Nothing Special   »   [go: up one dir, main page]

JP7537226B2 - Near infrared absorbing composition, near infrared transmitting composition, and optical filter - Google Patents

Near infrared absorbing composition, near infrared transmitting composition, and optical filter Download PDF

Info

Publication number
JP7537226B2
JP7537226B2 JP2020177815A JP2020177815A JP7537226B2 JP 7537226 B2 JP7537226 B2 JP 7537226B2 JP 2020177815 A JP2020177815 A JP 2020177815A JP 2020177815 A JP2020177815 A JP 2020177815A JP 7537226 B2 JP7537226 B2 JP 7537226B2
Authority
JP
Japan
Prior art keywords
group
parts
infrared absorbing
near infrared
absorbing composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020177815A
Other languages
Japanese (ja)
Other versions
JP2022068962A (en
Inventor
真理 鈴木
宏明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Artience Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Artience Co Ltd filed Critical Artience Co Ltd
Priority to JP2020177815A priority Critical patent/JP7537226B2/en
Publication of JP2022068962A publication Critical patent/JP2022068962A/en
Application granted granted Critical
Publication of JP7537226B2 publication Critical patent/JP7537226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Filters (AREA)

Description

本発明は、近赤外線吸収組成物、近赤外線透過組成物、およびそれを用いて形成される光学フィルタに関する。 The present invention relates to a near-infrared absorbing composition, a near-infrared transmitting composition, and an optical filter formed using the same.

近年、スマートフォンやタブレット端末などのモバイル端末を中心に、指紋や顔、虹彩、音声等の生体情報を利用したユーザー認証機能が搭載されている。特に、指紋認証は指を置くだけでロックを解除できるという優れた利便性を持ち、小型で安価にセキュリティを強化できることから、スマートフォンで指紋認証センサの採用が拡大している。 In recent years, mobile devices such as smartphones and tablet computers have been equipped with user authentication functions that use biometric information such as fingerprints, faces, irises, and voice. Fingerprint authentication in particular offers the convenience of unlocking the device simply by placing your finger on it, and it is small and inexpensive, allowing for enhanced security, so the adoption of fingerprint authentication sensors in smartphones is expanding.

またスマートフォンでは、大きさの制約がある中でディスプレイを大型化するために、本体全面をディスプレイとし、指紋認証センサを画面内に組み込む提案がなされている(画面内指紋認証)。特に有機エレクトロルミネッセンス(有機EL)表示装置では、青色や緑色の画素から発せられる光を利用して、指紋認証を行うことができ、画面内指紋認証方式が広がっている。 In addition, in order to increase the size of smartphone displays despite their size constraints, it has been proposed to make the entire body a display and incorporate a fingerprint authentication sensor into the screen (in-screen fingerprint authentication). In particular, organic electroluminescence (organic EL) display devices can perform fingerprint authentication using light emitted from blue and green pixels, and in-screen fingerprint authentication methods are becoming more widespread.

一方、バックライトが必要な液晶表示装置では、これまで画面内指紋認証方式が取り入れられてこなかった。しかし近年、ディスプレイ下部に赤外線送信機を設置し、赤外線を照射、その赤外線が指紋により反射された光をセンサが受信し、読み取るという方式で、液晶表示装置であっても画面内指紋認証が実現されている。 Meanwhile, in-screen fingerprint authentication methods have not been adopted for LCD display devices, which require a backlight. In recent years, however, in-screen fingerprint authentication has been realized even on LCD display devices by installing an infrared transmitter at the bottom of the display, emitting infrared light, and receiving and reading the light reflected by the fingerprint with a sensor.

この液晶表示装置における画面内指紋認証に使用される赤外線光源として、940nmの近赤外線LED光源が用いられることがある。940nmは、外光ノイズとなる太陽光が水蒸気により吸収される波長のため、他の波長に比べて低ノイズでセンシング可能だからである。さらに光学フィルタ等により、700nm~900nmの近赤外線をカットすることで、より一層外光ノイズを低減でき、指紋認証センサのセンシング精度を向上させることができる。 A 940 nm near-infrared LED light source is sometimes used as the infrared light source for on-screen fingerprint authentication in this LCD display device. 940 nm is the wavelength at which sunlight, which causes external light noise, is absorbed by water vapor, making it possible to sense with lower noise than other wavelengths. Furthermore, by cutting near-infrared light in the 700 nm to 900 nm range using an optical filter or the like, external light noise can be further reduced, improving the sensing accuracy of the fingerprint authentication sensor.

近赤外線カットフィルタは、例えば特許文献1のように近赤外線吸収剤を含む組成物を用いて製造される。しかしながら、700nm~900nmの近赤外線をカットする能力が必ずしも満足いくものではなかった。さらに、近赤外線カットフィルタ製造時に求められる塗布性が十分とは言えなかった。 Near-infrared cut filters are manufactured using a composition containing a near-infrared absorbent, as in Patent Document 1, for example. However, the ability to cut near-infrared rays in the range of 700 nm to 900 nm is not necessarily satisfactory. Furthermore, the coating properties required for manufacturing near-infrared cut filters are not sufficient.

WO2017-130825号公報WO2017-130825 publication

本発明は、700nm~900nmの近赤外線カット能力が高く、940nmの近赤外光を透過し、かつ塗布性良好な近赤外線吸収組成物、近赤外線透過組成物、およびそれを用いて形成される光学フィルタを提供することを目的とする。 The present invention aims to provide a near-infrared absorbing composition, a near-infrared transmitting composition, and an optical filter formed using the same, which have high near-infrared blocking capability in the 700 nm to 900 nm range, transmit near-infrared light of 940 nm, and have good coatability.

本発明者らは、前記諸問題を解決するために鋭意研究を重ねた結果、400~1000nmの範囲における最大吸収波長を800~900nmの間に有するスクアリリウム色素(A)を2種以上含む近赤外線吸収組成物であって、第1のスクアリリウム色素(A-1)の最大吸収波長をλ1max、第2のスクアリリウム色素(A-2)の最大吸収波長をλ2maxとしたとき、下記式(1)の関係を満たすことを特徴とする近赤外線吸収組成物が、700nm~900nm付近までの近赤外線カット能力が高く、かつ塗布性良好であることを見出し、この知見に基づいて本発明をなしたものである。
式(1) 0nm < λ2max-λ1max ≦ 100nm
The present inventors have conducted intensive research to solve the above-mentioned problems, and as a result, have found that a near infrared absorbing composition containing two or more squarylium dyes (A) having a maximum absorption wavelength in the range of 400 to 1000 nm between 800 and 900 nm, wherein the near infrared absorbing composition is characterized in that, when the maximum absorption wavelength of the first squarylium dye (A-1) is λ1 max and the maximum absorption wavelength of the second squarylium dye (A-2) is λ2 max , the near infrared absorbing composition has a high near infrared cutting ability in the range of around 700 nm to 900 nm and good coatability. The present invention is based on this finding.
Formula (1) 0nm < λ2 max - λ1 max ≦ 100nm

すなわち、本発明は400~1000nmの範囲における最大吸収波長を800~900nmの間に有するスクアリリウム色素(A)を2種以上含む近赤外線吸収組成物であって、第1のスクアリリウム色素(A-1)の最大吸収波長をλ1max、第2のスクアリリウム色素(A-2)の最大吸収波長をλ2maxとしたとき、下記式(1)の関係を満たすことを特徴とする近赤外線吸収組成物に関する。
式(1) 0nm < λ2max-λ1max ≦ 100nm
That is, the present invention relates to a near infrared absorbing composition containing two or more squarylium dyes (A) having a maximum absorption wavelength in the range of 400 to 1,000 nm, between 800 and 900 nm, wherein the near infrared absorbing composition satisfies the relationship of the following formula (1), where the maximum absorption wavelength of the first squarylium dye (A-1) is λ1max and the maximum absorption wavelength of the second squarylium dye (A-2) is λ2max :
Formula (1) 0nm < λ2 max - λ1 max ≦ 100nm

また、本発明は前記λ1maxおよびλ2maxが、下記式(2)の関係を満たすことを特徴とする前記近赤外線吸収組成物に関する。
式(2) 10nm ≦ λ2max-λ1max ≦ 100nm
The present invention also relates to the near infrared absorbing composition, wherein the λ1max and λ2max satisfy the relationship of the following formula (2):
Formula (2) 10nm ≦ λ2 max - λ1 max ≦ 100nm

また、本発明は前記スクアリリウム色素(A-1)および(A-2)が、下記一般式(1)で表される化合物であることを特徴とする前記近赤外線吸収組成物に関する。

一般式(1)

(一般式(1)中、R~Rはそれぞれ独立に、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、-OR10、-COR11、-COOR12、-COOM、-OCOR13、-NR1415、-NHCOR16、-CONR1718、-NHCONR1920、-NHCOOR21、-SR22、-SO23、-SOOR24、-SO、-NHSO25、-SONR2627、-B(OR28、または-NHBR2930を表す。R10~R30は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、およびアラルキル基を表す。なお、-COOR12のR12が水素の場合は、水素原子が解離してもよい。-COOMは、カルボキシル基の金属塩またはアルキルアンモニウム塩を表す。また、-SOOR24のR24が水素原子の場合は、水素原子が解離してもよい。-SOは、スルホ基の金属塩またはアルキルアンモニウム塩を表す。また、RとR、RとRはお互いに結合して環を形成しても良い。)
The present invention also relates to the near infrared absorbing composition, wherein the squarylium dyes (A-1) and (A-2) are compounds represented by the following general formula (1):

General formula (1)

(In general formula (1), R 1 to R 4 each independently represent a halogen atom, a cyano group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group, -OR 10 , -COR 11 , -COOR 12 , -COOM 1 , -OCOR 13 , -NR 14 R 15 , -NHCOR 16 , -CONR 17 R 18 , -NHCONR 19 R 20 , -NHCOOR 21 , -SR 22 , -SO 2 R 23 , -SO 2 OR 24 , -SO 3 M 2 , -NHSO 2 R 25 , -SO 2 NR 26 R 27 , -B(OR 28 ) 2 or -NHBR 29 R 30. R 10 to R 30 each independently represent a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or an aralkyl group. When R 12 in -COOR 12 is a hydrogen atom, the hydrogen atom may be dissociated. -COOM 1 represents a metal salt or an alkylammonium salt of a carboxyl group. When R 24 in -SO 2 OR 24 is a hydrogen atom, the hydrogen atom may be dissociated. -SO 3 M 2 represents a metal salt or an alkylammonium salt of a sulfo group. R 1 and R 2 , and R 3 and R 4 may be bonded to each other to form a ring.)

また、本発明は前記スクアリリウム色素(A-1)および(A-2)が、下記一般式(2)で表される化合物であることを特徴とする前記近赤外線吸収組成物に関する。

一般式(2)

(一般式(2)中、R~Rはそれぞれ独立に、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、-OR50、-COR51、-COOR52、-COOM、-OCOR53、-NR5455、-NHCOR56、-CONR5758、-NHCONR5960、-NHCOOR61、-SR62、-SO63、-SOOR64、-SO、-NHSO65、-SONR6667、-B(OR68、または-NHBR6970を表す。R50~R70は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、およびアラルキル基を表す。なお、-COOR52のR52が水素の場合は、水素原子が解離してもよい。-COOMは、カルボキシル基の金属塩またはアルキルアンモニウム塩を表す。また、-SOOR64のR64が水素原子の場合は、水素原子が解離してもよい。-SOは、スルホ基の金属塩またはアルキルアンモニウム塩を表す。また、RとR、RとRはお互いに結合して環を形成しても良い。)
The present invention also relates to the near infrared absorbing composition, wherein the squarylium dyes (A-1) and (A-2) are compounds represented by the following general formula (2):

General formula (2)

(In the general formula (2), R 5 to R 8 each independently represent a halogen atom, a cyano group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group, -OR 50 , -COR 51 , -COOR 52 , -COOM 3 , -OCOR 53 , -NR 54 R 55 , -NHCOR 56 , -CONR 57 R 58 , -NHCONR 59 R 60 , -NHCOOR 61 , -SR 62 , -SO 2 R 63 , -SO 2 OR 64 , -SO 3 M 4 , -NHSO 2 R 65 , -SO 2 NR 66 R 67 , -B(OR 68 ) 2 or -NHBR 69 R 70. R 50 to R 70 each independently represent a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or an aralkyl group. When R 52 in -COOR 52 is a hydrogen atom, the hydrogen atom may be dissociated. -COOM 3 represents a metal salt or an alkylammonium salt of a carboxyl group. When R 64 in -SO 2 OR 64 is a hydrogen atom, the hydrogen atom may be dissociated. -SO 3 M 4 represents a metal salt or an alkylammonium salt of a sulfo group. R 5 and R 6 , and R 7 and R 8 may be bonded to each other to form a ring.)

また、本発明は800nmにおける透過率が1%になるように塗膜を形成した際に、940nmにおける透過率が50%以上であることを特徴とする前記近赤外線吸収組成物に関する。 The present invention also relates to the near-infrared absorbing composition, which is characterized in that when a coating film is formed so that the transmittance at 800 nm is 1%, the transmittance at 940 nm is 50% or more.

また、本発明はさらに塩基性樹脂型分散剤を含むことを特徴とする前記近赤外線吸収組成物に関する。 The present invention also relates to the near-infrared absorbing composition, which further contains a basic resin-type dispersant.

また、本発明はさらに光重合開始剤を含むことを特徴とする前記近赤外線吸収組成物に関する。 The present invention also relates to the near infrared absorbing composition, which further contains a photopolymerization initiator.

また、本発明は前記近赤外線吸収組成物と、黒色を呈する着色組成物を含むことを特徴とする近赤外線透過組成物に関する。 The present invention also relates to a near-infrared transmitting composition that contains the near-infrared absorbing composition and a coloring composition that exhibits a black color.

また、本発明は前記近赤外線吸収組成物を用いて形成される光学フィルタに関する。 The present invention also relates to an optical filter formed using the near-infrared absorbing composition.

また、本発明は前記近赤外線透過組成物を用いて形成される光学フィルタに関する。 The present invention also relates to an optical filter formed using the near-infrared transmitting composition.

本発明により、700nm~900nmの近赤外線カット能力が高く、940nmの近赤外光を透過し、かつ塗布性良好な近赤外線吸収組成物、近赤外線透過組成物、およびそれを用いて形成される光学フィルタを提供することができる。 The present invention can provide a near-infrared absorbing composition, a near-infrared transmitting composition, and an optical filter formed using the same that have high near-infrared blocking capability in the 700 nm to 900 nm range, transmit near-infrared light of 940 nm, and have good coatability.

以下に、本発明の着色組成物の各構成成分について説明する。
なお、本願では、「(メタ)アクリロイル」、「(メタ)アクリル」、「(メタ)アクリル酸」、「(メタ)アクリレート」、又は「(メタ)アクリルアミド」と表記した場合には、特に説明がない限り、それぞれ、「アクリロイル及び/又はメタクリロイル」、「アクリル及び/又はメタクリル」、「アクリル酸及び/又はメタクリル酸」、「アクリレート及び/又はメタクリレート」、又は「アクリルアミド及び/又はメタクリルアミド」を表すものとする。
また、本明細書に挙げる「C.I.」は、カラーインデックス(C.I.)を意味する。
Each of the components of the colored composition of the present invention will be described below.
In this application, unless otherwise specified, the terms "(meth)acryloyl", "(meth)acrylic", "(meth)acrylic acid", "(meth)acrylate", or "(meth)acrylamide" respectively mean "acryloyl and/or methacryloyl", "acrylic and/or methacrylic", "acrylic acid and/or methacrylic acid", "acrylate and/or methacrylate", or "acrylamide and/or methacrylamide".
In addition, "C.I." in this specification means Color Index (C.I.).

<スクアリリウム色素>
本発明の近赤外線吸収組成物は、400~1000nmの範囲における最大吸収波長を800~900nmの間に有するスクアリリウム色素(A)を2種以上含む近赤外線吸収組成物であって、第1のスクアリリウム色素(A-1)の最大吸収波長をλ1max、第2のスクアリリウム色素(A-2)の最大吸収波長をλ2maxとしたとき、下記式(1)の関係を満たすことを特徴とする。
式(1) 0nm < λ2max-λ1max ≦ 100nm
<Squarylium dyes>
The near infrared absorbing composition of the present invention is a near infrared absorbing composition containing two or more squarylium dyes (A) having a maximum absorption wavelength in the range of 400 to 1000 nm, which is between 800 to 900 nm, and is characterized in that, when the maximum absorption wavelength of the first squarylium dye (A-1) is λ1max and the maximum absorption wavelength of the second squarylium dye (A-2) is λ2max , the near infrared absorbing composition satisfies the relationship of the following formula (1):
Formula (1) 0nm < λ2 max - λ1 max ≦ 100nm

前記λ1maxおよびλ2maxが、下記式(2)の関係を満たすことが好ましい。
式(2) 10nm ≦ λ2max-λ1max ≦ 100nm
It is preferable that the λ1 max and λ2 max satisfy the relationship of the following formula (2).
Formula (2) 10nm ≦ λ2 max - λ1 max ≦ 100nm

スクアリリウム色素の最大吸収波長の値は、後述する実施例に記載の方法で測定した値である。 The maximum absorption wavelength of the squarylium dye is measured using the method described in the Examples below.

最大吸収波長が異なるスクアリリウム色素を2種含有することにより、吸収波長領域が広がり、400~1000nmの範囲における最大吸収波長を800~900nmの間に有することで700nm~900nmまでの近赤外線を幅広くカットすることができる。また、異なる色素を併用することで塗布性が良化する。 By containing two squarylium dyes with different maximum absorption wavelengths, the absorption wavelength range is expanded, and by having a maximum absorption wavelength between 800 and 900 nm in the 400 to 1000 nm range, it is possible to cut a wide range of near infrared rays from 700 nm to 900 nm. In addition, the use of different dyes in combination improves coatability.

前記スクアリリウム色素(A-1)および(A-2)が、下記一般式(1)で表される化合物であることが好ましい。下記一般式(1)で表される化合物は、シクロブテン環からπ共役系が広がるようにナフタレン環が結合しているため、最大吸収波長が長波長化し、800nm~900nmの光をよく吸収する。これにより、900nm付近までの近赤外線カット能力が向上する。また、ナフタレン環部分が会合しやすく、会合由来の吸収によって吸収波長領域が広がり、700nm~900nmの近赤外線を幅広くカットすることができる。さらに、スクアリリウム色素(A-1)および(A-2)が下記一般式(1)で表される化合物であることによって、お互いが色素誘導体的に作用し、流動性が良化することでより塗布性が良好な近赤外線吸収組成物となる。部分的に同一構造のスクアリリウム色素を2種含有することによる適度な会合状態が、吸収波長領域の広がりと塗布性の両立を可能にすると考えられる。

一般式(1)

(一般式(1)中、R~Rはそれぞれ独立に、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、-OR10、-COR11、-COOR12、-COOM、-OCOR13、-NR1415、-NHCOR16、-CONR1718、-NHCONR1920、-NHCOOR21、-SR22、-SO23、-SOOR24、-SO、-NHSO25、-SONR2627、-B(OR28、または-NHBR2930を表す。R10~R30は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、およびアラルキル基を表す。なお、-COOR12のR12が水素の場合は、水素原子が解離してもよい。-COOMは、カルボキシル基の金属塩またはアルキルアンモニウム塩を表す。また、-SOOR24のR24が水素原子の場合は、水素原子が解離してもよい。-SOは、スルホ基の金属塩またはアルキルアンモニウム塩を表す。また、RとR、RとRはお互いに結合して環を形成しても良い。)
The squarylium dyes (A-1) and (A-2) are preferably compounds represented by the following general formula (1). In the compound represented by the following general formula (1), the naphthalene ring is bonded so that the π-conjugated system spreads from the cyclobutene ring, and therefore the maximum absorption wavelength is longer, and light of 800 nm to 900 nm is well absorbed. This improves the near-infrared blocking ability up to around 900 nm. In addition, the naphthalene ring portion is prone to association, and the absorption wavelength range is broadened by the absorption derived from the association, making it possible to block a wide range of near-infrared rays from 700 nm to 900 nm. Furthermore, since the squarylium dyes (A-1) and (A-2) are compounds represented by the following general formula (1), they act as dye derivatives with each other, improving the fluidity and resulting in a near-infrared absorbing composition with better coatability. It is believed that the moderate association state achieved by containing two squarylium dyes having partially the same structure makes it possible to achieve both a broader absorption wavelength range and coatability.

General formula (1)

(In general formula (1), R 1 to R 4 each independently represent a halogen atom, a cyano group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group, -OR 10 , -COR 11 , -COOR 12 , -COOM 1 , -OCOR 13 , -NR 14 R 15 , -NHCOR 16 , -CONR 17 R 18 , -NHCONR 19 R 20 , -NHCOOR 21 , -SR 22 , -SO 2 R 23 , -SO 2 OR 24 , -SO 3 M 2 , -NHSO 2 R 25 , -SO 2 NR 26 R 27 , -B(OR 28 ) 2 or -NHBR 29 R 30. R 10 to R 30 each independently represent a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or an aralkyl group. When R 12 in -COOR 12 is a hydrogen atom, the hydrogen atom may be dissociated. -COOM 1 represents a metal salt or an alkylammonium salt of a carboxyl group. When R 24 in -SO 2 OR 24 is a hydrogen atom, the hydrogen atom may be dissociated. -SO 3 M 2 represents a metal salt or an alkylammonium salt of a sulfo group. R 1 and R 2 , and R 3 and R 4 may be bonded to each other to form a ring.)

上記-COOMおよび-SOにおいて、MおよびMはカルボキシル基もしくはスルホ基と金属塩を形成する金属、またはカルボキシル基もしくはスルホ基とアルキルアンモニウム塩を形成するアミンを表す。
カルボキシル基またはスルホ基と金属塩を形成する金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、アルミニウムなどが挙げられるが、これらに限定されるものではない。
In the above-mentioned --COOM 1 and --SO 3 M 2 , M 1 and M 2 represent a metal which forms a metal salt together with a carboxyl group or a sulfo group, or an amine which forms an alkylammonium salt together with a carboxyl group or a sulfo group.
Examples of metals that form metal salts with a carboxyl group or a sulfo group include, but are not limited to, sodium, potassium, magnesium, calcium, manganese, iron, cobalt, nickel, copper, zinc, silver, and aluminum.

カルボキシル基またはスルホ基とアルキルアンモニウム塩を形成するアミンとしては、ジメチルアミン、トリメチルアミン、ジエチルアミン、トリエチルアミン、ヒドロキシエチルアミン、ジヒドロキシエチルアミン、2-エチルヘキシルアミン、N,N-ジメチルアミノプロピルアミン、N,N-ジエチルアミノプロピルアミン、N,N-ジブチルアミノプロピルアミン等の低級アミン、ラウリルアミン、オレイルアミン、パルミチルアミン、ステアリルアミン、ジメチルラウリルアミン等の炭素数2以上のアルキル基を有する長鎖アルキルアミン、ラウリルアンモニウム、ステアリルアンモニウム、ラウリルトリメチルアンモニウム、ジラウリルジメチルアンモニウム、ステアリルトリメチルアンモニウム、ジステアリルジメチルアンモニウム等の炭素数12以上のアルキル基を有する長鎖アルキル4級アンモニウムイオンが挙げられるが、これらに限定されるものではない。 Examples of amines that form alkylammonium salts with carboxyl or sulfo groups include, but are not limited to, lower amines such as dimethylamine, trimethylamine, diethylamine, triethylamine, hydroxyethylamine, dihydroxyethylamine, 2-ethylhexylamine, N,N-dimethylaminopropylamine, N,N-diethylaminopropylamine, and N,N-dibutylaminopropylamine; long-chain alkylamines having an alkyl group with 2 or more carbon atoms such as laurylamine, oleylamine, palmitylamine, stearylamine, and dimethyllaurylamine; and long-chain alkyl quaternary ammonium ions having an alkyl group with 12 or more carbon atoms such as laurylammonium, stearylammonium, lauryltrimethylammonium, dilauryldimethylammonium, stearyltrimethylammonium, and distearyldimethylammonium.

「置換基」としては、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、
-OR100、-COR101、-COOR102、-OCOR103、-NR104105、-NHCOR106、-CONR107108、-NHCONR109110、-NHCOOR111、-SR112、-SO113、-SOOR114、-NHSO115または-SONR116117が挙げられる。
100~R117は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、またはアラルキル基を表す。なお、-COOR102のR102が水素の場合(すなわち、カルボキシル基)は、水素原子が解離してもよく(すなわち、カルボネート基)、塩の状態であってもよい。また、-SOOR114のR114が水素原子の場合(すなわち、スルホ基)は、水素原子が解離してもよく(すなわち、スルホネート基)、塩の状態であってもよい。
The "substituent" may be a halogen atom, a cyano group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group,
Examples thereof include —OR 100 , —COR 101 , —COOR 102 , —OCOR 103 , —NR 104 R 105 , —NHCOR 106 , —CONR 107 R 108 , —NHCONR 109 R 110 , —NHCOOR 111 , —SR 112 , —SO 2 R 113 , —SO 2 OR 114 , —NHSO 2 R 115 and —SO 2 NR 116 R 117 .
R 100 to R 117 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or an aralkyl group. When R 102 of -COOR 102 is a hydrogen atom (i.e., a carboxyl group), the hydrogen atom may be dissociated (i.e., a carbonate group) or may be in the form of a salt. When R 114 of -SO 2 OR 114 is a hydrogen atom (i.e., a sulfo group), the hydrogen atom may be dissociated (i.e., a sulfonate group) or may be in the form of a salt.

ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
アルキル基の炭素数は、1~20が好ましく、1~12がさらに好ましく、1~8が特に好ましい。アルキル基は直鎖、分岐、環状のいずれでも良い。
アルケニル基の炭素数は、2~20が好ましく、2~12がさらに好ましく、2~8が特に好ましい。アルケニル基は直鎖、分岐、環状のいずれでも良い。
アルキニル基の炭素数は、2~20が好ましく、2~12がさらに好ましく、2~8が特に好ましい。アルキニル基は直鎖、分岐、環状のいずれでも良い。
アリール基の炭素数は、6~25が好ましく、6~15がさらに好ましく、6~10が特に好ましい。
アラルキル基のアルキル部分は、上記アルキル基と同様である。アラルキル基のアリール部分は、上記アリール基と同様である。アラルキル基の炭素数は、7~40が好ましく、7~30がさらに好ましく、7~25が特に好ましい。
ヘテロアリール基は、単環または縮合環が好ましく、単環または縮合数が2~8の縮合環がさらに好ましく、単環または縮合数が2~4の縮合環が特に好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子、または硫黄原子が好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基の環を構成する炭素原子の数は3~30が好ましく、3~18がさらに好ましく、3~12が特に好ましい。
アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、およびアラルキル基は置換基を有していても良く、無置換であっても良い。置換基としては上述した「置換基」が挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
The number of carbon atoms in the alkyl group is preferably from 1 to 20, more preferably from 1 to 12, and particularly preferably from 1 to 8. The alkyl group may be linear, branched, or cyclic.
The number of carbon atoms in the alkenyl group is preferably from 2 to 20, more preferably from 2 to 12, and particularly preferably from 2 to 8. The alkenyl group may be linear, branched, or cyclic.
The number of carbon atoms in the alkynyl group is preferably from 2 to 20, more preferably from 2 to 12, and particularly preferably from 2 to 8. The alkynyl group may be linear, branched, or cyclic.
The aryl group preferably has 6 to 25 carbon atoms, more preferably 6 to 15 carbon atoms, and particularly preferably 6 to 10 carbon atoms.
The alkyl portion of the aralkyl group is the same as the alkyl group described above. The aryl portion of the aralkyl group is the same as the aryl group described above. The number of carbon atoms in the aralkyl group is preferably 7 to 40, more preferably 7 to 30, and particularly preferably 7 to 25.
The heteroaryl group is preferably a monocyclic ring or a condensed ring, more preferably a monocyclic ring or a condensed ring having 2 to 8 condensed rings, and particularly preferably a monocyclic ring or a condensed ring having 2 to 4 condensed rings. The number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3. The heteroatoms constituting the ring of the heteroaryl group are preferably nitrogen atoms, oxygen atoms, or sulfur atoms. The heteroaryl group is preferably a 5-membered or 6-membered ring. The number of carbon atoms constituting the ring of the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, and particularly preferably 3 to 12.
The alkyl group, the alkenyl group, the alkynyl group, the aryl group, the heteroaryl group, and the aralkyl group may have a substituent or may be unsubstituted. Examples of the substituent include the above-mentioned "substituents."

前記スクアリリウム色素(A-1)および(A-2)が、下記一般式(2)で表される化合物であることがより好ましい。 The squarylium dyes (A-1) and (A-2) are more preferably compounds represented by the following general formula (2):

スクアリリウム色素(A-1)および(A-2)が一般式(2)で表されるペリミジン骨格を有する化合物であることによって、高い耐光性を有する近赤外線吸収組成物となる。

一般式(2)

(一般式(2)中、R~Rはそれぞれ独立に、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、-OR50、-COR51、-COOR52、-COOM、-OCOR53、-NR5455、-NHCOR56、-CONR5758、-NHCONR5960、-NHCOOR61、-SR62、-SO63、-SOOR64、-SO、-NHSO65、-SONR6667、-B(OR68、または-NHBR6970を表す。R50~R70は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、およびアラルキル基を表す。なお、-COOR52のR52が水素の場合は、水素原子が解離してもよい。-COOMは、カルボキシル基の金属塩またはアルキルアンモニウム塩を表す。また、-SOOR64のR64が水素原子の場合は、水素原子が解離してもよい。-SOは、スルホ基の金属塩またはアルキルアンモニウム塩を表す。また、RとR、RとRはお互いに結合して環を形成しても良い。)
Since the squarylium dyes (A-1) and (A-2) are compounds having a perimidine skeleton represented by general formula (2), the near infrared absorbing composition has high light resistance.

General formula (2)

(In the general formula (2), R 5 to R 8 each independently represent a halogen atom, a cyano group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group, -OR 50 , -COR 51 , -COOR 52 , -COOM 3 , -OCOR 53 , -NR 54 R 55 , -NHCOR 56 , -CONR 57 R 58 , -NHCONR 59 R 60 , -NHCOOR 61 , -SR 62 , -SO 2 R 63 , -SO 2 OR 64 , -SO 3 M 4 , -NHSO 2 R 65 , -SO 2 NR 66 R 67 , -B(OR 68 ) 2 or -NHBR 69 R 70. R 50 to R 70 each independently represent a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or an aralkyl group. When R 52 in -COOR 52 is a hydrogen atom, the hydrogen atom may be dissociated. -COOM 3 represents a metal salt or an alkylammonium salt of a carboxyl group. When R 64 in -SO 2 OR 64 is a hydrogen atom, the hydrogen atom may be dissociated. -SO 3 M 4 represents a metal salt or an alkylammonium salt of a sulfo group. R 5 and R 6 , and R 7 and R 8 may be bonded to each other to form a ring.)

-COOMおよび-SOは、上述の-COOMおよび-SOと同義である。 —COOM 3 and —SO 3 M 4 have the same meanings as —COOM 1 and —SO 3 M 2 described above.

「置換基」は、上述の「置換基」と同様の意義である。 "Substituent" has the same meaning as "substituent" above.

スクアリリウム色素(A-1)および(A-2)の具体例としては、以下に示す化合物が挙げられるが、本発明はこれに限定されるものではない。また、特開2011-208101号公報の段落番号[0044]~[0049]に記載の化合物、特許6453456号公報の段落番号[0072]に記載の化合物が挙げられる。 Specific examples of squarylium dyes (A-1) and (A-2) include the compounds shown below, but the present invention is not limited to these. Other examples include the compounds described in paragraphs [0044] to [0049] of JP2011-208101A and the compounds described in paragraph [0072] of JP6453456A.

スクアリリウム色素(A-1)の400~1000nmの範囲における最大吸収波長λ1maxは、800nm~850nmにあることが好ましく、800nm~830nmにあることがより好ましい。 The maximum absorption wavelength λ1max of the squarylium dye (A-1) in the range of 400 to 1000 nm is preferably in the range of 800 to 850 nm, and more preferably in the range of 800 to 830 nm.

スクアリリウム色素(A-2)の400~1000nmの範囲における最大吸収波長λ2maxは、820nm~900nmにあることが好ましく、830~900nmにあることがより好ましい。 The maximum absorption wavelength λ2 max in the range of 400 to 1000 nm of the squarylium dye (A-2) is preferably in the range of 820 nm to 900 nm, and more preferably in the range of 830 to 900 nm.

近赤外線吸収組成物中の全固形分中におけるスクアリリウム色素(A-1)およびスクアリリウム色素(A-2)の合計量は、2~80質量%であることが好ましく、4~70質量%であることがより好ましい。 The total amount of the squarylium dye (A-1) and the squarylium dye (A-2) in the total solid content of the near-infrared absorbing composition is preferably 2 to 80 mass %, and more preferably 4 to 70 mass %.

近赤外線吸収組成物中のスクアリリウム色素(A-1)とスクアリリウム色素(A-2)の含有比率は、95/5~30/70が好ましく、90/10~40/60がより好ましい。 The content ratio of the squarylium dye (A-1) to the squarylium dye (A-2) in the near infrared absorbing composition is preferably 95/5 to 30/70, and more preferably 90/10 to 40/60.

<その他の近赤外線吸収色素>
本発明の近赤外線吸収組成物は、必要に応じて、スクアリリウム色素(A-1)およびスクアリリウム色素(A-2)の分光特性を損なわない範囲で、その他の近赤外線吸収色素を含むことができる。その他の近赤外線吸収色素としては、例えば、シアニン化合物、スクアリリウム化合物(スクアリリウム色素(A-1)およびスクアリリウム色素(A-2)を除く)、フタロシアニン化合物、ナフタロシアニン化合物、アミニウム化合物、ジインモニウム化合物、クロコニウム化合物、アゾ化合物、キノイド型錯体化合物、ジチオール金属錯体化合物等が挙げられる。
<Other near infrared absorbing dyes>
The near infrared absorbing composition of the present invention may contain other near infrared absorbing dyes, if necessary, within a range that does not impair the spectral properties of the squarylium dye (A-1) and the squarylium dye (A-2). Examples of other near infrared absorbing dyes include cyanine compounds, squarylium compounds (excluding the squarylium dye (A-1) and the squarylium dye (A-2)), phthalocyanine compounds, naphthalocyanine compounds, aminium compounds, diimmonium compounds, croconium compounds, azo compounds, quinoid-type complex compounds, dithiol metal complex compounds, etc.

<その他の色素(近赤外線吸収色素を除く)>
本発明の近赤外線吸収組成物は、その用途に応じて、その他の色素(近赤外線吸収色素を除く)を含むことができる。
<Other dyes (excluding near infrared absorbing dyes)>
The near infrared absorbing composition of the present invention may contain other dyes (other than the near infrared absorbing dye) depending on its application.

本発明の近赤外線吸収組成物は、800nmにおける透過率が1%になるように塗膜を形成した際に、940nmにおける透過率が50%以上であることが好ましい。これにより、外光ノイズを低減しつつ、940nmの光源を用いたセンシングがしやすくなるため、センシング精度を向上させることができる。 When the near-infrared absorbing composition of the present invention is formed into a coating film so that the transmittance at 800 nm is 1%, it is preferable that the transmittance at 940 nm is 50% or more. This makes it easier to perform sensing using a 940 nm light source while reducing external light noise, thereby improving sensing accuracy.

<黒色を呈する着色組成物>
本発明の近赤外線吸収組成物は、黒色を呈する着色組成物を含むことにより、近赤外線透過組成物として用いることができる。黒色を呈する着色組成物としては、黒色を呈していれば特に限定は無く、黒色色素、複数の色素を組み合わせて黒色を呈する色素組成物等を含有すると良い。
<Black coloring composition>
The near infrared absorbing composition of the present invention can be used as a near infrared transmitting composition by containing a coloring composition that exhibits black color. The coloring composition that exhibits black color is not particularly limited as long as it exhibits black color, and may contain a black pigment, a pigment composition that exhibits black color by combining multiple pigments, or the like.

<色素誘導体>
本発明の近赤外線吸収組成物には、必要に応じて色素誘導体を使用できる。色素誘導体は、有機色素残基に酸性基、塩基性基、中性基などを有する化合物である。色素誘導体は、例えば、スルホ基、カルボキシ基、またはリン酸基などの酸性置換基を有する化合物、ならびにこれらのアミン塩、スルホンアミド基、または末端に3級アミノ基などの塩基性置換基を有する化合物、フェニル基やフタルイミドアルキル基などの中性置換基を有する化合物が挙げられる。
有機色素は、例えばジケトピロロピロール系顔料、アントラキノン系顔料、キナクリドン系顔料、ジオキサジン系顔料、ペリノン系顔料、ペリレン系顔料、チアジンインジゴ系顔料、トリアジン系顔料、ベンズイミダゾロン系顔料、ベンゾイソインドール等のインドール系顔料、イソインドリン系顔料、イソインドリノン系顔料、キノフタロン系顔料、ナフトール系顔料、スレン系顔料、金属錯体系顔料、アゾ、ジスアゾ、ポリアゾ等のアゾ系顔料等が挙げられる。
<Dye derivatives>
In the near infrared absorbing composition of the present invention, a dye derivative can be used as necessary.The dye derivative is a compound having an acidic group, a basic group, a neutral group, etc. in an organic dye residue.The dye derivative can be, for example, a compound having an acidic substituent such as a sulfo group, a carboxy group, or a phosphoric acid group, as well as the amine salts thereof, a compound having a basic substituent such as a sulfonamide group or a tertiary amino group at the terminal, and a compound having a neutral substituent such as a phenyl group or a phthalimidoalkyl group.
Examples of organic pigments include diketopyrrolopyrrole pigments, anthraquinone pigments, quinacridone pigments, dioxazine pigments, perinone pigments, perylene pigments, thiazine indigo pigments, triazine pigments, benzimidazolone pigments, indole pigments such as benzoisoindole, isoindoline pigments, isoindolinone pigments, quinophthalone pigments, naphthol pigments, threne pigments, metal complex pigments, and azo pigments such as azo, disazo, and polyazo.

具体的には、ジケトピロロピロール系色素誘導体は、特開2001-220520号公報、WO2009/081930号パンフレット、WO2011/052617号パンフレット、WO2012/102399号パンフレット、特開2017-156397号公報、フタロシアニン系色素誘導体は、特開2007-226161号公報、WO2016/163351号パンフレット、特開2017-165820号公報、特許第5753266号公報、アントラキノン系色素誘導体は、特開昭63-264674号公報、特開平09-272812号公報、特開平10-245501号公報、特開平10-265697号公報、特開2007-079094号公報、WO2009/025325号パンフレット、キナクリドン系色素誘導体は、特開昭48-54128号公報、特開平03-9961号公報、特開2000-273383号公報、ジオキサジン系色素誘導体は、特開2011-162662号公報、チアジンインジゴ系色素誘導体は、特開2007-314785号公報、トリアジン系色素誘導体は、特開昭61-246261号公報、特開平11-199796号公報、特開2003-165922号公報、特開2003-168208号公報、特開2004-217842号公報、特開2007-314681号公報、ベンゾイソインドール系色素誘導体は、特開2009-57478号公報、キノフタロン系色素誘導体は、特開2003-167112号公報、特開2006-291194号公報、特開2008-31281号公報、特開2012-226110号公報、ナフトール系色素誘導体は、特開2012-208329号公報、特開2014-5439号公報、アゾ系色素誘導体は、特開2001-172520号公報、特開2012-172092号公報、酸性置換基は、特開2004-307854号公報、塩基性置換基は、特開2002-201377号公報、特開2003-171594号公報、特開2005-181383号公報、特開2005-213404号公報に記載された色素誘導体が挙げられる。なお、これらの文献には、色素誘導体を誘導体、顔料誘導体、分散剤、顔料分散剤若しくは単に化合物などと記載している場合があるが、前記した有機色素残基に酸性基、塩基性基、中性基などの置換基を有する化合物は、色素誘導体と同義である。 Specifically, diketopyrrolopyrrole dye derivatives are described in JP 2001-220520 A, WO 2009/081930 B, WO 2011/052617 B, WO 2012/102399 B, and JP 2017-156397 A; phthalocyanine dye derivatives are described in JP 2007-226161 A, WO 2016/163351 B, JP 2017-165820 B, and Japanese Patent No. 5753266 A; anthraquinone dye derivatives are described in , JP-A-63-264674, JP-A-09-272812, JP-A-10-245501, JP-A-10-265697, JP-A-2007-079094, WO2009/025325 pamphlet; quinacridone dye derivatives are disclosed in JP-A-48-54128, JP-A-03-9961, JP-A-2000-273383; dioxazine dye derivatives are disclosed in JP-A-2011-162662; thiazine indigo dye derivatives are disclosed in JP-A-2007-314 785, triazine-based dye derivatives are disclosed in JP-A-61-246261, JP-A-11-199796, JP-A-2003-165922, JP-A-2003-168208, JP-A-2004-217842, and JP-A-2007-314681, benzoisoindole-based dye derivatives are disclosed in JP-A-2009-57478, quinophthalone-based dye derivatives are disclosed in JP-A-2003-167112, JP-A-2006-291194, JP-A-2008-31281, and JP-A-2007-314681. Examples of the naphthol-based dye derivatives include those described in JP-A-2012-208329 and JP-A-2014-5439, examples of the azo-based dye derivatives include those described in JP-A-2001-172520 and JP-A-2012-172092, examples of the acidic substituents include those described in JP-A-2004-307854, and examples of the basic substituents include those described in JP-A-2002-201377, JP-A-2003-171594, JP-A-2005-181383, and JP-A-2005-213404. In addition, in these documents, the dye derivative may be described as a derivative, pigment derivative, dispersant, pigment dispersant, or simply a compound, but the compound having a substituent such as an acidic group, a basic group, or a neutral group in the organic dye residue is synonymous with the dye derivative.

これら色素誘導体は、単独又は2種類以上を混合して用いることができる。 These dye derivatives can be used alone or in combination of two or more types.

色素誘導体は、色素100質量部に対し、1~100質量部添加することが好ましく、3~70質量部添加することがより好ましく、5~50質量部添加することがさらに好ましい。 The dye derivative is preferably added in an amount of 1 to 100 parts by weight, more preferably 3 to 70 parts by weight, and even more preferably 5 to 50 parts by weight, per 100 parts by weight of the dye.

前記色素が顔料である場合には、色素誘導体を添加し、アシッドペースティング、アシッドスラリー、ドライミリング、ソルトミリング、ソルベントソルトミリング等の顔料化処理を行う事で、顔料表面に色素誘導体が吸着し、色素誘導体を添加しない場合と比較して顔料の一次粒子をより微細化することができる。 When the colorant is a pigment, adding a colorant derivative and carrying out a pigmentation process such as acid pasting, acid slurry, dry milling, salt milling, or solvent salt milling causes the colorant derivative to be adsorbed onto the pigment surface, making it possible to make the primary particles of the pigment finer than when the colorant derivative is not added.

顔料に色素誘導体を添加し二本ロール、三本ロール、ビーズを用いた湿式分散などの分散処理を行うことで、色素誘導体が顔料表面に吸着し顔料表面が極性を持ち樹脂型分散剤の吸着が促進され、顔料、色素誘導体、樹脂型分散剤、溶媒、その他添加剤との相溶性が向上し、近赤外線吸収組成物の分散安定性や経時粘度安定性が向上する。また、相溶性が向上することで近赤外線吸収組成物をガラス基板等に塗工した際の塗膜経時安定性に優れ、近赤外線吸収組成物の塗布から露光までの待ち時間(PCD:Post Coating Delay)や露光から熱処理までの待ち時間(PED:Post Exposure Delay)に対するパターン形状などの安定性・特性依存性や、線幅感度安定性が良好となる。また顔料表面が色素誘導体および樹脂型分散剤で吸着・被覆されることで、塗膜を加熱焼成した際の顔料の凝集や昇華による結晶析出を抑制できる。さらに現像時間ばらつきや現像残渣も抑制される。 By adding a dye derivative to the pigment and carrying out a dispersion treatment such as wet dispersion using a two-roll roll, a three-roll roll, or beads, the dye derivative is adsorbed to the pigment surface, the pigment surface becomes polar, and the adsorption of the resin-type dispersant is promoted, and the compatibility with the pigment, the dye derivative, the resin-type dispersant, the solvent, and other additives is improved, and the dispersion stability and viscosity stability over time of the near-infrared absorbing composition are improved. In addition, improved compatibility provides excellent stability over time of the coating film when the near-infrared absorbing composition is applied to a glass substrate, etc., and the stability and characteristic dependency of the pattern shape on the waiting time from application of the near-infrared absorbing composition to exposure (PCD: Post Coating Delay) and the waiting time from exposure to heat treatment (PED: Post Exposure Delay) and line width sensitivity stability are improved. In addition, by adsorbing and covering the pigment surface with the dye derivative and the resin-type dispersant, it is possible to suppress the aggregation of the pigment and the crystal precipitation due to sublimation when the coating film is heated and baked. Furthermore, the variation in development time and development residue are also suppressed.

<樹脂型分散剤>
本発明の近赤外線吸収組成物は、樹脂型分散剤を含むことができる。樹脂型分散剤は、顔料に吸着する性質を有する顔料親和性部位と、顔料以外の成分と親和性が高く、分散粒子間を立体反発させる緩和部位とを有する。樹脂型分散剤は、グラフト型(櫛形)、ブロック型等、構造制御された樹脂が好ましく用いられる。
<Resin-type dispersant>
The near infrared absorbing composition of the present invention can contain a resin type dispersant. The resin type dispersant has a pigment affinity moiety that has a property of being adsorbed to the pigment, and a relaxation moiety that has high affinity with components other than the pigment and causes steric repulsion between dispersed particles. As the resin type dispersant, a resin with a controlled structure, such as a graft type (comb type) or block type, is preferably used.

樹脂型分散剤は、樹脂系でいうと、例えば、ポリウレタン等のウレタン系分散剤、ポリアクリレート等のポリカールボン酸エステル、不飽和ポリアミド、ポリカールボン酸、ポリカールボン酸(部分)アミン塩、ポリカールボン酸アンモニウム塩、ポリカールボン酸アルキルアミン塩、ポリシロキサン、長鎖ポリアミノアマイドリン酸塩、水酸基含有ポリカールボン酸エステルや、これらの変性物;ポリ(低級アルキレンイミン)と遊離のカルボキシル基を有するポリエステルとの反応により形成されたアミドやその塩;(メタ)アクリル酸-スチレン共重合体、(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体、スチレン-マレイン酸共重合体、ポリビニルアルコール、ポリビニルピロリドン等;ポリエステル、変性ポリアクリレート、エチレンオキサイド/プロピレンオキサイド付加化合物、リン酸エステル系等が挙げられる。 Resin-type dispersants include, for example, urethane-based dispersants such as polyurethane, polycarboxylic acid esters such as polyacrylate, unsaturated polyamides, polycarboxylic acids, polycarboxylic acid (partial) amine salts, polycarboxylic acid ammonium salts, polycarboxylic acid alkylamine salts, polysiloxanes, long-chain polyaminoamide phosphates, hydroxyl-containing polycarboxylic acid esters, and modified products thereof; amides and salts thereof formed by the reaction of poly(lower alkylene imines) with polyesters having free carboxyl groups; (meth)acrylic acid-styrene copolymers, (meth)acrylic acid-(meth)acrylic acid ester copolymers, styrene-maleic acid copolymers, polyvinyl alcohol, polyvinylpyrrolidone, etc.; polyesters, modified polyacrylates, ethylene oxide/propylene oxide adducts, and phosphate esters.

また、樹脂型分散剤は、イオン性でいうと、酸性樹脂型分散剤、塩基性樹脂型分散剤等が挙げられる。 In addition, examples of ionic resin-type dispersants include acidic resin-type dispersants and basic resin-type dispersants.

塩基性樹脂型分散剤は、窒素原子含有グラフト共重合体や、側鎖に3級アミノ基、4級アンモニウム塩基、含窒素複素環などを含む官能基を有する、窒素原子含有アクリル系ブロック共重合体及びウレタン系高分子分散剤等が挙げられる。
塩基性樹脂型分散剤は、塩基性基をリン酸やスルホン酸で中和して使用できる。
Examples of basic resin-type dispersants include nitrogen-atom-containing graft copolymers, and nitrogen-atom-containing acrylic block copolymers and urethane-based polymer dispersants having functional groups including tertiary amino groups, quaternary ammonium bases, nitrogen-containing heterocycles, etc., in the side chains.
The basic resin-type dispersant can be used by neutralizing the basic group with phosphoric acid or sulfonic acid.

本発明の近赤外線吸収組成物は、塩基性樹脂型分散剤を含むことが好ましく、3級アミノ基や4級アンモニウム塩を色素吸着基として有する樹脂型分散剤がより好ましい。 The near infrared absorbing composition of the present invention preferably contains a basic resin-type dispersant, and more preferably a resin-type dispersant having a tertiary amino group or a quaternary ammonium salt as a dye adsorption group.

市販の樹脂型分散剤は、ビックケミー・ジャパン社製のDisperbyk-101、103、107、108、110、111、116、130、140、154、161、162、163、164、165、166、167、168、170、171、174、180、181、182、183、184、185、190、2000、2001、2009、2010、2020、2025、2050、2070、2095、2150、2155、2163、2164またはAnti-Terra-U、203、204、またはBYK-P104、P104S、220S、6919、21116、21324またはLactimon、Lactimon-WSまたはBykumen等、日本ルーブリゾール社製のSOLSPERSE-3000、9000、13000、13240、13650、13940、16000、17000、18000、20000、21000、24000、26000、27000、28000、31845、32000、32500、32550、33500、32600、34750、35100、36600、38500、41000、41090、53095、55000、56000、76500等、BASF社製のEFKA-46、47、48、452、4008、4009、4010、4015、4020、4047、4050、4055、4060、4080、4400、4401、4402、4403、4406、4408、4300、4310、4320、4330、4340、450、451、453、4540、4550、4560、4800、5010、5065、5066、5070、7500、7554、1101、120、150、1501、1502、1503、等、味の素ファインテクノ社製のアジスパーPA111、PB711、PB821、PB822、PB824等が挙げられる。 Commercially available resin-type dispersants include Disperbyk-101, 103, 107, 108, 110, 111, 116, 130, 140, 154, 161, 162, 163, 164, 165, 166, 167, 168, 170, 171, 174, 180, 181, 182, 183, 184, 185, 190, 2000, 2001, 2009, 2010, 2020, 2025, 2050, 2070, 2095, 2150, manufactured by BYK Japan Co., Ltd. 2155, 2163, 2164 or Anti-Terra-U, 203, 204, or BYK-P104, P104S, 220S, 6919, 21116, 21324 or Lactimon, Lactimon-WS or Bykumen, etc. manufactured by Lubrizol Japan Co., Ltd. SOLSPERSE-3000, 9000, 13000, 13240, 13650, 13940, 16000, 17000, 18000, 20000, 21000, 2 4000, 26000, 27000, 28000, 31845, 32000, 32500, 32550, 33500, 32600, 34750, 35100, 36600, 38500, 41000, 41090, 53095, 55000, 56000, 76500, etc., EFKA-46, 47, 48, 452, 4008, 4009, 4010, 4015, 4020, 4047, 4050, 4055, 4060, 4080, 4400 manufactured by BASF , 4401, 4402, 4403, 4406, 4408, 4300, 4310, 4320, 4330, 4340, 450, 451, 453, 4540, 4550, 4560, 4800, 5010, 5065, 5066, 5070, 7500, 7554, 1101, 120, 150, 1501, 1502, 1503, etc., and Ajisper PA111, PB711, PB821, PB822, PB824, etc. manufactured by Ajinomoto Fine-Techno Co., Ltd.

樹脂型分散剤は、単独、または2種類以上を併用して使用できる。 Resin-type dispersants can be used alone or in combination of two or more types.

樹脂型分散剤の含有量は、色素全量に対して3~200質量部が好ましく、5~100質量部がより好ましい。適量含有すると被膜を形成し易い。 The content of the resin-type dispersant is preferably 3 to 200 parts by mass, more preferably 5 to 100 parts by mass, based on the total amount of pigment. If an appropriate amount is included, it is easy to form a coating.

<バインダ樹脂>
本発明の近赤外線吸収組成物は、バインダ樹脂を含むことができる。バインダ樹脂は、400~700nmの全波長領域において透過率が80%以上の樹脂である。なお、透過率は、95%以上が好ましい。バインダ樹脂は硬化性の面でいうと、例えば、熱可塑性樹脂、熱硬化性樹脂、活性エネルギー線硬化性樹脂等が挙げられる。なお、活性エネルギー線硬化性樹脂は、熱可塑性樹脂、または熱硬化樹脂に活性エネルギー線反応性官能基を有しても良い。また、バインダ樹脂は、物性面でいうと、現像性の観点からアルカリ可溶性樹脂が好ましい。アルカリ可溶性は、光学フィルタ作製時のアルカリ現像工程において現像溶解性を付与するためのものであり、酸性基が必要である。
<Binder Resin>
The near infrared absorbing composition of the present invention may contain a binder resin. The binder resin is a resin having a transmittance of 80% or more in the entire wavelength region of 400 to 700 nm. The transmittance is preferably 95% or more. In terms of curability, the binder resin may be, for example, a thermoplastic resin, a thermosetting resin, an active energy ray curable resin, or the like. The active energy ray curable resin may have an active energy ray reactive functional group in the thermoplastic resin or the thermosetting resin. In terms of physical properties, the binder resin is preferably an alkali-soluble resin from the viewpoint of developability. The alkali solubility is for imparting development solubility in the alkali development step during the production of an optical filter, and an acidic group is required.

バインダ樹脂は、単独または2種類以上を併用して使用できる。 Binder resins can be used alone or in combination of two or more types.

バインダ樹脂の含有量は、色素100質量部に対して、20~400質量部が好ましく、50~250質量部がより好ましい。適量含有すると被膜を容易に形成できる上、良好な色特性が得やすい。 The content of the binder resin is preferably 20 to 400 parts by weight, and more preferably 50 to 250 parts by weight, per 100 parts by weight of the pigment. If an appropriate amount is included, a coating can be easily formed and good color characteristics can be easily obtained.

<熱可塑性樹脂>
熱可塑性樹脂は、例えば、アクリル樹脂、ブチラール樹脂、スチレン-マレイン酸共重合体、塩素化ポリエチレン、塩素化ポリプロピレン、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリ酢酸ビニル、ポリウレタン系樹脂、ポリエステル樹脂、ビニル系樹脂、アルキッド樹脂、ポリスチレン樹脂、ポリアミド樹脂、ゴム系樹脂、環化ゴム系樹脂、セルロース類、ポリエチレン(HDPE、LDPE)、ポリブタジエン、及びポリイミド樹脂等が挙げられる。
アルカリ可溶性を有する熱可塑性樹脂は、例えば、カルボキシル基、スルホン基等の酸性基を有する樹脂が挙げられる。アルカリ可溶性を有する熱可塑性樹脂は、例えば、酸性基を有するアクリル樹脂、α-オレフィン/(無水)マレイン酸共重合体、スチレン/スチレンスルホン酸共重合体、エチレン/(メタ)アクリル酸共重合体、又はイソブチレン/(無水)マレイン酸共重合体等が挙げられる。これらの中でも現像性、耐熱性、透明性が向上する面で酸性基を有するアクリル樹脂、スチレン/スチレンスルホン酸共重合体が好ましい。
<Thermoplastic resin>
Examples of thermoplastic resins include acrylic resins, butyral resins, styrene-maleic acid copolymers, chlorinated polyethylene, chlorinated polypropylene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymers, polyvinyl acetate, polyurethane resins, polyester resins, vinyl resins, alkyd resins, polystyrene resins, polyamide resins, rubber resins, cyclized rubber resins, celluloses, polyethylene (HDPE, LDPE), polybutadiene, and polyimide resins.
Examples of the alkali-soluble thermoplastic resin include resins having an acidic group such as a carboxyl group or a sulfonic group. Examples of the alkali-soluble thermoplastic resin include acrylic resins having an acidic group, α-olefin/maleic acid (anhydride) copolymers, styrene/styrenesulfonic acid copolymers, ethylene/(meth)acrylic acid copolymers, and isobutylene/maleic acid (anhydride) copolymers. Among these, acrylic resins having an acidic group and styrene/styrenesulfonic acid copolymers are preferred in terms of improving developability, heat resistance, and transparency.

<活性エネルギー線硬化性アルカリ可溶性樹脂>
活性エネルギー線硬化性アルカリ可溶性樹脂は、エチレン性不飽和二重結合を有することが好ましい。エチレン性不飽和二重結合は、例えば以下に示す(i) (ii)の方法で導入できる。活性エネルギー線による効果で樹脂は、3次元架橋されることで架橋密度が上がり、薬品耐性が向上する。
<Active energy ray-curable alkali-soluble resin>
The active energy ray-curable alkali-soluble resin preferably has an ethylenically unsaturated double bond. The ethylenically unsaturated double bond can be introduced, for example, by the following methods (i) and (ii). The resin is three-dimensionally crosslinked by the effect of active energy rays, increasing the crosslink density and improving chemical resistance.

[方法(i)]
方法(i)は、例えば、エポキシ基を有するエチレン性不飽和単量体と、他の単量体とを共重合して得られた共重合体の側鎖エポキシ基に、エチレン性不飽和二重結合を有する不飽和一塩基酸のカルボキシル基を付加反応させる。次いで、生成した水酸基に、多塩基酸無水物を反応させることで、エチレン性不飽和二重結合及びカルボキシル基を導入する方法である。
[Method (i)]
In the method (i), for example, an ethylenically unsaturated monomer having an epoxy group is copolymerized with another monomer to obtain a copolymer, and a carboxyl group of an unsaturated monobasic acid having an ethylenically unsaturated double bond is subjected to an addition reaction with the side chain epoxy group of the copolymer.Then, a polybasic acid anhydride is reacted with the generated hydroxyl group to introduce an ethylenically unsaturated double bond and a carboxyl group.

エポキシ基を有するエチレン性不飽和単量体は、例えば、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、2-グリシドキシエチル(メタ)アクリレート、3,4-エポキシブチル(メタ)アクリレート、及び3,4-エポキシシクロヘキシル(メタ)アクリレートが挙げられる。これらの中でも不飽和一塩基酸との反応性の観点で、グリシジル(メタ)アクリレートが好ましい。 Examples of ethylenically unsaturated monomers having an epoxy group include glycidyl (meth)acrylate, methyl glycidyl (meth)acrylate, 2-glycidoxyethyl (meth)acrylate, 3,4-epoxybutyl (meth)acrylate, and 3,4-epoxycyclohexyl (meth)acrylate. Among these, glycidyl (meth)acrylate is preferred from the viewpoint of reactivity with unsaturated monobasic acids.

不飽和一塩基酸は、(メタ)アクリル酸、クロトン酸、o-、m-、p-ビニル安息香酸、(メタ)アクリル酸のα位ハロアルキル、アルコキシル、ハロゲン、ニトロ、シアノ置換体等のモノカルボン酸等が挙げられる。 Examples of unsaturated monobasic acids include monocarboxylic acids such as (meth)acrylic acid, crotonic acid, o-, m-, and p-vinylbenzoic acid, and (meth)acrylic acid substituted with haloalkyl, alkoxyl, halogen, nitro, or cyano at the α-position.

多塩基酸無水物は、テトラヒドロ無水フタル酸、無水フタル酸、ヘキサヒドロ無水フタル酸、無水コハク酸、無水マレイン酸等が挙げられる。なお、カルボキシル基の数を増やす等、必要に応じて、トリメリット酸無水物等のトリカルボン酸無水物を用いたり、ピロメリット酸二無水物等のテトラカルボン酸二無水物を用いて、残った無水物基を加水分解したりすること等もできる。 Examples of polybasic acid anhydrides include tetrahydrophthalic anhydride, phthalic anhydride, hexahydrophthalic anhydride, succinic anhydride, and maleic anhydride. If necessary, for example, to increase the number of carboxyl groups, it is also possible to use a tricarboxylic acid anhydride such as trimellitic anhydride, or a tetracarboxylic acid dianhydride such as pyromellitic dianhydride to hydrolyze the remaining anhydride groups.

他の単量体としては、以下のものが挙げられる。例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、又はエトキシポリエチレングリコール(メタ)アクリレート等の(メタ)アクリレート類、
あるいは、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、又はアクリロイルモルホリン等の(メタ)アクリルアミド類スチレン、又はα-メチルスチレン等のスチレン類、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、又はイソブチルビニルエーテル等のビニルエーテル類、酢酸ビニル、又はプロピオン酸ビニル等の脂肪酸ビニル類等が挙げられる。
Examples of the other monomers include the following: (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, stearyl (meth)acrylate, lauryl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, isobornyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, phenoxydiethylene glycol (meth)acrylate, methoxypolypropylene glycol (meth)acrylate, and ethoxypolyethylene glycol (meth)acrylate;
Alternatively, examples of the vinyl monomer include (meth)acrylamides such as (meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, diacetone(meth)acrylamide, and acryloylmorpholine; styrenes such as styrene and α-methylstyrene; vinyl ethers such as ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, and isobutyl vinyl ether; and fatty acid vinyls such as vinyl acetate and vinyl propionate.

あるいは、シクロヘキシルマレイミド、フェニルマレイミド、メチルマレイミド、エチルマレイミド、1,2-ビスマレイミドエタン1,6-ビスマレイミドヘキサン、3-マレイミドプロピオン酸、6,7-メチレンジオキシ-4-メチル-3-マレイミドクマリン、4,4’-ビスマレイミドジフェニルメタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、N,N’-1,3-フェニレンジマレイミド、N,N’-1,4-フェニレンジマレイミド、N-(1-ピレニル)マレイミド、N-(2,4,6-トリクロロフェニル)マレイミド、N-(4-アミノフェニル)マレイミド、N-(4-ニトロフェニル)マレイミド、N-ベンジルマレイミド、N-ブロモメチル-2,3-ジクロロマレイミド、N-スクシンイミジル-3-マレイミドベンゾエート、N-スクシンイミジル-3-マレイミドプロピオナート、N-スクシンイミジル-4-マレイミドブチラート、N-スクシンイミジル-6-マレイミドヘキサノアート、N-[4-(2-ベンゾイミダゾリル)フェニル]マレイミド、9-マレイミドアクリジン等のN-置換マレイミド類、EO変性クレゾールアクリレート、n-ノニルフェノキシポリエチレングリコールアクリレート、フェノキシエチルアクリレート、エトキシ化フェニルアクリレート、フェノールのエチレンオキサイド(EO)変性(メタ)アクリレート、パラクミルフェノールのEO又はプロピレンオキサイド(PO)変性(メタ)アクリレート、ノニルフェノールのEO変性(メタ)アクリレート、ノニルフェノールのPO変性(メタ)アクリレート等が挙げられる。 Alternatively, cyclohexylmaleimide, phenylmaleimide, methylmaleimide, ethylmaleimide, 1,2-bismaleimideethane 1,6-bismaleimidehexane, 3-maleimidopropionic acid, 6,7-methylenedioxy-4-methyl-3-maleimidocoumarin, 4,4'-bismaleimidediphenylmethane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, N,N'-1,3-phenylenedimaleimide, N,N'-1,4-phenylenedimaleimide, N-(1-pyrenyl)maleimide, N-(2,4,6-trichlorophenyl)maleimide, N-(4-aminophenyl)maleimide, N-(4-nitrophenyl)maleimide, N-benzylmaleimide, N-bromomethyl-2,3-dichloromaleimide, N-succinimidyl-3-maleimide Examples of such compounds include N-substituted maleimides such as imidobenzoate, N-succinimidyl-3-maleimidopropionate, N-succinimidyl-4-maleimidobutyrate, N-succinimidyl-6-maleimidohexanoate, N-[4-(2-benzimidazolyl)phenyl]maleimide, and 9-maleimidoacridine, EO-modified cresol acrylate, n-nonylphenoxy polyethylene glycol acrylate, phenoxyethyl acrylate, ethoxylated phenyl acrylate, ethylene oxide (EO)-modified (meth)acrylate of phenol, EO- or propylene oxide (PO)-modified (meth)acrylate of paracumylphenol, EO-modified (meth)acrylate of nonylphenol, and PO-modified (meth)acrylate of nonylphenol.

方法(i)の類似の方法として、例えば、カルボキシル基を有するエチレン性不飽和単量体と、他の単量体とを共重合で得られた共重合体の側鎖カルボキシル基の一部に、エポキシ基を有するエチレン性不飽和単量体を付加反応させ、エチレン性不飽和二重結合及びカルボキシル基を導入する方法である。 A method similar to method (i) is, for example, a method in which an ethylenically unsaturated monomer having an epoxy group is added to some of the side chain carboxyl groups of a copolymer obtained by copolymerizing an ethylenically unsaturated monomer having a carboxyl group with another monomer, thereby introducing an ethylenically unsaturated double bond and a carboxyl group.

[方法(ii)]
方法(ii)は、水酸基を有するエチレン性不飽和単量体と、他の単量体とを共重合することによって得られた共重合体の側鎖水酸基に、イソシアネート基を有するエチレン性不飽和単量体のイソシアネート基を反応させる方法である。
[Method (ii)]
The method (ii) is a method in which an isocyanate group of an ethylenically unsaturated monomer having an isocyanate group is reacted with a side chain hydroxyl group of a copolymer obtained by copolymerizing an ethylenically unsaturated monomer having a hydroxyl group with another monomer.

水酸基を有するエチレン性不飽和単量体は、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-若しくは3-ヒドロキシプロピル(メタ)アクリレート、2-若しくは3-若しくは4-ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、又はシクロヘキサンジメタノールモノ(メタ)アクリレート等のヒドロキシアルキルメタアクリレート類が挙げられる。また、ヒドロキシアルキル(メタ)アクリレートに、エチレンオキシド、プロピレンオキシド、及び/又はブチレンオキシド等を付加重合させたポリエーテルモノ(メタ)アクリレートや、ポリγ-バレロラクトン、ポリε-カプロラクトン、及び/又はポリ12-ヒドロキシステアリン酸等を付加したポリエステルモノ(メタ)アクリレートも挙げられる。塗膜異物抑制の観点から、2-ヒドロキシエチルメタアクリレート、又はグリセロールモノ(メタ)アクリレートが好ましく、また感度の点からは2個以上6個以下の水酸基を有するものを使用することが感度の点から好ましく、グリセロールモノ(メタ)アクリレートがさらに好ましい。 Examples of ethylenically unsaturated monomers having a hydroxyl group include hydroxyalkyl methacrylates such as 2-hydroxyethyl (meth)acrylate, 2- or 3-hydroxypropyl (meth)acrylate, 2-, 3- or 4-hydroxybutyl (meth)acrylate, glycerol mono(meth)acrylate, and cyclohexanedimethanol mono(meth)acrylate. Other examples include polyether mono(meth)acrylates obtained by addition polymerization of ethylene oxide, propylene oxide, and/or butylene oxide to a hydroxyalkyl (meth)acrylate, and polyester mono(meth)acrylates obtained by addition of poly(γ-valerolactone), poly(ε-caprolactone, and/or poly(12-hydroxystearic acid), etc. From the viewpoint of suppressing foreign matter in the coating, 2-hydroxyethyl methacrylate or glycerol mono(meth)acrylate is preferred, and from the viewpoint of sensitivity, it is preferred to use one having 2 to 6 hydroxyl groups, with glycerol mono(meth)acrylate being even more preferred.

イソシアネート基を有するエチレン性不飽和単量体は、例えば、2-(メタ)アクリロイルエチルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート、又は1,1-ビス〔メタアクリロイルオキシ〕エチルイソシアネート等が挙げられる。 Examples of ethylenically unsaturated monomers having an isocyanate group include 2-(meth)acryloylethyl isocyanate, 2-(meth)acryloyloxyethyl isocyanate, and 1,1-bis[methacryloyloxy]ethyl isocyanate.

アルカリ可溶性樹脂を構成できるその他単量体は、既に説明したその他のエチレン性不飽和単量体に加え、N-置換マレイミド類、アルキレンオキシ基含有単量体、リン酸エステル基含有エチレン性不飽和単量体、カルボキシル基含有エチレン性不飽和単量体等が挙げられる。
N-置換マレイミド類は、例えば、シクロヘキシルマレイミド、フェニルマレイミド、メチルマレイミド、エチルマレイミド、1,2-ビスマレイミドエタン1,6-ビスマレイミドヘキサン、3-マレイミドプロピオン酸、6,7-メチレンジオキシ-4-メチル-3-マレイミドクマリン、4,4’-ビスマレイミドジフェニルメタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、N,N’-1,3-フェニレンジマレイミド、N,N’-1,4-フェニレンジマレイミド、N-(1-ピレニル)マレイミド、N-(2,4,6-トリクロロフェニル)マレイミド、N-(4-アミノフェニル)マレイミド、N-(4-ニトロフェニル)マレイミド、N-ベンジルマレイミド、N-ブロモメチル-2,3-ジクロロマレイミド、N-スクシンイミジル-3-マレイミドベンゾエート、N-スクシンイミジル-3-マレイミドプロピオナート、N-スクシンイミジル-4-マレイミドブチラート、N-スクシンイミジル-6-マレイミドヘキサノアート、N-[4-(2-ベンゾイミダゾリル)フェニル]マレイミド、9-マレイミドアクリジン等が挙げられる。アルキレンオキシ基含有単量体は、例えば、EO変性クレゾールアクリレート、n-ノニルフェノキシポリエチレングリコールアクリレート、フェノキシエチルアクリレート、エトキシ化フェニルアクリレート、フェノールのエチレンオキサイド(EO)変性(メタ)アクリレート、パラクミルフェノールのEO又はプロピレンオキサイド(PO)変性(メタ)アクリレート、ノニルフェノールのEO変性(メタ)アクリレート、ノニルフェノールのPO変性(メタ)アクリレート等が挙げられる。
Examples of other monomers that can constitute the alkali-soluble resin include, in addition to the other ethylenically unsaturated monomers already described, N-substituted maleimides, alkyleneoxy group-containing monomers, phosphate group-containing ethylenically unsaturated monomers, carboxyl group-containing ethylenically unsaturated monomers, and the like.
Examples of N-substituted maleimides include cyclohexylmaleimide, phenylmaleimide, methylmaleimide, ethylmaleimide, 1,2-bismaleimideethane, 1,6-bismaleimidehexane, 3-maleimidepropionic acid, 6,7-methylenedioxy-4-methyl-3-maleimide coumarin, 4,4'-bismaleimidediphenylmethane, bis(3-ethyl-5-methyl-4-maleimidephenyl)methane, N,N'-1,3-phenylenedimaleimide, N,N'-1,4-phenylenedimaleimide, N-(1-pyrenyl)maleimide, N-( 2,4,6-trichlorophenyl)maleimide, N-(4-aminophenyl)maleimide, N-(4-nitrophenyl)maleimide, N-benzylmaleimide, N-bromomethyl-2,3-dichloromaleimide, N-succinimidyl-3-maleimide benzoate, N-succinimidyl-3-maleimide propionate, N-succinimidyl-4-maleimide butyrate, N-succinimidyl-6-maleimide hexanoate, N-[4-(2-benzimidazolyl)phenyl]maleimide, 9-maleimide acridine and the like. Examples of the alkyleneoxy group-containing monomer include EO-modified cresol acrylate, n-nonylphenoxy polyethylene glycol acrylate, phenoxyethyl acrylate, ethoxylated phenyl acrylate, ethylene oxide (EO)-modified (meth)acrylate of phenol, EO- or propylene oxide (PO)-modified (meth)acrylate of paracumylphenol, EO-modified (meth)acrylate of nonylphenol, and PO-modified (meth)acrylate of nonylphenol.

カルボキシル基含有エチレン性不飽和単量体は、既に説明した単量体を使用できる。 The carboxyl group-containing ethylenically unsaturated monomer can be any of the monomers already described.

リン酸エステル基含有エチレン性不飽和単量体は、例えば、上記水酸基含有エチレン性不飽和単量体の水酸基に、たとえば5酸化リンやポリリン酸等のリン酸エステル化剤を反応させた化合物である。 The phosphate ester group-containing ethylenically unsaturated monomer is, for example, a compound obtained by reacting the hydroxyl group of the hydroxyl group-containing ethylenically unsaturated monomer with a phosphate esterifying agent such as phosphorus pentoxide or polyphosphoric acid.

<エチレン性不飽和二重結合を有しないアルカリ可溶性樹脂>
本発明の近赤外線吸収組成物は、被膜の硬化度を調整するために、エチレン性不飽和二重結合を有しないアルカリ可溶性樹脂を含有できる。
<Alkali-soluble resin having no ethylenically unsaturated double bond>
The near infrared absorbing composition of the present invention can contain an alkali-soluble resin having no ethylenically unsaturated double bond in order to adjust the degree of curing of the coating film.

本発明におけるアルカリ可溶性樹脂の重量平均分子量(Mw)は、アルカリ現像溶解性を付与するために、2,000以上40,000以下であり、3,000以上30,000以下が好ましく、4,000以上20,000以下がより好ましい。また、Mw/Mnの値は10以下であることが好ましい。重量平均分子量(Mw)が2,000未満であると基板に対する密着性が低下し、露光パターンが残りにくくなる。40,000を超えるとアルカリ現像溶解性が低下し、残渣が発生しパターンの直線性が悪化する。
本発明におけるアルカリ可溶性樹脂の酸価は、アルカリ現像溶解性を付与するために50以上200以下(KOHmg/g)であり、70以上180以下の範囲が好ましく、より好ましくは90以上170以下の範囲である。酸価が50未満であるとアルカリ現像溶解性が低下し、残渣が発生しパターンの直線性が悪化する。200を超えると基板への密着性が低下し、露光パターンが残りにくくなる。
In the present invention, the weight average molecular weight (Mw) of the alkali-soluble resin is 2,000 to 40,000, preferably 3,000 to 30,000, more preferably 4,000 to 20,000, in order to provide alkali development solubility. The value of Mw/Mn is preferably 10 or less. If the weight average molecular weight (Mw) is less than 2,000, the adhesion to the substrate decreases, and the exposed pattern is less likely to remain. If it exceeds 40,000, the alkali development solubility decreases, residues are generated, and the linearity of the pattern deteriorates.
The acid value of the alkali-soluble resin in the present invention is from 50 to 200 (KOH mg/g) in order to impart solubility in alkaline development, preferably from 70 to 180, and more preferably from 90 to 170. If the acid value is less than 50, the solubility in alkaline development decreases, residues are generated, and linearity of the pattern deteriorates. If the acid value exceeds 200, adhesion to the substrate decreases, making it difficult to leave an exposed pattern.

バインダ樹脂の合成に使用する各原料は、単独または2種類以上を併用して使用できる。 Each raw material used in the synthesis of the binder resin can be used alone or in combination of two or more types.

<熱硬化性化合物>
本発明においては、バインダ樹脂として熱可塑性樹脂と併用して、さらに熱硬化性化合物を含むことが出来る。本発明の近赤外線吸収組成物を用いて光学フィルタを作製する際、熱硬化性化合物を含むことで、フィルタセグメントの焼成時に反応し塗膜の架橋密度を高め、そのためフィルタセグメントの耐熱性が向上し、フィルタセグメント焼成時の顔料凝集が抑えられ、コントラスト比が向上するという効果が得られる。
<Thermosetting Compound>
In the present invention, a thermosetting compound can be further contained as a binder resin in combination with a thermoplastic resin. When an optical filter is produced using the near infrared absorbing composition of the present invention, the inclusion of a thermosetting compound reacts during firing of the filter segment to increase the crosslink density of the coating film, thereby improving the heat resistance of the filter segment, suppressing pigment aggregation during firing of the filter segment, and improving the contrast ratio.

熱硬化性化合物は、低分子化合物でもよく、樹脂のような高分子量化合物でもよい。
熱硬化性化合物としては、例えば、エポキシ化合物、オキセタン化合物、ベンゾグアナミン化合物、ロジン変性マレイン酸化合物、ロジン変性フマル酸化合物、メラミン化合物、尿素化合物、およびフェノール化合物が挙げられるが、本発明はこれに限定されるものではない。本発明の近赤外線吸収組成物ではエポキシ化合物およびオキセタン化合物が好ましく用いられる。
The thermosetting compound may be a low molecular weight compound or a high molecular weight compound such as a resin.
Examples of the thermosetting compound include epoxy compounds, oxetane compounds, benzoguanamine compounds, rosin-modified maleic acid compounds, rosin-modified fumaric acid compounds, melamine compounds, urea compounds, and phenol compounds, but the present invention is not limited thereto. In the near infrared absorbing composition of the present invention, epoxy compounds and oxetane compounds are preferably used.

<重合性化合物>
本発明の近赤外線吸収組成物、重合性化合物、及び光重合開始剤を含むことによって感光性近赤外線吸収組成物とすることができる。重合性化合物には、紫外線や熱などにより硬化して透明樹脂を生成するモノマーもしくはオリゴマーが含まれる。
<Polymerizable Compound>
A photosensitive near infrared absorbing composition can be obtained by containing the near infrared absorbing composition of the present invention, a polymerizable compound, and a photopolymerization initiator. The polymerizable compound includes a monomer or oligomer that is cured by ultraviolet light, heat, or the like to form a transparent resin.

重合性化合物は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、トリメチロールプロパンPO変性トリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、イソシアヌル酸EO変性ジ(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、1,6-ヘキサンジオールジグリシジルエーテルジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオペンチルグリコールジグリシジルエーテルジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、メチロール化メラミンの(メタ)アクリル酸エステル、エポキシ(メタ)アクリレート、ウレタンアクリレート等の各種アクリル酸エステル及びメタクリル酸エステル、(メタ)アクリル酸、スチレン、酢酸ビニル、ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-ビニルホルムアミド、アクリロニトリル等が挙げられる。 Examples of the polymerizable compound include methyl (meth)acrylate, ethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, cyclohexyl (meth)acrylate, β-carboxyethyl (meth)acrylate, polyethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, triethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, phenoxytetraethylene glycol (meth)acrylate, phenoxyhexaethylene glycol (meth)acrylate, trimethylolpropane PO-modified tri(meth)acrylate, trimethylolpropane EO-modified tri(meth)acrylate, isocyanuric acid EO-modified di(meth)acrylate, isocyanuric acid EO-modified tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, Examples of the acrylic acid esters and methacrylic acid esters include pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, 1,6-hexanediol diglycidyl ether di(meth)acrylate, bisphenol A diglycidyl ether di(meth)acrylate, neopentyl glycol diglycidyl ether di(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, tricyclodecanyl(meth)acrylate, methylolated melamine (meth)acrylic acid ester, epoxy (meth)acrylate, and urethane acrylate, as well as (meth)acrylic acid, styrene, vinyl acetate, hydroxyethyl vinyl ether, ethylene glycol divinyl ether, pentaerythritol trivinyl ether, (meth)acrylamide, N-hydroxymethyl(meth)acrylamide, N-vinylformamide, and acrylonitrile.

(酸基を有する重合性化合物)
重合性化合物は、酸基を有する光重合性単量体を含有できる。酸基は、スルホン酸基、カルボキシル基、リン酸基等が挙げられる。
(Polymerizable compound having an acid group)
The polymerizable compound may contain a photopolymerizable monomer having an acid group, such as a sulfonic acid group, a carboxyl group, or a phosphoric acid group.

酸基を有する光重合性単量体は、例えば、多価アルコールと(メタ)アクリル酸との遊離水酸基含有ポリ(メタ)アクリレート類と、ジカルボン酸類とのエステル化物;多価カルボン酸と、モノヒドロキシアルキル(メタ)アクリレート類とのエステル化物等が挙げられる。具体例は、トリメチロールプロパンジアクリレート、トリメチロールプロパンジメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペンタメタクリレート等のモノヒドロキシオリゴアクリレート又はモノヒドロキシオリゴメタクリレート類と、マロン酸、コハク酸、グルタル酸、フタル酸等のジカルボン酸類との遊離カルボキシル基含有モノエステル化物;プロパン-1,2,3-トリカルボン酸(トリカルバリル酸)、ブタン-1,2,4-トリカルボン酸、ベンゼン-1,2,3-トリカルボン酸、ベンゼン-1,3,4-トリカルボン酸、ベンゼン-1,3,5-トリカルボン酸等のトリカルボン酸類と、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート等のモノヒドロキシモノアクリレート又はモノヒドロキシモノメタクリレート類との遊離カルボキシル基含有オリゴエステル化物等が挙げられる。 Examples of photopolymerizable monomers having an acid group include esters of free hydroxyl group-containing poly(meth)acrylates of polyhydric alcohols and (meth)acrylic acid with dicarboxylic acids; esters of polycarboxylic acids with monohydroxyalkyl (meth)acrylates, etc. Specific examples include free carboxyl group-containing monoesters of monohydroxy oligoacrylates or monohydroxy oligomethacrylates such as trimethylolpropane diacrylate, trimethylolpropane dimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol pentamethacrylate with dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, and phthalic acid; and free carboxyl group-containing oligoesters of tricarboxylic acids such as propane-1,2,3-tricarboxylic acid (tricarballylic acid), butane-1,2,4-tricarboxylic acid, benzene-1,2,3-tricarboxylic acid, benzene-1,3,4-tricarboxylic acid, and benzene-1,3,5-tricarboxylic acid with monohydroxy monoacrylates or monohydroxy monomethacrylates such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and 2-hydroxypropyl methacrylate.

(ウレタン結合を有する重合性化合物)
重合性化合物は、エチレン性不飽和結合とウレタン結合を有する単量体を含有できる。前記単量体は、例えば、水酸基を有する(メタ)アクリレートに多官能イソシアネートを反応させて得られる多官能ウレタンアクリレートや、アルコールに多官能イソシアネートを反応させ、さらに水酸基を有する(メタ)アクリレートを反応させて得られる多官能ウレタンアクリレート等が挙げられる。
(Polymerizable compound having a urethane bond)
The polymerizable compound may contain a monomer having an ethylenically unsaturated bond and a urethane bond. Examples of the monomer include a polyfunctional urethane acrylate obtained by reacting a (meth)acrylate having a hydroxyl group with a polyfunctional isocyanate, and a polyfunctional urethane acrylate obtained by reacting an alcohol with a polyfunctional isocyanate and further reacting the alcohol with a (meth)acrylate having a hydroxyl group.

水酸基を有する(メタ)アクリレートは、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールエチレンオキサイド変性ペンタ(メタ)アクリレート、ジペンタエリスリトールプロピレンオキサイド変性ペンタ(メタ)アクリレート、ジペンタエリスリトールカプロラクトン変性ペンタ(メタ)アクリレート、グリセロールアクリレートメタクリレート、グリセロールジメタクリレート、2-ヒドロキシ-3-アクリロイルプロピルメタクリレート、エポキシ基含有化合物とカルボキシ(メタ)アクリレートの反応物、水酸基含有ポリオールポリアクリレート等が挙げられる。 Examples of (meth)acrylates having a hydroxyl group include 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol tri(meth)acrylate, ditrimethylolpropane tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol ethylene oxide modified penta(meth)acrylate, dipentaerythritol propylene oxide modified penta(meth)acrylate, dipentaerythritol caprolactone modified penta(meth)acrylate, glycerol acrylate methacrylate, glycerol dimethacrylate, 2-hydroxy-3-acryloylpropyl methacrylate, reaction products of epoxy group-containing compounds and carboxy(meth)acrylate, and hydroxyl group-containing polyol polyacrylate.

また、多官能イソシアネートは、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメチレンジイソシアネート、イソホロンジイソシアネート、ポリイソシアネート等が挙げられる。 Examples of polyfunctional isocyanates include tolylene diisocyanate, hexamethylene diisocyanate, diphenylmethylene diisocyanate, isophorone diisocyanate, polyisocyanate, etc.

重合性化合物は、単独または2種類以上を併用して使用できる。 The polymerizable compounds can be used alone or in combination of two or more types.

重合性化合物の配合量は、近赤外線吸収組成物の不揮発分100質量%中、1~50質量%が好ましく、2~40質量部がより好ましい。適量配合すると硬化性及び現像性がより向上する。 The amount of the polymerizable compound is preferably 1 to 50 mass %, and more preferably 2 to 40 mass parts, based on 100 mass % of the nonvolatile content of the near infrared absorbing composition. When an appropriate amount is added, the curability and developability are further improved.

<光重合開始剤>
光重合開始剤は、例えば、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-(ジメチルアミノ)-1-[4-(4-モルホリノ)フェニル]-2-(フェニルメチル)-1-ブタノン、又は2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、又はベンジルジメチルケタール等のベンゾイン系化合物;ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、又は3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン等のベンゾフェノン系化合物;チオキサントン、2-クロルチオキサントン、2-メチルチオキサントン、イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン、又は2,4-ジエチルチオキサントン等のチオキサントン系化合物;2,4,6-トリクロロ-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ピペロニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-ビス(トリクロロメチル)-6-スチリル-s-トリアジン、2-(ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシ-ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-トリクロロメチル-(ピペロニル)-6-トリアジン、又は2,4-トリクロロメチル-(4’-メトキシスチリル)-6-トリアジン等のトリアジン系化合物;1,2-オクタンジオン,1-〔4-(フェニルチオ)フェニル-,2-(O-ベンゾイルオキシム)〕、又はエタノン,1-〔9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル〕-,1-(O-アセチルオキシム)等のオキシムエステル系化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、又はジフェニル-2,4,6-トリメチルベンゾイルホスフィンオキサイド等のホスフィン系化合物;9,10-フェナンスレンキノン、カンファーキノン、エチルアントラキノン等のキノン系化合物;ボレート系化合物;カルバゾール系化合物;イミダゾール系化合物;あるいは、チタノセン系化合物等が挙げられる。これらの中でも、オキシムエステル系化合物が好ましい。
<Photopolymerization initiator>
Examples of the photopolymerization initiator include acetophenone-based compounds such as 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-(dimethylamino)-1-[4-(4-morpholino)phenyl]-2-(phenylmethyl)-1-butanone, and 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone; benzoin, benzoin methyl ether, benzoin Benzoin compounds such as ethyl ether, benzoin isopropyl ether, and benzil dimethyl ketal; benzophenone compounds such as benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, and 3,3',4,4'-tetra(t-butylperoxycarbonyl)benzophenone; thioxanthone compounds such as thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, and 2,4-diethylthioxanthone; 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis(trichloromethyl)-s-triazine, 2-(p-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(p-tolyl)-4,6-bis(trichloromethyl)-s-triazine, 2-piperonyl-4,6-bis(trichloromethyl)-s-triazine, 2,4-bis(trichloromethyl)-6-styryl-s-triazine, 2-(naphth-1-yl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-methoxy-naphth-1-yl)-4,6-bis(trichloromethyl)-s-triazine, 2,4-trichloromethyl-(piperonyl)-6-triazine, or 2,4-trichloromethyl-(4'-methoxystyryl)-6-triazine. triazine-based compounds such as 1,2-octanedione, 1-[4-(phenylthio)phenyl-, 2-(O-benzoyloxime)], or ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, or 1-(O-acetyloxime) or other oxime ester-based compounds; phosphine-based compounds such as bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide or diphenyl-2,4,6-trimethylbenzoylphosphine oxide; quinone-based compounds such as 9,10-phenanthrenequinone, camphorquinone, or ethylanthraquinone; borate-based compounds; carbazole-based compounds; imidazole-based compounds; or titanocene-based compounds. Among these, oxime ester-based compounds are preferred.

光重合開始剤は、単独または2種類以上を併用して使用できる。 Photopolymerization initiators can be used alone or in combination of two or more types.

(オキシムエステル系化合物)
オキシムエステル系化合物は、紫外線を吸収することによってオキシムのN-O結合の解裂がおこり、イミニルラジカルとアルキロキシラジカルを生成する。これらのラジカルは更に分解することにより活性の高いラジカルを生成するため、少ない露光量でパターンを形成させることができる。近赤外線吸収組成物の色素濃度が高い場合、塗膜の紫外線透過率が低くなり塗膜の硬化度が低くなることがあるが、オキシムエステル系化合物は高い量子効率を持つため好適に使用される。
(Oxime ester compounds)
In the oxime ester compound, the N-O bond of the oxime is cleaved by absorbing ultraviolet light, generating an iminyl radical and an alkyloxy radical. These radicals further decompose to generate highly active radicals, so that a pattern can be formed with a small amount of exposure. When the dye concentration of the near-infrared absorbing composition is high, the ultraviolet transmittance of the coating film may decrease, and the degree of curing of the coating film may decrease, but the oxime ester compound has high quantum efficiency and is therefore preferably used.

オキシムエステル系化合物は、特開2007-210991号公報、特開2009-179619号公報、特開2010-037223号公報、特開2010-215575号公報、特開2011-020998号公報等に記載のオキシムエステル系光重合開始剤が挙げられる。 Examples of oxime ester compounds include oxime ester photopolymerization initiators described in JP-A-2007-210991, JP-A-2009-179619, JP-A-2010-037223, JP-A-2010-215575, JP-A-2011-020998, etc.

光重合開始剤の含有量は、色素100質量部に対し、2~50質量部が好ましく、2~30質量部がより好ましい。適量配合すると光硬化性及び現像性がより向上する。 The content of the photopolymerization initiator is preferably 2 to 50 parts by weight, and more preferably 2 to 30 parts by weight, per 100 parts by weight of the dye. When an appropriate amount is added, the photocuring property and developability are further improved.

<増感剤>
さらに、本発明の近赤外線吸収組成物には、増感剤を含有させることができる。
増感剤としては、カルコン誘導体、ジベンザルアセトン等に代表される不飽和ケトン類、ベンジルやカンファーキノン等に代表される1,2-ジケトン誘導体、ベンゾイン誘導体、フルオレン誘導体、ナフトキノン誘導体、アントラキノン誘導体、キサンテン誘導体、チオキサンテン誘導体、キサントン誘導体、チオキサントン誘導体、クマリン誘導体、ケトクマリン誘導体、シアニン誘導体、メロシアニン誘導体、オキソノ-ル誘導体等のポリメチン色素、アクリジン誘導体、アジン誘導体、チアジン誘導体、オキサジン誘導体、インドリン誘導体、アズレン誘導体、アズレニウム誘導体、スクアリリウム誘導体、ポルフィリン誘導体、テトラフェニルポルフィリン誘導体、トリアリールメタン誘導体、テトラベンゾポルフィリン誘導体、テトラピラジノポルフィラジン誘導体、フタロシアニン誘導体、テトラアザポルフィラジン誘導体、テトラキノキサリロポルフィラジン誘導体、ナフタロシアニン誘導体、サブフタロシアニン誘導体、ピリリウム誘導体、チオピリリウム誘導体、テトラフィリン誘導体、アヌレン誘導体、スピロピラン誘導体、スピロオキサジン誘導体、チオスピロピラン誘導体、金属アレーン錯体、有機ルテニウム錯体、又はミヒラーケトン誘導体、α-アシロキシエステル、アシルフォスフィンオキサイド、メチルフェニルグリオキシレート、ベンジル、9,10-フェナンスレンキノン、カンファーキノン、エチルアンスラキノン、4,4’-ジエチルイソフタロフェノン、3,3’又は4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等が挙げられる。
<Sensitizer>
Furthermore, the near infrared ray absorbing composition of the present invention may contain a sensitizer.
Examples of sensitizers include chalcone derivatives, unsaturated ketones typified by dibenzalacetone, 1,2-diketone derivatives typified by benzil and camphorquinone, benzoin derivatives, fluorene derivatives, naphthoquinone derivatives, anthraquinone derivatives, xanthene derivatives, thioxanthene derivatives, xanthone derivatives, thioxanthone derivatives, coumarin derivatives, ketocoumarin derivatives, cyanine derivatives, merocyanine derivatives, and oxonol derivatives, and other polymethine dyes, acridine derivatives, azine derivatives, thiazine derivatives, oxazine derivatives, indoline derivatives, azulene derivatives, azulenium derivatives, squarylium derivatives, porphyrin derivatives, tetraphenylporphyrin derivatives, triarylmethane derivatives, tetrabenzoporphyrin derivatives, and tetrapyrazinoporphyrazine derivatives. , phthalocyanine derivatives, tetraazaporphyrazine derivatives, tetraquinoxalylporphyrazine derivatives, naphthalocyanine derivatives, subphthalocyanine derivatives, pyrylium derivatives, thiopyrylium derivatives, tetraphylline derivatives, annulene derivatives, spiropyran derivatives, spirooxazine derivatives, thiospiropyran derivatives, metal arene complexes, organic ruthenium complexes, or Michler's ketone derivatives, α-acyloxy esters, acylphosphine oxides, methylphenyl glyoxylates, benzyl, 9,10-phenanthrenequinone, camphorquinone, ethyl anthraquinone, 4,4'-diethylisophthalophenone, 3,3' or 4,4'-tetra(t-butylperoxycarbonyl)benzophenone, 4,4'-bis(diethylamino)benzophenone, and the like.

上記増感剤の中で、特に好適に増感しうる増感剤としては、チオキサントン誘導体、ミヒラーケトン誘導体、カルバゾール誘導体が挙げられる。さらに具体的には、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、1-クロロ-4-プロポキシチオキサントン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(エチルメチルアミノ)ベンゾフェノン、N-エチルカルバゾール、3-ベンゾイル-N-エチルカルバゾール、3,6-ジベンゾイル-N-エチルカルバゾール等が用いられる。 Among the above sensitizers, particularly suitable sensitizers include thioxanthone derivatives, Michler's ketone derivatives, and carbazole derivatives. More specifically, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-dichlorothioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 1-chloro-4-propoxythioxanthone, 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis(diethylamino)benzophenone, 4,4'-bis(ethylmethylamino)benzophenone, N-ethylcarbazole, 3-benzoyl-N-ethylcarbazole, and 3,6-dibenzoyl-N-ethylcarbazole are used.

さらに具体的には、大河原信ら編、「色素ハンドブック」(1986年、講談社)、大河原信ら編、「機能性色素の化学」(1981年、シーエムシー)、池森忠三朗ら編、及び「特殊機能材料」(1986年、シーエムシー)に記載の増感剤が挙げられるがこれらに限定されるものではない。また、その他、紫外から近赤外域にかけての光に対して吸収を示す増感剤を含有させることもできる。 More specifically, examples of sensitizers include those described in "Dye Handbook" edited by Okawara Makoto et al. (Kodansha, 1986), "Chemistry of Functional Dyes" edited by Okawara Makoto et al. (CMC, 1981), "Tokushu No Futon Zairyo" edited by Ikemori Chuzaburo et al., and "Tokushu No Futon Zairyo" (CMC, 1986), but are not limited to these. In addition, sensitizers that absorb light from the ultraviolet to near infrared regions can also be included.

増感剤は、単独または2種類以上を併用して使用できる。 Sensitizers can be used alone or in combination of two or more types.

増感剤の含有量は、光重合開始剤100質量部に対し、3~60質量部でが好ましく、5~50質量部がより好ましい。適量含有すると硬化性、現像性がより向上する。 The content of the sensitizer is preferably 3 to 60 parts by mass, and more preferably 5 to 50 parts by mass, per 100 parts by mass of the photopolymerization initiator. When an appropriate amount is included, the curing property and developability are further improved.

<チオール系連鎖移動剤>
本発明の近赤外線吸収組成物は連鎖移動剤として、チオール系連鎖移動剤を含むことが好ましい。チオールを光重合開始剤とともに使用することにより、光照射後のラジカル重合過程において、連鎖移動剤として働き、酸素による重合阻害を受けにくいチイルラジカルが発生するので、得られる近赤外線吸収組成物は高感度となる。
<Thiol-based chain transfer agent>
The near infrared absorbing composition of the present invention preferably contains a thiol-based chain transfer agent as a chain transfer agent. By using a thiol together with a photopolymerization initiator, the thiol acts as a chain transfer agent in the radical polymerization process after light irradiation, and generates a thiyl radical that is not easily inhibited by oxygen in polymerization, so that the obtained near infrared absorbing composition has high sensitivity.

また、チオール基が2個以上あるメチレン、エチレン基等の脂肪族基に結合した多官能脂肪族チオールが好ましい。より好ましくは、チオール基が4個以上ある多官能脂肪族チオールである。官能基数が増えることで、重合開始機能が向上し、パターンにおける表面から基材付近まで硬化させることができる。 In addition, polyfunctional aliphatic thiols having two or more thiol groups bonded to aliphatic groups such as methylene or ethylene groups are preferred. Polyfunctional aliphatic thiols having four or more thiol groups are more preferred. By increasing the number of functional groups, the polymerization initiation function is improved, and curing can be achieved from the surface of the pattern to near the substrate.

多官能チオールとしては、例えば、ヘキサンジチオール 、デカンジチオール 、1,4-ブタンジオールビスチオプロピオネート、1,4-ブタンジオールビスチオグリコレート、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネート、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、トリメルカプトプロピオン酸トリス(2-ヒドロキシエチル)イソシアヌレート、1,4-ジメチルメルカプトベンゼン、2、4、6-トリメルカプト-s-トリアジン、2-(N,N-ジブチルアミノ)-4,6-ジメルカプト-s-トリアジンなどが挙げられ、好ましくは、エチレングリコールビスチオプロピオネート、トリメチロールプロパントリスチオプロピオネート、ペンタエリスリトールテトラキスチオプロピオネートが挙げられる。 Examples of polyfunctional thiols include hexanedithiol and decanedithiol. , 1,4-butanediol bisthiopropionate, 1,4-butanediol bisthioglycolate, ethylene glycol bisthioglycolate, ethylene glycol bisthiopropionate, trimethylolpropane tristhioglycolate, trimethylolpropane tristhiopropionate, trimethylolpropane tris(3-mercaptobutyrate), pentaerythritol tetrakisthioglycolate, pentaerythritol tetrakisthiopropionate, trimercaptopropionic acid tris(2-hydroxyethyl)isocyanurate, 1,4-dimethylmercaptobenzene, 2,4,6-trimercapto-s-triazine, 2-(N,N-dibutylamino)-4,6-dimercapto-s-triazine, etc. are included, and preferably ethylene glycol bisthiopropionate, trimethylolpropane tristhiopropionate, pentaerythritol tetrakisthiopropionate.

チオール系連鎖移動剤は、単独または2種類以上を併用して使用できる。 Thiol-based chain transfer agents can be used alone or in combination of two or more types.

チオール系連鎖移動剤の含有量は、近赤外線吸収組成物の不揮発分100質量%中、0.1~10質量%が好ましく、0.1~3質量%がより好ましい。適量含有すると光感度、テーパー形状が向上し、被膜表面にシワが発生し難くなる。 The content of the thiol chain transfer agent is preferably 0.1 to 10 mass %, and more preferably 0.1 to 3 mass %, based on 100 mass % of the nonvolatile content of the near infrared absorbing composition. When an appropriate amount is contained, the photosensitivity and taper shape are improved, and wrinkles are less likely to occur on the coating surface.

<重合禁止剤>
本発明の近赤外線吸収組成物は、重合禁止剤を含有できる。これによりフォトリソグラフィー法の露光時にマスクの回折光による感光を抑制できるため、所望の形状のパターンが得やすくなる。
<Polymerization inhibitor>
The near infrared ray absorbing composition of the present invention may contain a polymerization inhibitor, which can suppress photosensitivity due to diffracted light from a mask during exposure in a photolithography method, making it easier to obtain a pattern with a desired shape.

重合禁止剤としては、例えば、カテコール、レゾルシノール、1,4-ヒドロキノン、2-メチルカテコール、3-メチルカテコール、4-メチルカテコール、2-エチルカテコール、3-エチルカテコール、4-エチルカテコール、2-プロピルカテコール、3-プロピルカテコール、4-プロピルカテコール、2-n-ブチルカテコール、3-n-ブチルカテコール、4-n-ブチルカテコール、2-tert-ブチルカテコール、3-tert-ブチルカテコール、4-tert-ブチルカテコール、3,5-ジ-tert-ブチルカテコール等のアルキルカテコール系化合物、2-メチルレゾルシノール、4-メチルレゾルシノール、2-エチルレゾルシノール、4-エチルレゾルシノール、2-プロピルレゾルシノール、4-プロピルレゾルシノール、2-n-ブチルレゾルシノール、4-n-ブチルレゾルシノール、2-tert-ブチルレゾルシノール、4-tert-ブチルレゾルシノール等のアルキルレゾルシノール系化合物、メチルヒドロキノン、エチルヒドロキノン、プロピルヒドロキノン、tert-ブチルヒドロキノン、2,5-ジ-tert-ブチルヒドロキノン等のアルキルヒドロキノン系化合物、トリブチルホスフィン、トリオクチルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン、トリベンジルホスフィン等のホスフィン化合物、トリオクチルホスフィンオキサイド、トリフェニルホスフィンオキサイドなどのホスフィンオキサイド化合物、トリフェニルホスファイト、トリスノニルフェニルホスファイト等のホスファイト化合物、ピロガロール、フロログルシンなどが挙げられる。 Examples of polymerization inhibitors include alkyl catechol compounds such as catechol, resorcinol, 1,4-hydroquinone, 2-methylcatechol, 3-methylcatechol, 4-methylcatechol, 2-ethylcatechol, 3-ethylcatechol, 4-ethylcatechol, 2-propylcatechol, 3-propylcatechol, 4-propylcatechol, 2-n-butylcatechol, 3-n-butylcatechol, 4-n-butylcatechol, 2-tert-butylcatechol, 3-tert-butylcatechol, 4-tert-butylcatechol, and 3,5-di-tert-butylcatechol; 2-methylresorcinol, 4-methylresorcinol, 2-ethylresorcinol, 4-ethylresorcinol, 2-propylresorcinol, 4-propylresorcinol, and 2-n-butylcatechol. Examples of such compounds include alkyl resorcinol compounds such as ethylresorcinol, 4-n-butylresorcinol, 2-tert-butylresorcinol, and 4-tert-butylresorcinol; alkylhydroquinone compounds such as methylhydroquinone, ethylhydroquinone, propylhydroquinone, tert-butylhydroquinone, and 2,5-di-tert-butylhydroquinone; phosphine compounds such as tributylphosphine, trioctylphosphine, tricyclohexylphosphine, triphenylphosphine, and tribenzylphosphine; phosphine oxide compounds such as trioctylphosphine oxide and triphenylphosphine oxide; phosphite compounds such as triphenylphosphite and trisnonylphenylphosphite; pyrogallol; and phloroglucinol.

重合禁止剤の含有量は、近赤外線吸収組成物の不揮発分100質量%中、0.01~0.4質量部が好ましい。この範囲において、重合禁止剤の効果が大きくなり、テーパーの直線性や塗膜のシワ、パターン解像性等が良好になる。 The content of the polymerization inhibitor is preferably 0.01 to 0.4 parts by mass based on 100% by mass of the nonvolatile content of the near-infrared absorbing composition. In this range, the effect of the polymerization inhibitor becomes greater, and the linearity of the taper, wrinkles in the coating film, pattern resolution, etc. become better.

<紫外線吸収剤>
発明の近赤外線吸収組成物は、紫外線吸収剤を含んでも良い。本発明における紫外線吸収剤とは、紫外線吸収機能を有する有機化合物であり、ベンゾトリアゾール系化合物、トリアジン系化合物、ベンゾフェノン系化合物、サリチル酸エステル系化合物、シアノアクリレート系化合物、及びサリシレート系化合物などが挙げられる。
<Ultraviolet absorbing agent>
The near infrared absorbing composition of the present invention may contain an ultraviolet absorbing agent. The ultraviolet absorbing agent in the present invention is an organic compound having an ultraviolet absorbing function, and examples of the ultraviolet absorbing agent include benzotriazole-based compounds, triazine-based compounds, benzophenone-based compounds, salicylic acid ester-based compounds, cyanoacrylate-based compounds, and salicylate-based compounds.

紫外線吸収剤の含有量は、光重合開始剤と紫外線吸収剤との合計100質量%中、5~70質量%が好ましい。適量含有すると現像後の解像性がより向上する。 The content of the UV absorber is preferably 5 to 70% by mass, with the total of the photopolymerization initiator and the UV absorber being 100% by mass. If an appropriate amount is included, the resolution after development will be further improved.

また、光重合開始剤と紫外線吸収剤の合計含有量は、近赤外線吸収組成物の不揮発分100質量%中、1~20質量%が好ましい。適量含有すると基板と被膜の密着性がより向上し、良好な解像性が得られる。 In addition, the total content of the photopolymerization initiator and the ultraviolet absorber is preferably 1 to 20% by mass based on 100% by mass of the nonvolatile content of the near-infrared absorbing composition. When an appropriate amount is contained, the adhesion between the substrate and the coating is further improved, and good resolution can be obtained.

ベンゾトリアゾール系化合物としては2-(5メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-ブチルフェニル)-2H-ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α, α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3-tブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(2'-ヒドロキシ-5'-t-オクチルフェニル)ベンゾトリアゾール、5%の2-メトキシ-1-メチルエチルアセテートと95%のベンゼンプロパン酸,3-(2H-ベンゾトリアゾール-2-イル)-(1,1-ジメチルエチル)-4-ヒドロキシ,C7-9側鎖及び直鎖アルキルエステルの混合物、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール、メチル 3-(3-(2H-ベンゾトリアゾール-2-イル)-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-6-t-ブチル-4-メチルフェノール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-5-[2-(メタクリロイルオキシ)エチル]フェニル]-2H-ベンゾトリアゾール、オクチル-3-[3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネート、2-エチルヘキシル-3-[3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネートが挙げられる。その他ベンゾトリアゾール構造を有するオリゴマータイプ及びポリマータイプの化合物等も使用することが出来る。 Benzotriazole compounds include 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-(2-hydroxy-5-t-butylphenyl)-2H-benzotriazole, 2-[2-hydroxy-3,5-bis(α, α-Dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(3-t-butyl-5-methyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-5'-t-octylphenyl)benzotriazole, 5% 2-methoxy-1-methylethyl acetate and 95% benzenepropanoic acid, 3-(2H-benzotriazol-2-yl)-(1,1-dimethylethyl)-4-hydroxy, C7-9 branched and linear alkyl ester mixture, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol, 2-(2H-benzotriazol-2-yl)-6-(1-methyl-1-phenylethyl)-4-(1,1,3,3-tetramethylbutyl)phenol, methyl 3-(3-(2H-benzotriazol-2-yl)-5-t-butyl-4-hydroxyphenyl)propionate/polyethylene glycol 300 reaction products, 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol, 2,2'-methylenebis[6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol], 2-(2H-benzotriazol-2-yl)-p-cresol, 2-(5-chloro-2H-benzotriazol-2-yl)-6-t- Butyl-4-methylphenol, 2-(3,5-di-t-amyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-5-[2-(methacryloyloxy)ethyl]phenyl]-2H-benzotriazole, octyl-3-[3-tert-butyl-4-hydroxy-5-(5-chloro-2H-benzotriazol-2-yl)phenyl]propionate, 2-ethylhexyl-3-[3-tert-butyl-4-hydroxy-5-(5-chloro-2H-benzotriazol-2-yl)phenyl]propionate. Other oligomer and polymer type compounds having a benzotriazole structure can also be used.

トリアジン系化合物としては、2,4-ビス(2,4-ジメチルフェニル)-6-(2-ヒドロキシ-4-n-オクチルオキシフェニル)-1,3,5-トリアジン、2‐[4,6‐ビス(2,4‐ジメチルフェニル)‐1,3,5‐トリアジン‐2‐イル]‐5‐[3‐(ドデシルオキシ)‐2‐ヒドロキシプロポキシ]フェノール、2-(2,4-ジヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンと(2-エチルヘキシル)-グリシド酸エステルの反応生成物、2,4-ビス「2-ヒドロキシ-4-ブトキシフェニル」-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイルオキシ)エトキシ]フェノール、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン等が挙げられる。その他トリアジン構造を有するオリゴマータイプ及びポリマータイプの化合物等も使用することが出来る。 Triazine compounds include 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-n-octyloxyphenyl)-1,3,5-triazine, 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine-2-yl]-5-[3-(dodecyloxy)-2-hydroxypropoxy]phenol, and the reaction product of 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine with (2-ethylhexyl)-glycidic acid ester. Examples of such compounds include 2,4-bis[2-hydroxy-4-butoxyphenyl]-6-(2,4-dibutoxyphenyl)-1,3,5-triazine, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-(hexyloxy)phenol, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol, and 2,4,6-tris(2-hydroxy-4-hexyloxy-3-methylphenyl)-1,3,5-triazine. Other oligomer and polymer type compounds having a triazine structure can also be used.

ベンゾフェノン系化合物としては、2,4-ジ-ヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2,2’-ジ-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、4-ドデシロキシ-2-ヒドロキシベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシベンゾフェノン、2,2’ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン等が挙げられる。その他ベンゾフェノン構造を有するオリゴマータイプ及びポリマータイプの化合物等も使用することが出来る。 Benzophenone compounds include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, 2-hydroxy-4-octadecyloxybenzophenone, 2,2'dihydroxy-4,4'-dimethoxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, and 2-hydroxy-4-methoxy-2'-carboxybenzophenone. Other oligomer and polymer compounds having a benzophenone structure can also be used.

サリチル酸エステル系化合物としては、サリチル酸フェニル、サリチル酸p-オクチルフェニル、サリチル酸p-tertブチルフェニル等が挙げられる。その他サリチル酸エステル構造を有するオリゴマータイプ及びポリマータイプの化合物等も使用することが出来る。 Examples of salicylic acid ester compounds include phenyl salicylate, p-octylphenyl salicylate, and p-tert-butylphenyl salicylate. Other oligomer and polymer type compounds having a salicylic acid ester structure can also be used.

<酸化防止剤>
本発明の近赤外線吸収組成物は、酸化防止剤を含有することができる。酸化防止剤は、近赤外線吸収組成物に含まれる光重合開始剤や熱硬化性化合物が、熱硬化やITOアニール時の熱工程によって酸化し黄変することを防ぐため、塗膜の透過率を向上できる。特に着色組成物の着色剤濃度が高い場合、塗膜架橋成分量が少なくなるため高感度の架橋成分の使用や、光重合開始剤の増量といった対応を取るため熱工程の黄変が強くなる現象が見られる。そのため、酸化防止剤を含むことで、加熱工程時の酸化による黄変を防止し、高い塗膜の透過率を得る事ができる。
<Antioxidants>
The near infrared absorbing composition of the present invention can contain an antioxidant. The antioxidant prevents the photopolymerization initiator or thermosetting compound contained in the near infrared absorbing composition from being oxidized and yellowed by the thermal process during heat curing or ITO annealing, and can improve the transmittance of the coating film. In particular, when the colorant concentration of the coloring composition is high, the amount of the coating film crosslinking component is reduced, so that a highly sensitive crosslinking component is used or the amount of the photopolymerization initiator is increased, resulting in a phenomenon in which yellowing during the thermal process becomes stronger. Therefore, by including an antioxidant, yellowing due to oxidation during the heating process can be prevented, and a high transmittance of the coating film can be obtained.

酸化防止剤は、例えば、ヒンダードフェノール系、ヒンダードアミン系、リン系、イオウ系、及びヒドロキシルアミン系の化合物が挙げられる。なお、本発明で酸化防止剤は、ハロゲン原子を含有しない化合物が好ましい。 Examples of antioxidants include hindered phenol-based, hindered amine-based, phosphorus-based, sulfur-based, and hydroxylamine-based compounds. In the present invention, the antioxidant is preferably a compound that does not contain a halogen atom.

ここれらの中でも、塗膜の透過率と感度の両立の観点から、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤が好ましい。 Among these, from the viewpoint of achieving both transmittance and sensitivity of the coating film, hindered phenol-based antioxidants, hindered amine-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants are preferred.

酸化防止剤は、単独または2種類以上を併用して使用できる。 Antioxidants can be used alone or in combination of two or more types.

また酸化防止剤の含有量は、近赤外線吸収組成物の固形分100質量%中、0.5~5.0質量%の場合、透過率、分光特性、及び感度が良好であるためより好ましい。 The content of the antioxidant is more preferably 0.5 to 5.0% by mass based on 100% by mass of the solid content of the near-infrared absorbing composition, since this results in good transmittance, spectral characteristics, and sensitivity.

<レベリング剤>
本発明の近赤外線吸収組成物には、透明基板上での組成物の塗布性、着色被膜の乾燥性を良好することを目的として、レベリング剤を添加することが好ましい。レベリング剤としては、シリコーン系界面活性剤、フッ素系界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤などの各種界面活性剤を使用できる。
<Leveling Agent>
In order to improve the coating property of the composition on the transparent substrate and the drying property of the colored coating film, it is preferable to add a leveling agent to the near infrared ray absorbing composition of the present invention. As the leveling agent, various surfactants such as silicone surfactants, fluorine surfactants, nonionic surfactants, cationic surfactants, and anionic surfactants can be used.

本発明の近赤外線吸収組成物に界面活性剤を含有する場合、界面活性剤の添加量は、本発明の組成物の全固形分に対して、0.001~2.0質量%が好ましく、より好ましくは0.005~1.0質量%である。この範囲内であることで、近赤外線吸収組成物の塗布性とパターン密着性、透過率のバランスが良好となる。
本発明の近赤外線吸収組成物は、界面活性剤を、1種類のみを含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記範囲となることが好ましい。
When the near infrared absorbing composition of the present invention contains a surfactant, the amount of the surfactant added is preferably 0.001 to 2.0 mass %, more preferably 0.005 to 1.0 mass %, based on the total solid content of the composition of the present invention. When the amount is within this range, the near infrared absorbing composition has a good balance among the coatability, pattern adhesion, and transmittance.
The near infrared ray absorbing composition of the present invention may contain only one type of surfactant, or may contain two or more types. When two or more types are contained, the total amount thereof is preferably within the above range.

<貯蔵安定剤>
本発明の近赤外線吸収組成物には、組成物の経時粘度を安定化させるために貯蔵安定剤を含有させることができる。貯蔵安定剤としては、例えば、ベンジルトリメチルクロライド、ジエチルヒドロキシアミンなどの4級アンモニウムクロライド、乳酸、シュウ酸などの有機酸およびそのメチルエーテル、t-ブチルピロカテコール、テトラエチルホスフィン、テトラフェニルフォスフィンなどの有機ホスフィン、亜リン酸塩等が挙げられる。貯蔵安定剤は、着色剤の全量を基準(100質量%)として、0.1~10質量%の量で用いることができる。
<Storage stabilizer>
The near infrared absorbing composition of the present invention may contain a storage stabilizer in order to stabilize the viscosity of the composition over time. Examples of storage stabilizers include quaternary ammonium chlorides such as benzyl trimethyl chloride and diethylhydroxyamine, organic acids such as lactic acid and oxalic acid and their methyl ethers, t-butylpyrocatechol, organic phosphines such as tetraethylphosphine and tetraphenylphosphine, and phosphites. The storage stabilizer may be used in an amount of 0.1 to 10% by mass based on the total amount of the colorant (100% by mass).

<密着向上剤>
本発明の近赤外線吸収組成物には、基材との密着性を高めるためにシランカップリング剤等の密着向上剤を含有させることができる。密着向上剤による密着性が向上することにより、細線の再現性が良好となり解像度が向上する。
<Adhesion improver>
The near infrared absorbing composition of the present invention may contain an adhesion improver such as a silane coupling agent in order to improve adhesion to a substrate. The adhesion improver improves the reproducibility of fine lines and improves the resolution.

密着向上剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルシラン類、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリルシラン類、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシシラン類、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩等のアミノシラン類、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等のメルカプト類、p-スチリルトリメトキシシラン等のスチリル類、3-ウレイドプロピルトリエトキシシラン等のウレイド類、ビス(トリエトキシシリルプロピル)テトラスルフィド等のスルフィド類、3-イソシアネートプロピルトリエトキシシラン等のイソシアネート類などのシランカップリング剤が挙げられる。密着向上剤は、近赤外線吸収組成物中の着色剤100質量部に対し、0.01~10質量部、好ましくは0.05~5質量部の量で用いることができる。この範囲内で効果が大きくなり、密着性、解像性、感度のバランスが良好であるためより好ましい。 Adhesion improvers include vinyl silanes such as vinyltrimethoxysilane and vinyltriethoxysilane, (meth)acrylic silanes such as 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-acryloxypropyltrimethoxysilane, epoxy silanes such as 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3- Examples of the silane coupling agent include aminosilanes such as aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane, and hydrochloride salt of N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane, mercaptos such as 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane, styryls such as p-styryltrimethoxysilane, ureidos such as 3-ureidopropyltriethoxysilane, sulfides such as bis(triethoxysilylpropyl)tetrasulfide, and isocyanates such as 3-isocyanatepropyltriethoxysilane. The adhesion improver can be used in an amount of 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, relative to 100 parts by mass of the colorant in the near infrared absorbing composition. This range is more effective and provides a good balance of adhesion, resolution, and sensitivity, making it more preferable.

<近赤外線吸収組成物の製造方法>
本発明の近赤外線吸収組成物は、色素を、分散剤、バインダ樹脂などの色素担体及び/又は溶剤中に、好ましくは分散助剤(色素誘導体や界面活性剤)と一緒に、ニーダー、2本ロールミル、3本ロールミル、ボールミル、横型サンドミル、縦型サンドミル、アニュラー型ビーズミル、又はアトライター等の各種分散手段を用いて微細に分散して製造することができる(色素分散体)。このとき、2種以上の色素等を同時に色素担体に分散しても良いし、別々に色素担体に分散したものを混合しても良い。染料等、色素の溶解性が高い場合、具体的には使用する溶剤への溶解性が高く、攪拌により溶解、異物が確認されない状態であれば、上記のような微細に分散して製造する必要はない。
<Method of producing near infrared absorbing composition>
The near infrared absorbing composition of the present invention can be produced by finely dispersing the dye in a dye carrier such as a dispersant or binder resin and/or a solvent, preferably together with a dispersion aid (dye derivative or surfactant), using various dispersing means such as a kneader, a two-roll mill, a three-roll mill, a ball mill, a horizontal sand mill, a vertical sand mill, an annular bead mill, or an attritor (dye dispersion). At this time, two or more kinds of dyes may be dispersed in the dye carrier at the same time, or they may be dispersed separately in the dye carrier and mixed. When the solubility of the dye, such as a dye, is high, specifically, when it is highly soluble in the solvent used and dissolved by stirring, and no foreign matter is found, it is not necessary to produce it by finely dispersing it as described above.

また、感光性近赤外線吸収組成物(レジスト材)として用いる場合には、溶剤現像型あるいはアルカリ現像型近赤外線吸収組成物として調製することができる。溶剤現像型あるいはアルカリ現像型近赤外線吸収組成物は、前記色素分散体と、光重合性単量体及び/又は光重合開始剤と、必要に応じて、溶剤、その他の分散助剤、及び添加剤等を混合して調整することができる。光重合開始剤は、近赤外線吸収組成物を調製する段階で加えてもよく、調製した近赤外線吸収組成物に後から加えてもよい。 When used as a photosensitive near-infrared absorbing composition (resist material), it can be prepared as a solvent-developable or alkali-developable near-infrared absorbing composition. The solvent-developable or alkali-developable near-infrared absorbing composition can be prepared by mixing the dye dispersion, the photopolymerizable monomer and/or the photopolymerization initiator, and, if necessary, a solvent, other dispersing aids, additives, etc. The photopolymerization initiator may be added at the stage of preparing the near-infrared absorbing composition, or may be added later to the prepared near-infrared absorbing composition.

<溶剤>
本発明の近赤外線吸収組成物には、ガラス等の基板上に乾燥膜厚が0.2~5μmとなるように塗布して色素膜を形成することを容易にするために溶剤を含有させる。溶剤は、近赤外線吸収組成物の塗布性が良好であることに加え、近赤外線吸収組成物の各成分の溶解性、さらには安全性を考慮して選定される。
<Solvent>
The near infrared absorbing composition of the present invention contains a solvent in order to easily form a dye film by coating the composition on a substrate such as glass so as to have a dry film thickness of 0.2 to 5 μm. The solvent is selected in consideration of the good coatability of the near infrared absorbing composition, the solubility of each component of the near infrared absorbing composition, and further the safety.

溶剤としては、当該分野で通常使用される溶剤を用いることが出来、沸点、SP値、蒸発速度、粘度などの性能を勘案し、塗布条件(速度、乾燥条件など)に合わせて適宜、単独または混合して使用される。 Solvents that are commonly used in the field can be used, and they can be used alone or in combination as appropriate to suit the application conditions (speed, drying conditions, etc.) taking into account performance such as boiling point, SP value, evaporation rate, and viscosity.

使用される溶剤としては、例えば、エステル溶剤(分子内に-COO-を含み、-O-を含まない溶剤)、エーテル溶剤(分子内に-O-を含み、-COO-を含まない溶剤)、エーテルエステル溶剤(分子内に-COO-と-O-とを含む溶剤)、ケトン溶剤(分子内に-CO-を含み、-COO-を含まない溶剤)、アルコール溶剤(分子内にOHを含み、-O-、-CO-及び-COO-を含まない溶剤)、芳香族炭化水素溶剤、アミド溶剤、ジメチルスルホキシド等が挙げられる。 Solvents that can be used include, for example, ester solvents (solvents that contain -COO- in the molecule but do not contain -O-), ether solvents (solvents that contain -O- in the molecule but do not contain -COO-), ether ester solvents (solvents that contain -COO- and -O- in the molecule), ketone solvents (solvents that contain -CO- in the molecule but do not contain -COO-), alcohol solvents (solvents that contain OH in the molecule but do not contain -O-, -CO- or -COO-), aromatic hydrocarbon solvents, amide solvents, dimethyl sulfoxide, etc.

上記の溶剤のうち、塗布性、乾燥性の点から、1atmにおける沸点が120℃以上180℃以下である有機溶剤を含むことが好ましい。中でも、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、3-エトキシプロピオン酸エチル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、N,N-ジメチルホルムアミド、N-メチルピロリドン等が好ましく、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、3-エトキシプロピオン酸エチル等がより好ましい。 Among the above solvents, from the viewpoint of coatability and drying property, it is preferable to use an organic solvent having a boiling point of 120°C or more and 180°C or less at 1 atm. Among them, propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, propylene glycol monomethyl ether, ethyl 3-ethoxypropionate, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, 4-hydroxy-4-methyl-2-pentanone, N,N-dimethylformamide, N-methylpyrrolidone, etc. are preferred, and propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, ethyl 3-ethoxypropionate, etc. are more preferred.

<粗大粒子の除去>
本発明の近赤外線吸収組成物は、重力加速度3000~25000Gの遠心分離、焼結フィルタやメンブレンフィルタによる濾過等の手段にて、5μm以上の粗大粒子、好ましくは1μm以上の粗大粒子、さらに好ましくは0.5μm以上の粗大粒子及び混入した塵の除去を行うことが好ましい。このように近赤外線吸収組成物は、実質的に0.5μm以上の粒子を含まないことが好ましい。より好ましくは0.3μm以下であることが好ましい。
<Removal of coarse particles>
From the near infrared absorbing composition of the present invention, it is preferable to remove coarse particles of 5 μm or more, preferably coarse particles of 1 μm or more, and further preferably coarse particles of 0.5 μm or more, and mixed dust, by means of centrifugation at a gravitational acceleration of 3000 to 25000 G, filtration with a sintered filter or membrane filter, etc. In this way, it is preferable that the near infrared absorbing composition does not substantially contain particles of 0.5 μm or more. More preferably, the particles are 0.3 μm or less.

<光学フィルタの製造方法>
本発明の光学フィルタは、印刷法またはフォトリソグラフィ法により、製造することができる。印刷法によるフィルタセグメントの形成は、近赤外線吸収組成物の印刷と乾燥を行うことでパターン化ができるため、フィルタの製造法は、低コストであり、かつ量産性に優れている。さらに、印刷技術の発展により高い寸法精度および平滑度を有する微細パターンの印刷を行うことができる。印刷を行うためには、印刷の版上にて、あるいはブランケット上にてインキが乾燥、固化しないような組成とすることが好ましい。また、印刷機上でのインキの流動性制御も重要であり、分散剤や体質顔料によってインキ粘度の調整も行うことができる。
<Method of Manufacturing Optical Filter>
The optical filter of the present invention can be manufactured by a printing method or a photolithography method. The formation of filter segments by a printing method can be patterned by printing and drying a near-infrared absorbing composition, so that the method for manufacturing the filter is low cost and has excellent mass productivity. Furthermore, the development of printing technology allows printing of fine patterns with high dimensional accuracy and smoothness. In order to perform printing, it is preferable to use a composition that does not allow the ink to dry or solidify on the printing plate or blanket. In addition, control of the fluidity of the ink on the printing machine is also important, and the ink viscosity can be adjusted by a dispersant or an extender pigment.

フォトリソグラフィ法によりフィルタセグメントを形成する場合は、溶剤現像型またはアルカリ現像型レジスト材として調製した近赤外線吸収組成物を、基板上に、スプレーコートやスピンコート、スリットコート、ロールコート等の塗布方法により、乾燥膜厚が0.2~5μmとなるように塗布する。必要により乾燥された膜には、この膜と接触あるいは非接触状態で設けられた所定のパターンを有するマスクを通して紫外線露光を行う。その後、溶剤またはアルカリ現像液に浸漬するかもしくはスプレーなどにより現像液を噴霧して未硬化部を除去して所望のパターンを形成したのち、同様の操作を他色について繰り返してフィルタを製造することができる。さらに、レジスト材の重合を促進するため、必要に応じて加熱を施すこともできる。フォトリソグラフィ法によれば、上記印刷法より精度の高いフィルタが製造できる。 When forming filter segments by photolithography, a near-infrared absorbing composition prepared as a solvent-developable or alkali-developable resist material is applied to a substrate by a coating method such as spray coating, spin coating, slit coating, or roll coating so that the dry film thickness is 0.2 to 5 μm. If necessary, the dried film is exposed to ultraviolet light through a mask having a predetermined pattern that is in contact with or not in contact with the film. Thereafter, the uncured parts are removed by immersing the film in a solvent or alkali developer or spraying the developer with a spray or the like to form a desired pattern, and the same operation is repeated for other colors to produce filters. Furthermore, heating can be performed as necessary to promote polymerization of the resist material. According to the photolithography method, a filter with higher precision than the above printing method can be produced.

基板は特に限定されるのではないが、形状として、シート状、フィルム状又は板状の透明基材を用いることができる。色彩も無色、有色、特に限定されるものではない。透明基材の材質は、透明性が高い素材、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、トリアセチルセルロース(TAC)。メチルメタクリレート系共重合物等のアクリル樹脂、スチレン樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、ポリメタクリルイミド樹脂、ガラス板等が挙げられる。 The substrate is not particularly limited, but a transparent substrate in the form of a sheet, film, or plate can be used. The color can be colorless or colored, and is not particularly limited. The material of the transparent substrate is a highly transparent material, for example, polyester resin such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), triacetyl cellulose (TAC), acrylic resin such as methyl methacrylate copolymer, styrene resin, polysulfone resin, polyethersulfone resin, polycarbonate resin, vinyl chloride resin, polymethacrylimide resin, glass plate, etc.

現像は、アルカリ現像液として炭酸ナトリウム、水酸化ナトリウム等の水溶液が使用され、ジメチルベンジルアミン、トリエタノールアミン等の有機アルカリを用いることもできる。また、現像液には、消泡剤や界面活性剤を添加することもできる。なお、紫外線露光感度を上げるために、上記レジスト材を塗布乾燥後、水溶性あるいはアルカリ水溶性樹脂、例えばポリビニルアルコールや水溶性アクリル樹脂等を塗布乾燥し酸素による重合阻害を防止する膜を形成した後、紫外線露光を行うこともできる。 For development, an aqueous solution of sodium carbonate, sodium hydroxide, etc. is used as an alkaline developer, and organic alkalis such as dimethylbenzylamine, triethanolamine, etc. can also be used. An antifoaming agent or surfactant can also be added to the developer. In order to increase the sensitivity to ultraviolet light exposure, after the resist material is applied and dried, a water-soluble or alkaline water-soluble resin, such as polyvinyl alcohol or water-soluble acrylic resin, can be applied and dried to form a film that prevents polymerization inhibition by oxygen, and then ultraviolet light exposure can be performed.

本発明の光学フィルタは、上記方法の他に電着法、転写法、インクジェット法などによっても製造できる。 In addition to the above method, the optical filter of the present invention can also be manufactured by electrochemical deposition, transfer printing, inkjet printing, etc.

<用途>
近赤外線吸収性組成物は、光学フィルタとして使用できる。
例えば、デジタルカメラは、撮像する際に受光する光を赤、緑、青のフィルタで分解し、光を電気信号に変えるフォトダイオードに送ることで、色を認識する。しかしながら、フォトダイオードは近赤外線にも反応して電気信号に変えてしまうので、これを遮断するフィルタが必要である。近赤外線吸収性組成物から形成した被膜または成形体は、この近赤外線を遮断するフィルタとして使用できる。近赤外線を遮断するフィルタは、可視領域に吸収が少ないことが重要である。可視領域に吸収が多いと受光する光に色がついてしまい、フォトダイオードの色の認識に悪影響が出る。本発明の近赤外線吸収顔料は可視領域に吸収が少なく不可視性が高いため、フォトダイオードの色の認識に対する悪影響が少ない。
<Applications>
The near infrared absorbing composition can be used as an optical filter.
For example, a digital camera recognizes color by splitting the light it receives into red, green, and blue filters when capturing an image and sending it to a photodiode that converts the light into an electrical signal. However, photodiodes also react to near-infrared light and convert it into an electrical signal, so a filter that blocks this is necessary. A coating or molded article formed from a near-infrared absorbing composition can be used as a filter that blocks near-infrared light. It is important that a filter that blocks near-infrared light has low absorption in the visible range. If there is a lot of absorption in the visible range, the light received will be colored, which will have an adverse effect on the color recognition of the photodiode. The near-infrared absorbing pigment of the present invention has low absorption in the visible range and is highly invisible, so there is little adverse effect on the color recognition of the photodiode.

また、例えば、スマートフォン、タブレットパソコン等、他には銀行ATM、マルチメディア端末等にはセキュリティ保護のため指紋認証、手指静脈認証等の生体認証機能が搭載されている。特にスマートフォン、タブレットパソコンに用いる指紋認証技術の発展は目まぐるしく、認証範囲が画面サイズに増大(フルスクリーン化)するのに伴い、有機ELディスプレイ、液晶ディスプレイ等にディスプレイ内蔵型指紋認証センサが開発されている。
しかし、ディスプレイ内蔵型指紋センサはディスプレイ内に設置された各種光源を指紋に照射して、その反射光をセンシングするという光学方式が多いため、外部の不正な光(太陽光やLED照明のような広範囲の波長を持ち、且つ、強い光)がセンサに入射されると、撮像時のノイズになる問題があり、屋外での使用には精度面でやや不安が残る。近赤外線吸収性組成物から形成した被膜または成形体は、このノイズを遮断するフィルタとして使用できる。
センシングのための光源の波長に合わせて、その他の色素を含有させることで、生体認証の精度をより高めることができる。
指紋認証のために570nm程度の光源を用いる場合は、その他の色素として、例えば、C.I.ピグメントブルー15:6、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:1、C.I.ピグメントグリーン36、C.I.ピグメントグリーン58、C.I.ピグメントグリーン59、C.I.ピグメントグリーン62、C.I.ピグメントグリーン63等を含有すると良い。940nm程度の光源を用いる場合は、黒色色素、複数の色素を組み合わせて黒色を呈する色素組成物等を含有すると良い。なお、本発明はこれらに限定されないことは言うまでもない。
For security reasons, biometric authentication functions such as fingerprint authentication and finger vein authentication are installed in smartphones, tablet PCs, bank ATMs, multimedia terminals, etc. Fingerprint authentication technology used in smartphones and tablet PCs in particular has been developing rapidly, and as the authentication range expands to the screen size (full screen), fingerprint authentication sensors built into displays such as organic electroluminescence displays and liquid crystal displays have been developed.
However, since most of the fingerprint sensors built into a display use an optical system in which a fingerprint is irradiated with various light sources installed in the display and the reflected light is sensed, there is a problem that when external irregular light (strong light having a wide range of wavelengths such as sunlight or LED lighting) is incident on the sensor, it causes noise during imaging, and there are some concerns about accuracy when used outdoors. A coating or molded article formed from the near-infrared absorbing composition can be used as a filter to block this noise.
By incorporating other dyes that match the wavelength of the light source used for sensing, the accuracy of biometric authentication can be further improved.
When a light source of about 570 nm is used for fingerprint authentication, other dyes such as C.I. Pigment Blue 15:6, C.I. Pigment Blue 15:3, C.I. Pigment Blue 15:1, C.I. Pigment Green 36, C.I. Pigment Green 58, C.I. Pigment Green 59, C.I. Pigment Green 62, C.I. Pigment Green 63, etc. may be contained. When a light source of about 940 nm is used, a black dye, a dye composition that combines multiple dyes to exhibit black color, etc. may be contained. It goes without saying that the present invention is not limited to these.

なお、近赤外線吸収性組成物を使用した光学フィルタには、近赤外線カットフィルタ及び近赤外線透過フィルタがある。近赤外線カットフィルタは、おもに近赤外線吸収色素により構成され、近赤外線を遮断し可視光を透過させる役割を持つ。一方、近赤外線透過フィルタは、近赤外線吸収色素の他に可視光を吸収する有色色素により構成し、可視光と該近赤外線吸収色素が吸収する波長領域の近赤外線を遮断し、さらにそれより長波長の近赤外線を透過させる役割を持つ。 Optical filters using near-infrared absorbing compositions include near-infrared cut filters and near-infrared transmission filters. Near-infrared cut filters are mainly composed of near-infrared absorbing dyes, and have the role of blocking near-infrared light and transmitting visible light. On the other hand, near-infrared transmission filters are composed of near-infrared absorbing dyes and colored dyes that absorb visible light, and have the role of blocking visible light and near-infrared light in the wavelength range absorbed by the near-infrared absorbing dyes, and also transmitting near-infrared light with longer wavelengths.

以下に、本発明を実施例に基づいて説明するが、本発明はこれによって限定されるものではない。なお、実施例及び比較例中、「部」とは「重量部」を意味する。また、「PGMAC」とはプロピレングリコールモノメチルエーテルアセテートを意味する。 The present invention will be described below based on examples, but the present invention is not limited thereto. In the examples and comparative examples, "parts" means "parts by weight." Also, "PGMAC" means propylene glycol monomethyl ether acetate.

(スクアリリウム色素の同定方法)
本発明に用いたスクアリリウム色素の同定には、MALDI TOF-MSスペクトルを用いた。MALDI TOF-MSスペクトルは、ブルカー・ダルトニクス社製MALDI質量分析装置autoflexIIIを用い、得られたマススペクトラムの分子イオンピークと、計算によって得られる質量数との一致をもって、得られた化合物の同定を行った。
(Method of Identifying Squarylium Dyes)
The squarylium dyes used in the present invention were identified by MALDI TOF-MS spectroscopy using a Bruker Daltonics MALDI mass spectrometer AutoflexIII, and the compounds were identified based on the agreement between the molecular ion peak of the mass spectrum obtained and the mass number obtained by calculation.

(その他の微細化色素(PB-1)~(PB-4)の同定方法)
本発明に用いたその他の微細化色素(PB-1)~(PB-4)の同定は、飛行時間型質量分析装置(autoflexIII(TOF-MS)、ブルカー・ダルトニクス社製)を用いて得られたマススペクトラムの分子イオンピークと、計算によって得られる質量数との一致、並びに、元素分析装置(2400CHN元素分析装置、パーキン・エルマー社製)を用いて得られる炭素、水素および窒素の比率と、理論値との一致により行った。また、ハロゲン原子の置換数は、顔料を酸素燃焼フラスコ法にて燃焼させ、該燃焼物を水に吸収させた液体を、イオンクロマトグラフ(ICS-2000イオンクロマトグラフィー、DIONEX社製)によりハロゲン量を定量し、ハロゲン原子の置換数に換算することで得た。
(Method of Identifying Other Microfine Pigments (PB-1) to (PB-4))
The other finely divided dyes (PB-1) to (PB-4) used in the present invention were identified by the agreement between the molecular ion peak of the mass spectrum obtained using a time-of-flight mass spectrometer (AutoflexIII (TOF-MS), manufactured by Bruker Daltonics) and the mass number obtained by calculation, and by the agreement between the ratios of carbon, hydrogen and nitrogen obtained using an elemental analyzer (2400CHN elemental analyzer, manufactured by Perkin-Elmer) and the theoretical values. The number of substitutions of halogen atoms was obtained by burning the pigment by the oxygen combustion flask method, absorbing the combustion product into water, quantifying the amount of halogen in the liquid using an ion chromatograph (ICS-2000 ion chromatograph, manufactured by DIONEX), and converting it into the number of substitutions of halogen atoms.

(その他の樹脂型分散剤およびバインダ樹脂の酸価)
樹脂型分散剤およびバインダ樹脂の酸価は、0.1Nの水酸化カリウム・エタノール溶液を用い、電位差滴定法によって求めた。樹脂および樹脂型分散剤の酸価は、不揮発分の酸価を示す。
(Acid Values of Other Resin-Type Dispersants and Binder Resins)
The acid values of the resin-type dispersant and the binder resin were determined by potentiometric titration using a 0.1 N potassium hydroxide-ethanol solution. The acid values of the resin and the resin-type dispersant indicate the acid value of the non-volatile content.

(その他の樹脂型分散剤およびバインダ樹脂の重量平均分子量(Mw))
樹脂型分散剤およびバインダ樹脂の重量平均分子量(Mw)は、TSKgelカラム(東ソー社製)を用い、RI検出器を装備したGPC(東ソー社製、HLC-8120GPC)で、展開溶媒にTHFを用いて測定したポリスチレン換算の重量平均分子量(Mw)である。
(Weight average molecular weight (Mw) of other resin-type dispersants and binder resins)
The weight average molecular weight (Mw) of the resin-type dispersant and the binder resin is a polystyrene-equivalent weight average molecular weight (Mw) measured using a TSKgel column (manufactured by Tosoh Corporation) and a GPC (manufactured by Tosoh Corporation, HLC-8120GPC) equipped with an RI detector, using THF as a developing solvent.

(塩基性樹脂型分散剤の重量平均分子量(Mw))
塩基性樹脂型分散剤の重量平均分子量(Mw)は、RI検出器を装備したゲルパーミエーションクロマトグラフィー(GPC)で測定した。
装置としてHLC-8320GPC(東ソー株式会社製)を用い、分離カラムを2本直列に繋ぎ、両方の充填剤には「TSKgel SUPER-AW3000」を使用し、オーブン温度40℃、溶離液として3mMトリエチルアミン及び10mM LiBrのN,N-ジメチルホルムアミド溶液を用い、流速0.6ml/minで測定した。サンプルは1wt%の上記溶離液からなる溶剤に溶解し、10マイクロリットル注入した。分子量はいずれもポリスチレン換算値である。
(Weight average molecular weight (Mw) of basic resin type dispersant)
The weight average molecular weight (Mw) of the basic resin-type dispersant was measured by gel permeation chromatography (GPC) equipped with an RI detector.
The apparatus used was an HLC-8320GPC (manufactured by Tosoh Corporation), with two separation columns connected in series, both of which used "TSKgel SUPER-AW3000" as the packing material, and the oven temperature was 40°C, with an N,N-dimethylformamide solution of 3 mM triethylamine and 10 mM LiBr as the eluent, and measurements were performed at a flow rate of 0.6 ml/min. The sample was dissolved in a solvent consisting of 1 wt% of the above eluent, and 10 microliters was injected. All molecular weights are polystyrene equivalent values.

(樹脂型分散剤のアミン価)
樹脂型分散剤のアミン価は、0.1Nの塩酸水溶液を用い、電位差滴定法によって求めた後、水酸化カリウムの当量に換算した。樹脂型分散剤のアミン価は、不揮発分のアミン価を示す。
(Amine value of resin type dispersant)
The amine value of the resin-type dispersant was determined by potentiometric titration using a 0.1 N aqueous hydrochloric acid solution, and then converted into the equivalent amount of potassium hydroxide. The amine value of the resin-type dispersant indicates the amine value of the non-volatile content.

(樹脂型分散剤の4級アンモニウム塩価)
樹脂型分散剤の4級アンモニウム塩価は、5%クロム酸カリウム水溶液を指示薬として、0.1Nの硝酸銀水溶液で滴定して求めた後、水酸化カリウムの当量に換算した。下記樹脂型分散剤の4級アンモニウム塩価は、不揮発分の4級アンモニウム塩価を示す。
(Quaternary Ammonium Salt Value of Resin-Type Dispersant)
The quaternary ammonium salt value of the resin-type dispersant was determined by titration with 0.1 N silver nitrate aqueous solution using 5% potassium chromate aqueous solution as an indicator, and then converted into the potassium hydroxide equivalent. The quaternary ammonium salt value of the resin-type dispersant below indicates the quaternary ammonium salt value of the non-volatile content.

<微細化スクアリリウム色素(P)の製造>
(スクアリリウム色素(A-1_1)の合成)
トルエン400部に、1,8-ジアミノナフタレン40.0部、シクロヘキサノン25.1部、p-トルエンスルホン酸一水和物0.087部を混合し、窒素ガスの雰囲気中で加熱攪拌し、3時間還流させた。反応中に生成した水は共沸蒸留により反応系中から除去した。反応終了後、トルエンを蒸留して得られた暗茶色固体をアセトンで抽出し、アセトンとエタノールの混合溶媒から再結晶することにより精製した。得られた茶色固体を、トルエン240部とn-ブタノール160部の混合溶媒に溶解させ、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン13.8部を加えて、窒素ガスの雰囲気中で加熱撹拌し、8時間還流反応させた。反応中に生成した水は共沸蒸留により反応系中から除去した。
反応終了後、溶媒を蒸留し、得られた反応混合物を攪拌しながら、ヘキサン200部を加えた。得られた黒茶色沈殿物を濾別した後、順次ヘキサン、エタノールおよびアセトンで洗浄を行い、減圧下で乾燥させ、スクアリリウム色素(A-1_1)61.9部(収率:92%)を得た。TOF-MSによる質量分析の結果、スクアリリウム色素(A-1_1)であることを同定した。
<Production of fine squarylium dye (P)>
(Synthesis of squarylium dye (A-1_1))
400 parts of toluene were mixed with 40.0 parts of 1,8-diaminonaphthalene, 25.1 parts of cyclohexanone, and 0.087 parts of p-toluenesulfonic acid monohydrate, and the mixture was heated and stirred in a nitrogen gas atmosphere and refluxed for 3 hours. Water generated during the reaction was removed from the reaction system by azeotropic distillation. After the reaction was completed, the dark brown solid obtained by distilling toluene was extracted with acetone and purified by recrystallization from a mixed solvent of acetone and ethanol. The obtained brown solid was dissolved in a mixed solvent of 240 parts of toluene and 160 parts of n-butanol, and 13.8 parts of 3,4-dihydroxy-3-cyclobutene-1,2-dione was added, and the mixture was heated and stirred in a nitrogen gas atmosphere and refluxed for 8 hours. Water generated during the reaction was removed from the reaction system by azeotropic distillation.
After the reaction was completed, the solvent was distilled, and 200 parts of hexane was added to the resulting reaction mixture while stirring. The resulting black-brown precipitate was filtered off, washed successively with hexane, ethanol, and acetone, and dried under reduced pressure to obtain 61.9 parts of squarylium dye (A-1_1) (yield: 92%). As a result of mass analysis by TOF-MS, the squarylium dye (A-1_1) was identified.

(スクアリリウム色素(A-1_2)の合成)
スクアリリウム色素(A-1_1)の合成で使用したシクロヘキサノン25.1部の代わりに、3,5-ジメチルシクロヘキサノン32.2部を使用した以外は、スクアリリウム色素(A-1_1)の合成と同様の操作を行い、スクアリリウム色素(A-1_2)72.6部(収率:98%)を得た。TOF-MSによる質量分析の結果、スクアリリウム色素(A-1_2)であることを同定した。
(Synthesis of squarylium dye (A-1_2))
The same operations as in the synthesis of the squarylium dye (A-1_1) were carried out, except that 32.2 parts of 3,5-dimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the synthesis of the squarylium dye (A-1_1), to obtain 72.6 parts of a squarylium dye (A-1_2) (yield: 98%). As a result of mass analysis by TOF-MS, the squarylium dye was identified as the squarylium dye (A-1_2).

(スクアリリウム色素(A-1_3)の合成)
スクアリリウム色素(A-1_1)の合成で使用したシクロヘキサノン25.1部の代わりに、4-メチルシクロヘキサノン28.6部を使用した以外は、スクアリリウム色素(A2-1)の合成と同様の操作を行い、スクアリリウム色素(A-1_3)67.2部(収率:95%)を得た。TOF-MSによる質量分析の結果、スクアリリウム色素(A-1_3)であることを同定した。
(Synthesis of squarylium dye (A-1_3))
The same procedure as in the synthesis of squarylium dye (A2-1) was carried out, except that 28.6 parts of 4-methylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the synthesis of squarylium dye (A-1_1), to obtain 67.2 parts of squarylium dye (A-1_3) (yield: 95%). As a result of mass analysis by TOF-MS, the squarylium dye was identified as squarylium dye (A-1_3).

(スクアリリウム色素(A-1_4)の合成)
特許文献WO2017/130825の実施例で使用されているスクアリリウム化合物Q-39を、スクアリリウム色素(A-1_4)として使用した。
(Synthesis of squarylium dye (A-1_4))
The squarylium compound Q-39 used in the examples of patent document WO2017/130825 was used as the squarylium dye (A-1_4).

(スクアリリウム色素(A-2_1)の合成)
トルエン400部に、1,8-ジアミノナフタレン40.0部、9-フルオレノン46.0部、p-トルエンスルホン酸一水和物0.087部を混合し、窒素ガスの雰囲気中で加熱攪拌し、3時間還流させた。反応中に生成した水は共沸蒸留により系中から除去した。反応終了後、トルエンを蒸留して得られた暗茶色固体をアセトンで抽出し、アセトンとエタノールの混合溶媒から再結晶することにより精製した。得られた茶色固体を、トルエン240部とn-ブタノール160部の混合溶媒に溶解させ、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン13.8部を加えて、窒素ガスの雰囲気中で加熱撹拌し、8時間還流反応させた。反応中に生成した水は共沸蒸留により系中から除去した。反応終了後、溶媒を蒸留し、得られた反応混合物を攪拌しながら、ヘキサン200部を加えた。得られた黒茶色沈殿物を濾別した後、順次ヘキサン、エタノールおよびアセトンで洗浄を行い、減圧下で乾燥させ、スクアリリウム色素(A-2_1)84.6部(収率:97%)を得た。TOF-MSによる質量分析および元素分析の結果、スクアリリウム色素(A-2_1)であることを同定した。
(Synthesis of squarylium dye (A-2_1))
400 parts of toluene were mixed with 40.0 parts of 1,8-diaminonaphthalene, 46.0 parts of 9-fluorenone, and 0.087 parts of p-toluenesulfonic acid monohydrate, and the mixture was heated and stirred in a nitrogen gas atmosphere and refluxed for 3 hours. Water generated during the reaction was removed from the system by azeotropic distillation. After the reaction was completed, the dark brown solid obtained by distilling toluene was extracted with acetone and purified by recrystallization from a mixed solvent of acetone and ethanol. The obtained brown solid was dissolved in a mixed solvent of 240 parts of toluene and 160 parts of n-butanol, 13.8 parts of 3,4-dihydroxy-3-cyclobutene-1,2-dione was added, and the mixture was heated and stirred in a nitrogen gas atmosphere and refluxed for 8 hours. Water generated during the reaction was removed from the system by azeotropic distillation. After the reaction was completed, the solvent was distilled, and 200 parts of hexane was added while stirring the resulting reaction mixture. The resulting black-brown precipitate was filtered off, washed successively with hexane, ethanol, and acetone, and dried under reduced pressure to obtain 84.6 parts (yield: 97%) of a squarylium dye (A-2_1). As a result of mass spectrometry and elemental analysis by TOF-MS, the squarylium dye was identified as (A-2_1).

(スクアリリウム色素(A-2_2)の合成)
スクアリリウム色素(A-2_1)の合成で使用した9-フルオレノン46.0部の代わりに、2,7-ビス(トリフルオロメチル)-9-フルオレノン80.7部を使用した以外は、スクアリリウム色素(A-2_1)の合成と同様の操作を行い、スクアリリウム色素(A-2_2)109.8部(収率:91%)を得た。TOF-MSによる質量分析および元素分析の結果、スクアリリウム色素(A-2_2)であることを同定した。
(Synthesis of squarylium dye (A-2_2))
The same procedure as in the synthesis of squarylium dye (A-2_1) was carried out, except that 80.7 parts of 2,7-bis(trifluoromethyl)-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the synthesis of squarylium dye (A-2_1), to obtain 109.8 parts of squarylium dye (A-2_2) (yield: 91%). As a result of mass spectrometry and elemental analysis by TOF-MS, the squarylium dye was identified as squarylium dye (A-2_2).

(スクアリリウム色素(A-2_3)の合成)
スクアリリウム色素(A-2_1)の合成で使用した9-フルオレノン46.0部の代わりに、2-ヒドロキシ-9-フルオレノン50.1部を使用した以外は、スクアリリウム色素(A-2_1)の合成と同様の操作を行い、スクアリリウム色素(A-2_3)83.9部(収率:92%)を得た。TOF-MSによる質量分析および元素分析の結果、スクアリリウム色素(A-2_3)であることを同定した。
(Synthesis of squarylium dye (A-2_3))
The same procedure as in the synthesis of squarylium dye (A-2_1) was carried out, except that 50.1 parts of 2-hydroxy-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the synthesis of squarylium dye (A-2_1), to obtain 83.9 parts of squarylium dye (A-2_3) (yield: 92%). As a result of mass spectrometry and elemental analysis by TOF-MS, the squarylium dye was identified as squarylium dye (A-2_3).

(スクアリリウム色素(A-2_4)の合成)
特許文献WO2017/104283の実施例で使用されている化合物4を、スクアリリウム色素(A-2_4)として使用した。
(Synthesis of squarylium dye (A-2_4))
Compound 4 used in the examples of patent document WO2017/104283 was used as the squarylium dye (A-2_4).

(スクアリリウム色素の溶剤処理と微細化)
[溶剤処理工程]
スクアリリウム色素(A-1_1)50部をN-メチルピロリドン250部に混合し、23℃で24時間攪拌した。その後、濾過を行い、メタノール150部で洗浄した後に取り出し、80℃で一昼夜乾燥させ、粉体25部を得た。
[微細化工程]
得られた粉体10部、塩化ナトリウム100部、エチレングリコール12.5部をステンレス製ガロンニーダー(井上製作所製)中に仕込み、60℃ で12時間混練した。次に、混練した混合物を温水に投入し、約80℃ に加熱しながら1 時間攪拌してスラリー状として、濾過および水洗をして食塩およびジエチレングリコールを除いた後、80℃で一昼夜乾燥させ粉砕することにより、9.4部の微細化されたスクアリリウム色素(P-1_1)を得た。
[平均粒子径]
顔料の平均一次粒子径は、電子顕微鏡写真から一次粒子の大きさを直接計測する方法で測定した。具体的には、個々の顔料の一次粒子の短軸径と長軸径を計測し、平均をその顔料粒子の粒径とした。次に、100個以上の顔料粒子について、それぞれの粒子の体積( 重量) を、求めた粒径の立方体と近似して求め、体積平均粒径を平均一次粒子径とした。なお、電子顕微鏡は透過型(TEM)を用いた。
この方法で測定した結果、平均一次粒子径は50nmであった。
[成分比率]
5.0mgのスクアリリウム色素(P-1_1)を100mlのメスフラスコに入れ、HPLC用THFを加えて超音波を30分照射して溶解させ、100mlのTHF溶液を調整した。この溶液を用いて、上記装置及び上記条件により色素化合物BのHPLC測定を行った。
HPLC測定は、移動相としてアセトニトリルと水とを8:2の体積比で混合した混合溶液を用いた条件において逆相系液体クロマトグラフィーにより分析した。
その結果、複数のピークが示された。
具体的には、保持時間が12±1分に現れるピーク(ピーク1)、保持時間が42±1分に現れるピーク(ピーク2)、保持時間が46±2分に現れるピーク(ピーク3)、保持時間が50±2分に現れるピーク(ピーク4)、及び保持時間が57±2分に現れるピーク(ピーク5)によって構成されている。
ピーク5の面積は、ピーク1~5の面積の合計に対し、70%であった。
(Solvent treatment and micronization of squarylium dyes)
[Solvent treatment process]
50 parts of squarylium dye (A-1_1) was mixed with 250 parts of N-methylpyrrolidone and stirred for 24 hours at 23° C. Then, the mixture was filtered, washed with 150 parts of methanol, and then taken out and dried at 80° C. for one day to obtain 25 parts of powder.
[Miniaturization process]
10 parts of the obtained powder, 100 parts of sodium chloride, and 12.5 parts of ethylene glycol were charged into a stainless steel gallon kneader (manufactured by Inoue Seisakusho) and kneaded for 12 hours at 60° C. Next, the kneaded mixture was poured into warm water and stirred for 1 hour while heating to about 80° C. to form a slurry, which was then filtered and washed with water to remove the salt and diethylene glycol, and then dried overnight at 80° C. and pulverized to obtain 9.4 parts of a finely divided squarylium dye (P-1_1).
[Average particle size]
The average primary particle size of the pigment was measured by a method of directly measuring the size of the primary particles from an electron microscope photograph. Specifically, the minor axis diameter and major axis diameter of each primary particle of the pigment were measured, and the average was taken as the particle size of the pigment particle. Next, for 100 or more pigment particles, the volume (weight) of each particle was calculated by approximating it to a cube of the calculated particle size, and the volume average particle size was taken as the average primary particle size. Note that a transmission electron microscope (TEM) was used.
As a result of measurement by this method, the average primary particle diameter was found to be 50 nm.
[Component ratio]
5.0 mg of squarylium dye (P-1_1) was placed in a 100 ml measuring flask, HPLC grade THF was added, and the dye was dissolved by irradiating with ultrasound for 30 minutes to prepare a 100 ml THF solution. Using this solution, HPLC measurement of dye compound B was carried out using the above-mentioned device and conditions.
The HPLC measurement was performed by reversed-phase liquid chromatography using a mixed solution of acetonitrile and water in a volume ratio of 8:2 as a mobile phase.
The results showed multiple peaks.
Specifically, it is composed of a peak (Peak 1) that appears at a retention time of 12±1 minutes, a peak (Peak 2) that appears at a retention time of 42±1 minutes, a peak (Peak 3) that appears at a retention time of 46±2 minutes, a peak (Peak 4) that appears at a retention time of 50±2 minutes, and a peak (Peak 5) that appears at a retention time of 57±2 minutes.
The area of peak 5 was 70% of the total area of peaks 1 to 5.

スクアリリウム色素(A-1_2)および(A-1_3)は、スクアリリウム色素(A-1_1)と同様に溶剤処理、微細化を行い、微細化スクアリリウム色素(P-1_2)、(P-1_3)とした。なお、スクアリリウム色素(A-1_4)、(A-2_1)~(A-2_4)は、溶剤処理を行っておらず、微細化のみを行い、微細化スクアリリウム色素(P-1_4)、(P-2_1)~(P-2_4)とした。 Squaryllium dyes (A-1_2) and (A-1_3) were treated with a solvent and refined in the same manner as squarylium dye (A-1_1), to give refined squarylium dyes (P-1_2) and (P-1_3). Note that squarylium dyes (A-1_4), (A-2_1) to (A-2_4) were not treated with a solvent and were only refined, to give refined squarylium dyes (P-1_4), (P-2_1) to (P-2_4).

<その他の微細化スクアリリウム色素(PX)の製造>
(その他の微細化スクアリリウム色素(PX-1)の製造)
特許文献2020/013089の実施例で使用されているスクアリリウム化合物SQ-R1を、その他のスクアリリウム色素(X-1)として使用した。その他のスクアリリウム色素(X-1)は、スクアリリウム色素(A-1_4)と同様に微細化を行い、その他の微細化スクアリリウム色素(PX-1)とした。
<Production of other fine squarylium dyes (PX)>
(Production of other fine squarylium dyes (PX-1))
The squarylium compound SQ-R1 used in the examples of Patent Document 2020/013089 was used as the other squarylium dye (X-1). The other squarylium dye (X-1) was refined in the same manner as the squarylium dye (A-1_4) to obtain the other refined squarylium dye (PX-1).

(その他の微細化スクアリリウム色素(PX-2)の製造)
特許文献2020/013089の実施例で使用されているスクアリリウム化合物SQ-1を、その他のスクアリリウム色素(X-2)として使用した。その他のスクアリリウム色素(X-2)は、スクアリリウム色素(A-1_4)と同様に微細化を行い、その他の微細化スクアリリウム色素(PX-2)とした。
(Production of other fine squarylium dyes (PX-2))
The squarylium compound SQ-1 used in the examples of Patent Document 2020/013089 was used as the other squarylium dye (X-2). The other squarylium dye (X-2) was refined in the same manner as the squarylium dye (A-1_4) to obtain the other refined squarylium dye (PX-2).

上記の通り製造したスクアリリウム色素とその他のスクアリリウム色素の構造は、以下の通りである。 The structures of the squarylium dyes produced as above and other squarylium dyes are as follows:

<微細化スクアリリウム色素(P)の最大吸収波長測定>
微細化スクアリリウム色素(P)を、最大吸光度が1程度となるようにNMP(N-メチル-2-ピロリドン)に溶解し、分光光度計(U-4100 日立ハイテクノロジーズ社製)を用いて400~1000nmの波長範囲の吸収スペクトルを測定した。結果を表1に示す。
<Measurement of maximum absorption wavelength of fine squarylium dye (P)>
The finely divided squarylium dye (P) was dissolved in NMP (N-methyl-2-pyrrolidone) so that the maximum absorbance was about 1, and the absorption spectrum was measured in the wavelength range of 400 to 1000 nm using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation). The results are shown in Table 1.

<色素誘導体1>
下記式(3)で表される化合物を色素誘導体1として使用した。
<Dye derivative 1>
A compound represented by the following formula (3) was used as dye derivative 1.

式(3)
(式(3)中、Cu-Pcは、銅フタロシアニン構造残基である。)
Equation (3)
(In formula (3), Cu-Pc is a copper phthalocyanine structure residue.)

<分散剤溶液の製造>
(塩基性樹脂型分散剤1溶液の製造)
<Preparation of Dispersant Solution>
(Preparation of Basic Resin-Type Dispersant 1 Solution)

攪拌機、温度計を備えた反応容器に、N,N-ジメチルプロパンジアミン41部、クロロホルム120部を仕込み、室温で撹拌し、メタクリル酸クロリド50部を1時間かけて滴下した。室温で3時間撹拌後、H-NMRで反応が完結していることを確認したのち、反応溶液を、イオン交換水300部、飽和食塩水200部で順次洗浄後、有機層に硫酸マグネシウム20gを加え、撹拌後、ろ過を行った。得られた溶液中の溶媒をロータリーエバポレーターで留去し、淡黄色透明の液体として、下記式(4)で表される化合物[b]を58部得た(収率85%)。得られた化合物の同定は、H-NMRで実施した。 In a reaction vessel equipped with a stirrer and a thermometer, 41 parts of N,N-dimethylpropanediamine and 120 parts of chloroform were charged and stirred at room temperature, and 50 parts of methacrylic acid chloride were added dropwise over 1 hour. After stirring at room temperature for 3 hours, the completion of the reaction was confirmed by 1 H-NMR, and then the reaction solution was washed with 300 parts of ion-exchanged water and 200 parts of saturated saline solution in that order, and then 20 g of magnesium sulfate was added to the organic layer, stirred, and then filtered. The solvent in the obtained solution was distilled off with a rotary evaporator, and 58 parts of compound [b] represented by the following formula (4) was obtained as a pale yellow transparent liquid (yield 85%). The obtained compound was identified by 1 H-NMR.

式(4)
Equation (4)

ガス導入管、コンデンサー、攪拌翼、及び温度計を備え付けた反応槽に、メチルメタクリレート15.7部、n-ブチルメタクリレート47.2部、テトラメチルエチレンジアミン13.2部を仕込み、窒素を流しながら50℃で1時間撹拌し、系内を窒素置換した。次に、ブロモイソ酪酸エチル2.6部、塩化第一銅5.6部、プロピレングリコールモノメチルエーテルアセテート(以下、PGMAc)100部を仕込み、窒素気流下で、110℃まで昇温して第一ブロックの重合を開始した。4時間重合後、重合溶液をサンプリングして固形分測定を行い、不揮発分から換算して重合転化率が98%以上であることを確認した。
次に、この反応槽に、PGMAc25部、第二ブロックモノマーとして、上記化合物[b]30.3部を投入し、110℃・窒素雰囲気下を保持したまま撹拌し、反応を継続した。上記式(4)で表される化合物[b]投入から2時間後、重合溶液をサンプリングして固形分測定を行い、不揮発分から換算して第二ブロックの重合転化率が98%以上であることを確認した。
さらに、この反応装置に、ベンジルクロライド6.8部を投入し、110℃・窒素雰囲気下を保持したまま3時間撹拌し、その後冷却した。
先に合成したブロック共重合体溶液に不揮発分が40重量%になるようにPGMAcを添加した。このようにして、固形分当たりのアミン価が70mgKOH/g、4級アンモニウム塩価が30mgKOH/g、重量平均分子量(Mw)9,800、不揮発分が40重量%の塩基性樹脂型分散剤1溶液を得た。
A reaction vessel equipped with a gas inlet tube, a condenser, an agitator, and a thermometer was charged with 15.7 parts of methyl methacrylate, 47.2 parts of n-butyl methacrylate, and 13.2 parts of tetramethylethylenediamine, and the mixture was stirred at 50 ° C. for 1 hour while flowing nitrogen, and the inside of the system was replaced with nitrogen. Next, 2.6 parts of ethyl bromoisobutyrate, 5.6 parts of cuprous chloride, and 100 parts of propylene glycol monomethyl ether acetate (hereinafter, PGMAc) were charged, and the temperature was raised to 110 ° C. under a nitrogen stream to initiate polymerization of the first block. After polymerization for 4 hours, the polymerization solution was sampled and the solid content was measured, and it was confirmed that the polymerization conversion rate was 98% or more based on the non-volatile content.
Next, 25 parts of PGMAc and 30.3 parts of the compound [b] as the second block monomer were added to the reaction tank, and the reaction was continued by stirring while maintaining a nitrogen atmosphere at 110° C. Two hours after the addition of the compound [b] represented by the formula (4) above, a sample of the polymerization solution was taken and the solid content was measured, and it was confirmed that the polymerization conversion rate of the second block was 98% or more, calculated from the non-volatile content.
Further, 6.8 parts of benzyl chloride was added to the reaction vessel, and the mixture was stirred for 3 hours while maintaining the temperature at 110° C. under a nitrogen atmosphere, and then cooled.
PGMAc was added to the block copolymer solution synthesized above so that the nonvolatile content was 40% by weight. In this way, a basic resin-type dispersant 1 solution was obtained, which had an amine value per solid content of 70 mg KOH/g, a quaternary ammonium salt value of 30 mg KOH/g, a weight average molecular weight (Mw) of 9,800, and a nonvolatile content of 40% by weight.

(塩基性樹脂型分散剤2溶液の製造)
ガス導入管、コンデンサー、攪拌翼、及び温度計を備え付けた反応装置に、メチルメタクリレート60部、nーブチルメタクリレート20部、テトラメチルエチレンジアミン13.2部を仕込み、窒素を流しながら50℃で1時間撹拌し、系内を窒素置換した。次に、ブロモイソ酪酸エチル9.3部、塩化第一銅5.6部、PGMAc133部を仕込み、窒素気流下で、110℃まで昇温して第一ブロックの重合を開始した。4時間重合後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して重合転化率が98%以上であることを確認した。
次に、この反応装置に、PGMAc61部、第二ブロックモノマーとしてジメチルアミノエチルメタクリレート20部(以下、DMという)を投入し、110℃・窒素雰囲気下を保持したまま撹拌し、反応を継続した。ジメチルアミノエチルメタクリレート投入から2時間後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して第二ブロックの重合転化率が98%以上であることを確認し、反応溶液を室温まで冷却して重合を停止した。
先に合成したブロック共重合体溶液に不揮発分が40質量%になるようにPGMAcを添加した。このようにして、不揮発分当たりのアミン価が71.4mgKOH/g、重量平均分子量9,900(Mw)、不揮発分が40質量%の塩基性樹脂型分散剤2溶液を得た。
(Preparation of Basic Resin-Type Dispersant 2 Solution)
In a reaction apparatus equipped with a gas inlet tube, a condenser, an agitator, and a thermometer, 60 parts of methyl methacrylate, 20 parts of n-butyl methacrylate, and 13.2 parts of tetramethylethylenediamine were charged, and the mixture was stirred at 50° C. for 1 hour while flowing nitrogen, and the inside of the system was replaced with nitrogen. Next, 9.3 parts of ethyl bromoisobutyrate, 5.6 parts of cuprous chloride, and 133 parts of PGMAc were charged, and the temperature was raised to 110° C. under a nitrogen stream to initiate polymerization of the first block. After polymerization for 4 hours, the polymerization solution was sampled and the nonvolatile content was measured, and it was confirmed that the polymerization conversion rate was 98% or more based on the nonvolatile content.
Next, 61 parts of PGMAc and 20 parts of dimethylaminoethyl methacrylate (hereinafter referred to as DM) as a second block monomer were added to this reaction apparatus, and the reaction was continued by stirring while maintaining a nitrogen atmosphere at 110° C. Two hours after the addition of dimethylaminoethyl methacrylate, a sample was taken from the polymerization solution and the nonvolatile content was measured. It was confirmed that the polymerization conversion rate of the second block was 98% or more calculated from the nonvolatile content, and the reaction solution was cooled to room temperature to terminate the polymerization.
PGMAc was added to the block copolymer solution synthesized above so that the non-volatile content was 40% by mass. In this way, a basic resin-type dispersant 2 solution was obtained having an amine value per non-volatile content of 71.4 mgKOH/g, a weight average molecular weight of 9,900 (Mw), and a non-volatile content of 40% by mass.

(塩基性樹脂型分散剤3溶液の製造)
ガス導入管、コンデンサー、攪拌翼、及び温度計を備え付けた反応装置に、メチルメタクリレート60部、nーブチルメタクリレート20部、テトラメチルエチレンジアミン13.2部を仕込み、窒素を流しながら50℃で1時間撹拌し、系内を窒素置換した。次に、ブロモイソ酪酸エチル9.3部、塩化第一銅5.6部、PGMAc133部を仕込み、窒素気流下で、110℃まで昇温して第一ブロックの重合を開始した。4時間重合後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して重合転化率が98%以上であることを確認した。
次に、この反応装置に、PGMAc61部、第二ブロックモノマーとしてメタクリロイルオキシエチルトリメチルアンモニウムクロライド水溶液25.6部(三菱レイヨン社製「アクリエステルDMC78」)を投入し、110℃・窒素雰囲気下を保持したまま撹拌し、反応を継続した。メタクリロイルオキシエチルトリメチルアンモニウムクロライド投入から2時間後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して第二ブロックの重合転化率が98%以上であることを確認し、反応溶液を室温まで冷却して重合を停止した。
先に合成したブロック共重合体溶液に不揮発分が40質量%になるようにPGMAcを添加した。このようにして、不揮発分当たりのアミン価が29.4mgKOH/g、重量平均分子量9,800(Mw)、不揮発分が40質量%の塩基性樹脂型分散剤3溶液を得た。
(Preparation of Basic Resin-Type Dispersant 3 Solution)
In a reaction apparatus equipped with a gas inlet tube, a condenser, an agitator, and a thermometer, 60 parts of methyl methacrylate, 20 parts of n-butyl methacrylate, and 13.2 parts of tetramethylethylenediamine were charged, and the mixture was stirred at 50° C. for 1 hour while flowing nitrogen, and the inside of the system was replaced with nitrogen. Next, 9.3 parts of ethyl bromoisobutyrate, 5.6 parts of cuprous chloride, and 133 parts of PGMAc were charged, and the temperature was raised to 110° C. under a nitrogen stream to initiate polymerization of the first block. After polymerization for 4 hours, the polymerization solution was sampled and the nonvolatile content was measured, and it was confirmed that the polymerization conversion rate was 98% or more based on the nonvolatile content.
Next, 61 parts of PGMAc and 25.6 parts of an aqueous solution of methacryloyloxyethyl trimethyl ammonium chloride ("Acryester DMC78" manufactured by Mitsubishi Rayon Co., Ltd.) as a second block monomer were added to the reactor, and the reaction was continued by stirring while maintaining 110° C. and a nitrogen atmosphere. Two hours after the addition of methacryloyloxyethyl trimethyl ammonium chloride, the polymerization solution was sampled and the nonvolatile content was measured. It was confirmed that the polymerization conversion rate of the second block was 98% or more calculated from the nonvolatile content, and the reaction solution was cooled to room temperature to stop the polymerization.
PGMAc was added to the block copolymer solution synthesized above so that the non-volatile content was 40% by mass. In this way, a basic resin-type dispersant 3 solution was obtained having an amine value per non-volatile content of 29.4 mgKOH/g, a weight average molecular weight of 9,800 (Mw), and a non-volatile content of 40% by mass.

(その他の樹脂型分散剤4溶液の製造)
ガス導入管、温度、コンデンサー、攪拌機を備えた反応容器に、メタクリル酸10部、メチルメタクリレート90部、エチルアクリレート50部、tert-ブチルアクリレート50部、プロピレングリコールモノメチルエーテルアセテート50部を仕込み、窒素ガスで置換した。反応容器内を50℃に加熱撹拌し、3-メルカプト-1,2-プロパンジオール12部を添加した。90℃に昇温し、2,2’-アゾビスイソブチロニトリル0.1部をプロピレングリコールモノメチルエーテルアセテート90部に加えた溶液を添加しながら7時間反応した。固形分測定により95%が反応したことを確認した。
ピロメリット酸無水物19部、プロピレングリコールモノメチルエーテルアセテート50部、触媒として1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン0.4部を追加し、100℃で7時間反応させた。酸価の測定で98%以上の酸無水物がハーフエステル化していることを確認し反応を終了し、固形分測定で固形分40%となるようプロピレングリコールモノメチルエーテルアセテートを加えて希釈し、酸価70mgKOH/g、質量平均分子量8500のその他の樹脂型分散剤4を得た。
(Preparation of 4 other resin-type dispersant solutions)
A reaction vessel equipped with a gas inlet tube, a temperature controller, a condenser, and a stirrer was charged with 10 parts of methacrylic acid, 90 parts of methyl methacrylate, 50 parts of ethyl acrylate, 50 parts of tert-butyl acrylate, and 50 parts of propylene glycol monomethyl ether acetate, and the atmosphere was replaced with nitrogen gas. The inside of the reaction vessel was heated to 50°C and stirred, and 12 parts of 3-mercapto-1,2-propanediol was added. The temperature was raised to 90°C, and a solution of 0.1 parts of 2,2'-azobisisobutyronitrile added to 90 parts of propylene glycol monomethyl ether acetate was added and reacted for 7 hours. It was confirmed that 95% had reacted by solid content measurement.
19 parts of pyromellitic anhydride, 50 parts of propylene glycol monomethyl ether acetate, and 0.4 parts of 1,8-diazabicyclo-[5.4.0]-7-undecene as a catalyst were added, and the mixture was reacted for 7 hours at 100° C. The reaction was terminated when it was confirmed by measuring the acid value that 98% or more of the acid anhydride had been half-esterified, and propylene glycol monomethyl ether acetate was added to dilute the mixture to a solid content of 40% by measuring the solid content, thereby obtaining other resin-type dispersant 4 having an acid value of 70 mgKOH/g and a mass average molecular weight of 8,500.

<バインダ樹脂溶液の製造>
(バインダ樹脂1溶液の製造)
セパラブル4口フラスコに温度計、冷却管、窒素ガス導入管、撹拌装置を取り付けた反応容器にシクロヘキサノン70.0部を仕込み、80℃に昇温し、反応容器内を窒素置換した後、滴下管よりn-ブチルメタクリレート13.3部、2-ヒドロキシエチルメタクリレート4.6部、メタクリル酸4.3部、パラクミルフェノールエチレンオキサイド変性アクリレート(東亞合成株式会社製「アロニックスM110」)7.4部、2,2’-アゾビスイソブチロニトリル0.4部の混合物を2時間かけて滴下した。滴下終了後、更に3時間反応を継続し、重量平均分子量(Mw)26000のアクリル樹脂の溶液を得た。室温まで冷却した後、樹脂溶液約2gをサンプリングして180℃、20分加熱乾燥して不揮発分を測定し、先に合成した樹脂溶液に不揮発分が20質量%になるようにプロピレングリコールモノエチルエーテルアセテートを添加してバインダ樹脂1溶液を調製した。
<Preparation of binder resin solution>
(Preparation of binder resin 1 solution)
A separable 4-neck flask was fitted with a thermometer, a cooling tube, a nitrogen gas inlet tube, and a stirrer. 70.0 parts of cyclohexanone was charged in the reaction vessel, which was then heated to 80 ° C. and substituted with nitrogen in the reaction vessel. A mixture of 13.3 parts of n-butyl methacrylate, 4.6 parts of 2-hydroxyethyl methacrylate, 4.3 parts of methacrylic acid, 7.4 parts of paracumylphenol ethylene oxide modified acrylate ("Aronix M110" manufactured by Toagosei Co., Ltd.), and 0.4 parts of 2,2'-azobisisobutyronitrile was added dropwise over 2 hours. After completion of the dropwise addition, the reaction was continued for another 3 hours to obtain a solution of an acrylic resin having a weight average molecular weight (Mw) of 26,000. After cooling to room temperature, about 2 g of the resin solution was sampled and dried by heating at 180° C. for 20 minutes to measure the non-volatile content. Propylene glycol monoethyl ether acetate was added to the previously synthesized resin solution so that the non-volatile content was 20 mass % to prepare binder resin 1 solution.

(バインダ樹脂2溶液の製造)
温度計、冷却管、窒素ガス導入管、滴下管及び撹拌装置を備えたセパラブル4口フラスコにシクロヘキサノン370部を仕込み、80℃に昇温し、フラスコ内を窒素置換した後、滴下管より、ジシクロペンタニルメタクリレート18部、ベンジルメタクリレート10部、グリシジルメタクリレート18.2部、メタクリル酸メチル25部、及び2,2'-アゾビスイソブチロニトリル2.0部の混合物を2時間かけて滴下した。滴下後、更に100℃で3時間反応させた後、アゾビスイソブチロニトリル1.0部をシクロヘキサノン50部で溶解させたものを添加し、更に100℃で1時間反応を続けた。次に、容器内を空気置換に替え、アクリル酸9.3部(グリシジル基の100%)にトリスジメチルアミノフェノール0.5部及びハイドロキノン0.1部を上記容器内に投入し、120℃で6時間反応を続け固形分酸価0.5となったところで反応を終了し、アクリル樹脂の溶液を得た。更に、引き続きテトラヒドロ無水フタル酸19.5部(生成した水酸基の100%)、トリエチルアミン0.5部を加え120℃で3.5時間反応させアクリル樹脂の溶液を得た。
室温まで冷却した後、樹脂溶液約2gをサンプリングして180℃、20分加熱乾燥して不揮発分を測定し、先に合成した樹脂溶液に不揮発分が20質量%になるようにプロピレングリコールモノメチルエーテルアセテートを添加してバインダ樹脂2溶液を調製した。重量平均分子量(Mw)は19000であった。
(Preparation of binder resin 2 solution)
A separable 4-neck flask equipped with a thermometer, a cooling tube, a nitrogen gas inlet tube, a dropping tube and a stirrer was charged with 370 parts of cyclohexanone, heated to 80°C, and the atmosphere in the flask was replaced with nitrogen. A mixture of 18 parts of dicyclopentanyl methacrylate, 10 parts of benzyl methacrylate, 18.2 parts of glycidyl methacrylate, 25 parts of methyl methacrylate and 2.0 parts of 2,2'-azobisisobutyronitrile was added dropwise over 2 hours from the dropping tube. After the dropwise addition, the mixture was further reacted at 100°C for 3 hours, and then a solution of 1.0 part of azobisisobutyronitrile in 50 parts of cyclohexanone was added, and the reaction was continued at 100°C for 1 hour. Next, the inside of the vessel was replaced with air, and 9.3 parts of acrylic acid (100% of glycidyl groups), 0.5 parts of trisdimethylaminophenol, and 0.1 parts of hydroquinone were added to the vessel, and the reaction was continued for 6 hours at 120° C., and the reaction was terminated when the solid acid value reached 0.5, to obtain an acrylic resin solution. Furthermore, 19.5 parts of tetrahydrophthalic anhydride (100% of the generated hydroxyl groups) and 0.5 parts of triethylamine were added, and the reaction was continued for 3.5 hours at 120° C., to obtain an acrylic resin solution.
After cooling to room temperature, about 2 g of the resin solution was sampled and dried at 180° C. for 20 minutes to measure the non-volatile content, and propylene glycol monomethyl ether acetate was added to the previously synthesized resin solution so that the non-volatile content was 20% by mass to prepare a binder resin 2 solution. The weight average molecular weight (Mw) was 19,000.

(バインダ樹脂3溶液の製造)
セパラブル4口フラスコに温度計、冷却管、窒素ガス導入管、滴下管および撹拌装置を取り付けた反応容器にプロピレングリコールモノメチルエーテルアセテート207部を仕込み、80℃に昇温し、反応容器内を窒素置換した後、滴下管より、メタクリル酸20部、パラクミルフェノールエチレンオキサイド変性アクリレート(東亜合成社製「アロニックス(登録商標)M110」)20部、メタクリル酸メチル45部、2-ヒドロキシエチルメタクリレート8.5部、及び2,2'-アゾビスイソブチロニトリル1.33部の混合物を2時間かけて滴下した。滴下終了後、更に3時間反応を継続し、共重合体樹脂溶液を得た。次に得られた共重合体溶液全量に対して、窒素ガスを停止し乾燥空気を1時間注入しながら攪拌したのちに、室温まで冷却した後、2-メタクリロイルオキシエチルイソシアネート(昭和電工社製「カレンズ(登録商標)MOI」)6.5部、ラウリン酸ジブチル錫0.08部、プロピレングリコールモノメチルエーテルアセテート26部の混合物を70℃で3時間かけて滴下した。滴下終了後、更に1時間反応を継続し、アクリル樹脂の溶液を得た。室温まで冷却した後、樹脂溶液約2部をサンプリングして180℃、20分間加熱乾燥して不揮発分を測定し、先に合成した樹脂溶液に不揮発分が20質量%になるようにプロピレングリコールモノメチルエーテルアセテートを添加してバインダ樹脂3溶液を調製した。重量平均分子量(Mw)は18000であった。
(Preparation of binder resin 3 solution)
A separable 4-neck flask was fitted with a thermometer, a cooling tube, a nitrogen gas inlet tube, a dropping tube and a stirrer. 207 parts of propylene glycol monomethyl ether acetate was charged into the reaction vessel, which was then heated to 80°C and substituted with nitrogen in the reaction vessel. From the dropping tube, a mixture of 20 parts of methacrylic acid, 20 parts of paracumylphenol ethylene oxide modified acrylate (Toagosei Co., Ltd.'s "Aronix (registered trademark) M110"), 45 parts of methyl methacrylate, 8.5 parts of 2-hydroxyethyl methacrylate and 1.33 parts of 2,2'-azobisisobutyronitrile was added dropwise over 2 hours. After completion of the dropping, the reaction was continued for another 3 hours to obtain a copolymer resin solution. Next, the nitrogen gas was stopped and the whole amount of the copolymer solution was stirred while injecting dry air for 1 hour, and then cooled to room temperature. Then, a mixture of 6.5 parts of 2-methacryloyloxyethyl isocyanate ("Karens (registered trademark) MOI" manufactured by Showa Denko K.K.), 0.08 parts of dibutyltin laurate, and 26 parts of propylene glycol monomethyl ether acetate was added dropwise at 70 ° C. for 3 hours. After the dropwise addition, the reaction was continued for another hour to obtain an acrylic resin solution. After cooling to room temperature, about 2 parts of the resin solution was sampled and dried by heating at 180 ° C. for 20 minutes to measure the non-volatile content, and propylene glycol monomethyl ether acetate was added to the resin solution synthesized earlier so that the non-volatile content was 20% by mass to prepare a binder resin 3 solution. The weight average molecular weight (Mw) was 18,000.

<近赤外線吸収組成物(D)の製造>
[実施例1:近赤外線吸収組成物(D-1)]
(近赤外線吸収組成物(D-1)の製造)
下記の組成の混合物を均一に撹拌混合した後、直径0.5mmのジルコニアビーズを用いて、アイガーミルで3時間分散した後、0.5μmのフィルタで濾過し、近赤外線吸収組成物(D-1)を作製した。
微細化スクアリリウム色素(P-1_1) :8.4部
微細化スクアリリウム色素(P-2_1) :3.6部
塩基性樹脂型分散剤1溶液 :9.0部
バインダ樹脂1溶液 :22.0部
PGMAC :57.0部
<Production of near infrared absorbing composition (D)>
[Example 1: Near infrared absorbing composition (D-1)]
(Production of near infrared absorbing composition (D-1))
A mixture having the following composition was stirred and mixed uniformly, and then dispersed in an Eiger mill for 3 hours using zirconia beads having a diameter of 0.5 mm. The mixture was then filtered through a 0.5 μm filter to prepare a near infrared absorbing composition (D-1).
Fine squarylium dye (P-1_1): 8.4 parts Fine squarylium dye (P-2_1): 3.6 parts Basic resin type dispersant 1 solution: 9.0 parts Binder resin 1 solution: 22.0 parts PGMAC: 57.0 parts

[実施例2~24:近赤外線吸収組成物(D-2)~(D-24)、比較例1~3:近赤外線吸収組成物(D-25)~(D-27)]
(近赤外線吸収組成物(D-2)~(D-27)の製造)
以下、微細化スクアリリウム色素、色素誘導体、分散剤溶液、バインダ樹脂溶液を表2に示す組成、量に変更した以外は近赤外線吸収組成物(D-1)と同様にして、近赤外線吸収組成物(D-2)~(D-27)を作製した。
ただし、実施例11~13、24は参考例である。
[Examples 2 to 24: Near infrared absorbing compositions (D-2) to (D-24), Comparative Examples 1 to 3: Near infrared absorbing compositions (D-25) to (D-27)]
(Production of near infrared absorbing compositions (D-2) to (D-27))
Hereinafter, near infrared absorbing compositions (D-2) to (D-27) were prepared in the same manner as for the near infrared absorbing composition (D-1), except that the fine squarylium dye, the dye derivative, the dispersant solution, and the binder resin solution were changed to the compositions and amounts shown in Table 2.
However, Examples 11 to 13 and 24 are reference examples.

<近赤外線吸収組成物(D)の分光特性評価>
得られた近赤外線吸収組成物(D)を、1.1mm厚のガラス基板上にスピンコーターを用いて、800nmにおける透過率が1%となるようにスピンコートし、60℃で5分乾燥した後、230℃で20分加熱し、基板を作製した。得られた基板の分光を分光光度計(U-4100 日立ハイテクノロジーズ社製)を用いて400~1000nmの波長範囲の吸収スペクトルを測定した。
測定した吸収スペクトルから各範囲の平均透過率(T)を算出し、下記基準で評価した。評価結果を表2に示す。
<Spectral Characteristic Evaluation of Near-Infrared Absorbing Composition (D)>
The obtained near infrared absorbing composition (D) was spin-coated onto a 1.1 mm thick glass substrate using a spin coater so that the transmittance at 800 nm was 1%, and the substrate was prepared by drying at 60° C. for 5 minutes and then heating at 230° C. for 20 minutes. The absorption spectrum of the obtained substrate was measured in the wavelength range of 400 to 1000 nm using a spectrophotometer (U-4100 manufactured by Hitachi High-Technologies Corporation).
The average transmittance (T) of each region was calculated from the measured absorption spectrum and evaluated according to the following criteria. The evaluation results are shown in Table 2.

分光特性1:700nm~750nm
○: (T) ≦ 5%
△: 5% < (T) ≦ 10%
×: 10% < (T)

分光特性2:750nm~850nm
○: (T) ≦ 5%
△: 5% < (T) ≦ 10%
×: 10% < (T)

分光特性3:850nm~900nm
○: (T) ≦ 5%
△: 5% < (T) ≦ 10%
×: 10% < (T)

分光特性4:940nm
〇: 50% ≦ (T)
△: 40% ≦ (T) < 50%
×: (T) < 40%
Spectral characteristics 1: 700nm to 750nm
○: (T)≦5%
△: 5% < (T) ≦ 10%
×: 10% < (T)

Spectral characteristics 2: 750nm to 850nm
○: (T)≦5%
△: 5% < (T) ≦ 10%
×: 10% < (T)

Spectral characteristics 3: 850nm to 900nm
○: (T)≦5%
△: 5% < (T) ≦ 10%
×: 10% < (T)

Spectral characteristics 4: 940nm
〇: 50% ≦ (T)
△: 40% ≦ (T) < 50%
×: (T) < 40%

<近赤外線吸収組成物(D)の塗布性評価>
得られた近赤外線吸収組成物(D)を板厚0.7mmの360mm×465mmサイズの基板に中心部の膜厚(Aとする)が2.0μmになるようにスピンコートし、60℃で5分乾燥した後、中心部の膜厚と対角線上で中心から200mm部分の膜厚4点の平均値(Bとする)を測定し、下式により膜厚の塗布均一性を評価した。
(A-B)×100/{(A+B)/2} [%]
○: 2%未満
△: 2%以上5%未満
×: 5%以上
<Evaluation of Coatability of Near-Infrared Absorbing Composition (D)>
The obtained near infrared absorbing composition (D) was spin-coated onto a substrate with a size of 360 mm × 465 mm and a plate thickness of 0.7 mm so that the film thickness at the center (referred to as A) was 2.0 μm, and the film was dried at 60° C. for 5 minutes. After that, the film thickness at the center and the average value (referred to as B) of four film thickness points at a diagonal portion 200 mm from the center were measured, and the coating uniformity of the film thickness was evaluated by the following formula.
(A-B)×100/{(A+B)/2} [%]
○: Less than 2% △: 2% to less than 5% ×: 5% or more

Figure 0007537226000013
Figure 0007537226000013

本発明の400~1000nmの範囲における最大吸収波長を800~900nmの間に有するスクアリリウム色素(A)を2種以上含むことにより、700nm~900nmまでの近赤外線カット能力が高く(分光特性1~3)、940nmの近赤外光を透過し(分光特性4)、かつ塗布性良好な着色組成物を得ることができた。 By including two or more squarylium dyes (A) having a maximum absorption wavelength between 800 and 900 nm in the range of 400 to 1000 nm according to the present invention, it is possible to obtain a colored composition that has a high near-infrared blocking ability from 700 nm to 900 nm (spectral characteristics 1 to 3), transmits near-infrared light of 940 nm (spectral characteristic 4), and has good coatability.

<感光性近赤外線吸収組成物(R)の製造>
(実施例25:感光性近赤外線吸収組成物(R-1)の製造)
下記の組成の混合物を均一に撹拌混合した後、0.5μmのフィルタで濾過し、感光性近赤外線吸収組成物(R-1)を作製した。
近赤外線吸収組成物(D-2) :31.3部
バインダ樹脂2溶液 : 8.5部
熱硬化性化合物(E) : 0.8部
重合性化合物(F) : 4.5部
光重合開始剤(G) : 0.7部
増感剤(H) : 0.1部
チオール系連鎖移動剤(I) : 0.2部
重合禁止剤(J) : 0.2部
紫外線吸収剤(K) : 0.2部
酸化防止剤(L) : 0.2部
レベリング剤(M) : 5.0部
貯蔵安定剤(N) : 0.2部
密着向上剤(O) : 0.2部
溶剤(P) :48.4部
<Production of Photosensitive Near-Infrared Absorbing Composition (R)>
(Example 25: Production of photosensitive near infrared absorbing composition (R-1))
A mixture having the following composition was stirred and mixed uniformly and then filtered through a 0.5 μm filter to prepare a photosensitive near infrared ray absorbing composition (R-1).
Near infrared absorbing composition (D-2): 31.3 parts Binder resin 2 solution: 8.5 parts Thermosetting compound (E): 0.8 parts Polymerizable compound (F): 4.5 parts Photopolymerization initiator (G): 0.7 parts Sensitizer (H): 0.1 parts Thiol chain transfer agent (I): 0.2 parts Polymerization inhibitor (J): 0.2 parts Ultraviolet absorber (K): 0.2 parts Antioxidant (L): 0.2 parts Leveling agent (M): 5.0 parts Storage stabilizer (N): 0.2 parts Adhesion improver (O): 0.2 parts Solvent (P): 48.4 parts

(実施例26~29:感光性近赤外線吸収組成物(R-2)~(R-5)、
比較例4~5:感光性近赤外線吸収組成物(R-6)~(R-7)の製造)
以下、近赤外線吸収組成物(D-1)を表3に示す近赤外線吸収組成物に変更した以外は感光性近赤外線吸収組成物(R-1)と同様にして、感光性近赤外線吸収組成物(R-2)~(R-7)を作製した。
ただし、実施例28、29は参考例である。
(Examples 26 to 29: Photosensitive near infrared absorbing compositions (R-2) to (R-5),
Comparative Examples 4 and 5: Production of Photosensitive Near-Infrared Absorbing Compositions (R-6) to (R-7)
Hereinafter, photosensitive near infrared absorbing compositions (R-2) to (R-7) were prepared in the same manner as for the photosensitive near infrared absorbing composition (R-1), except that the near infrared absorbing composition (D-1) was changed to a near infrared absorbing composition shown in Table 3.
However, Examples 28 and 29 are reference examples.

感光性近赤外線吸収組成物(R)の製造に使用した材料の詳細は下記の通りである。 Details of the materials used in producing the photosensitive near-infrared absorbing composition (R) are as follows:

[熱硬化性化合物(E)]
(E-1-1)2,2'-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物
[EHPE-3150(ダイセル社製)]
(E-1-2)ソルビトールのグリシジルエーテル化エポキシ化合物
[デナコールEX611(ナガセケムテックス株式会社製)]
(E-1-3)イソシアヌル酸トリグリシジル、
(E-1-4)3-エチル-3-[(3-エチルオキセタン-3-イル)メトキシメチル]オキセタン
[アロンオキセタンOXT-221(東亞合成株式会社製)]
以上、(E-1-1)~(E-1-4)をそれぞれ同量混合し、熱硬化性化合物(E)とした。
[Thermosetting compound (E)]
(E-1-1) 1,2-epoxy-4-(2-oxiranyl)cyclohexane adduct of 2,2'-bis(hydroxymethyl)-1-butanol
[EHPE-3150 (manufactured by Daicel)]
(E-1-2) Glycidyl etherified epoxy compound of sorbitol
[Denacol EX611 (manufactured by Nagase ChemteX Corporation)]
(E-1-3) triglycidyl isocyanurate,
(E-1-4) 3-Ethyl-3-[(3-ethyloxetan-3-yl)methoxymethyl]oxetane
[Aron Oxetane OXT-221 (manufactured by Toagosei Co., Ltd.)]
The above (E-1-1) to (E-1-4) were mixed in equal amounts to prepare a thermosetting compound (E).

[重合性化合物(F)]
(F-1)トリメチロールプロパントリアクリレート
[アロニックスM309(東亞合成株式会社製)]
(F-2)ジペンタエリスリトールペンタ及びヘキサアクリレート(E-2)
[アロニックスM402(東亞合成株式会社製)]
(F-3)多塩基酸性アクリルオリゴマー
[アロニックスM520(東亞合成株式会社製)]
(F-4)カプロラクトン変性ジペンタエリスリトールヘキサアクリレート
[KAYARAD DPCA-30(日本化薬社製)]
[Polymerizable compound (F)]
(F-1) Trimethylolpropane triacrylate
[Aronix M309 (manufactured by Toagosei Co., Ltd.)]
(F-2) Dipentaerythritol penta- and hexaacrylate (E-2)
[Aronix M402 (manufactured by Toagosei Co., Ltd.)]
(F-3) Polybasic acidic acrylic oligomer
[Aronix M520 (manufactured by Toagosei Co., Ltd.)]
(F-4) Caprolactone-modified dipentaerythritol hexaacrylate
[KAYARAD DPCA-30 (manufactured by Nippon Kayaku)]

(F-5)下記による多官能ウレタンアクリレート
内容量が1リットル5つ口反応容器に、ペンタエリスリトールトリアクリレート(432g、ヘキサメチレンジイソシアネート84gを仕込み、60℃で8時間反応させ、(メタ)アクリロイル基を有する多官能ウレタンアクリレート(F-5)を含む生成物を得た。生成物中、多官能ウレタンアクリレート(F-5)の占める割合は、70質量%であり、残部を他の光重合性モノマーで占めている。なお、IR分析により反応生成物中にイソシアネート基が存在しないことを確認した。
(F-5) Multifunctional urethane acrylate as described below: Pentaerythritol triacrylate (432 g) and 84 g of hexamethylene diisocyanate were charged into a 1-liter five-necked reaction vessel and reacted at 60°C for 8 hours to obtain a product containing a multifunctional urethane acrylate (F-5) having a (meth)acryloyl group. The proportion of the multifunctional urethane acrylate (F-5) in the product was 70 mass%, with the remainder being other photopolymerizable monomers. It was confirmed by IR analysis that no isocyanate groups were present in the reaction product.

(F-6)2官能のビスフェノールA型(メタ)アクリレート
[ABE-300(新中村化学社製)]
(F-7)エトキシ化イソシアヌル酸トリアクリレート
[A-9300(新中村化学社製)]
以上、(F-1)~(F-7)をそれぞれ同量にて混合し、光重合性単量体(F)とした。
(F-6) Difunctional bisphenol A type (meth)acrylate
[ABE-300 (manufactured by Shin-Nakamura Chemical Co., Ltd.)]
(F-7) Ethoxylated isocyanuric acid triacrylate
[A-9300 (manufactured by Shin Nakamura Chemical Co., Ltd.)]
The above (F-1) to (F-7) were mixed in equal amounts to prepare a photopolymerizable monomer (F).

[光重合開始剤(G)]
(G-1)2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン
[Omnirad 907(IGM Resins社製)]]
(G-2)2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン
[Omnirad 379EG(IGM Resins社製)]
(G-3)2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド
[Omnirad TPO(IGM Resins社製)]
(G-4)2,2’-ビス(o-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2’-ビイミダゾール
[ビイミダゾール(黒金化成社製)]
(G-5)p-ジメチルアミノアセトフェノン
[DMA(ダイキファイン社製)]
(G-6)エタン-1-オン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル],1-(O-アセチルオキシム)
[イルガキュアOXE02(BASFジャパン社製)]
(G-7)1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン
[Omnirad 2959(IGM Resins社製)]
(G-8)ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド
[Omnirad 819(IGM Resins社製)]
以上、(G-1)~(G-8)をそれぞれ同量にて混合し、光重合開始剤(G)とした。
[Photopolymerization initiator (G)]
(G-1) 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one
[Omnirad 907 (IGM Resins)]
(G-2) 2-(Dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone
[Omnirad 379EG (manufactured by IGM Resins)]
(G-3) 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide
[Omnirad TPO (manufactured by IGM Resins)]
(G-4) 2,2'-bis(o-chlorophenyl)-4,5,4',5'-tetraphenyl-1,2'-biimidazole
[Biimidazole (Kurokane Chemicals)]
(G-5) p-Dimethylaminoacetophenone
[DMA (manufactured by Daikifine)]
(G-6) Ethan-1-one, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl], 1-(O-acetyloxime)
[Irgacure OXE02 (manufactured by BASF Japan)]
(G-7) 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one
[Omnirad 2959 (manufactured by IGM Resins)]
(G-8) Bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide
[Omnirad 819 (manufactured by IGM Resins)]
The above (G-1) to (G-8) were mixed in equal amounts to prepare a photopolymerization initiator (G).

[増感剤(H)]
(H-1)2,4-ジエチルチオキサントン
[カヤキュアDETX-S(日本化薬社製)]
(H-2)4,4’-ビス(ジエチルアミノ)ベンゾフェノン
[CHEMARK DEABP(Chemark Chemical社製)]
以上、(H-1)(H-2)をそれぞれ同量にて混合し、増感剤(H)とした。
[Sensitizer (H)]
(H-1) 2,4-Diethylthioxanthone
[Kayacure DETX-S (manufactured by Nippon Kayaku)]
(H-2) 4,4'-bis(diethylamino)benzophenone
[CHEMARK DEABP (manufactured by Chemark Chemical)]
The above (H-1) and (H-2) were mixed in equal amounts to prepare a sensitizer (H).

[チオール系連鎖移動剤(I)]
(I-1)トリメチロールエタントリス(3-メルカプトブチレート)
[TEMB(昭和電工社製)]
(I-2)トリメチロールプロパントリス(3-メルカプトブチレート)
[TPMB(昭和電工社製)]
(I-3)ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)
[PEMP(堺化学工業社製)]
(I-4)トリメチロールプロパントリス(3-メルカプトプロピオネート)
[TMMP(堺化学工業社製)]
(I-5)トリス[(3-メルカプトプロピオニルオキシ)-エチル]―イソシアヌレート
[TEMPIC(堺化学工業社製)]
以上、(I-1)~(I-5)をそれぞれ同量にて混合し、チオール系連鎖移動剤(I)とした。
[Thiol-based chain transfer agent (I)]
(I-1) Trimethylolethane tris(3-mercaptobutyrate)
[TEMB (Showa Denko)]
(I-2) Trimethylolpropane tris(3-mercaptobutyrate)
[TPMB (Showa Denko)]
(I-3) Pentaerythritol tetrakis(3-mercaptopropionate)
[PEMP (manufactured by Sakai Chemical Industry Co., Ltd.)]
(I-4) Trimethylolpropane tris(3-mercaptopropionate)
[TMMP (manufactured by Sakai Chemical Industry Co., Ltd.)]
(I-5) Tris[(3-mercaptopropionyloxy)-ethyl]-isocyanurate
[TEMPIC (manufactured by Sakai Chemical Industry Co., Ltd.)]
The above (I-1) to (I-5) were mixed in equal amounts to prepare a thiol-based chain transfer agent (I).

[重合禁止剤(J)]
(J-1)3-メチルカテコール
(J-2)メチルヒドロキノン
(J-3)tert-ブチルヒドロキノン
以上、(J-1)~(J-3)をそれぞれ同量にて混合し、重合禁止剤(J)とした。
[Polymerization inhibitor (J)]
(J-1) 3-methylcatechol (J-2) methylhydroquinone (J-3) tert-butylhydroquinone The above (J-1) to (J-3) were mixed in equal amounts to prepare a polymerization inhibitor (J).

[紫外線吸収剤(K)]
(K-1)2-[4-[(2-ヒドロキシ-3-(ドデシルおよびトリデシル)オキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン
[TINUVIN400(BASFジャパン社製)]
(K-2)2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール
[TINUVIN900(BASFジャパン社製)]
以上、(K-1)(K-2)をそれぞれ同量にて混合し、紫外線吸収剤(K)とした。
[Ultraviolet absorber (K)]
(K-1) 2-[4-[(2-hydroxy-3-(dodecyl and tridecyl)oxypropyl)oxy]-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine
[TINUVIN 400 (manufactured by BASF Japan)]
(K-2) 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol
[TINUVIN900 (manufactured by BASF Japan)]
The above (K-1) and (K-2) were mixed in equal amounts to prepare an ultraviolet absorber (K).

[酸化防止剤(L)]
(L-1)ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート
(L-2)3,3'-チオジプロパン酸ジオクタデシル
(L-3)トリス[2,4-ジ-(tert)-ブチルフェニル]ホスファイト
(L-4)ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート
(L-5)サリチル酸p-オクチルフェニル
以上、(L-1)~(L-5)をそれぞれ同量にて混合し、酸化防止剤(L)とした。
[Antioxidant (L)]
(L-1) pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (L-2) dioctadecyl 3,3'-thiodipropanoate (L-3) tris[2,4-di-(tert)-butylphenyl]phosphite (L-4) bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate (L-5) p-octylphenyl salicylate. The above (L-1) to (L-5) were mixed in equal amounts to give antioxidant (L).

[レベリング剤(M)]
DIC株式会社製「メガファックF-551:含ふっ素基親油性基含有オリゴマー」1部、
ビックケミー社製「BYK-330:ポリエーテル変性ポリジメチルシロキサン」 1部、
花王株式会社製「エマルゲン103:ポリオキシエチレンラウリルエーテル」 1部
をプロピレングリコールモノメチルエーテルアセテート97部に溶解させた混合溶液。
[Leveling Agent (M)]
1 part of "MEGAFAC F-551: Fluorine-containing lipophilic group-containing oligomer" manufactured by DIC Corporation,
1 part of BYK-330: polyether-modified polydimethylsiloxane manufactured by BYK,
A mixed solution of 1 part of Kao Corporation's "Emulgen 103: polyoxyethylene lauryl ether" dissolved in 97 parts of propylene glycol monomethyl ether acetate.

[貯蔵安定剤(N)]
(N-1)2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール
(本州化学工業社製「BHT」)
(N-2)トリフェニルホスフィン
(北興化学工業社製「TPP」)
以上、(N-1)(N-2)をそれぞれ同量にて混合し、貯蔵安定剤(N)とした。
[Storage stabilizer (N)]
(N-1) 2,6-bis(1,1-dimethylethyl)-4-methylphenol ("BHT" manufactured by Honshu Chemical Industry Co., Ltd.)
(N-2) Triphenylphosphine ("TPP" manufactured by Hokko Chemical Industry Co., Ltd.)
The above (N-1) and (N-2) were mixed in equal amounts to prepare a storage stabilizer (N).

[密着向上剤(O)]
(O-1)3-グリシドキシプロピルトリエトキシシラン
[信越シリコーン シランカップリング剤KBM-403(信越化学工業株式会社製)]
(O-2)3-メタクリロキシプロピルトリエトキシシラン
[信越シリコーン シランカップリング剤KBE-503(信越化学工業株式会社製)]
(O-3)N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン
[信越シリコーン シランカップリング剤KBM-603(信越化学工業株式会社製)]
(O-4)3-メルカプトプロピルトリメトキシシラン
[信越シリコーン シランカップリング剤KBM-803(信越化学工業株式会社製)]
以上、(O-1)~(O-4)をそれぞれ同量にて混合し、シランカップリング剤(O)とした。
[Adhesion improver (O)]
(O-1) 3-Glycidoxypropyltriethoxysilane
[Shin-Etsu Silicone Silane Coupling Agent KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.)]
(O-2) 3-Methacryloxypropyltriethoxysilane
[Shin-Etsu Silicone Silane Coupling Agent KBE-503 (manufactured by Shin-Etsu Chemical Co., Ltd.)]
(O-3) N-2-(aminoethyl)-3-aminopropyltrimethoxysilane
[Shin-Etsu Silicone Silane Coupling Agent KBM-603 (manufactured by Shin-Etsu Chemical Co., Ltd.)]
(O-4) 3-Mercaptopropyltrimethoxysilane
[Shin-Etsu Silicone Silane Coupling Agent KBM-803 (manufactured by Shin-Etsu Chemical Co., Ltd.)]
The above (O-1) to (O-4) were mixed in equal amounts to prepare a silane coupling agent (O).

[溶剤(P)]
(P-1)プロピレングリコールモノメチルエーテルアセテート 30部
(P-2)シクロヘキサノン 30部
(P-3)3-エトキシプロピオン酸エチル 10部
(P-4)プロピレングリコールモノメチルエーテル 10部
(P-5)シクロヘキサノールアセテート 10部
(P-6)ジプロプレングリコールメチルエーテルアセテート 10部
以上、(P-1)~(P-6)をそれぞれ上記質量部にて混合し、溶剤(P)とした。
[Solvent (P)]
(P-1) Propylene glycol monomethyl ether acetate 30 parts (P-2) Cyclohexanone 30 parts (P-3) Ethyl 3-ethoxypropionate 10 parts (P-4) Propylene glycol monomethyl ether 10 parts (P-5) Cyclohexanol acetate 10 parts (P-6) Dipropylene glycol methyl ether acetate 10 parts The above (P-1) to (P-6) were mixed in the above parts by mass to obtain solvent (P).

<感光性近赤外線吸収組成物(R)の分光特性評価>
得られた感光性近赤外線吸収組成物(R)を、1.1mm厚のガラス基板上にスピンコーターを用いて、800nmにおける透過率が1%となるようにスピンコートし、60℃で5分乾燥した後、超高圧水銀ランプを用いて100mJ/cmの紫外線を照射し、0.2質量%の炭酸ナトリウム水溶液からなるアルカリ現像液によりスプレー現像し、その後230℃で20分加熱し、基板を作製した。得られた基板の分光を分光光度計(U-4100 日立ハイテクノロジーズ社製)を用いて400~1000nmの波長範囲の吸収スペクトルを測定した。
測定した吸収スペクトルから各範囲の平均透過率(T)を算出し、近赤外線吸収組成物(D)の分光特性評価と同様の基準で評価した。評価結果を表3に示す。
<Spectral characteristic evaluation of photosensitive near infrared absorbing composition (R)>
The obtained photosensitive near infrared absorbing composition (R) was spin-coated onto a 1.1 mm thick glass substrate using a spin coater so that the transmittance at 800 nm was 1%, and the substrate was dried at 60° C. for 5 minutes, and then irradiated with 100 mJ/cm 2 ultraviolet light using an ultra-high pressure mercury lamp, spray-developed with an alkaline developer consisting of a 0.2 mass % aqueous sodium carbonate solution, and then heated at 230° C. for 20 minutes to prepare a substrate. The absorption spectrum of the obtained substrate was measured in the wavelength range of 400 to 1000 nm using a spectrophotometer (U-4100 manufactured by Hitachi High-Technologies Corporation).
The average transmittance (T) of each range was calculated from the measured absorption spectrum and evaluated based on the same criteria as in the evaluation of the spectral characteristics of the near infrared absorbing composition (D). The evaluation results are shown in Table 3.

<感光性近赤外線吸収組成物(R)の塗布性評価>
得られた感光性近赤外線吸収組成物(R)を、近赤外線吸収組成物(D)の塗布性性評価と同様に評価した。評価結果を表3に示す。
<Evaluation of Coating Properties of Photosensitive Near-Infrared Absorbing Composition (R)>
The photosensitive near infrared absorbing composition (R) thus obtained was evaluated for coatability in the same manner as in the evaluation of the near infrared absorbing composition (D). The evaluation results are shown in Table 3.

感光性近赤外線吸収組成物(R)の場合も近赤外線吸収組成物(D)と結果は同様で、本発明の400~1000nmの範囲における最大吸収波長を800~900nmの間に有するスクアリリウム色素(A)を2種以上含むことにより、700nm~900nmまでの近赤外線カット能力が高く(分光特性1~3)、940nmの近赤外光を透過し(分光特性4)、かつ塗布性良好な着色組成物を得ることができた。 In the case of the photosensitive near-infrared absorbing composition (R), the results were similar to those of the near-infrared absorbing composition (D). By including two or more squarylium dyes (A) of the present invention having a maximum absorption wavelength between 800 and 900 nm in the range of 400 to 1000 nm, it was possible to obtain a colored composition that has high near-infrared blocking ability from 700 nm to 900 nm (spectral properties 1 to 3), transmits near-infrared light of 940 nm (spectral property 4), and has good coatability.

<感光性近赤外線吸収着色組成物(RG)の製造>
(その他の微細化色素(PB-1)の製造)
反応容器中でn-アミルアルコール1250部に、フタロジニトリル225部、塩化アルミニウム無水物78部を添加し、攪拌した。これに、DBU(1,8-Diazabicyclo[5.4.0]undec-7-ene)266部を加え、昇温し、136℃で5時間還流させた。攪拌したまま30℃まで冷却した反応溶液を、メタノール5000部、水10000部の混合溶媒中へ、攪拌下注入し、青色のスラリーを得た。このスラリーを濾過し、メタノール2000部、水4000部の混合溶媒で洗浄し、乾燥して、135部のクロロアルミニウムフタロシアニンを得た。さらに、反応容器中でクロロアルミニウムフタロシアニン100部をゆっくり濃硫酸1200部に、室温にて加えた。40℃、3時間撹拌して、3℃の冷水24000部に硫酸溶液を注入した。青色の析出物をろ過、水洗、乾燥して、下記式(5)で表されるアルミニウムフタロシアニン顔料を102部得た。
<Production of Photosensitive Near-Infrared Absorbing Colored Composition (RG)>
(Production of other finely divided dyes (PB-1))
In a reaction vessel, 225 parts of phthalodinitrile and 78 parts of aluminum chloride anhydride were added to 1250 parts of n-amyl alcohol and stirred. 266 parts of DBU (1,8-Diazabicyclo[5.4.0]undec-7-ene) were added to the mixture, and the mixture was heated and refluxed at 136°C for 5 hours. The reaction solution was cooled to 30°C while stirring, and poured into a mixed solvent of 5000 parts of methanol and 10000 parts of water under stirring to obtain a blue slurry. The slurry was filtered, washed with a mixed solvent of 2000 parts of methanol and 4000 parts of water, and dried to obtain 135 parts of chloroaluminum phthalocyanine. Furthermore, 100 parts of chloroaluminum phthalocyanine were slowly added to 1200 parts of concentrated sulfuric acid in a reaction vessel at room temperature. The mixture was stirred at 40°C for 3 hours, and the sulfuric acid solution was poured into 24000 parts of cold water at 3°C. The blue precipitate was filtered, washed with water, and dried to obtain 102 parts of an aluminum phthalocyanine pigment represented by the following formula (5).

式(5)
Equation (5)

反応容器中でメタノール1000部に、上記式(5)で表されるアルミニウムフタロシアニン顔料を100部と、ジフェニルホスフィン酸を43.2部とを加え、40℃に加熱し、8時間反応させた。これを室温まで冷却後、生成物をろ過し、メタノールで洗浄後、乾燥させて、その他の色素(B-1)を112部を得た。
続いて、得られたその他の色素(B-1)を100部と、塩化ナトリウムを1200部と、ジエチレングリコール120部とをステンレス製1ガロンニーダー(井上製作所製)に仕込み、70℃で6時間混練した。この混練物を3000部の温水に投入し、70℃に加熱しながら1時間撹拌してスラリー状とし、濾過、水洗を繰り返して塩化ナトリウムおよびジエチレングリコールを除いた後、80℃で一昼夜乾燥し、その他の微細化色素(PB-1)を得た。平均一次粒子径は29.5nmであった。
In a reaction vessel, 100 parts of the aluminum phthalocyanine pigment represented by the above formula (5) and 43.2 parts of diphenylphosphinic acid were added to 1,000 parts of methanol, heated to 40° C., and reacted for 8 hours. After cooling to room temperature, the product was filtered, washed with methanol, and dried to obtain 112 parts of other dye (B-1).
Next, 100 parts of the obtained other dye (B-1), 1200 parts of sodium chloride, and 120 parts of diethylene glycol were charged into a stainless steel 1 gallon kneader (manufactured by Inoue Seisakusho) and kneaded for 6 hours at 70° C. This kneaded product was added to 3000 parts of warm water, heated to 70° C. and stirred for 1 hour to form a slurry, filtered and washed with water repeatedly to remove sodium chloride and diethylene glycol, and then dried at 80° C. for one day to obtain other finely divided dye (PB-1). The average primary particle size was 29.5 nm.

(その他の微細化色素(PB-2)の製造)
反応容器中でメタノール1000部に、上記式(5)で表されるアルミニウムフタロシアニン顔料を100部とリン酸ジフェニルを49.5部とを加え、40℃に加熱し、8時間反応させた。これを室温まで冷却後、生成物をろ過し、メタノールで洗浄後、乾燥させて、その他の色素(B-2)を114部を得た。
得られたその他の色素(B-2)を、その他の色素(B-1)と同様のソルトミリング処理法で、その他の微細化色素(PB-2)を得た。平均一次粒子径は31.2nmであった。
(Production of other finely divided dyes (PB-2))
In a reaction vessel, 100 parts of the aluminum phthalocyanine pigment represented by the above formula (5) and 49.5 parts of diphenyl phosphate were added to 1,000 parts of methanol, heated to 40° C., and reacted for 8 hours. After cooling to room temperature, the product was filtered, washed with methanol, and dried to obtain 114 parts of other dye (B-2).
The obtained other dye (B-2) was subjected to the same salt milling treatment as for the other dye (B-1) to obtain another finely divided dye (PB-2). The average primary particle size was 31.2 nm.

(その他の微細化色素(PB-3)の製造)
三つ口フラスコに、98%硫酸500部、下記式(6)で表されるフタロシアニン顔料50部、1,2-ジブロモ-5,5-ジメチルヒダントイン(DBDMH)129.3部を加え撹拌し、20℃、6時間、反応させた。その後、3℃の氷水5000部に上記反応混合物を注入し、析出した固体をろ取し、水洗した。ビーカーに2.5%水酸化ナトリウム水溶液500部、ろ取した残渣を加え、80℃、1時間撹拌した。その後、この混合物をろ取、水洗、乾燥して、フタロシアニン環に臭素原子が平均で10.1個置換された顔料を得た。
次に、3口フラスコに、N-メチルピロリドンを500部、得られたフタロシアニン環に臭素原子が平均で10.1個置換された顔料を50部およびリン酸ジフェニル13.9部を加え、90℃に加熱し、8時間反応させた。これを室温まで冷却後、生成物をろ過し、メタノールで洗浄後、乾燥させて、その他の微細化色素(PB-3)を得た。平均一次粒子径は27nmであった。
(Production of other finely divided dyes (PB-3))
Into a three-neck flask, 500 parts of 98% sulfuric acid, 50 parts of a phthalocyanine pigment represented by the following formula (6), and 129.3 parts of 1,2-dibromo-5,5-dimethylhydantoin (DBDMH) were added and stirred, and reacted at 20°C for 6 hours. Thereafter, the above reaction mixture was poured into 5,000 parts of ice water at 3°C, and the precipitated solid was collected by filtration and washed with water. Into a beaker, 500 parts of a 2.5% aqueous sodium hydroxide solution and the collected residue were added, and stirred at 80°C for 1 hour. Thereafter, this mixture was filtered, washed with water, and dried, to obtain a pigment in which an average of 10.1 bromine atoms were substituted on the phthalocyanine ring.
Next, 500 parts of N-methylpyrrolidone, 50 parts of the pigment having an average of 10.1 bromine atoms substituted on the phthalocyanine ring, and 13.9 parts of diphenyl phosphate were added to a three-neck flask, heated to 90° C., and reacted for 8 hours. After cooling to room temperature, the product was filtered, washed with methanol, and dried to obtain another finely divided dye (PB-3). The average primary particle size was 27 nm.

式(6)
Equation (6)

(その他の微細化色素(PB-4)の製造)
三つ口フラスコに、塩化アルミニウム250部、塩化ナトリウム60部、ヨウ素2.25部加え150℃、30分間撹拌した。そこへ、上記式(5)で表されるアルミニウムフタロシアニン顔料50部加え、155℃、30分間撹拌し、溶解させた。さらにトリクロロイソシアヌル酸58.5部加え、190℃、5時間撹拌した。その後、3℃の氷水5000部に上記反応混合物を注入し、析出した固体をろ取し、水洗した。ビーカーに2.5%水酸化ナトリウム水溶液500部、ろ取した残渣を加え、80℃、1時間撹拌した。その後、この混合物をろ取、水洗、乾燥して、フタロシアニン環に塩素原子が平均で8.1個置換された顔料を得た。
次に、3口フラスコに、N-メチルピロリドンを500部、得られたフタロシアニン環に塩素原子が平均で8.1個置換された顔料を50部およびリン酸ジフェニル22.6部を加え、90℃に加熱し、8時間反応させた。これを室温まで冷却後、生成物をろ過し、メタノールで洗浄後、乾燥させて、その他の微細化色素(PB-4)を得た。平均一次粒子径は29nmであった。
(Production of other finely divided dyes (PB-4))
In a three-neck flask, 250 parts of aluminum chloride, 60 parts of sodium chloride, and 2.25 parts of iodine were added and stirred at 150 ° C for 30 minutes. 50 parts of aluminum phthalocyanine pigment represented by the above formula (5) was added thereto, and stirred at 155 ° C for 30 minutes to dissolve. 58.5 parts of trichloroisocyanuric acid was further added and stirred at 190 ° C for 5 hours. Then, the above reaction mixture was poured into 5000 parts of ice water at 3 ° C, and the precipitated solid was filtered and washed with water. 500 parts of 2.5% sodium hydroxide aqueous solution and the filtered residue were added to a beaker, and stirred at 80 ° C for 1 hour. Then, the mixture was filtered, washed with water, and dried to obtain a pigment in which an average of 8.1 chlorine atoms were substituted on the phthalocyanine ring.
Next, 500 parts of N-methylpyrrolidone, 50 parts of the pigment having an average of 8.1 chlorine atoms substituted on the phthalocyanine ring, and 22.6 parts of diphenyl phosphate were added to a three-neck flask, heated to 90° C., and reacted for 8 hours. After cooling to room temperature, the product was filtered, washed with methanol, and dried to obtain another finely divided dye (PB-4). The average primary particle size was 29 nm.

(その他の微細化色素(PB-5)の製造)
C.I.ピグメントブルー15:3(PB15:3)(トーヨーカラー社製「リオノールブルー FG-7351」)100部、塩化ナトリウム700部、およびジエチレングリコール180部をステンレス製1ガロンニーダー(井上製作所製)に仕込み、80℃で6時間混練した。この混合物を温水2000部に投入し、80℃に加熱しながら1時間攪拌してスラリー状とし、濾過、水洗をくりかえして食塩および溶剤を除いた後、80℃で一昼夜乾燥し、95部のその他の微細化色素(PB-5)を得た。
(Production of other finely divided dyes (PB-5))
100 parts of C.I. Pigment Blue 15:3 (PB15:3) ("Lionol Blue FG-7351" manufactured by Toyo Color Co., Ltd.), 700 parts of sodium chloride, and 180 parts of diethylene glycol were charged into a stainless steel 1-gallon kneader (manufactured by Inoue Seisakusho Co., Ltd.) and kneaded for 6 hours at 80° C. This mixture was poured into 2000 parts of hot water, heated to 80° C. and stirred for 1 hour to form a slurry, filtered and washed repeatedly to remove salt and solvent, and then dried at 80° C. for 24 hours to obtain 95 parts of other finely divided dyes (PB-5).

(その他の微細化色素(PB-6)の製造)
C.I.ピグメントブルー15:3(PB15:3)(トーヨーカラー社製「リオノールブルー FG-7351」)を、C.I.ピグメントグリーン58(PG58)(DIC社製「FASTGEN GREEN A110」)に変更した以外は、その他の微細化色素(PB-5)の製造と同様にして、その他の微細化色素(PB-6)を得た。
(Production of other finely divided dyes (PB-6))
Other finely divided dyes (PB-6) were obtained in the same manner as in the production of other finely divided dyes (PB-5), except that C.I. Pigment Blue 15:3 (PB15:3) ("Lionol Blue FG-7351" manufactured by Toyo Color Co., Ltd.) was changed to C.I. Pigment Green 58 (PG58) ("FASTGEN GREEN A110" manufactured by DIC Corporation).

上記の通り製造したその他の微細化色素(PB-1)~(PB-6)の構造は、以下の通りである。 The structures of the other micronized dyes (PB-1) to (PB-6) produced as described above are as follows:

(着色組成物(BG-1)の製造)
下記の組成の混合物を均一に撹拌混合した後、直径0.5mmのジルコニアビーズを用いて、アイガーミルで3時間分散した後、0.5μmのフィルタで濾過し、着色組成物(BG-1)を作製した。
その他の微細化色素(PB-1) :12.0部
塩基性樹脂型分散剤1溶液 :9.0部
バインダ樹脂1溶液 :22.0部
PGMAC :57.0部
(Production of Colored Composition (BG-1))
The mixture having the following composition was stirred and mixed uniformly, dispersed in an Eiger mill using zirconia beads having a diameter of 0.5 mm for 3 hours, and then filtered through a 0.5 μm filter to prepare a colored composition (BG-1).
Other finely divided dyes (PB-1): 12.0 parts Basic resin type dispersant 1 solution: 9.0 parts Binder resin 1 solution: 22.0 parts PGMAC: 57.0 parts

(着色組成物(BG-2)~(BG-6)の製造)
以下、その他の微細化色素(PB-1)を表4に示すその他の微細化色素(BG)に変更した以外は着色組成物(BG-1)と同様にして、着色組成物(BG-2)~(BG-6)を作製した。
(Production of Colored Compositions (BG-2) to (BG-6))
Hereinafter, colored compositions (BG-2) to (BG-6) were prepared in the same manner as colored composition (BG-1), except that the other finely divided dye (PB-1) was replaced with the other finely divided dye (BG) shown in Table 4.

(実施例30:感光性近赤外線吸収着色組成物(RG-1)の製造)
下記の組成の混合物を均一に撹拌混合した後、0.5μmのフィルタで濾過し、感光性近赤外線吸収着色組成物(RG-1)を作製した。
近赤外線吸収組成物(D-5) :15.7部
着色組成物(BG-1) :15.7部
バインダ樹脂2溶液 : 8.5部
熱硬化性化合物(E) : 0.8部
重合性化合物(F) : 4.5部
光重合開始剤(G) : 0.7部
増感剤(H) : 0.1部
チオール系連鎖移動剤(I) : 0.2部
重合禁止剤(J) : 0.2部
紫外線吸収剤(K) : 0.2部
酸化防止剤(L) : 0.2部
レベリング剤(M) : 5.0部
貯蔵安定剤(N) : 0.2部
密着向上剤(O) : 0.2部
溶剤(P) :48.4部
(Example 30: Production of photosensitive near infrared absorbing colored composition (RG-1))
The mixture having the following composition was stirred and mixed uniformly, and then filtered through a 0.5 μm filter to prepare a photosensitive near infrared absorbing colored composition (RG-1).
Near infrared absorbing composition (D-5): 15.7 parts Coloring composition (BG-1): 15.7 parts Binder resin 2 solution: 8.5 parts Thermosetting compound (E): 0.8 parts Polymerizable compound (F): 4.5 parts Photopolymerization initiator (G): 0.7 parts Sensitizer (H): 0.1 parts Thiol chain transfer agent (I): 0.2 parts Polymerization inhibitor (J): 0.2 parts Ultraviolet absorber (K): 0.2 parts Antioxidant (L): 0.2 parts Leveling agent (M): 5.0 parts Storage stabilizer (N): 0.2 parts Adhesion improver (O): 0.2 parts Solvent (P): 48.4 parts

(実施例31~37:感光性近赤外線吸収着色組成物(RG-2)~(RG-8)、
比較例6:感光性近赤外線吸収着色組成物(RG-9)の製造)
以下、近赤外線吸収組成物(D-5)、着色組成物(BG-1)を表5に示す組成、量に変更した以外は感光性近赤外線吸収着色組成物(RG-1)と同様にして、感光性近赤外線吸収着色組成物(RG-2)~(RG-9)を作製した。
ただし、実施例33は参考例である。
(Examples 31 to 37: Photosensitive near infrared absorbing coloring compositions (RG-2) to (RG-8),
Comparative Example 6: Production of photosensitive near infrared absorbing coloring composition (RG-9)
Hereinafter, the near infrared absorbing composition (D-5) and the coloring composition (BG-1) were changed to the compositions and amounts shown in Table 5. In the same manner as in the photosensitive near infrared absorbing coloring composition (RG-1), photosensitive near infrared absorbing coloring compositions (RG-2) to (RG-9) were prepared.
However, Example 33 is a reference example.

<感光性近赤外線吸収着色組成物(RG)の分光特性評価>
得られた感光性近赤外線吸収着色組成物(RG)を、1.1mm厚のガラス基板上にスピンコーターを用いて、塗工膜厚が1.5μmになるようにスピンコートし、60℃で5分乾燥した後、超高圧水銀ランプを用いて100mJ/cmの紫外線を照射し、0.2質量%の炭酸ナトリウム水溶液からなるアルカリ現像液によりスプレー現像し、その後230℃で20分加熱し、基板を作製した。得られた基板の分光を分光光度計(U-4100 日立ハイテクノロジーズ社製)を用いて400~1000nmの波長範囲の吸収スペクトルを測定した。
測定した吸収スペクトルから各範囲の平均透過率(T)を算出し、分光特性1~3については、近赤外線吸収組成物(D)の分光特性評価と同様の基準で評価した。分光特性5および6については、下記基準で評価した。
評価結果を表5に示す。
<Spectral Property Evaluation of Photosensitive Near-Infrared Absorbing Colored Composition (RG)>
The obtained photosensitive near infrared absorbing coloring composition (RG) was spin-coated onto a 1.1 mm thick glass substrate using a spin coater so that the coating thickness was 1.5 μm, and the substrate was dried at 60 ° C. for 5 minutes, and then irradiated with 100 mJ / cm 2 ultraviolet light using an ultra-high pressure mercury lamp, spray-developed with an alkaline developer consisting of a 0.2 mass % aqueous sodium carbonate solution, and then heated at 230 ° C. for 20 minutes to prepare a substrate. The absorption spectrum of the obtained substrate was measured in the wavelength range of 400 to 1000 nm using a spectrophotometer (U-4100 manufactured by Hitachi High-Technologies Corporation).
From the measured absorption spectrum, the average transmittance (T) of each range was calculated, and the spectral properties 1 to 3 were evaluated based on the same criteria as in the evaluation of the spectral properties of the near infrared absorbing composition (D). The spectral properties 5 and 6 were evaluated based on the following criteria.
The evaluation results are shown in Table 5.

分光特性5:450nm~550nm
○: 70% ≦ (T)
△: 60% ≦ (T) < 70%
×: (T) < 60%

分光特性6:600nm~700nm
○: (T) ≦ 5%
△: 5% < (T) ≦ 10%
×: 10% < (T)
Spectral characteristics 5: 450nm to 550nm
○: 70% ≦ (T)
△: 60% ≦ (T) < 70%
×: (T) < 60%

Spectral characteristics 6: 600nm to 700nm
○: (T)≦5%
△: 5% < (T) ≦ 10%
×: 10% < (T)

Figure 0007537226000019
Figure 0007537226000019

本発明の400~1000nmの範囲における最大吸収波長を800~900nmの間に有するスクアリリウム色素(A)を2種以上含むことに加えて、青色や緑色の色素を含むことにより、例えば有機EL表示装置の画面内指紋認証等の検出に用いられる青色~緑色の光の透過率が高く(分光特性5)、ノイズとなる赤色の光(分光特性6)や700nm~900nmまでの近赤外線カット能力(分光特性1~3)が高い感光性近赤外線吸収着色組成物を得ることができた。 In addition to containing two or more squarylium dyes (A) having a maximum absorption wavelength between 800 and 900 nm in the range of 400 to 1000 nm according to the present invention, by containing blue and green dyes, it has become possible to obtain a photosensitive near-infrared absorbing coloring composition that has high transmittance for blue to green light (spectral characteristic 5), which is used for detection such as in-screen fingerprint authentication of an organic EL display device, and has high ability to cut off red light (spectral characteristic 6) that becomes noise and near-infrared rays from 700 nm to 900 nm (spectral characteristics 1 to 3).

<近赤外線カットフィルタ(FC)の製造>
(実施例38:近赤外線カットフィルタ(FC-1)の製造)
感光性近赤外線吸収組成物(R-1)を、1.1mm厚のガラス基板上にスピンコーターを用いて、塗工膜厚が1.5μmになるようにスピンコートし、60℃で5分乾燥した。次いで、超高圧水銀ランプを用いて、100μm四方の近赤外線カットフィルタを形成するためフォトマスクを通して、100mJ/cm2の紫外線を照射した。露光後の塗膜を、0.2質量%の炭酸ナトリウム水溶液からなるアルカリ現像液によりスプレー現像し、100μm四方のパターンを形成させた。その後230℃で20分加熱し、近赤外線カットフィルタ(FC-1)を作製した。
<Production of Near-Infrared Cut Filter (FC)>
(Example 38: Production of near-infrared cut filter (FC-1))
The photosensitive near infrared absorbing composition (R-1) was spin-coated on a 1.1 mm thick glass substrate using a spin coater so that the coating thickness was 1.5 μm, and dried at 60 ° C. for 5 minutes. Then, using an ultra-high pressure mercury lamp, 100 mJ / cm2 of ultraviolet light was irradiated through a photomask to form a near infrared cut filter of 100 μm square. The exposed coating film was spray-developed with an alkaline developer consisting of a 0.2 mass% aqueous sodium carbonate solution to form a pattern of 100 μm square. Then, it was heated at 230 ° C. for 20 minutes to prepare a near infrared cut filter (FC-1).

(実施例39~42:近赤外線カットフィルタ(FC-2)~(FC-5))
感光性近赤外線吸収組成物(R-1)を表6に示す感光性近赤外線吸収組成物(R)、または感光性近赤外線吸収着色組成物(RG)に変更した以外は、近赤外線カットフィルタ(FC-1)と同様にして、近赤外線カットフィルタ(FC-2)~(FC-5)を作製した。
ただし、実施例39は参考例である。
(Examples 39 to 42: Near-infrared cut filters (FC-2) to (FC-5))
Near infrared ray cut filters (FC-2) to (FC-5) were produced in the same manner as the near infrared ray cut filter (FC-1), except that the photosensitive near infrared ray absorbing composition (R-1) was changed to the photosensitive near infrared ray absorbing composition (R) or the photosensitive near infrared ray absorbing colored composition (RG) shown in Table 6.
However, Example 39 is a reference example.

本発明の400~1000nmの範囲における最大吸収波長を800~900nmの間に有するスクアリリウム色素(A)を2種以上含む近赤外線カットフィルタにより、700nm~900nmまでの近赤外線カット能力が高い近赤外線カットフィルタを得ることができた。
また、本発明の400~1000nmの範囲における最大吸収波長を800~900nmの間に有するスクアリリウム色素(A)を2種以上含むことに加えて、青色や緑色の色素を含むことにより(実施例40~42)、例えば有機EL表示装置の画面内指紋認証等の検出に用いられる青色~緑色の光の透過率が高く、ノイズとなる赤色の光や700nm~900nmまでの近赤外線カット能力が高い近赤外線カットフィルタを得ることができた。
By using the near-infrared cut filter of the present invention containing two or more squarylium dyes (A) having a maximum absorption wavelength in the range of 400 to 1000 nm between 800 and 900 nm, a near-infrared cut filter having high near-infrared cut capability from 700 nm to 900 nm can be obtained.
Furthermore, by containing two or more squarylium dyes (A) having a maximum absorption wavelength in the range of 400 to 1000 nm of the present invention between 800 and 900 nm, and also a blue or green dye (Examples 40 to 42), it was possible to obtain a near-infrared cut filter having high transmittance for blue to green light used, for example, in detection of on-screen fingerprint authentication of an organic EL display device, and high ability to cut red light that becomes noise and near-infrared light from 700 nm to 900 nm.

<感光性近赤外線透過性組成物(RB)の製造>
(その他の微細化色素(PB-7)の製造)
青色有機顔料C.I.ピグメントブルー15:6(PB15:6)(トーヨーカラー社製「リオノールブルーES」)100部、粉砕した食塩800部、およびジエチレングリコール100部をステンレス製1ガロンニーダー(井上製作所社製)に仕込み、70℃で12時間混練した。この混合物を温水3000部に投入し、約70℃に加熱しながらハイスピードミキサーで約1時間攪拌してスラリー状とし、濾過、水洗をくりかえして食塩および溶剤を除いた後、80℃で24時間乾燥し、その他の微細化色素(PB-7)を得た。
<Production of Photosensitive Near-Infrared Transmitting Composition (RB)>
(Production of other micronized dyes (PB-7))
100 parts of blue organic pigment C.I. Pigment Blue 15:6 (PB15:6) ("Lionol Blue ES" manufactured by Toyo Color Co., Ltd.), 800 parts of ground salt, and 100 parts of diethylene glycol were charged into a stainless steel 1-gallon kneader (manufactured by Inoue Seisakusho Co., Ltd.) and kneaded for 12 hours at 70° C. This mixture was added to 3000 parts of hot water, heated to about 70° C. and stirred with a high-speed mixer for about 1 hour to form a slurry, filtered and washed repeatedly with water to remove salt and solvent, and then dried at 80° C. for 24 hours to obtain another finely divided dye (PB-7).

(その他の微細化色素(PB-8)の製造)
黄色有機顔料C.I.ピグメントイエロー139(PY139)(クラリアント社製「Novoperm Yellow P-M3R」)100部、粉砕した食塩800部、およびジエチレングリコール100部をステンレス製1ガロンニーダー(井上製作所社製)に仕込み、70℃で12時間混練した。この混合物を温水3000部に投入し、約70℃に加熱しながらハイスピードミキサーで約1時間攪拌してスラリー状とし、濾過、水洗をくりかえして食塩および溶剤を除いた後、80℃で24時間乾燥し、その他の微細化色素(PB-8)を得た。
(Production of other micronized dyes (PB-8))
100 parts of yellow organic pigment C.I. Pigment Yellow 139 (PY139) (Clariant "Novoperm Yellow P-M3R"), 800 parts of ground salt, and 100 parts of diethylene glycol were charged into a stainless steel 1 gallon kneader (Inoue Seisakusho Co., Ltd.) and kneaded for 12 hours at 70 ° C. This mixture was added to 3000 parts of hot water, heated to about 70 ° C. and stirred with a high-speed mixer for about 1 hour to form a slurry, filtered and washed repeatedly with water to remove salt and solvent, and then dried at 80 ° C. for 24 hours to obtain other finely divided pigments (PB-8).

(その他の微細化色素(PB-9)の製造)
紫色有機顔料C.I.ピグメントバイオレット23(PV23)(トーヨーカラー社製「LIONOGEN VIOLET FG-6140」)100部、粉砕した食塩800部、およびジエチレングリコール100部をステンレス製1ガロンニーダー(井上製作所社製)に仕込み、70℃で12時間混練した。この混合物を温水3000部に投入し、約70℃に加熱しながらハイスピードミキサーで約1時間攪拌してスラリー状とし、濾過、水洗をくりかえして食塩および溶剤を除いた後、80℃で24時間乾燥し、その他の微細化色素(PB-9)を得た。
(Production of other finely divided dyes (PB-9))
100 parts of a purple organic pigment C.I. Pigment Violet 23 (PV23) ("LIONOGEN VIOLET FG-6140" manufactured by Toyo Color Co., Ltd.), 800 parts of ground salt, and 100 parts of diethylene glycol were charged into a stainless steel 1-gallon kneader (manufactured by Inoue Seisakusho Co., Ltd.) and kneaded for 12 hours at 70 ° C. This mixture was added to 3000 parts of hot water, heated to about 70 ° C. and stirred with a high-speed mixer for about 1 hour to form a slurry, filtered and washed with water repeatedly to remove salt and solvent, and then dried at 80 ° C. for 24 hours to obtain another finely divided dye (PB-9).

(着色組成物(BB-1)の製造)
下記の組成の混合物を均一に撹拌混合した後、直径0.5mmのジルコニアビーズを用いて、アイガーミルで3時間分散した後、0.5μmのフィルタで濾過し、着色組成物(BB-1)を作製した。
その他の微細化色素(PB-7) :4.2部
その他の微細化色素(PB-8) :4.2部
その他の微細化色素(PB-9) :3.6部
塩基性樹脂型分散剤1溶液 :15.0部
バインダ樹脂1溶液 :10.0部
PGMAC :63.0部
(Production of Colored Composition (BB-1))
The mixture having the following composition was stirred and mixed uniformly, dispersed in an Eiger mill using zirconia beads having a diameter of 0.5 mm for 3 hours, and then filtered through a 0.5 μm filter to prepare a colored composition (BB-1).
Other finely divided dyes (PB-7): 4.2 parts Other finely divided dyes (PB-8): 4.2 parts Other finely divided dyes (PB-9): 3.6 parts Basic resin type dispersant 1 solution: 15.0 parts Binder resin 1 solution: 10.0 parts PGMAC: 63.0 parts

(実施例43:感光性近赤外線透過性組成物(RB-1)の製造)
下記の組成の混合物を均一に撹拌混合した後、0.5μmのフィルタで濾過し、感光性近赤外線透過性組成物(RB-1)を作製した。
近赤外線吸収組成物(D-5) :11.3部
着色組成物(BB-1) :45.0部
バインダ樹脂2溶液 :0.8部
ジペンタエリスリトールペンタおよびヘキサアクリレート(東亞合成社製「アロニックスM402」) :3.0部
エタン-1-オン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル],1-(O-アセチルオキシム)[イルガキュアOXE02(BASFジャパン社製)] :0.5部
レベリング剤(M) :5.0部
溶剤(P) :34.6部
(Example 43: Production of photosensitive near-infrared ray transmitting composition (RB-1))
The mixture having the following composition was stirred and mixed uniformly, and then filtered through a 0.5 μm filter to prepare a photosensitive near-infrared ray transmitting composition (RB-1).
Near infrared absorbing composition (D-5): 11.3 parts Coloring composition (BB-1): 45.0 parts Binder resin 2 solution: 0.8 parts Dipentaerythritol penta- and hexaacrylate (Toagosei Co., Ltd. "Aronix M402"): 3.0 parts Ethan-1-one, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl], 1-(O-acetyloxime) [Irgacure OXE02 (BASF Japan)]: 0.5 parts Leveling agent (M): 5.0 parts Solvent (P): 34.6 parts

<近赤外線透過フィルタ(FT)の製造>
(近赤外線透過フィルタ(FT-1)の製造)
感光性近赤外線透過性組成物(RB-1)を、1.1mm厚のガラス基板上にスピンコーターを用いて、塗工膜厚が2.0μmになるようにスピンコートし、60℃で5分乾燥した。次いで、超高圧水銀ランプを用いて、100μm四方の近赤外線透過フィルタを形成するためフォトマスクを通して、100mJ/cm2の紫外線を照射した。露光後の塗膜を、0.2質量%の炭酸ナトリウム水溶液からなるアルカリ現像液によりスプレー現像し、100μm四方のパターンを形成させた。その後230℃で20分加熱し、近赤外線透過フィルタ(FT-1)を作製した。
<Production of Near-Infrared Transmitting Filter (FT)>
(Production of near-infrared transmission filter (FT-1))
The photosensitive near-infrared transmitting composition (RB-1) was spin-coated on a 1.1 mm thick glass substrate using a spin coater so that the coating thickness was 2.0 μm, and dried at 60° C. for 5 minutes. Next, an ultra-high pressure mercury lamp was used to irradiate the substrate with ultraviolet light at 100 mJ/cm2 through a photomask to form a near-infrared transmitting filter of 100 μm square. The exposed coating film was spray-developed with an alkaline developer consisting of a 0.2 mass% aqueous sodium carbonate solution to form a pattern of 100 μm square. The substrate was then heated at 230° C. for 20 minutes to produce a near-infrared transmitting filter (FT-1).

本発明の400~1000nmの範囲における最大吸収波長を800~900nmの間に有するスクアリリウム色素(A)を2種以上含むことに加えて、複数の色素を組み合わせて黒色を呈する着色組成物を含むことにより、400nm~700nmの可視光、および700nm~900nmの近赤外線を遮蔽し、900nmより長波長の近赤外線を透過させる近赤外線透過フィルタを得ることができた。 In addition to containing two or more squarylium dyes (A) of the present invention that have a maximum absorption wavelength between 800 and 900 nm in the range of 400 to 1000 nm, a coloring composition that combines multiple dyes to exhibit a black color has been obtained, making it possible to obtain a near-infrared transmission filter that blocks visible light of 400 nm to 700 nm and near-infrared light of 700 nm to 900 nm, and transmits near-infrared light with wavelengths longer than 900 nm.

Claims (9)

400~1000nmの範囲における最大吸収波長を800~900nmの間に有するスクアリリウム色素(A)を2種以上含む近赤外線吸収組成物であって、第1のスクアリリウム色素(A-1)の最大吸収波長をλ1max、第2のスクアリリウム色素(A-2)の最大吸収波長をλ2maxとしたとき、下記式(1)の関係を満たし、
前記スクアリリウム色素(A-1)および(A-2)が、下記一般式(1)で表される化合物であることを特徴とする近赤外線吸収組成物。
式(1) 0nm < λ2max-λ1max ≦ 100nm


一般式(1)
( 一般式(1)中、R ~R はそれぞれ独立に、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、-OR 10 、-COR 11 、-COOR 12 、-COOM 、-OCOR 13 、- NR 14 15 、-NHCOR 16 、-CONR 17 18 、-NHCONR 19 20 、-NHCOOR 21 、-SR 22 、-SO 23 、-SO OR 24 、-SO 、-NHSO 25 、-SO NR 26 27 、-B(OR 28 、または-NHBR 29 30 を表す。R 10 ~R 30 は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、およびアラルキル基を表す。なお、-COOR 12 のR 12 が水素の場合は、水素原子が解離してもよい。-COOM は、カルボキシル基の金属塩またはアルキルアンモニウム塩を表す。また、-SO OR 24 のR 24 が水素原子の場合は、水素原子が解離してもよい。-SO は、スルホ基の金属塩またはアルキルアンモニウム塩を表す。また、R とR 、R とR はお互いに結合して環を形成しても良い。)
A near infrared absorbing composition comprising two or more squarylium dyes (A) each having a maximum absorption wavelength in the range of 400 to 1000 nm, the maximum absorption wavelength being between 800 and 900 nm, the composition satisfying the relationship of the following formula (1) when the maximum absorption wavelength of the first squarylium dye (A-1) is λ1 max and the maximum absorption wavelength of the second squarylium dye (A-2) is λ2 max :
The near infrared absorbing composition , wherein the squarylium dyes (A-1) and (A-2) are compounds represented by the following general formula (1) :
Formula (1) 0nm < λ2 max - λ1 max ≦ 100nm


General formula (1)
(In general formula (1), R 1 to R 4 each independently represent a halogen atom, a cyano group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group, -OR 10 , -COR 11 , -COOR 12 , -COOM 1 , -OCOR 13 , -NR 14 R 15 , -NHCOR 16 , -CONR 17 R 18 , -NHCONR 19 R 20 , -NHCOOR 21 , -SR 22 , -SO 2 R 23 , -SO 2 OR 24 , -SO 3 M 2 , -NHSO 2 R 25 , -SO 2 NR 26 R 27 , -B(OR 28 ) 2 or -NHBR 29 R 30. R 10 to R 30 each independently represent a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or an aralkyl group. When R 12 in -COOR 12 is a hydrogen atom, the hydrogen atom may be dissociated. -COOM 1 represents a metal salt or an alkylammonium salt of a carboxyl group. When R 24 in -SO 2 OR 24 is a hydrogen atom, the hydrogen atom may be dissociated. -SO 3 M 2 represents a metal salt or an alkylammonium salt of a sulfo group. R 1 and R 2 , and R 3 and R 4 may be bonded to each other to form a ring.)
前記λ1maxおよびλ2maxが、下記式(2)の関係を満たすことを特徴とする請求項1記載の近赤外線吸収組成物。
式(2) 10nm ≦ λ2max-λ1max ≦ 100nm
2. The near infrared absorbing composition according to claim 1, wherein the λ1max and λ2max satisfy the relationship of the following formula (2):
Formula (2) 10nm ≦ λ2 max - λ1 max ≦ 100nm
前記スクアリリウム色素(A-1)および(A-2)が、下記一般式(2)で表される化合物であることを特徴とする請求項1または2記載の近赤外線吸収組成物。

一般式(2)
(一般式(2)中、R~Rはそれぞれ独立に、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、-OR50、-COR51、-COOR52、-OCOR53、-NR5455、-NHCOR56、-CONR5758、-NHCONR5960、-NHCOOR61、-SR62、-SO63、-SOOR64、-NHSO65または-SONR6667、-B(OR68、および-NHBR6970を表す。R50~R70は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、およびアラルキル基を表す。なお、-COOR52のR52が水素の場合(すなわち、カルボキシル基)は、水素原子が解離してもよく(すなわち、カルボネート基)、塩の状態であってもよい。また、-SOOR64のR64が水素原子の場合(すなわち、スルホ基)は、水素原子が解離してもよく(すなわち、スルホネート基)、塩の状態であってもよい。また、RとR、RとRはお互いに結合して環を形成しても良い。)
3. The near infrared absorbing composition according to claim 1, wherein the squarylium dyes (A-1) and (A- 2 ) are compounds represented by the following general formula (2):

General formula (2)
(In general formula (2), R 5 to R 8 each independently represent a halogen atom, a cyano group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group, -OR 50 , -COR 51 , -COOR 52 , -OCOR 53 , -NR 54 R 55 , -NHCOR 56 , -CONR 57 R 58 , -NHCONR 59 R 60 , -NHCOOR 61 , -SR 62 , -SO 2 R 63 , -SO 2 OR 64 , -NHSO 2 R 65 or -SO 2 NR 66 R 67 , -B(OR 68 ) 2 , and -NHBR 69 R 70. R R 50 to R 70 each independently represent a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or an aralkyl group. When R 52 of -COOR 52 is a hydrogen atom (i.e., a carboxyl group), the hydrogen atom may be dissociated (i.e., a carbonate group) or may be in the form of a salt. When R 64 of -SO 2 OR 64 is a hydrogen atom (i.e., a sulfo group), the hydrogen atom may be dissociated (i.e., a sulfonate group) or may be in the form of a salt. R 5 and R 6 , and R 7 and R 8 may be bonded to each other to form a ring.
800nmにおける透過率が1%になるように塗膜を形成した際に、940nmにおける透過率が50%以上であることを特徴とする請求項1~いずれか1項に記載の近赤外線吸収組成物。 4. The near infrared absorbing composition according to claim 1, wherein when a coating film is formed so as to have a transmittance of 1% at 800 nm, the near infrared absorbing composition has a transmittance of 50% or more at 940 nm. さらに塩基性樹脂型分散剤を含むことを特徴とする請求項1~いずれか1項に記載の近赤外線吸収組成物。 The near infrared absorbing composition according to any one of claims 1 to 4 , further comprising a basic resin-type dispersing agent. さらに光重合開始剤を含むことを特徴とする請求項1~いずれか1項に記載の近赤外線吸収組成物。 The near infrared absorbing composition according to any one of claims 1 to 5 , further comprising a photopolymerization initiator. 請求項1~いずれか1項記載の近赤外線吸収組成物と、黒色を呈する着色組成物を含むことを特徴とする近赤外線透過組成物。 A near-infrared transmitting composition comprising the near-infrared absorbing composition according to any one of claims 1 to 6 and a coloring composition that exhibits black color. 請求項1~6いずれか1項記載の近赤外線吸収組成物を用いて形成される光学フィルタ。 An optical filter formed by using the near infrared absorbing composition according to any one of claims 1 to 6 . 請求項記載の近赤外線透過組成物を用いて形成される光学フィルタ。
An optical filter formed using the near infrared transmitting composition according to claim 7 .
JP2020177815A 2020-10-23 2020-10-23 Near infrared absorbing composition, near infrared transmitting composition, and optical filter Active JP7537226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020177815A JP7537226B2 (en) 2020-10-23 2020-10-23 Near infrared absorbing composition, near infrared transmitting composition, and optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020177815A JP7537226B2 (en) 2020-10-23 2020-10-23 Near infrared absorbing composition, near infrared transmitting composition, and optical filter

Publications (2)

Publication Number Publication Date
JP2022068962A JP2022068962A (en) 2022-05-11
JP7537226B2 true JP7537226B2 (en) 2024-08-21

Family

ID=81521803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020177815A Active JP7537226B2 (en) 2020-10-23 2020-10-23 Near infrared absorbing composition, near infrared transmitting composition, and optical filter

Country Status (1)

Country Link
JP (1) JP7537226B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213047A1 (en) 2016-06-08 2017-12-14 Jsr株式会社 Optical filter and optical sensor device
JP2018045011A (en) 2016-09-13 2018-03-22 富士フイルム株式会社 Infrared absorbent, composition, film, optical filter, laminate, solid state imaging device, image display apparatus, and infrared sensor
WO2020054718A1 (en) 2018-09-14 2020-03-19 富士フイルム株式会社 Near-infrared-absorbent composition, method for manufacturing liquid dispersion, film, optical filter, pattern formation method, layered body, solid-state imaging element, image display device, and infrared sensor
JP2020172614A (en) 2019-04-12 2020-10-22 三菱ケミカル株式会社 Dye composition, film, optical filter, solid state image sensor, image display device and infrared sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213047A1 (en) 2016-06-08 2017-12-14 Jsr株式会社 Optical filter and optical sensor device
JP2018045011A (en) 2016-09-13 2018-03-22 富士フイルム株式会社 Infrared absorbent, composition, film, optical filter, laminate, solid state imaging device, image display apparatus, and infrared sensor
WO2020054718A1 (en) 2018-09-14 2020-03-19 富士フイルム株式会社 Near-infrared-absorbent composition, method for manufacturing liquid dispersion, film, optical filter, pattern formation method, layered body, solid-state imaging element, image display device, and infrared sensor
JP2020172614A (en) 2019-04-12 2020-10-22 三菱ケミカル株式会社 Dye composition, film, optical filter, solid state image sensor, image display device and infrared sensor

Also Published As

Publication number Publication date
JP2022068962A (en) 2022-05-11

Similar Documents

Publication Publication Date Title
JP6626905B2 (en) Near infrared absorbing composition and filter for solid-state imaging device
JP2024100809A (en) Photosensitive coloring composition, color filter, and image display device
KR20210009375A (en) Composition, film, optical filter, solid-state image sensor, infrared sensor, method of manufacturing optical filter, camera module, compound, and dispersion composition
WO2019049626A1 (en) Composition, method for producing same, film, optical filter, layered product, solid state imaging device, image display device and infrared radiation sensor
JP7415342B2 (en) Photosensitive coloring composition, color filter and liquid crystal display device using the same
JP7422303B2 (en) Photosensitive green composition, color filter and display device
JP2021004922A (en) Photosensitive coloring composition, and color filter and liquid-crystal display using the same
JP7537226B2 (en) Near infrared absorbing composition, near infrared transmitting composition, and optical filter
JP6911604B2 (en) Colorants for color filters, coloring compositions for color filters, and color filters
JP2023057576A (en) Photosensitive coloring composition, cured film including the same, light blocking filter, color filter, image display device, and solid state image sensor
JP7463887B2 (en) Coloring composition and near-infrared cut filter
JP7334525B2 (en) Photosensitive coloring composition, and color filter and liquid crystal display device using the same
CN115053155A (en) Pigment composition for color filter, coloring composition, color filter, liquid crystal display device, and solid-state imaging element
JP2022096687A (en) Infrared absorbing composition and near-infrared cut filter
JP7571422B2 (en) A coloring composition, a color filter, a liquid crystal display device, and a solid-state imaging device.
JP7512673B2 (en) Infrared-transmitting coloring composition, infrared filter, infrared camera, and infrared sensor
JP7353550B1 (en) Photosensitive coloring compositions, color filters, image display devices, and solid-state imaging devices
JP7491169B2 (en) Photosensitive composition, optical filter, fingerprint authentication sensor, and image display device
JP7478332B1 (en) Photosensitive composition, film using same, optical filter, solid-state image pickup device, image display device, and infrared sensor
JP2024075866A (en) Resin composition, and film, optical filter, infrared camera, solid-state imaging element, infrared sensor and laminate using the same
JP7494481B2 (en) Infrared-transmitting coloring composition, infrared-transmitting filter, infrared camera, and infrared sensor
CN116804820A (en) Photosensitive coloring composition, color filter, liquid crystal display device, and solid-state imaging element
JP2024025600A (en) Resin compositions and films, optical filters, infrared cameras, solid-state imaging devices, infrared sensors and laminates employing the same
JP2024071818A (en) Coloring composition, photocurable composition, color filter, liquid crystal display device, and solid-state image sensor
JP2023159489A (en) Photosensitive composition, and cured film, optical filter, image display device, solid-state imaging element and infrared sensor which employ that composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240722

R150 Certificate of patent or registration of utility model

Ref document number: 7537226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150