本願出願人は、ゲート電圧の広い範囲でノーマリオフ動作するSiC JFETの構造を、先の出願(特願2016-106386号)の明細書に開示している。図26は、その明細書に開示したSiC JFETの構造の代表的な例を示した断面図である。
図26に示すように、上記明細書に開示したSiC JFETは、SiC基板110の主面側に、n型の埋込チャネル領域111が形成され、この埋込チャネル領域111上に、p+型のゲート領域114、及びゲート領域114を挟んでn+型のソース領域112とドレイン領域113とが形成された構成となっている。
このような構成により、ゲート領域114の下にある埋込チャネル領域111の不純物濃度と厚さを調整するだけで、ノーマリオフ動作するSiCJFETを実現することができる。これにより、広い温度範囲において、安定した動作が可能な相補型SiCJFETを実現することができる。
しかしながら、n型の埋込チャネル領域111と、p+型のゲート領域114とを、それぞれイオン注入で形成する場合、両者のイオン注入領域は、SiC基板110の深さ方向に裾野を広げて形成される。そのため、低濃度の埋込チャネル領域111に、高濃度のゲート領域114の裾野部分の不純物が入り込むため、埋込チャネル領域111の不純物濃度や厚さが、イオン注入条件のバラツキによって大きく変動する。その結果、SiCJFETのしきい値電圧が大きく変動し、安定した動作をすることができないという問題が生じる。また、埋込チャネル領域111とゲート領域114とのpn接合の界面では、両者のイオン注入領域が重なるため、結晶欠陥が生じやすく、そのため、ゲートリーク電流が増加するという問題が生じる。
本願発明者等は、SiC JFETにおいて、チャネル領域とゲート領域とを、イオン注入が深さ方向に重ならない領域に形成することによって、上記のような問題を解決できると考え、本発明を想到するに至った。
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。
(第1の実施形態)
図1は、本発明の第1の実施形態におけるSiC JFETの構成を模式的に示した図で、(a)は断面図、(b)は平面図である。
図1(a)、(b)に示すように、本実施形態におけるSiC JFET1は、半絶縁性のSiC基板10の主面に、n+型のソース領域11とドレイン領域12とが、互いに離間して形成されている。また、ソース領域11の下方には、n型の埋込チャネル領域13が形成されている。なお、埋込チャネル領域の不純物濃度は、ソース領域11の不純物濃度よりも低濃度に設定されている。また、SiC基板10の主面には、少なくともソース領域11と埋込チャネル領域13を含む領域の両側に、一対のp+型のゲート領域14a、14bが形成されている。さらに、埋込チャネル領域13と、ドレイン領域12とは、一対のゲート領域14a、14bより下方に形成されたn+型の埋込不純物領域15によって接続されている。また、ソース領域11,ドレイン領域12、及び一対のゲート領域14a、14bの表面には、それぞれ、ソース電極S、ドレイン電極D、及びゲート電極Gが形成されている。
ここで、図1(a)、(b)に示すように、埋込チャネル領域13において、深さ方向の距離(チャネル長)をL、一対のゲート領域14a、14bに挟まれた方向の距離(チャネル厚さ)をD、一対のゲート領域14a、14bに挟まれた方向と垂直な方向の距離(チャネル幅)をWとする。
なお、pチャネル型のSiC JFETは、埋込チャネル領域13をp型に、ソース領域11及びドレイン領域12をp+型に、一対のゲート領域14a、14bをn+型に、埋込不純物領域15をp+型に、それぞれ変えることによって形成することができる。
本実施形態におけるSiC JFET1では、図2(a)に示すように、一対のゲート領域14a、14bの表面に形成されたゲート電極Gにゲート電圧を印加することによって、ゲート領域14a、14bに挟まれた埋込チャネル領域13は、その両側から空乏層が広がる。そして、図2(b)に示すように、埋込チャネル領域13において、チャネル厚さDの方向で両側からの空乏層が繋がると、ソース領域11とドレイン領域12との間に流れるドレイン電流が遮断される。なお、通常のSiCJFETでは、ゲート電圧が0V時に、ドレイン電流が流れるノーマリオン特性となる。
しかしながら、図2(b)に示すように、ゲート電圧が0V時に、埋込チャネル領域13の両側から形成される空乏層の厚みを、埋込チャネル領域13の厚さDより厚くできれば、ノーマリオフ特性を有するJFETを実現することができる。
nチャネル型のSiC JFETのしきい値電圧VTnは、半導体pn接合の空乏層解析モデルを使って、以下の式(1)で表すことができる。
ここで、qは電子の電荷、εsはSiCの誘電率、NDは埋込チャネル領域13の不純物(ドナー)濃度、Dnは、埋込チャネル領域13の厚さである。また、Vjnは、ゲート領域14a、14bと埋込チャネル領域13間のpn接合の拡散電位で、以下の式(2)で表される。
ここで、kはボルツマン定数、nは埋込チャネル領域13の電子密度、pはゲート領域14a、14bの正孔密度、niは真性キャリア濃度である。
同様に、pチャネル型のSiC JFETのしきい値電圧VTpは、以下の式(3)で表すことができる。
ここで、NAは埋込チャネル領域13の不純物(アクセプタ)濃度、Dpは、埋込チャネル領域13の厚さである。また、Vjpは、ゲート領域14a、14bと埋込チャネル領域13間のpn接合の拡散電位で、以下の式(4)で表される。
ここで、nはゲート領域14a、14bの電子密度、pは埋込チャネル領域13の正孔密度である。
図3は、上記式(1)~(4)に基づいて、nチャネル型、及びpチャネル型のSiCJFETのしきい値電圧VTの計算値を、それぞれ、ND(Dn/2)2、NA(Dp/2)2に対してプロットしたグラフである。ここで、矢印Aで示したグラフは、nチャネル型のしきい値電圧VT、矢印Bで示したグラフは、pチャネル型のしきい値電圧VTを示す。なお、pチャネルJFETでは、VTが負のときノーマリオフとなるので、同図ではnチャネルJFETと比較しやすいように、-VTをプロットしている。
図3に示すように、nチャネル型の場合、ND(Dn/2)2が3.4×107cm-1(矢印P)より小さいとき、VTが正になり、また、pチャネル型の場合、NA(Dp/2)2が3.1×107cm-1(矢印Q)より小さいとき、VTが正になる。すなわち、埋込チャネル領域13の不純物濃度をN(cm-3)、一対のゲート領域14a、14bに挟まれた埋込チャネル領域13の厚さをD(cm)としたとき、N(D/2)2<3×107cm-1を満たせば、ノーマリオフ特性を有するJFETを実現することができる。
例えば、埋込チャネル領域13の不純物濃度Nを1.0×1017cm-3に設定したとき、埋込チャネル領域13の厚さDを0.35μm以下に設定すれば、ノーマリオフ特性を有するJFETを実現することができる。
なお、ノーマリオフ型のJFETでは、ゲート電極Gに、0Vより大きいゲート電圧を印加することによって、空乏層の厚みが薄くなり、ソース領域11とドレイン領域12との間にドレイン電流が流れる。
図4は、ゲート電極Gにゲート電圧VGを印加したときに、ソース領域11、ドレイン領域12間に流れるドレイン電流IDのID-VG特性を、シミュレーションを用いて求めたグラフである。ここで、(a)は、nチャネル型のSiCJFETのID-VG特性を示し、(b)は、pチャネル型のSiCJFETのID-VG特性を示す。なお、シミュレーションは、図1(a)、(b)に示したSiCJFET1の構造において、埋込チャネル領域13のチャネル厚さDを300nm、チャネル長Lを300nm、チャネル幅Wを100μm、埋込チャネル領域13の不純物密度(ドナー濃度、アクセプタ濃度)を1×1017cm-3とし、ソース、ドレイン電極間に印加する電圧を2Vとした。また、シミュレーションは、JFETの理論特性を元に計算を行った。
図4(a)、(b)に示すように、nチャネル型SiC JFET、及びpチャネル型のSiC JFETは、それぞれ、しきい値電圧VT(絶対値)が約1Vのノーマリオフ特性を示している。
また、図5(a)、(b)は、図4(a)、(b)に示したID-VG特性を有するnチャネル型のSiCJFET、及びpチャネル型のSiC JFETのID-VD特性をシミュレーションを用いて求めたグラフである。
本実施形態におけるSiC JFETは、図1に示したように、SiC基板10の主面に、互いに離間して形成された第1導電型のソース領域11及びドレイン領域12と、ソース領域11の下方に形成された第1導電型の埋込チャネル領域13と、SiC基板10の主面であって、少なくもソース領域11及び埋込チャネル領域13を含む領域の両側に形成された一対の第2導電型のゲート領域14a、14bとを備えている。そして、埋込チャネル領域13と、ドレイン領域12とは、一対のゲート領域14a、14bより下方に形成された第1導電型の埋込不純物領域15によって接続されている。ここで、nチャネル型のSiCJFETにおいては、第1導電型をn型、第2導電型をp型とし、pチャネル型のSiC JFETにおいては、第1導電型をp型、第2導電型をn型とする。
このように構成されたSiC JFETは、埋込チャネル領域13の不純物濃度と、チャネル厚さDを調整するだけで、ノーマリオフ動作するSiCJFETを実現することができる。これにより、広い温度範囲において、安定した動作が可能な相補型SiCJFETを実現することができる。
また、埋込チャネル領域13と、ゲート領域14a、14bとを、それぞれイオン注入で形成した場合、それぞれの領域が、SiC基板10の深さ方向に重ならない位置にあるため、低濃度の埋込チャネル領域13に、高濃度のゲート領域14a、14bの不純物が入り込むことはない。そのため、埋込チャネル領域13の不純物濃度や、チャネル厚さD、チャネル長Lが、イオン注入条件のバラツキによって大きく変動することはない。その結果、SiCJFETのしきい値電圧の変動を抑制することができるため、安定した動作が可能なSiCJFETを実現することができる。
また、埋込チャネル領域13とゲート領域14a、14bとのpn接合の界面では、両者のイオン注入領域が重ならないため、結晶欠陥に起因するゲートリーク電流を低減することができる。
さらに、ソース領域11の直下に、埋込チャネル領域13が形成されているため、ソース抵抗を大幅に低減することができる。これにより、実効相互コンダクタンスの高いSiCJFETを実現することができる。
加えて、埋込チャネル領域13内の空乏層の制御を、埋込チャネル領域13の両側に形成された一対のゲート領域14a、14bによって制御(ダブルゲート)するため、シングルゲートに較べて、同じしきい値電圧のときのドレイン電流を、約2倍に増加させることができる。これにより、電流駆動能力の高いSiCJFETを実現することができる。
また、ソース領域11、ドレイン領域12、埋込チャネル領域13、一対のゲート領域14a、14b、及び埋込不純物領域15は、全て、イオン注入で形成された層(イオン注入層)で構成されている。イオン注入層は、通常のフォトリソグラフィ法を用いて、SiC基板10の所定領域に、不純物(ドナー、アクセプタ)を選択的にイオン注入して形成することができる。また、イオン注入の加速エネルギーとドーズ量を調整することによって、イオン注入層の厚さ及び不純物濃度を設定することができる。なお、n型の不純物(ドナー)としては、リン(P)、窒素(N)等を用いることができる。また、p型の不純物(アクセプター)としては、アルミニウム(Al)等を用いることができる。
図6は、本実施形態におけるSiC JFETを用いて構成したSiC相補型JFET2の構成を模式的に示した断面図である。ここでは、半絶縁性のSiC基板10に、図1に示した構造からなるノーマリオフ型のnチャネルJFETと、ノーマリオフ型のpチャネルJFETとで、インバータ回路を構成した例を示す。nチャネルJFET及びpチャネルJFETのゲート電極Gは、インバータ回路の入力端子Vinに接続され、nチャネルJFET及びpチャネルJFETのドレイン電極Dは、インバータ回路の出力端子Voutに接続されている。また、nチャネルJFETのソース電極Sはグランドに接続され、pチャネルJFETのソース電極Sは電源(VDD)に接続されている。
次に、図7(a)~(c)、及び図8(a)~(c)を参照しながら、本実施形態におけるSiC相補型JFET2の製造方法を説明する。
図7(a)に示すように、半絶縁性のSiC基板10の表面に、マスク30Aを用いて、p型不純物(Al+)をイオン注入して、nチャネルJFETにおける一対のゲート領域14a、14b、及びpチャネルJFETにおけるドレイン領域22を同時に形成する。ここで、イオン注入のドーズ量は、例えば、1~10×1015cm-2の範囲に、また、加速エネルギーは、10~450keVの範囲に設定することができる。
次に、図7(b)に示すように、SiC基板10の表面に、マスク30Bを用いて、n型不純物(P+)をイオン注入して、nチャネルJFETにおけるドレイン領域12、及びpチャネルJFETにおける一対のゲート領域24a、24bを同時に形成する。ここで、イオン注入のドーズ量は、例えば、1~10×1015cm-2の範囲に、また、加速エネルギーは、10~600keVの範囲に設定することができる。
次に、図7(c)に示すように、SiC基板10の表面に、マスク30Cを用いて、n型不純物(P+)をイオン注入して、nチャネルJFETにおけるソース領域11、埋込チャネル領域13、及び埋込不純物領域15Aを形成する。ここで、イオン注入は、同一のマスク30Cを用いて、各領域11、13、15Aの不純物濃度や深さに応じて、注入条件を変えて多段階で行うことができる。イオン注入のドーズ量は、例えば、0.1~10×1015cm-2の範囲に、また、加速エネルギーは、10~1500keVの範囲に設定することができる。
なお、上記のイオン注入を、ドレイン領域12にも行うことによって、ドレイン領域12の直下に、埋込不純物領域15Aを同時に形成することができる。
次に、図8(a)に示すように、SiC基板10の表面に、マスク30Dを用いて、p型不純物(Al+)をイオン注入して、pチャネルJFETにおけるソース領域21、埋込チャネル領域23、及び埋込不純物領域25Aを形成する。ここで、イオン注入は、同一のマスク30Dを用いて、各領域21、23、25Aの不純物濃度や深さに応じて、注入条件を変えて多段階で行うことができる。イオン注入のドーズ量は、例えば、0.1~10×1015cm-2の範囲に、また、加速エネルギーは、10~1500keVの範囲に設定することができる。
なお、上記のイオン注入を、ドレイン領域22にも行うことによって、ドレイン領域22の直下に、埋込不純物領域25Aを形成することができる。
次に、図8(b)に示すように、SiC基板10に、マスク30Eを用いて、n型不純物(P+)をイオン注入して、埋込チャネル領域13の直下に形成された埋込不純物領域15Aと、ドレイン領域12の直下に形成された埋込不純物領域15Aとを接続する埋込不純物領域15Bを形成する。これにより、埋込チャネル領域13とドレイン領域12とは、一対のゲート領域14a、14bより下方に形成された埋込不純物領域15(15A、15B)によって接続される。ここで、イオン注入のドーズ量は、例えば、1~10×1015cm-2の範囲に、また、加速エネルギーは、1000~2000keVの範囲に設定することができる。
最後に、図8(c)に示すように、SiC基板10に、マスク30Fを用いて、p型不純物(Al+)をイオン注入して、埋込チャネル領域23の直下に形成された埋込不純物領域25Aと、ドレイン領域22の直下に形成された埋込不純物領域25Aとを接続する埋込不純物領域25Bを形成する。これにより、埋込チャネル領域23とドレイン領域22とは、一対のゲート領域24a、24bより下方に形成された埋込不純物領域25(25A、25B)によって接続される。ここで、イオン注入のドーズ量は、例えば、1~10×1015cm-2の範囲に、また、加速エネルギーは、1000~2000keVの範囲に設定することができる。
なお、上記の各イオン注入工程において、イオン注入後に、所定の温度、例えば、1400~1900℃の温度でアニールを行って、各不純物の電気的活性化を行うことが好ましい。高温でアニールしても、SiC基板10中にイオン注入された不純物の濃度プロファイルは、注入時の濃度プロファイルと、ほとんど変化することはない。これにより、JFETのソース領域11(21)、ドレイン領域12(22)、埋込チャネル領域13(23)、一対のゲート領域(14a、14b)、(24a、24b)、及び埋込不純物領域15(25)を、全てイオン注入で形成しても、安定した特性のJFETを実現することができる。また、高ドーズ量のイオン注入を行うときに、予め基板温度を上昇させてイオン注入を行うことが好ましい。
本実施形態において、JFETのソース領域11(21)、ドレイン領域12(22)、埋込チャネル領域13(23)、一対のゲート領域(14a、14b)、(24a、24b)、及び埋込不純物領域15(25)を、全てイオン注入で形成しているため、相補型JFETを容易に作製することができる。また、イオン注入の加速エネルギーとドーズ量を調整することによって、埋込チャネル領域13の不純物濃度と、チャネル厚さDを設定することができるため、JFETのノーマリオフ化を容易に行うことができる。
本実施形態において、半絶縁性のSiC基板10は、nチャネルJFETとpチャネルJFETとを絶縁分離できる程度に高抵抗なものであればよい。例えば、抵抗率ρが109Ωcm以上の半絶縁性SiC基板10を用いることができる。
ところで、SiC JFETの場合、アクセプタの活性化率が小さく、また、p型SiCの移動度が小さいため、nチャネルJFET及びpチャネルJFETの埋込チャネル領域13、23の不純物濃度、及びチャネル幅Wを同じ値に設定すると、pチャネルJFETのドレイン電流が、nチャネルJFETのドレイン電流よりも1/10以下に小さくなる。
そこで、nチャネルJFET及びpチャネルJFETの埋込チャネル領域13、23の不純物濃度を同じに設定して、nチャネルJFET及びpチャネルJFETのドレイン電流を揃えようとすると、pチャネルJFETのチャネル幅Wを、nチャネルJFETのチャネル幅Wよりも10倍以上大きくする必要がある。
しかしながら、pチャネルJFETのチャネル幅Wを大きくすると、デバイス寸法が大きくなるため好ましくない。そこで、pチャネルJFETの埋込不純物領域25の不純物濃度を、nチャネルJFETの埋込不純物領域15の不純物濃度よりも小さく設定することによって、nチャネルJFET及びpチャネルJFETのチャネル幅Wを同じに設定しても、nチャネルJFET及びpチャネルJFETのドレイン電流を揃えることができる。
あるいは、pチャネルJFETの埋込不純物領域25の深さ方向の厚さを、nチャネルJFETの埋込不純物領域15の深さ方向の厚さよりも大きく設定することによって、nチャネルJFET及びpチャネルJFETのチャネル幅Wを同じに設定しても、nチャネルJFET及びpチャネルJFETのドレイン電流を揃えることができる。
図9(a)は、第1の実施形態の変形例におけるSiC相補型JFET2の構成を模式的に示した断面図である。本変形例におけるSiC相補型JFETは、図1に示したSiCJFETに対して、nチャネルJFET及びpチャネルJFETを、SiC基板10の上に形成されたn-型の低濃度エピタキシャル層10Aに形成した点が異なる。
すなわち、本変形例におけるSiC相補型JFETは、図9(a)に示すように、nチャネルJFETは、n-型の低濃度エピタキシャル層10Aに形成されたp型のウェル領域16内に形成され、pチャネルJFETは、n-型の低濃度エピタキシャル層10A内に形成されている。これにより、nチャネルJFETとpチャネルJFETとは、n-型の低濃度エピタキシャル層10Aと、p型のウェル領域16とのpn接合に逆バイアスを印加することによって、絶縁分離することができる。
多くのSiCパワーデバイスは、表面に低濃度エピタキシャル層が形成された高濃度SiC基板を用いて形成される。そのため、本実施形態におけるSiC相補型JFETは、SiCパワーデバイスと、同一基板上に形成することができる。これにより、SiCパワーデバイスと集積回路とを同一チップ上に作製することが可能となる。
なお、本変形例において、n-型の低濃度エピタキシャル層10Aの代わりに、p-型の低濃度エピタキシャル層を形成し、このp-型の低濃度エピタキシャル層にn型のウェル領域を形成して、pチャネルJFETをn型のウェル領域内に形成してもよい。
図9(b)は、第1の実施形態の他の変形例におけるSiC相補型JFET2の構成を模式的に示した断面図である。本変形例におけるSiC相補型JFETは、図1に示したSiCJFETに対して、ソース領域11(21)、埋込チャネル領域13(23)、及び一対のゲート領域14a、14b(24a、24b)を、SiC基板10の表面に形成された島領域に形成した点が異なる。
すなわち、本変形例におけるSiC相補型JFETは、図9(b)に示すように、SiC基板10に、2つの島領域A1、A2が形成され、それぞれの島領域A1、A2に、nチャネルJFET及びpチャネルJFETにおけるソース領域11、21、埋込チャネル領域13、23、及び一対のゲート領域(14a、14b)、(24a、24b)が形成されている。ここで、島領域A1、A2は、例えば、SiC基板10の表面を選択的にエッチングしたり、あるいは、選択的にエピタキシャル成長させることによって形成することができる。
一方、島領域A1、A2との間のSiC基板10表面の領域Bには、nチャネルJFET及びpチャネルJFETにおけるドレイン領域12、22が形成されいる。また、nチャネルJFET及びpチャネルJFETにおける埋込チャネル領域13、23と、ドレイン領域12、22とは、埋込不純物領域15、25によって接続されている。
本変形例におけるnチャネルJFET及びpチャネルJFETは、図1に示したSiC JFETに比べて、埋込不純物領域15、25の長さが短くなっている。これにより、ドレイン抵抗を小さくできるため、ON/OFF比が大きいSiCJFETを実現することができる。また、島領域A1、A2を形成することによって、nチャネルJFETとpチャネルJFETとの絶縁性を向上させることができる。
図10は、第1の実施形態の他の変形例におけるSiC JFET1の構成を模式的に示した図で、(a)は断面図、(b)は平面図である。本変形例におけるSiCJFET1は、図1に示したSiC JFETに対して、ソース領域11及び埋込チャネル領域13と、一対のゲート領域14a、14bとの間に隙間を設けた点が異なる。
上述したように、本変形例におけるSiC JFET1では、埋込チャネル領域13とゲート領域14a、14bとのpn接合の界面では、両者のイオン注入領域が重ならないため、結晶欠陥に起因するゲートリーク電流を低減することができる。しかしながら、図7(c)に示したように、埋込チャネル領域13をイオン注入で形成する際、マスク30Cの合わせズレが生じると、埋込チャネル領域13とゲート領域14a、14bとのpn接合の界面において、両者のイオン注入領域が重なる場合がある。このような場合には、結晶欠陥に起因するゲートリーク電流の増加を招く畏れがある。
そこで、本変形例では、ソース領域11及び埋込チャネル領域13と、一対のゲート領域14a、14bとの間に、一定の隙間を設けることによって、マスク合わせズレに起因するゲートリーク電流を低減することができる。なお、一定の隙間の大きさは、マクス合わせ精度に応じて適宜決めればよい。
一方、図11に示すように、ソース領域11及び埋込チャネル領域13と、一対のゲート領域14a、14bとが、領域Cにおいて重なるように形成することによって、一対のゲート領域14a、14bのイオン注入時に、SiCJFETのしきい値電圧の制御を行うことができる。
図12は、第1の実施形態の他の変形例におけるSiC JFET1の構成を模式的に示した図で、(a)は断面図、(b)は平面図である。本変形例におけるSiC JFET1は、図1に示したSiC JFETに対して、ソース領域11及び埋込チャネル領域13の片側のみにゲート領域14を設けた点が異なる。この場合、ソース領域11及び埋込チャネル領域13と、ゲート領域14とが重なるように形成することによって、リソグラフィ工程において、ソース領域11及び埋込チャネル領域13の最小線幅に制限されることなく、チャネル厚を制御することができる。
(第2の実施形態)
図13は、本発明の第2の実施形態におけるSiC JFET1の構成を模式的に示した図で、(a)は、nチャネルJFETの平面図、(b)は、(a)の線A-Aに沿った断面図、(c)は、pチャネルJFETの断面図である。
図13(a)、(b)に示すように、本実施形態におけるnチャネルJFETは、SiC基板10の表面に、n型のチャネル領域33と、このチャネル領域33を挟んで互いに対向したn+型のソース領域31及びドレイン領域32とが形成されている。また、SiC基板10の表面に、チャネル領域33を挟んで、ソース領域31及びドレイン領域32が対向する方向と垂直な方向に、一対のp+型のゲート領域34a、34b(ダブルゲート)が形成されている。
本実施形態におけるnチャネルJFETは、チャネル領域33内の空乏層の広がりを、チャネル領域33の両側に形成された一対のゲート領域34a、34bに印加するゲート電圧によって制御することができる。これにより、シングルゲートに較べて、同じしきい値電圧のときのドレイン電流を、約2倍に増加させることができる。これにより、電流駆動能力の高いSiCJFETを実現することができる。
また、チャネル領域33の不純物濃度及び厚さを調整することによって、容易にノーマリオフ動作するSiCJFETを実現することができる。
また、上述したように、SiC JFETの場合、アクセプタの活性化率が小さく、また、p型SiCの移動度が小さいため、nチャネルJFET及びpチャネルJFETのチャネル領域33、43の不純物濃度、及びチャネル幅を同じ値に設定すると、pチャネルJFETのドレイン電流が、nチャネルJFETのドレイン電流よりも1/10以下に小さくなる。
そこで、図13(c)に示すように、pチャネルJFETのチャネル領域43の深さ方向の長さ(チャネル幅)を、nチャネルJFETのチャネル領域33の深さ方向の長さ(チャネル幅)よりも大きくすることによって、nチャネルJFET及びpチャネルJFETのドレイン電流を揃えることができる。
また、nチャネルJFET及びpチャネルJFETのチャネル領域33、43の不純物濃度を調整することによっても、nチャネルJFET及びpチャネルJFETのドレイン電流を揃えることができる。
また、図13(a)~(c)では、SiC基板10の表面に、チャネル領域33を挟んで、一対のp+型のゲート領域34a、34b(ダブルゲート)を形成したが、チャネル領域33の片側に、ソース領域31及びドレイン領域32が対向する方向と垂直な方向に、ゲート領域(シングルゲート)を形成してもよい。
(第3の実施形態)
図14は、本発明の第3の実施形態におけるSiC JFET1の構成を模式的に示した図で、(a)は、nチャネルJFETの平面図、(b)は、(a)の線B-Bに沿った断面図、(c)は、(a)の線C-Cに沿った断面図である。
図14(a)~(c)に示すように、本実施形態におけるnチャネルJFETは、SiC基板10の主面に形成されたn型(第1導電型)のチャネル領域53と、SiC基板10の主面であって、チャネル領域53を挟んで、互いに対向して形成されたn+型のソース領域51及びドレイン領域52と、SiC基板10の主面であって、ソース領域51及びドレイン領域52が対向する方向と垂直な方向に形成された一対のp+型(第2導電型)のゲート領域(ダブルゲート)54a、54bとを備えている。
図13に示したSiC JFETでは、チャネル領域33を挟んで、一対のゲート領域34a、34bを形成したが、本実施形態では、図14(a)に示すように、一対のゲート領域54a、54bを、それぞれ、対向する側の端部が、平面視において、チャネル領域53と重なって形成されている点が異なる。
図14(a)~(c)に示すように、本実施形態におけるnチャネルJFETでは、チャネル領域53において、一対のゲート領域54a、54bの幅Lがチャネル長、一対のゲート領域54a、54bに挟まれた距離Dがチャネルの厚さ、チャネル領域53の深さ方向の距離Wがチャネル幅となる。
本実施形態におけるnチャネルJFETは、チャネル領域53内の空乏層の広がりを、チャネル領域53の両側に形成された一対のゲート領域54a、54bに印加するゲート電圧によって制御することができる。これにより、シングルゲートに比べて、同じしきい値電圧のときのドレイン電流を、約2倍に増加させることができる。これにより、電流駆動能力の高いSiCJFETを実現することができる。
また、式(1)に示したように、チャネル領域53の不純物濃度、及びチャネルの厚さDを調整することによって、容易にノーマリオフ動作するSiCJFETを実現することができる。
本実施形態において、チャネル領域53の厚さDは、一対のゲート領域54a、54bの平面的な間隔によって決まるため、ゲート領域形成用のマスク寸法によって、容易に制御することができる。また、一対のゲート領域54a、54bにおいて、対向する側の端部が、それぞれ、チャネル領域53と重なっているため、チャネル領域53と、一対のゲート領域54a、54bとの位置合わせが多少ズレても、チャネル領域の厚みDに影響は出ない。そのため、nチャネルJFETのしきい値電圧のバラツキを抑制することができる。
チャネル領域53と、一対のゲート領域54a、54bとが重なった領域では、pn接合が生じるが、チャネル領域のn型不純物濃度が低いため、pn接合によるリーク電流は非常に小さい。そのため、nチャネルJFETのしきい値電圧を、広範囲に制御することができる。
さらに、一対のゲート領域54a、54bを、イオン注入で形成する際、横方向のチャネリングを利用して、チャネル領域53の厚さDを制御することができる。これにより、マスク寸法よりも、より寸法の小さいチャネル領域53の厚さDを形成することができる。これにより、より容易にノーマリオフ動作するnチャネルJFETを実現することができる。
なお、結晶構造が六方晶からなるSiCは、[11-20]面が、大きなチャネリングを有する。そのため、SiC基板10として、表面に垂直な面が[11-20]の面方位を持つ方向に沿ってチャネルを形成することにより、横方向のチャネリングを利用して、よりチャネル領域53の厚さDの小さいnチャネルJFETを実現することができる。一方、チャネリングを抑制して急峻な接合を形成したい場合は、[1-100]の面方位を持つ方向に沿ってチャネルを形成することができる。
なお、pチャネル型のSiC JFETは、チャネル領域53をp型に、ソース領域51及びドレイン領域52をp+型に、一対のゲート領域54a、54bをn+型に、それぞれ変えることによって形成することができる。
図15~図17は、図14(a)~(c)に示した構造のnチャネルJFET及びpチャネルJFETを、それぞれ実際に作製して、電気特性を測定した結果を示したグラフである。なお、作製したnチャネルJFETは、チャネル領域53の不純物濃度を、5×1016cm-3、チャネル厚さDを0.38μm(マスク寸法は1.0μm)、チャネル長Lを4.0μm、チャネル幅Wを0.4μmとした。また、作製したpチャネルJFETは、チャネル領域53の不純物濃度を、5×1016cm-3、チャネル厚さDを0.46μm(マスク寸法は0.8μm)、チャネル長Lを4.0μm、チャネル幅Wを0.4μmとした。
図15は、ドレイン電圧に対するドレイン電流(絶対値)の電気特性(ID-VD特性)を示したグラフである。ここで、(A)のグラフが、nチャネルJFET、(B)のグラフがpチャネルJFETのID-VD特性を、それぞれ示す。なお、pチャネルJFETのドレイン電流は、測定値を10倍した値を示している。
図15に示すように、nチャネルJFET、及びpチャネルJFETとも、幅広いゲート電圧VGに対して、ノーマリオフ動作を示す良好なID-VD特性を確認できた。
図16は、ドレイン電圧を2V(pチャネルJFETでは、-2V)にしたときの、ゲート電圧に対するドレイン電流の電気特性(ID-VG特性)、及び、ゲートリーク電流の電気特性(IG-VG特性)を、それぞれ示したグラフである。ここで、(A)のグラフが、nチャネルJFET、(B)のグラフが、pチャネルJFETのID-VG特性、及びIG-VG特性を、それぞれ示す。なお、pチャネルJFETのドレイン電流は、測定値を10倍した値を示している。
図16に示すように、nチャネルJFETにおいては、しきい値電圧が1V以上、pチャネルJFETにおいても、しきい値電圧(絶対値)が0.6V以上のノーマリオフ動作が確認できた。また、しきい値電圧以上において、ゲートリーク電流IGも、非常に小さな値であった。
図17は、ドレイン電圧を0.2V(pチャネルJFETでは、-0.2V)にしたときの、ゲート電圧に対するドレイン電流の電気特性(ID-VG特性)を示したグラフで、図17(a)が、nチャネルJFETのID-VG特性を、図17(b)が、pチャネルJFETのID-VG特性を、それぞれ示したグラフである。
図17(a)、(b)に示すように、nチャネルJFETにおいては、108倍以上のオン/オフ特性、pチャネルJFETにおいては、106倍以上の非常に高いオン/オフ比が、それぞれ確認できた。
なお、本実施形態では、図14(a)~(c)に示したように、チャネル領域53を挟んで、一対のゲート領域54a、54b(ダブルゲート)を形成したが、チャネル領域53の片側に、平面視において、チャネル領域53と重なったゲート領域(シングルゲート)を形成してもよい。
図18は、本実施形態におけるSiC JFETを用いて構成したSiC相補型JFETの構成を模式的に示した断面図である。
図18に示すように、本実施形態におけるSiC相補型JFETでは、半絶縁性のSiC基板10に、図14に示した構造からなるノーマリオフ型のnチャネルJFETと、ノーマリオフ型のpチャネルJFETとが形成されている。ここで、pチャネルJFETにおいて、符号61、62はソース領域、ドレイン領域、符号63はチャネル領域、符号64a、64bは一対のゲート領域を、それぞれ示す。
本実施形態において、半絶縁性のSiC基板10は、nチャネルJFETとpチャネルJFETとを絶縁分離できる程度に高抵抗なものであればよい。例えば、抵抗率ρが109Ωcm以上の半絶縁性SiC基板10を用いることができる。
図19は、本実施形態におけるSiC JFETを用いて構成したSiC相補型JFETの構成の変形例を模式的に示した断面図である。本変形例におけるSiC相補型JFETは、図14に示した構造のnチャネルJFET及びpチャネルJFETが、SiC基板10の上に形成されたp-型の低濃度エピタキシャル層10Aに形成されている。ここで、pチャネルJFETにおいて、符号61、62はソース領域、ドレイン領域、符号63はチャネル領域、符号64a、64bは一対のゲート領域を、それぞれ示す。
図19に示すように、本変形例におけるSiC相補型JFETでは、nチャネルJFETが、p-型の低濃度エピタキシャル層10A内に形成され、pチャネルJFETが、p-型の低濃度エピタキシャル層10Aに形成されたn型のウェル領域67内に形成されている。これにより、nチャネルJFETとpチャネルJFETとは、p-型の低濃度エピタキシャル層10Aと、n型のウェル領域67とのpn接合に、逆バイアスを印加することによって、絶縁分離することができる。
図20は、本実施形態におけるSiC JFETを用いて構成したSiC相補型JFETの他の変形例を模式的に示した断面図である。本変形例におけるSiC相補型JFETでは、図14に示した構造のnチャネルJFET及びpチャネルJFETが、SiC基板10の上に形成されたn-型の低濃度エピタキシャル層10Bに形成されている。
図20に示すように、本変形例におけるSiC相補型JFETでは、pチャネルJFETが、n-型の低濃度エピタキシャル層10B内に形成され、nチャネルJFETが、n-型の低濃度エピタキシャル層10Bに形成されたp型のウェル領域57内に形成されている。これにより、nチャネルJFETとpチャネルJFETとは、n-型の低濃度エピタキシャル層10Bと、p型のウェル領域57とのpn接合に、逆バイアスを印加することによって、絶縁分離することができる。
図19及び図20に示したSiC相補型JFETは、SiC基板10上に形成された第1導電型の低濃度エピタキシャル層10A、10Bと、低濃度エピタキシャル層10A、10B内に形成された第2導電型のウェル領域57、67を備えているため、SiC基板10の表面に、横型パワーMOSFETも、同時に作製することができる。これにより、モノリシックパワーICを実現することが可能となる。
また、縦型SiCパワーデバイスは、通常、表面に低濃度のn-エピタキシャル層が形成された高濃度のn+SiC基板を用いて形成される。そのため、図20に示したSiC相補型JFETにおいて、高濃度のn+SiC基板10を用いることによって、SiC相補型JFETと、縦型SiCパワーデバイスとを、同一基板上に形成することができる。これにより、SiCパワーデバイスと集積回路とを同一チップ上に作製することが可能となる。
同様に、図19に示したSiC相補型JFETにおいて、p-エピタキシャル層10Aを用いた縦型パワーデバイスも、同一基板上に形成することができる。なお、p-SiC基板上のn-エピタキシャル層、n+基板上のp-エピタキシャル層についても作製可能である。
次に、図21(a)~(d)を参照しながら、本実施形態におけるSiC相補型JFETの製造方法を説明する。なお、ここでは、説明を簡単にするために、半絶縁性のSiC基板に、SiC相補型JFETを製造する方法を説明する。また、各イオン注入時に、他の領域に、MOSFET用のマスクを設けることで、同一基板上にMOSFETの形成が可能である。
図21(a)に示すように、半絶縁性のSiC基板10の表面に、マスク30Aを用いて、n型不純物(P+)をイオン注入して、nチャネルJFETにおけるソース領域51及びドレイン領域52、並びに、pチャネルJFETにおける一対のゲート領域64a、64bを同時に形成する。ここで、イオン注入のドーズ量は、例えば、1~10×1015cm-2の範囲に、また、加速エネルギーは、10~700keVの範囲に設定することができる。
次に、図21(b)に示すように、SiC基板10の表面に、マスク30Bを用いて、n型不純物(P+)をイオン注入して、nチャネルJFETにおけるチャネル領域53を形成する。ここで、イオン注入のドーズ量は、例えば、1~10×1012cm-2の範囲に、また、加速エネルギーは、10~700keVの範囲に設定することができる。
次に、図21(c)に示すように、SiC基板10の表面に、マスク30Cを用いて、p型不純物(Al+)をイオン注入して、nチャネルJFETにおける一対のゲート領域54a、54b、並びに、pチャネルJFETにおけるソース領域61及びドレイン領域62を同時に形成する。ここで、イオン注入のドーズ量は、例えば、1~10×1015cm-2の範囲に、また、加速エネルギーは、10~700keVの範囲に設定することができる。
最後に、図21(d)に示すように、SiC基板10の表面に、マスク30Dを用いて、p型不純物(Al+)をイオン注入して、pチャネルJFETにおけるチャネル領域63を形成する。ここで、イオン注入のドーズ量は、例えば、1~10×1012cm-2の範囲に、また、加速エネルギーは、10~500keVの範囲に設定することができる。
上記の各イオン注入工程において、イオン注入後に、所定の温度、例えば、1400~1900℃の温度でアニールを行って、各不純物の電気的活性化を行うことが好ましい。高温でアニールしても、SiC基板10中にイオン注入された不純物の濃度プロファイルは、注入時の濃度プロファイルと、ほとんど変化することはない。これにより、JFETのソース領域51、61、ドレイン領域52、62、チャネル領域53、63、一対のゲート領域(54a、54b)、(64a、64b)を、全てイオン注入で形成しても、安定した特性のJFETを実現することができる。
ところで、上述したように、SiC JFETの場合、アクセプタの活性化率が小さく、また、p型SiCの移動度が小さいため、nチャネルJFET及びpチャネルJFETのチャネル領域53、63の不純物濃度、及びチャネル幅Wを同じ値に設定すると、pチャネルJFETのドレイン電流が、nチャネルJFETのドレイン電流よりも1/10以下に小さくなる。
そこで、nチャネルJFET及びpチャネルJFETのドレイン電流を、極力揃えるために、図22に示すように、pチャネルJFETのチャネル幅W2を、nチャネルJFETのチャネル幅W1よりも大きくすることが好ましい。
しかしながら、pチャネルJFETのチャネル幅W2を大きくするためには、チャネル領域63を形成する際のイオン注入エネルギーを大きくする必要があるが、注入エネルギーに上限があるため、チャネル幅だけの調整では、ドレイン電流を揃えるのは難しい。
そこで、さらに、nチャネルJFET及びpチャネルJFETのドレイン電流を、極力揃えるために、pチャネルJFETのチャネル領域63の不純物濃度を、nチャネルJFETのチャネル領域53の不純物濃度よりも大きく設定することが好ましい。
しかしながら、チャネル領域53、63の不純物濃度を変化させると、しきい値電圧も同時に変化するため、チャネル領域53、63の不純物濃度の調整にも限界がある。
そこで、さらに、nチャネルJFET及びpチャネルJFETのドレイン電流を、極力揃えるために、図22に示すように、nチャネルJFETのソース領域51とゲート領域54a(54b)との間の距離R1を大きくして、pチャネルJFETのソース領域51とゲート領域54a(54b)との間の距離R2を小さくすることが好ましい。これにより、nチャネルJFETの寄生抵抗が大きくなり、pチャネルJFETの寄生抵抗が小さくなるため、nチャネルJFET及びpチャネルJFETのドレイン電流をより揃えることができる。
同様に、図22に示すように、nチャネルJFETのチャネル長L1を大きくして、pチャネルJFETのチャネル長L2を小さくすることによって、nチャネルJFETのチャネル抵抗が大きくなり、pチャネルJFETのチャネル抵抗が小さくなるため、nチャネルJFET及びpチャネルJFETのドレイン電流をより揃えることができる。
さらに、図23に示すように、pチャネルJFETにおいて、一対のゲート領域64a、64bの間に、チャネル領域63と重なる複数のゲート領域64c~64e(図23では、3個)を、等間隔Dに形成してもよい。これにより、多チャネル構造のpチャネルJFETが得られるため、pチャネルJFETのドレイン電流を大きくすることができ、nチャネルJFET及びpチャネルJFETのドレイン電流をより揃えることができる。
このように、種々のパラメータ(チャネル幅、チャネル領域の不純物濃度、ソース、ドレイン領域間の距離、チャネル長)を調整したり、多チャネル構造(pチャネルJFET)を採用することによって、nチャネルJFET及びpチャネルJFETのドレイン電流を極力揃えることができる。なお、これらのパラメータは、単独でも、あるいは、複数のパラメータを組み合わせて調整してもよい。
図24は、第3の実施形態の変形例におけるSiC JFETの構成を模式的に示した平面図である。
図24に示すように、本変形例におけるSiC JFETは、ソース領域51、ドレイン領域52、及びチャネル領域53を取り囲むように、p+型(第2導電型)のゲートアクセス領域56がリング状に形成されている。そして、一対のゲート領域54a、54bは、それぞれ、ゲートアクセス領域56と接続されている。また、ゲートアクセス領域56には、ゲートコンタクト用のパッド55が接続されている。
このような構成により、ゲートコンタクト用パッド55に形成された1個のゲート電極を用いて、一対のゲート領域54a、54bに、ゲート電圧を印加することができる。また、n+型のソース領域51及びドレイン領域52を、p+型のゲートアクセス領域56で取り囲んでいるため、ソース領域51、ドレイン領域52間のリーク電流を抑制することができる。なお、エッチングを行うことにより絶縁性を高めることも当然可能である。
なお、図24に示した構成では、一対のゲート領域54a、54bのうち、ゲート領域54bへのゲート電位のアクセスを、ゲートアクセス領域56を用いて行ったが、金属配線を用いて行ってもよい。
図25(a)は、図24に示したSiC JFETを用いて構成したSiC相補型JFETの構成を模式的に示した平面図である。ここでは、ノーマリオフ型のnチャネルJFETと、ノーマリオフ型のpチャネルJFETとで、図25(b)に示したインバータ回路を構成した例を示す。
図25(a)に示すように、nチャネルJFET及びpチャネルJFETの一対のゲート領域(54a、54b)、(64a、64b)は、それぞれ、ゲートコンタクト用パッド55、65を介して、入力端子Vinに接続された配線70に接続されている。また、nチャネルJFET及びpチャネルJFETのドレイン領域51、61は、出力端子Voutに接続された配線71に接続されている。また、nチャネルJFETのソース領域52は、グランド(GND)に接続された配線73に接続され、pチャネルJFETのソース領域62は、電源(VDD)に接続された配線74に接続されている。
以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。
例えば、上記実施形態では、SiC相補型JFETをインバータ回路に適用した例を説明したが、他の集積回路に適用しても勿論構わない。
また、図9(a)、(b)、図19、図20に示したSiC相補型JFETの構造は、単体のSiCJFETにも適用することができる。
また、図14(a)~(c)に示したSIC JFETでは、チャネル領域53を、基板10の表面から下方の領域に形成したが、基板10の表面まで形成されていてもよい。
また、上記実施形態では、ノーマリオフ型のSiC JFETを例示したが、勿論、本発明のSiC JFETは、ノーマリオン型にも適用することができる。