutes to extract DOP. Further, it was immersed in a 40% aqueous solution of caustic soda at a temperature of 60 ° C. for about 20 minutes to extract fine silicic acid, which was then washed with water and dried.
得られた多孔膜に電子加速器(加圧電圧1.5MeV、電子
線電流1mA)を用いて窒素雰囲気下で電子線を20メガラ
ド照射したのち、気相中でグリシジルメタクリレートを
グラフトした。The obtained porous film was irradiated with 20 Mrad of electron beam in a nitrogen atmosphere using an electron accelerator (pressurization voltage: 1.5 MeV, electron beam current: 1 mA), and then glycidyl methacrylate was grafted in the gas phase.
さらに還流型ロータリーエバポレーターを用いて5倍
子タンニン(大日本製薬)3%水溶液200cc中に上記多
孔膜30mgを浸漬し、ph=7の条件下で窒素を0〜2ml/分
で吹き込みながら80℃で反応時間、1時間で処理した。
反応後に膜を水洗し、真空乾燥して実施例の中空糸状膜
を得た。Further, 30 mg of the porous membrane was immersed in 200 cc of 5% tannin tannin (Dainippon Pharmaceutical Co., Ltd.) 3% aqueous solution using a reflux type rotary evaporator, and under the condition of ph = 7, nitrogen was blown at 0-2 ml / min at 80 ° C. The reaction time was 1 hour.
After the reaction, the membrane was washed with water and vacuum dried to obtain the hollow fiber membrane of the example.
なお、比較例は5倍子タンニンの反応附加がph=9の条
件下で5分間の反応時間で行う点を除いて、実施例と同
一の処方で行った。The comparative example was carried out in the same formulation as in the example, except that the reaction addition of quintile tannin was carried out under the condition of ph = 9 for a reaction time of 5 minutes.
得られた中空糸状膜は次の物性を有していた。 実施例 比較例 空孔率(%) 57 59 平均孔径(μ) 0.15 0.19 タンニン含有率(%) 15 0.2 なお、測定方法は前述の方法によった。The obtained hollow fiber membrane had the following physical properties. Examples Comparative Examples Porosity (%) 57 59 Average pore diameter (μ) 0.15 0.19 Tannin content (%) 15 0.2 The measuring method was the above-mentioned method.
あらかじめ、濾過テストを行う前に、5g−Fe/m3濃度
の硫酸第一鉄アンモニウム水溶液中に、前記の2種の膜
を投入して振盪した。その後、吸着平衡に達したことを
確認したのち、塩酸で鉄を溶離して吸着量を測定した。
鉄の定量測定はo−フエナントロリン法にしたがった。Prior to the filtration test, the above two types of membranes were put into an aqueous solution of ferrous ammonium sulfate having a concentration of 5 g-Fe / m 3 and shaken. After confirming that the adsorption equilibrium was reached, iron was eluted with hydrochloric acid to measure the adsorption amount.
The quantitative determination of iron was according to the o-phenanthroline method.
得られた鉄の吸着量を以下に示す。 The amount of iron adsorption thus obtained is shown below.
(なお測定は30℃で行った。) 膜中の鉄の濃度 (g.Fe/kg.膜) 実施例 8.5 比較例 0.2 上の表に示されるように、本発明のミクロフィルター
は、高い鉄吸着能力を有する。(The measurement was performed at 30 ° C.) Iron concentration in the film (G.Fe / kg. Membrane) Example 8.5 Comparative Example 0.2 As shown in the table above, the microfilter of the present invention has a high iron adsorption capacity.
次に、下記に示される水質の液を使用して、実際に濾
過テストを行った。Next, a filtration test was actually conducted using the water quality liquid shown below.
(原液性状) 原液中の微粒子濃度1) 2.5×104個/cc バクテリヤ濃度2) 1.4×103個/cc 鉄+3)イオン濃度 0.15ミリモル/ ナトリウムイオン濃度 0.50ミリモル/ 1) 孔径0.2μのポリカーボネート製平膜上で顕微鏡
によって直接測定した値 2)ブロカ染色法によって染色後、顕微鏡によって直接
測定した値。(Undiluted solution) Fine particle concentration in undiluted solution 1) 2.5 × 10 4 particles / cc Bacterial concentration 2) 1.4 × 10 3 particles / cc Iron + 3) Ion concentration 0.15 mmol / sodium ion concentration 0.50 mmol / 1) Pore diameter 0.2μ Value directly measured with a microscope on a polycarbonate flat film 2) Value directly measured with a microscope after staining by Broca staining method.
その結果を下記に示す。 実施例 比較例 初期透過速度(/hr.m2.atm) 100 150 微粒子除去率(%) 99.5 99.4 鉄除去率(%) 95 5 ナトリウム除去率(%) 5 3 本発明のミクロフィルターが、実質的にナトリウムイ
オンに対して除去作用を及さず、一方、鉄イオンに対し
ては特に優れた除去効率を有することが分かる。さら
に、この方法により約5時間濾過テストを行ったのち、
強塩酸液にミクロフイルターを浸漬して再生し、再度鉄
イオンの除去率を測定した所、初期除去率に比して98%
の保持率を示した。The results are shown below. Example Comparative Example Initial transmission rate (/hr.m 2 .atm) 100 150 Fine particle removal rate (%) 99.5 99.4 Iron removal rate (%) 95 5 Sodium removal rate (%) 5 3 The microfilter of the present invention is substantially It can be seen that it does not have a removing effect on sodium ions, while it has a particularly excellent removing efficiency for iron ions. Furthermore, after performing a filtration test for about 5 hours by this method,
When a microfilter was dipped in a strong hydrochloric acid solution to regenerate it and the iron ion removal rate was measured again, it was 98% of the initial removal rate.
The retention rate of
本発明の選択吸着機能性ミクロフィルターは、鉄イオ
ン除去(吸着)機能と微粒子除去機能とを合わせ持つも
ので、特に鉄イオンと微粒子、菌の存在を嫌う清酒工業
用水、及び清酒のオリ下ゲ、原子力復水用水等の精製に
好適である。The selective adsorption functional microfilter of the present invention has both an iron ion removing (adsorbing) function and a fine particle removing function, and in particular, iron ion and fine particles, water for sake industry that dislikes the presence of bacteria, and an undigested sake of sake. It is suitable for refining water for nuclear condensate.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/44 C02F 1/44 K // D01F 6/04 D01F 6/04 C 6/46 6/46 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C02F 1/44 C02F 1/44 K // D01F 6/04 D01F 6/04 C 6/46 6 / 46 A
Claims (2)
オレフィンの共重合体、またはポリフッ化ビニリデンか
らなる平均孔径0.01〜5μ、空孔率20〜80%の実質的に
三次元網目構造を有する多孔膜に、1〜25重量%のタン
ニンが少なくとも多孔膜の孔の表面部分に優先的に反応
固定された内径0.05〜10mm、肉厚0.05〜5mmの中空糸状
の選択吸着機能性ミクロフィルター。1. A porous membrane having a substantially three-dimensional network structure of polyolefin, a copolymer of olefin and halogenated olefin, or polyvinylidene fluoride having an average pore diameter of 0.01 to 5 μm and a porosity of 20 to 80%. A hollow fiber-shaped selective adsorption functional microfilter having an inner diameter of 0.05 to 10 mm and a wall thickness of 0.05 to 5 mm, in which 1 to 25% by weight of tannin is preferentially reactively fixed to at least the surface portion of the pores of a porous membrane.
ルメタクリレートをグラフトさせ、ついでタンニンを反
応付加させることを特徴とする請求項(1)記載のミク
ロフィルターの製造方法。2. The method for producing a microfilter according to claim 1, wherein the porous membrane is irradiated with ionizing radiation, grafted with glycidyl methacrylate, and then tannin is reactively added.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63045929A JP2686949B2 (en) | 1988-03-01 | 1988-03-01 | Selective adsorption functional microfilter and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63045929A JP2686949B2 (en) | 1988-03-01 | 1988-03-01 | Selective adsorption functional microfilter and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01224004A JPH01224004A (en) | 1989-09-07 |
JP2686949B2 true JP2686949B2 (en) | 1997-12-08 |
Family
ID=12732951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63045929A Expired - Fee Related JP2686949B2 (en) | 1988-03-01 | 1988-03-01 | Selective adsorption functional microfilter and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2686949B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5916991A (en) * | 1993-06-22 | 1999-06-29 | Betzdearborn Inc. | Composition and method for water clarification |
US5846436A (en) * | 1993-06-22 | 1998-12-08 | Betzdearborn Inc. | Composition and method for water clarification |
US5643462A (en) * | 1993-06-22 | 1997-07-01 | Betzdearborn Inc. | Composition and method for water clarification |
US5684109A (en) * | 1993-06-22 | 1997-11-04 | Betzdearborn Inc. | Composition comprising a tannin-containing copolymer |
US5830315A (en) * | 1995-07-06 | 1998-11-03 | Betzdearborn Inc. | Treatment of Aqueous systems using a chemically modified tannin |
JP4606299B2 (en) * | 2005-10-19 | 2011-01-05 | オルガノ株式会社 | Separation membrane modification method and apparatus, and separation membrane modified by the method |
JP2007111608A (en) * | 2005-10-19 | 2007-05-10 | Japan Organo Co Ltd | Performance improvement method and apparatus for separation membrane and separation membrane with improved performance by the method |
JP4974276B2 (en) * | 2006-12-07 | 2012-07-11 | オルガノ株式会社 | Separation membrane modification method and apparatus, separation membrane modified by the method, and separation membrane operation method and apparatus |
AU2011221916B2 (en) | 2010-03-04 | 2015-07-23 | Sekisui Chemical Co., Ltd. | Polymer membrane for water treatment and method for manufacture of same, and water treatment method |
JP5778489B2 (en) * | 2011-06-08 | 2015-09-16 | 旭化成ケミカルズ株式会社 | Method for producing hydrophilic porous membrane, hydrophilizing agent, hydrophilic porous membrane, and method for hydrophilizing porous membrane |
JP2013086042A (en) * | 2011-10-20 | 2013-05-13 | Sekisui Chem Co Ltd | Polymeric water treatment membrane |
HUP1900214A1 (en) * | 2019-06-14 | 2020-12-28 | Eoetvoes Lorand Tudomanyegyetem | Polypropylene or polyethylene base separator for electrochemical cells for producing alkali metal ferrates |
-
1988
- 1988-03-01 JP JP63045929A patent/JP2686949B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01224004A (en) | 1989-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2749094B2 (en) | Method for producing multifunctional filtration membrane having iminodiacetic acid group | |
US5087372A (en) | Method for removing heavy metal ions from contaminated water and a porous membrane usable therefor | |
JP2686949B2 (en) | Selective adsorption functional microfilter and its manufacturing method | |
JP3312634B2 (en) | Chelate-type ion-adsorbing membrane and manufacturing method | |
JPH06104753B2 (en) | Non-adsorbing hydrophilic hollow fiber porous membrane | |
WO2004035180A1 (en) | Microporous hydrophilic membrane | |
JPH0829234B2 (en) | Hydrophilic microporous membrane | |
US5344560A (en) | Process for producing filtration membranes having amino acids that are capable of adsorbing proteins | |
JP2772010B2 (en) | Method for producing chelating resin adsorbent having iminodiacetic acid group | |
JP2001187809A (en) | Organic polymer material, its production method and heavy metal ion scavenger comprising the material | |
JP2796995B2 (en) | Anion-selective adsorptive porous membrane and its production method | |
JPH01228541A (en) | Manufacture of fixed tannin adsorbent | |
JPS63240902A (en) | Treating method | |
JP2781581B2 (en) | Method for producing affinity adsorbent having complex of iminodiacetic acid group and metal | |
JPH0710925A (en) | Chelating resin and its production | |
JPH01224009A (en) | Treatment of graft membrane | |
JPS62201604A (en) | Method for removing cobalt ion | |
JPS6283006A (en) | Manufacturing process for separating functional material | |
JPS61157344A (en) | Manufacture of metal absorbing material | |
JP2802648B2 (en) | Cation-selective adsorptive porous membrane and its production method | |
JP3017244B2 (en) | Method for simultaneously removing multiple heavy metal ions | |
JPH02194039A (en) | Selectively anion-adsorptive porous membrane and its production | |
JP2004035582A (en) | Method for producing surface-treated polymeric microporous membrane | |
JP2796594B2 (en) | Composite function filtration membrane having complex of iminodiacetic acid group and metal and method for producing the same | |
JPS63310602A (en) | Novel method for purifying condensate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |