〔第1実施形態〕
以下、一実施形態について図面を参照しつつ説明する。まず本実施形態において被計測物となるプリント基板1の構成について詳しく説明する(図2,3参照)。図2は、プリント基板1の概略構成を示す平面模式図である。図3は、プリント基板1の断面模式図である。
図2,3に示すように、プリント基板1は、ガラスエポキシ樹脂等からなる平板状のベース基板2の表面上に、銅箔からなる電極パターン3Aやランド3Bが形成されてなる。ベース基板2の表面上には、ランド3B及びその近傍を除く部分にレジスト膜4がコーティングされている。そして、ランド3B上にクリーム半田5が印刷される。
尚、本実施形態に係るプリント基板1は、例えば電気自動車などに搭載される車載用プリント基板であって、インバータ回路など、比較的大きな負荷電流が流れる電子部品が実装されるパワー回路部PAや、これを制御する制御回路など、比較的小さな信号電流が流れる電子部品が実装される制御回路部PBが混在した構成となっている。
次に、本実施形態における三次元計測装置を構成する基板検査装置10について詳しく説明する(図1参照)。図1は、基板検査装置10の概略構成を示す模式図である。以下、図1の紙面左右方向を「X軸方向」とし、紙面前後方向を「Y軸方向」とし、紙面上下方向(鉛直方向)を「Z軸方向」として説明する。
基板検査装置10は、プリント基板1に印刷されたクリーム半田5の印刷状態を検査する半田印刷検査装置である。基板検査装置10は、プリント基板1の搬送や位置決め等を行う搬送機構11と、プリント基板1の検査を行うための検査ユニット12と、搬送機構11や検査ユニット12の駆動制御など基板検査装置10内における各種制御や画像処理、演算処理を実施するための制御装置13(図6参照)とを備えている。
搬送機構11は、プリント基板1の搬送方向(Y軸方向)に沿って配置された一対の搬送レール11aと、各搬送レール11aに対し回転可能に配設された無端のコンベアベルト11bと、該コンベアベルト11bを駆動するモータ等の駆動手段(図示略)と、プリント基板1を所定位置に位置決めするためのチャック機構(図示略)と備え、制御装置13により駆動制御される。
上記構成の下、基板検査装置10へ搬入されたプリント基板1は、搬送方向と直交する幅方向(X軸方向)の両側縁部がそれぞれ搬送レール11aに挿し込まれると共に、コンベアベルト11b上に載置される。続いて、コンベアベルト11bが動作を開始し、プリント基板1が所定の検査位置まで搬送される。プリント基板1が検査位置に達すると、コンベアベルト11bが停止すると共に、チャック機構が作動する。このチャック機構の動作により、コンベアベルト11bが押し上げられ、コンベアベルト11bと搬送レール11aの上辺部によってプリント基板1の両側縁部が挟持された状態となる。これにより、プリント基板1が検査位置に位置決め固定される。検査が終了すると、チャック機構による固定が解除されると共に、コンベアベルト11bが動作を開始する。これにより、プリント基板1は、基板検査装置10から搬出される。勿論、搬送機構11の構成は、上記形態に限定されるものではなく、他の構成を採用してもよい。
検査ユニット12は、プリント基板1の搬送路(一対の搬送レール11a)の上方に配設されている。検査ユニット12は、プリント基板1上の所定の検査範囲に対し斜め上方から縞パターンW(図4参照)を投影する投影装置14と、該縞パターンWの投影されたプリント基板1上の所定の検査範囲を真上から撮像する撮像手段としてのカメラ15と、X軸方向への移動を可能とするX軸移動機構16(図6参照)と、Y軸方向への移動を可能とするY軸移動機構17(図6参照)とを備え、制御装置13により駆動制御される。
尚、図2に示すように、プリント基板1上の所定の検査範囲は、カメラ15の撮像視野(撮像範囲)Kの大きさを1単位としてプリント基板1上に予め設定された複数のエリア(検査範囲「1」〜「15」)のうちの1つのエリアである。
制御装置13は、X軸移動機構16及びY軸移動機構17を駆動制御することにより、検査ユニット12(撮像視野K)を、検査位置に位置決め固定されたプリント基板1上の任意の検査範囲の上方位置へ移動することができる。そして、プリント基板1上に設定された複数の検査範囲に検査ユニット12を順次移動させつつ、各検査範囲に係る検査処理を実行していくことで、プリント基板1全域に係る半田印刷検査を実行する構成となっている。
投影装置14は、図5に示すように、所定の光を発する光源19と、該光源19からの光を縞パターンWに変換するパターン生成部としての格子ユニット20と、該格子ユニット20により生成された縞パターンWをプリント基板1上に結像する投影光学系としての投影レンズユニット21と、格子ユニット20を変位させ、プリント基板1に投影される縞パターンWの位相を変化させるための格子ユニット移動機構22(図7参照)とを備え、制御装置13により駆動制御される。
投影装置14は、その光軸J1がX−Z平面に平行し、かつ、Z軸方向に対し所定角度α(例えば30°)傾斜するように配置されている。
光源19は、白色光を出射するハロゲンランプにより構成されている。光源19から出射された光は、図示しない前処理レンズ群等を介して平行光化された状態で光軸J1に沿って格子ユニット20に入射する。
ここで、格子ユニット20の構成について図7を参照して詳しく説明する。図7は格子ユニット20の概略構成を示す模式図である。
尚、格子ユニット20単体について説明する際には、便宜上、図7の紙面左右方向を「X´軸方向」とし、紙面前後方向を「Y´軸方向」とし、紙面上下方向を「Z´軸方向」として説明する。
但し、格子ユニット20単体を説明するための座標系(X´,Y´,Z´)と、基板検査装置10(投影装置14)全体を説明するための座標系(X,Y,Z)は異なる座標系である。ここで、「X´軸方向」が本実施形態における「第1方向」に相当し、「Z´軸方向」が「第2方向」に相当する。
図7に示すように、格子ユニット20は、その外殻を構成する本体ケース部24と、該本体ケース部24内に設けられた固定格子部材としての固定格子板25及び可動格子部材としての可動格子板26と、該固定格子板25に対し可動格子板26を相対変位させ、プリント基板1に投影される縞パターンWの周期を変更するための格子板移動機構(パターン周期変更機構)27とを備えている。格子板移動機構27が本実施形態における格子移動手段を構成する。
本体ケース部24は、透光性を有しており、その表面が、光源19から出射された光を格子ユニット20内部に入射させる格子ユニット20の入射面20aとなり、その裏面が、格子ユニット20内部を透過した光(縞パターンW)を出射させる格子ユニット20の出射面20bとなる。
固定格子板25及び可動格子板26は、格子ユニット20の入射面20a及び出射面20bに直交する自身の光軸J3(Z´軸方向となる図7の上下方向)に対し相対向するように配設されている。
固定格子板25は、本体ケース部24に対し相対変位不能に固定されている。一方、可動格子板26は、光軸J3と直交するX´軸方向(図7の左右方向)に沿って変位可能に設けられている。
格子板移動機構27は、可動格子板26のX´軸方向一方側(図7左側)に設けられかつ該可動格子板26を他方側(図7右側)に向け付勢する付勢手段としてのバネ部材27aと、可動格子板26のX´軸方向他方側に設けられかつ該可動格子板26をX´軸方向に沿ってスライド変位させる駆動手段としてのソレノイド27bとを備え、制御装置13により駆動制御される。
各格子板25,26には、所定の透過率で光を透過する透光部31と、少なくとも一部の光を遮る遮光部32とがX´軸方向に交互に並ぶように配置構成された格子パターン30が形成されている〔図8(a),(b)参照〕。図8(a),(b)は、固定格子板25及び可動格子板26の相対位置関係の変化を説明するための模式図である。
具体的に、本実施形態の各格子板25,26においては、所定の透光素材(例えばガラスやアクリル樹脂等)により平板状又はフィルム状に形成された基材28上に、遮光部32がX´軸方向に所定間隔で印刷(蒸着)形成されることにより、格子パターン30が形成されている。
そして、本実施形態では、格子パターン30の印刷面(格子面)が光源19側、すなわち光の入射側に向くように各格子板25,26が配置されている〔図8(a),(b)参照〕。但し、図7においては、分かりやすくするため、遮光部32に対応する部位について、各格子板25,26の表面のみならず、各格子板25,26の厚み方向全域を黒塗りして示している(後述する図9〜図14についても同様)。
また、本実施形態では、固定格子板25及び可動格子板26に形成された格子パターン30が同一となっている。つまり、両格子板25,26において、X´軸方向における透光部31の幅が同一となり、X´軸方向における遮光部32の幅が同一となり、X´軸方向における透光部31と遮光部32の比が同一となり、並びに、X´軸方向における透光部31及び遮光部32の形成ピッチが同一となっている。
具体的に、本実施形態に係る各格子板25,26では、X´軸方向における透光部31の幅が「600(30×20)μm」、X´軸方向における遮光部32の幅が「200(10×20)μm」に設定され、透光部31と遮光部32の比が「3:1」となっている〔図9(a),(b)参照〕。尚、図9における透光部31及び遮光部32の幅の表記態様は、後述する図10〜図14に示す他の実施形態と比較しやすい表記態様としている。
上記構成の下、格子ユニット20は、生成する縞パターンWを、周期(縞ピッチ)の異なる2種類の縞パターンWに切換えることができる。
具体的に、本実施形態では、第1周期800μm(高さ分解能8μm)の第1縞パターンW1と、第2周期400μm(高さ分解能4μm)の第2縞パターンW2の2種類の縞パターンWに切換えることができる。「第1周期800μm」が本実施形態における「長周期」に相当し、「第2周期400μm」が「短周期」に相当する。
ここで、長周期の第1縞パターンW1を生成する場合には、格子板移動機構27を駆動制御して可動格子板26をX´軸方向にスライド変位させ、図9(a)に示すように、固定格子板25側の遮光部32のX´軸方向一端部(右端部)の位置に、可動格子板26側の遮光部32のX´軸方向他端部(左端部)を位置合わせする。
この結果、格子ユニット20には、両格子板25,26の格子パターン30を重ね合わせた合成格子パターンとして、X´軸方向における透光部の幅が「400(20×20)μm」、X´軸方向における遮光部の幅が「400(20×20)μm」、透光部と遮光部の比が「1:1」となる仮想の格子パターンが形成されることとなる。
そして、この合成格子パターンにより、第1周期800μmの第1縞パターンW1が生成される。かかる第1縞パターンW1がプリント基板1上に投影されることにより、0μm〜800μmの高さ範囲内にあるクリーム半田5を「8μm」刻みの精度で計測することができる。
尚、通常、格子を通過する光は完全な平行光でなく、透光部及び遮光部の境界部における回折作用等に起因して、投影される縞パターンの「明部」及び「暗部」の境界部に中間階調域が生じることとなる。そのため、プリント基板1に対し投影される縞パターンWは、プリント基板1の搬送方向(Y軸方向)と直交する方向(X軸方向)に沿って正弦波状の光強度分布を有するパターン光となる(図4参照)。
但し、図4及び図9では、簡略化のため、中間階調域を省略し、明暗2値の縞模様で縞パターンWを図示している。従って、図9における縞パターンWの明部及び暗部の幅の表記は、合成格子パターンにおける透光部及び遮光部の幅を示したものである(後述する図10〜図14においても同様)。
一方、短周期の第2縞パターンW2を生成する場合には、格子板移動機構27を駆動制御して可動格子板26をX´軸方向にスライド変位させ、図9(b)に示すように、可動格子板26側の遮光部32を固定格子板25側の透光部31のX´軸方向中央部に位置合わせする。
この結果、格子ユニット20には、両格子板25,26の格子パターン30を重ね合わせた合成格子パターンとして、X´軸方向における透光部の幅が「200(10×20)μm」、X´軸方向における遮光部の幅が「200(10×20)μm」、透光部と遮光部の比が「1:1」となる仮想の格子パターンが形成されることとなる。
そして、この合成格子パターンにより、第2周期400μmの第2縞パターンW2が生成される。かかる第2縞パターンW2がプリント基板1上に投影されることにより、0μm〜400μmの高さ範囲内にあるクリーム半田5を「4μm」刻みの精度で計測することができる。
尚、本実施形態では、投影光学系(投影レンズユニット21)の投影倍率を1倍とした例を示したが、投影倍率は、これに限定されるものではない。投影倍率によって、各格子板25,26上での格子パターン30のサイズ(格子ユニット20の出射面20bにおける合成格子パターンのサイズ)と、プリント基板1上に投影される縞パターンWのサイズは変化する。
また、格子ユニット20を変位させる格子ユニット移動機構22は、図7に示すように、格子ユニット20のX´軸方向一方側(図7左側)に設けられかつ該格子ユニット20を他方側(図7右側)に向け付勢する付勢手段としてのバネ部材22aと、格子ユニット20のX´軸方向他方側に設けられかつ該格子ユニット20をX´軸方向に沿ってスライド変位させる駆動手段としてのピエゾ素子22bとを備え、制御装置13により駆動制御される。格子ユニット移動機構22が本実施形態におけるパターン光変位手段を構成する。
図5の説明に戻り、投影レンズユニット21は、入射側レンズ35及び出射側レンズ36を有し、これら両レンズ35,36により両側テレセントリック光学系(両側テレセントリックレンズ)として構成されている。
ここで、入射側レンズ35は、格子ユニット20から出射された光(縞パターンW)を集光するものであり、入射側で光軸J1と主光線とが平行となるテレセントリック構造を有する。
出射側レンズ36は、入射側レンズ35を透過した光(縞パターンW)の像をプリント基板1上に結像させるためのものであり、出射側で光軸J1と主光線とが平行となるテレセントリック構造を有する。
さらに、本実施形態に係る投影装置14においては、プリント基板1上に投影される縞パターンWが投影範囲(本実施形態では撮像視野Kと同一範囲)全域において合焦するように、光軸J1に対し格子ユニット20(光軸J3)が傾くように設定されている(図5,図7参照)。
具体的には、プリント基板1に対して、格子ユニット20の出射面(合成格子面)20b及び投影レンズユニット21の主面がシャインプルーフの条件を満たすように設定されている。
ここで、シャインプルーフの原理について図5を参照して説明する。シャインプルーフの原理とは、格子ユニット20の出射面20bを含む平面S1と、投影レンズユニット21の主面を含む平面S2とが同一直線C(図5上の点Cにおける紙面に垂直な直線)上で交わる場合、縞パターンWが合焦状態で投影される物体面S3も同一直線C上で交わるというものである。従って、このようなシャインプルーフの原理に基づく条件は、格子ユニット20の出射面20bを含む平面S1と、投影レンズユニット21の主面を含む平面S2と、プリント基板1の表面(投影面)を含む平面S3が同一直線C上で互いに交わることである。
上記構成の下、投影装置14において、光源19から出射された光は、格子ユニット20の入射面20aに対し入射する。格子ユニット20内を透過した光は、格子ユニット20の出射面20bから縞パターンWとして出射される。そして、投影レンズユニット21を介してプリント基板1上に投影される。これにより、本実施形態では、図4に示すように、プリント基板1の搬送方向(Y軸方向)に平行な縞パターンWが投影されることとなる。
カメラ15は、図1に示すように、複数の受光素子が二次元配列された受光面を有する撮像素子15aと、該撮像素子15aに対し、縞パターンWが投影されたプリント基板1の撮像視野Kの像を結像させる撮像光学系としての撮像レンズユニット15bとを有し、その光軸J2がプリント基板1の上面に垂直な鉛直方向(Z軸方向)に沿って設定されている。本実施形態では、撮像素子15aとしてCCDエリアセンサを採用している。
撮像レンズユニット15bは、物体側レンズ、開口絞り、像側レンズ等を一体に備えた両側テレセントリックレンズ(両側テレセントリック光学系)により構成されている。但し、図1においては、簡素化のため、撮像レンズユニット15bを1つのレンズとして図示している。
ここで、物体側レンズは、プリント基板1からの反射光を集光するものであり、物体側で光軸J2と主光線とが平行となるテレセントリック構造を有する。また、像側レンズは、物体側レンズから開口絞りを透過した光を撮像素子15aの受光面に結像させるためのものであり、像側で光軸J2と主光線とが平行となるテレセントリック構造を有する。
カメラ15によって撮像され取得された画像データは、随時、該カメラ15内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置13に入力され、後述する画像データ記憶装置44に記憶される。そして、制御装置13は、該画像データを基に、後述するような画像処理や演算処理等を実施する。制御装置13が本実施形態における画像処理手段を構成する。
次に制御装置13の電気的構成について図6を参照して説明する。図6は、基板検査装置10の電気的構成を示すブロック図である。
図6に示すように、制御装置13は、基板検査装置10全体の制御を司るマイクロコンピュータ41、キーボードやマウス、タッチパネル等で構成される「入力手段」としての入力装置42、CRTや液晶などの表示画面を有する「表示手段」としての表示装置43、カメラ15により撮像され取得された画像データなどを記憶するための画像データ記憶装置44、該画像データに基づいて得られた三次元計測結果など、各種演算結果を記憶するための演算結果記憶装置45、ガーバデータなどの各種情報を予め記憶しておくための設定データ記憶装置46などを備えている。
マイクロコンピュータ41は、演算手段としてのCPU41aや、各種プログラムを記憶するROM41b、演算データや入出力データなどの各種データを一時的に記憶するRAM41cなどを備え、上記各装置42〜46等と電気的に接続されている。そして、これら各装置42〜46等との間で各種データや信号の入出力制御を行う機能を有する。
設定データ記憶装置46には、プリント基板1に設定された複数の検査範囲、並びに、これらに対するカメラ15の撮像視野Kの移動順序に関する情報などが記憶されている。ここで「撮像視野Kの移動順序」とは、プリント基板1上に設定された複数の検査範囲について、いかなる順序でカメラ15の撮像視野Kを移動させていくかを定めたものである。
尚、プリント基板1に係る複数の検査範囲並びにこれらに対する撮像視野Kの移動順序の設定は、ガーバデータ等を基にして事前に所定のプログラムにより自動で又は作業者により手動で行われる。
例えば図2に示した例では、右上コーナー部の検査範囲を起点として撮像視野Kの移動順序(検査順序)が設定されている。尚、図2において二点鎖線枠により囲まれた範囲が撮像視野K(検査範囲)を示し、この枠内に付された丸付き数字「1」〜「15」が検査順序を示す。また、図2においては、撮像視野Kの移動方向(移動経路)を点線矢印で示している。
次に基板検査装置10により行われるプリント基板1の検査ルーチンについて詳しく説明する。かかる検査ルーチンは、制御装置13(マイクロコンピュータ41)により実行されるものである。
上述したように、基板検査装置10へ搬入されたプリント基板1が所定の検査位置に位置決め固定されると、制御装置13は、まずプリント基板1の位置検出処理を実行する。
より詳しくは、制御装置13は、プリント基板1上に付された位置決め用マーク(図示略)を検出し、該検出したマークの位置情報(座標)と、ガーバデータに記憶されたマークの位置情報(座標)とを基に、プリント基板1の位置情報(傾きや位置ズレなど)を算出する。これにより、プリント基板1の位置検出処理を終了する。そして、このプリント基板1の位置情報を基に、検査ユニット12(カメラ15)とプリント基板1との相対位置関係のズレを補正する補正処理を実行する。
その後、設定データ記憶装置46に記憶された検査順序に従って、検査ユニット12をプリント基板1上の「1」番目の検査範囲に対応する位置へ移動させる移動処理を実行する。
この間、制御装置13は、設定データ記憶装置46に記憶されたガーバデータに基づき、「1」番目の検査範囲に投影する縞パターンWの周期を該検査範囲に対応した周期に調整する処理を実行する。
図2に示すように、本実施形態では、「1」番目の検査範囲が制御回路部PBとなっているため、ここでは短周期の第2縞パターンW2に設定する。
検査ユニット12の移動処理が完了し、カメラ15の撮像視野Kがプリント基板1上の「1」番目の検査範囲に合わせられると、投影装置14から第2縞パターンW2を投影して、プリント基板1上の「1」番目の検査範囲に係る検査処理を実行する。かかる検査処理の詳細については後述する(他の検査範囲に係る検査処理についても同様)。
その後、プリント基板1上の「1」番目の検査範囲に係る検査処理が終了すると、設定データ記憶装置46に記憶された検査順序に従って、検査ユニット12をプリント基板1上の「2」番目の検査範囲に対応する位置へ移動させる移動処理を開始する。
この間、制御装置13は、上記同様、「2」番目の検査範囲に投影する縞パターンWの周期を該検査範囲に対応した周期に調整(変更)する処理を実行する。
図2に示すように、本実施形態では、「2」番目の検査範囲がパワー回路部PAとなっているため、ここでは長周期の第1縞パターンW1に設定する。
検査ユニット12の移動処理が完了し、カメラ15の撮像視野Kがプリント基板1上の「2」番目の検査範囲に合わせられると、投影装置14から第1縞パターンW1を投影して、プリント基板1上の「2」番目の検査範囲に係る検査処理を実行する。
その後、プリント基板1上の「2」番目の検査範囲に係る検査処理が終了すると、設定データ記憶装置46に記憶された検査順序に従って、検査ユニット12をプリント基板1上の「3」番目の検査範囲に対応する位置へ移動させる移動処理を開始する。
以降同様に、プリント基板1上の「3」番目〜「15」番目の検査範囲ついて、該検査範囲に対応する縞パターンW(第1縞パターンW1又は第2縞パターンW2)によって検査処理が実行されることにより、プリント基板1全体に係る半田印刷検査が終了する。
次にプリント基板1の各検査範囲にて行われる検査処理について説明する。かかる検査処理は、制御装置13(マイクロコンピュータ41)によって実行されるものである。
本実施形態では、各検査範囲について、投影装置14から投影される縞パターンWの位相を変化させつつ、位相の異なる縞パターンWの下で4回の撮像処理を行うことにより、光強度分布の異なる4通りの画像データを取得する。以下、詳しく説明する。
上述したように、制御装置13は、まずX軸移動機構16及びY軸移動機構17を駆動制御して検査ユニット12を移動させ、カメラ15の撮像視野Kをプリント基板1の所定の検査範囲に位置合わせする。同時に、投影装置14の格子ユニット20を移動制御し、該格子ユニット20の位置を所定の基準位置(例えば位相「0°」の位置)に設定する。
格子ユニット20の位置決めが完了すると、制御装置13は、投影装置14の光源19を発光させ、所定の縞パターンW(第1縞パターンW1又は第2縞パターンW2)を投影すると共に、カメラ15を駆動制御して、該縞パターンWの下での1回目の撮像処理を実行する。
その後、制御装置13は、所定の縞パターンWの下での1回目の撮像処理の終了と同時に、光源19を消灯すると共に、格子ユニット20の移動処理を実行する。具体的には、格子ユニット20の位置を前記基準位置から、縞パターンWの位相が4分の1ピッチ(90°)ずれる第2の位置へ移動させる。
格子ユニット20の移動処理が完了すると、制御装置13は、光源19を発光させ、所定の縞パターンWを投影すると共に、カメラ15を駆動制御して、該縞パターンWの下での2回目の撮像処理を実行する。
以後、同様の処理を繰り返し行うことで、90°ずつ(4分の1ピッチずつ)位相の異なる縞パターンWの下で光強度分布の異なる4通りの画像データを取得する。これにより、正弦波状の光強度分布を有する縞パターンWの位相を90°ずつシフトさせた4通りの画像データを取得することができる。
そして、制御装置13は、上記のように取得した4通りの画像データ(各座標の4通りの輝度値)を基に公知の位相シフト法によりクリーム半田5の三次元計測(各座標の高さ計測)を行い、かかる計測結果を演算結果記憶装置45に記憶する。
ここで、公知の位相シフト法について説明する。上記4通りの画像データにおけるプリント基板1上の所定座標位置の光強度(輝度)I0,I1,I2,I3は、それぞれ下記式(1)、(2)、(3)、(4)により表すことができる。
I0=αsinθ+β ・・・(1)
I1=αsin(θ+90°)+β =αcosθ+β ・・・(2)
I2=αsin(θ+180°)+β=−αsinθ+β ・・・(3)
I3=αsin(θ+270°)+β=−αcosθ+β ・・・(4)
但し、α:ゲイン、β:オフセット、θ:縞パターンの位相。
そして、上記式(1)、(2)、(3)、(4)を位相θについて解くと、下記式(5)を導き出すことができる。
θ=tan-1{(I0−I2)/(I1−I3)} ・・(5)
このように算出された位相θを用いることにより、三角測量の原理に基づき、プリント基板1上の各座標(X,Y)における高さ(Z)を求めることができる。
次に、制御装置13は、上記のようにして得られた三次元計測結果(各座標における高さデータ)に基づき、クリーム半田5の印刷状態の良否判定処理を行う。具体的に、制御装置13は、上記のように得られた検査範囲の計測結果に基づいて、各検査範囲(パワー回路部PA、制御回路部PB)ごとに定められた高さ基準面より所定長以上、高くなったクリーム半田5の印刷範囲を検出し、この範囲内での各部位の高さを積分することにより、印刷されたクリーム半田5の量を算出する。
続いて、制御装置13は、このようにして求めたクリーム半田5の位置、面積、高さ又は量等のデータを、予め設定データ記憶装置46に記憶されている基準データ(ガーバデータなど)と比較判定し、この比較結果が許容範囲内にあるか否かによって、その検査範囲におけるクリーム半田5の印刷状態の良否を判定する。
上記4通りの画像データの取得後、上記良否判定処理が行われている間に、制御装置13は、検査ユニット12を次の検査範囲へと移動させる。以降、上記一連の処理が、プリント基板1上の全ての検査範囲で繰り返し行われることで、プリント基板1全体に係る半田印刷検査が終了する。
以上詳述したように、本実施形態によれば、投影装置14からプリント基板1に対し縞パターンWを投影すると共に、該縞パターンWの位相を異ならせた4通りの画像データを取得し、これらの画像データを基に位相シフト法によるプリント基板1の三次元計測が行われる。
この際、本実施形態では、プリント基板1上の検査範囲の凹凸度合いに応じて、投影装置14から投影する縞パターンWの周期(ピッチ)を変更する構成となっている。具体的には、長周期の第1縞パターンW1と、短周期の第2縞パターンW2の2種類の縞パターンWを切換えて投影する。
特に本実施形態に係る投影装置14によれば、光源19からの光を縞パターンWに変換するパターン生成部として格子ユニット20(格子板25,26)を用いることにより、液晶格子等を用いた場合よりも明るい縞パターンWの投影が可能となる。
また、2枚の格子板25,26の相対位置関係を変更する格子板移動機構27を備えることにより、格子板25,26を交換することなく、プリント基板1に投影する縞パターンWの周期を変更することが可能となる。
さらに、本実施形態では、ガラス板等の基材28上に格子パターン30が印刷された既存の格子板25,26など、安価な光学部材を用いることができるため、液晶素子等の高価な光学制御素子をパターン生成部として用いた場合に比べ、パターン生成部の製造コストを抑制することができる。
加えて、既存の液晶素子等を用いた場合のように、画素の制御を行う必要もなく、制御の簡素化を図ることができると共に、生成される縞パターンWが微視的に不連続となることもないため、より理想的な縞パターンWをプリント基板1に対し投影することが可能となる。
〔第2実施形態〕
次に第2実施形態について図10を参照して詳しく説明する。尚、上記第1実施形態と重複する部分については、同一の部材名称、同一の符号を用いる等してその詳細な説明を省略するとともに、以下には第1実施形態と相違する部分を中心として説明することとする(後述する第3実施形態から第6実施形態についても同様)。
本実施形態に係る固定格子板25及び可動格子板26では、X´軸方向における透光部31の幅が「580(29×20)μm」、X´軸方向における遮光部32の幅が「220(11×20)μm」に設定され、透光部31と遮光部32の比が「29:11」となっている〔図10(a),(b)参照〕。
そして、長周期の第1縞パターンW1を生成する場合には、格子板移動機構27を駆動制御して可動格子板26をX´軸方向にスライド変位させ、図10(a)に示すように、固定格子板25側の遮光部32のX´軸方向一端部(右端部)を含む所定範囲と、可動格子板26側の遮光部32のX´軸方向他端部(左端部)を含む所定範囲とが、X´軸方向に重なるように位置合わせする。
この結果、格子ユニット20には、両格子板25,26の格子パターン30を重ね合わせた合成格子パターンとして、X´軸方向における透光部の幅が「400(20×20)μm」、X´軸方向における遮光部の幅が「400(20×20)μm」、透光部と遮光部の比が「1:1」となる仮想の格子パターンが形成されることとなる。そして、この合成格子パターンにより、第1周期800μmの第1縞パターンW1が生成される。
一方、短周期の第2縞パターンW2を生成する場合には、格子板移動機構27を駆動制御して可動格子板26をX´軸方向にスライド変位させ、図10(b)に示すように、可動格子板26側の遮光部32を固定格子板25側の透光部31のX´軸方向中央部に位置合わせする。
この結果、格子ユニット20には、両格子板25,26の格子パターン30を重ね合わせた合成格子パターンとして、X´軸方向における透光部の幅が「180(9×20)μm」、X´軸方向における遮光部の幅が「220(11×20)μm」、透光部と遮光部の比が「9:11」となる仮想の格子パターンが形成されることとなる。そして、この合成格子パターンにより、第2周期400μmの第2縞パターンW2が生成される。
以上詳述したように、本実施形態によれば、上記第1実施形態と同様の作用効果が奏される。
特に本実施形態によれば、長周期の第1縞パターンW1を生成する際に、固定格子板25側の遮光部32の一部と、可動格子板26側の遮光部32の一部とが重なることで、光の漏れを抑制することができる。結果として、より理想的な縞パターンWをプリント基板1に対し投影することが可能となる。
尚、本実施形態では、短周期の第2縞パターンW2を生成する際、合成格子パターンにおける透光部と遮光部の比が「1:1」の完全同一となっていないが、その比が「9:11」のように略同一となっていれば、位相シフト法による三次元計測を行う上で十分な精度の正弦波状の光強度分布を有する縞パターンWを生成することができる。
〔第3実施形態〕
次に第3実施形態について図11を参照して詳しく説明する。本実施形態に係る固定格子板25及び可動格子板26では、X´軸方向における透光部31の幅が「600(30×20)μm」、X´軸方向における遮光部32の幅が「200(10×20)μm」に設定され、透光部31と遮光部32の比が「3:1」となっている〔図11(a),(b)参照〕。
そして、長周期の第1縞パターンW1を生成する場合には、格子板移動機構27を駆動制御して可動格子板26をX´軸方向にスライド変位させ、図11(a)に示すように、固定格子板25側の遮光部32のX´軸方向一端部(右端部)を含む所定範囲と、可動格子板26側の遮光部32のX´軸方向他端部(左端部)を含む所定範囲とが、X´軸方向に重なるように位置合わせする。
この結果、格子ユニット20には、両格子板25,26の格子パターン30を重ね合わせた合成格子パターンとして、X´軸方向における透光部の幅が「420(21×20)μm」、X´軸方向における遮光部の幅が「380(19×20)μm」、透光部と遮光部の比が「21:19」となる仮想の格子パターンが形成されることとなる。そして、この合成格子パターンにより、第1周期800μmの第1縞パターンW1が生成される。
一方、短周期の第2縞パターンW2を生成する場合には、格子板移動機構27を駆動制御して可動格子板26をX´軸方向にスライド変位させ、図11(b)に示すように、可動格子板26側の遮光部32を固定格子板25側の透光部31のX´軸方向中央部に位置合わせする。
この結果、格子ユニット20には、両格子板25,26の格子パターン30を重ね合わせた合成格子パターンとして、X´軸方向における透光部の幅が「200(10×20)μm」、X´軸方向における遮光部の幅が「200(10×20)μm」、透光部と遮光部の比が「1:1」となる仮想の格子パターンが形成されることとなる。そして、この合成格子パターンにより、第2周期400μmの第2縞パターンW2が生成される。
以上詳述したように、本実施形態によれば、上記第1,2実施形態と同様の作用効果が奏される。
〔第4実施形態〕
次に第4実施形態について図12を参照して詳しく説明する。本実施形態に係る格子ユニット20は、1つの固定格子板25と、2つの可動格子板26により構成されている。具体的には、固定格子板25の上側に位置する第1可動格子板26Aと、固定格子板25の下側に位置する第2可動格子板26Bとを備えている。
本実施形態に係る固定格子板25及び可動格子板26(26A,26B)では、X´軸方向における透光部31の幅が「1000(50×20)μm」、X´軸方向における遮光部32の幅が「200(10×20)μm」に設定され、透光部31と遮光部32の比が「5:1」となっている〔図12(a),(b)参照〕。
そして、長周期の第1縞パターンW1を生成する場合には、格子板移動機構27を駆動制御して第1可動格子板26A及び第2可動格子板26BをそれぞれX´軸方向にスライド変位させ、図12(a)に示すように、固定格子板25側の遮光部32のX´軸方向一端部(左端部)の位置に、第1可動格子板26A側の遮光部32のX´軸方向他端部(右端部)を位置合わせすると共に、固定格子板25側の遮光部32のX´軸方向他端部(右端部)の位置に、第2可動格子板26B側の遮光部32のX´軸方向一端部(左端部)を位置合わせする。
この結果、格子ユニット20には、3つの格子板25,26A,26Bの格子パターン30を重ね合わせた合成格子パターンとして、X´軸方向における透光部の幅が「600(30×20)μm」、X´軸方向における遮光部の幅が「600(30×20)μm」、透光部と遮光部の比が「1:1」となる仮想の格子パターンが形成されることとなる。そして、この合成格子パターンにより、第1周期1200μmの第1縞パターンW1が生成される。
一方、短周期の第2縞パターンW2を生成する場合には、格子板移動機構27を駆動制御して第1可動格子板26A及び第2可動格子板26BをそれぞれX´軸方向にスライド変位させ、図12(b)に示すように、第1可動格子板26A側の遮光部32を固定格子板25側の遮光部32からX´軸方向一方側(左方)へ所定量〔200(10×20)μm〕離間させると共に、第2可動格子板26B側の遮光部32を固定格子板25側の遮光部32からX´軸方向他方側(右方)へ所定量〔200(10×20)μm〕離間させる。
この結果、格子ユニット20には、3つの格子板25,26A,26Bの格子パターン30を重ね合わせた合成格子パターンとして、X´軸方向における透光部の幅が「200(10×20)μm」、X´軸方向における遮光部の幅が「200(10×20)μm」、透光部と遮光部の比が「1:1」となる仮想の格子パターンが形成されることとなる。そして、この合成格子パターンにより、第2周期400μmの第2縞パターンW2が生成される。
以上詳述したように、本実施形態によれば、上記第1実施形態と同様の作用効果が奏される。特に本実施形態によれば、3つの格子板25,26A,26Bを用いることにより、長周期の第1縞パターンW1と、短周期の第2縞パターンW2との周期の差を大きくすることができる。
〔第5実施形態〕
次に第5実施形態について図13を参照して詳しく説明する。本実施形態に係る固定格子板25及び可動格子板26では、X´軸方向における透光部31の幅が「500(25×20)μm」、X´軸方向における遮光部32の幅が「300(15×20)μm」に設定され、透光部31と遮光部32の比が「5:3」となっている〔図13(a),(b)参照〕。
但し、本実施形態における遮光部32は、透過率の異なる複数の部位から構成されている。より詳しくは、透過率の高い部位(透光部31)と、透過率の低い部位(遮光部32のうちの透過率がより低い部位)との間に、透過率が中程度の部位を設けている。
具体的には、遮光部32のX´軸方向中央部の「100(5×20)μm」範囲に透過率25%の高遮光部が設けられ、該高遮光部のX´軸方向両側の「100(5×20)μm」範囲にはそれぞれ透過率50%の中遮光部が設けられている。一方、本実施形態における透光部31の透過率は100%となっている。
そして、長周期の第1縞パターンW1を生成する場合には、格子板移動機構27を駆動制御して可動格子板26をX´軸方向にスライド変位させ、図13(a)に示すように、固定格子板25側の遮光部32のX´軸方向一端部(右端部)を含む所定範囲(透過率50%の部位)と、可動格子板26側の遮光部32のX´軸方向他端部(左端部)を含む所定範囲(透過率50%の部位)とが、X´軸方向に重なるように位置合わせする。
この結果、格子ユニット20には、両格子板25,26の格子パターン30を重ね合わせた合成格子パターンとして、X´軸方向における透光部の幅が「300(15×20)μm」、X´軸方向における遮光部の幅が「500(25×20)μm」、透光部と遮光部の比が「3:5」となる仮想の格子パターンが形成されることとなる。
但し、合成格子パターンの遮光部は、そのX´軸方向中央部の「300(15×20)μm」範囲が透過率25%の高遮光部となり、該高遮光部のX´軸方向両側の「100(5×20)μm」範囲が透過率50%の中遮光部となっている。
そして、この合成格子パターンにより、第1周期800μmの第1縞パターンW1が生成される。
一方、短周期の第2縞パターンW2を生成する場合には、格子板移動機構27を駆動制御して可動格子板26をX´軸方向にスライド変位させ、図13(b)に示すように、可動格子板26側の遮光部32を固定格子板25側の透光部31のX´軸方向中央部に位置合わせする。
この結果、格子ユニット20には、両格子板25,26の格子パターン30を重ね合わせた合成格子パターンとして、X´軸方向における透光部の幅が「100(5×20)μm」、X´軸方向における遮光部の幅が「300(15×20)μm」、透光部と遮光部の比が「1:3」となる仮想の格子パターンが形成されることとなる。
但し、合成格子パターンの遮光部は、そのX´軸方向中央部の「100(5×20)μm」範囲が透過率25%の高遮光部となり、該高遮光部のX´軸方向両側の「100(5×20)μm」範囲が透過率50%の中遮光部となっている。
そして、この合成格子パターンにより、第2周期400μmの第2縞パターンW2が生成される。
以上詳述したように、本実施形態によれば、上記第1実施形態と同様の作用効果が奏される。特に本実施形態によれば、遮光部32が、透過率の異なる複数の部位から構成されることにより、より理想的な縞パターンWをプリント基板1に対し投影することが可能となる。
〔第6実施形態〕
次に第6実施形態について図14を参照して詳しく説明する。本実施形態に係る固定格子板25及び可動格子板26では、X´軸方向における透光部31の幅が「500(25×20)μm」、X´軸方向における遮光部32の幅が「300(15×20)μm」に設定され、透光部31と遮光部32の比が「5:3」となっている〔図14(a),(b)参照〕。
但し、本実施形態における遮光部32は、透過率の異なる複数の部位から構成されている。より詳しくは、透過率の高い部位(透光部31)と、透過率の低い部位(遮光部32のうちの透過率がより低い部位)との間に、透過率が中程度の部位を設けている。
具体的には、遮光部32のX´軸方向中央部の「200(10×20)μm」範囲に透過率50%の中遮光部が設けられ、該中遮光部のX´軸方向両側の「50(2.5×20)μm」範囲にはそれぞれ透過率75%の低遮光部が設けられている。一方、本実施形態における透光部31の透過率は100%となっている。
そして、長周期の第1縞パターンW1を生成する場合には、格子板移動機構27を駆動制御して可動格子板26をX´軸方向にスライド変位させ、図14(a)に示すように、固定格子板25側の遮光部32のX´軸方向一端部(右端部)を含む所定範囲(100μm範囲)と、可動格子板26側の遮光部32のX´軸方向他端部(左端部)を含む所定範囲(100μm範囲)とが、X´軸方向に重なるように位置合わせする。
この結果、格子ユニット20には、両格子板25,26の格子パターン30を重ね合わせた合成格子パターンとして、X´軸方向における透光部の幅が「300(15×20)μm」、X´軸方向における遮光部の幅が「500(25×20)μm」、透光部と遮光部の比が「3:5」となる仮想の格子パターンが形成されることとなる。
但し、合成格子パターンの遮光部は、そのX´軸方向中央部の「100(5×20)μm」範囲が透過率38%の高遮光部となり、該高遮光部のX´軸方向両側の「150(7.5×20)μm」範囲がそれぞれ透過率50%の中遮光部となり、さらにその外側の「50(2.5×20)μm」範囲がそれぞれ透過率75%の低遮光部となっている。
そして、この合成格子パターンにより、第1周期800μmの第1縞パターンW1が生成される。
一方、短周期の第2縞パターンW2を生成する場合には、格子板移動機構27を駆動制御して可動格子板26をX´軸方向にスライド変位させ、図14(b)に示すように、可動格子板26側の遮光部32を固定格子板25側の透光部31のX´軸方向中央部に位置合わせする。
この結果、格子ユニット20には、両格子板25,26の格子パターン30を重ね合わせた合成格子パターンとして、X´軸方向における透光部の幅が「100(5×20)μm」、X´軸方向における遮光部の幅が「300(15×20)μm」、透光部と遮光部の比が「1:3」となる仮想の格子パターンが形成されることとなる。
但し、合成格子パターンの遮光部は、そのX´軸方向中央部の「200(10×20)μm」範囲が透過率50%の中遮光部となり、該中遮光部のX´軸方向両側の「50(2.5×20)μm」範囲がそれぞれ透過率75%の低遮光部となっている。
そして、この合成格子パターンにより、第2周期400μmの第2縞パターンW2が生成される。
以上詳述したように、本実施形態によれば、上記第1,第5実施形態と同様の作用効果が奏される。
尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。
(a)上記各実施形態では、本願発明である投影装置及び三次元計測装置を、プリント基板1に印刷されたクリーム半田5の印刷状態を検査する基板検査装置10に具体化したが、これに限らず、例えばプリント基板上に実装された電子部品など、他の対象を検査する装置に具体化してもよい。勿論、プリント基板とは異なる対象物を被計測物として三次元計測を行う構成としてもよい。
(b)上記各実施形態では、パワー回路部PA及び制御回路部PBが混在したプリント基板1を被計測物とし、該プリント基板1上のパワー回路部PAに対しては長周期の第1縞パターンW1を投影して三次元計測を行い、制御回路部PBに対しては短周期の第2縞パターンW2を投影して三次元計測を行うといったように、プリント基板1上の各検査範囲の凹凸度合いに応じて縞パターンWの周期を切換える構成となっている。
これに限らず、パワー回路部PAのみを有したプリント基板を被計測物とし、これに対し長周期の第1縞パターンW1だけを投影して三次元計測を行い、制御回路部PBのみを有したプリント基板を被計測物とし、これに対し短周期の第2縞パターンW2だけを投影して三次元計測を行うといったように、製造ラインにおいて製造されるプリント基板の種別に応じて縞パターンWの周期を切換える構成としてもよい。
また、パワー回路部PAに対しては、長周期の第1縞パターンW1と短周期の第2縞パターンW2の双方をそれぞれ複数通り投影して、両者を組み合わせて三次元計測を行う構成としてもよい。これにより、計測時間は増えるものの、高さ分解能を落とすことなく、ダイナミックレンジを広げることができる。
(c)上記各実施形態では、位相シフト法による三次元計測を行う上で、縞パターンWの位相が90°ずつ異なる4通りの画像データを取得する構成となっているが、位相シフト回数及び位相シフト量は、これらに限定されるものではない。位相シフト法により三次元計測可能な他の位相シフト回数及び位相シフト量を採用してもよい。例えば位相が120°又は90°ずつ異なる3通りの画像データを取得して三次元計測を行う構成としてもよい。
(d)上記各実施形態では、位相シフト法による三次元計測を行う上で、縞パターンWとして、正弦波状の光強度分布を有するパターン光を投影する構成となっているが、これに限らず、縞パターンWとして、例えば矩形波状や三角波状など非正弦波状の光強度分布を有するパターン光を投影する構成としてもよい。
但し、非正弦波状の光強度分布を有するパターン光を投影し三次元計測を行うよりも、正弦波状の光強度分布を有するパターン光を投影し三次元計測を行う方が計測精度が良い。そのため、計測精度の向上を図る点においては、正弦波状の光強度分布を有するパターン光を投影し三次元計測を行う構成とすることが好ましい。
(e)上記各実施形態では、プリント基板1に対し縞パターンWを投影し、位相シフト法により三次元計測を行う構成となっているが、これに限らず、例えば空間コード法やモアレ法など、他のパターン投影法を利用して三次元計測を行う構成としてもよい。但し、クリーム半田5など小さな計測対象を計測する場合には、位相シフト法など、計測精度の高い計測方法を採用することがより好ましい。
(f)上記各実施形態では、所定位置に固定されたプリント基板1上の複数の検査範囲に対し、検査ユニット12(投影装置14及びカメラ15)を順次移動させることにより、プリント基板1全域の検査を行う構成となっている。これに限らず、検査ユニット12を固定させた状態で、プリント基板1を移動させることにより、プリント基板1全域の検査を行う構成としてもよい。
また、上記各実施形態では、投影装置14において格子ユニット20を変位させる格子ユニット移動機構22を備えることにより、検査ユニット12とプリント基板1とを相対移動させることなく、所定位置に固定されたプリント基板1と、そこに投影される縞パターンWとの相対位置関係を変化(位相シフト)させる構成となっているが、縞パターンWとプリント基板1とを相対変位させる構成(パターン光変位手段)は、上記実施形態に限定されるものではない。
例えば上述したようにプリント基板全域において、投影する縞パターンWの周期を切換えない場合には、コンベア等によりプリント基板を連続移動させる、又は、固定されたプリント基板に対し検査ユニット12を連続移動させることにより、該プリント基板と、そこに投影される縞パターンWとの相対位置関係を変化(位相シフト)させる構成としてもよい。
(g)上記各実施形態では、光源19が白色光を出射するハロゲンランプにより構成されている。これに限らず、白色LEDなど他の光源を用いる構成としてもよい。
(h)パターン生成部の構成は、上記各実施形態に係る格子ユニット20に限定されるものではない。
例えば上記各実施形態では、透光性を有する本体ケース部24内に固定格子板25及び可動格子板26が収容された構成となっているが、これに限らず、例えばフレーム枠などにより固定格子板25及び可動格子板26等がユニット化された構成としてもよい。
上記各実施形態では、1つの固定された固定格子板25と、1又は2つの可動格子板26とを備えた構成となっているが、これに限らず、4つ以上の格子板が相対向するように配置された構成としてもよい。
また、全ての格子板を可動格子板としてもよい。例えば第1可動格子板と第2可動格子板を備え、これらをそれぞれ移動させることにより、両者の相対位置関係を変更する構成としてもよい。
(i)上記各実施形態に係る格子ユニット20では、プリント基板1上のパワー回路部PAに対応して、長周期の第1縞パターンW1を生成し、制御回路部PBに対応して、短周期の第2縞パターンW2を生成する構成となっているが、格子ユニット20が生成する縞パターンWの数(種類)や、具体的な周期は、上記各実施形態に限定されるものではない。
例えばプリント基板1上の検査範囲の凹凸度合いに応じて、周期の異なる3種類以上の縞パターンWを生成可能な構成としてもよい。
(j)格子移動手段に係る構成は、上記各実施形態に係る格子板移動機構27に限定されるものではない。例えば上記格子板移動機構27は、可動格子板26をスライド変位させる駆動手段としてのソレノイド27bを用いているが、これに限らず、ピエゾ素子など他のアクチュエータを採用してもよい。
(k)パターン光変位手段に係る構成は、上記各実施形態に係る格子ユニット移動機構22に限定されるものではない。例えば上記格子ユニット移動機構22は、格子ユニット20をスライド変位させる駆動手段としてのピエゾ素子22bを用いているが、これに限らず、ソレノイドなど他のアクチュエータを採用してもよい。
(l)格子部材及び格子パターンの構成は、上記各実施形態に係る固定格子板25及び可動格子板26並びに格子パターン30に限定されるものではない。
例えば上記各実施形態に係る格子板25,26は、格子パターン30の印刷面が入射側に向くように配置された構成となっているが、これに限らず、例えば格子パターン30の印刷面が出射側に向くように配置された構成としてもよい。
また、固定格子板25及び可動格子板26が、格子パターン30の印刷面同士が相対向するように配置された構成としてもよいし、格子パターン30の非印刷面同士が相対向するように配置された構成としてもよい。格子パターン30の印刷面同士が相対向するように配置した方が、縞パターンWのピントを合いやすくする点においては好ましい。
尚、上記各実施形態では、特に言及していないが、固定格子板25及び可動格子板26を図7に示したように当接状態で配置した構成としてもよいし、図8等に示すように離間(近接)した状態で配置した構成としてもよい。
(m)上記各実施形態に係る格子板25,26においては、所定の透光素材(例えばガラスやアクリル樹脂等)により平板状又はフィルム状に形成された基材28上に、遮光部32が印刷(蒸着)形成されることにより、格子パターン30が形成されている。
これに限らず、例えばレーザー加工など他の方法により格子パターンが形成される構成としてもよい。
また、不透明樹脂や金属等を加工しスリット等を開口形成することにより格子パターンを形成した格子板などを採用してもよい。
また、透光部31及び遮光部32の透過率は、上記各実施形態に限定されるものではない。例えば透光部31の透過率は、100%に限定されるものではなく、95%程度の透過率であってもよい。
上記各実施形態では、固定格子板25及び可動格子板26に形成された格子パターン30が同一となっている。これに限らず、これらの格子板25,26によって、周期の異なる複数の縞パターンWを生成可能であれば、これらの格子板25,26に形成される格子パターン30が同一でなくともよい。
また、透光部31や遮光部32の幅など、格子パターン30の具体的なサイズは、上記各実施形態に限定されるものではない。
(n)投影光学系に係る構成は、上記各実施形態に係る投影レンズユニット21に限定されるものではない。
例えば上記各実施形態に係る投影レンズユニット21は、入射側レンズ35及び出射側レンズ36を有し、これら両レンズ35,36により両側テレセントリック光学系(両側テレセントリックレンズ)として構成されている。これに限らず、投影レンズユニット21として、物体側テレセントリックレンズ(物体側テレセントリック光学系)を採用してもよい。また、テレセントリック構造を有しない構成としてもよい。
(o)撮像手段は、上記実施形態のカメラ15に限定されるものではない。例えば上記実施形態では、撮像素子15aとしてCCDエリアセンサを採用しているが、これに限らず、例えばCMOSエリアセンサ等を採用してもよい。
また、撮像レンズユニット15bが両側テレセントリックレンズ(両側テレセントリック光学系)により構成されている。これに限らず、撮像レンズユニット15bとして、物体側テレセントリックレンズ(物体側テレセントリック光学系)を採用してもよい。また、テレセントリック構造を有しない構成としてもよい。
(p)上記各実施形態に係る投影装置14では、プリント基板1に対して、格子ユニット20の出射面20b及び投影レンズユニット21の主面がシャインプルーフの条件を満たすように設定されている。
これに限らず、投影範囲全域における縞パターンWの合焦状態によっては、必ずしもシャインプルーフの条件を満たすように設定されていなくともよい。
また、上記シャインプルーフの条件は、格子板25,26の配置構成などを加味したものであることが好ましい。
格子ユニット20の出射面20bに形成される合成格子パターンは、格子板25,26の格子パターン30を重ね合わせた格子パターンであるため、格子板25,26の配置構成などを考慮することなく、格子ユニット20の出射面20b及び投影レンズユニット21の主面がシャインプルーフの条件を満たすように配置された場合には、僅かながらも誤差が生じ得るおそれがある。