JP7000380B2 - 三次元計測装置及び三次元計測方法 - Google Patents
三次元計測装置及び三次元計測方法 Download PDFInfo
- Publication number
- JP7000380B2 JP7000380B2 JP2019099886A JP2019099886A JP7000380B2 JP 7000380 B2 JP7000380 B2 JP 7000380B2 JP 2019099886 A JP2019099886 A JP 2019099886A JP 2019099886 A JP2019099886 A JP 2019099886A JP 7000380 B2 JP7000380 B2 JP 7000380B2
- Authority
- JP
- Japan
- Prior art keywords
- measured
- height
- height position
- measurement
- predetermined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
- H05K13/081—Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
- H05K13/0817—Monitoring of soldering processes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0608—Height gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2513—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
- G01N21/95684—Patterns showing highly reflecting parts, e.g. metallic elements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
- H05K13/083—Quality monitoring using results from monitoring devices, e.g. feedback loops
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
- G01N2021/95638—Inspecting patterns on the surface of objects for PCB's
- G01N2021/95646—Soldering
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Operations Research (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Theoretical Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Image Analysis (AREA)
Description
本発明は、プリント基板等の三次元計測を行うための三次元計測装置及び三次元計測方法に関する。
一般に、プリント基板上に電子部品を実装する場合、まずプリント基板上に配設された所定の電極パターン上にクリーム半田が印刷される。次に、該クリーム半田の粘性に基づいてプリント基板上に電子部品が仮止めされる。その後、前記プリント基板がリフロー炉へ導かれ、所定のリフロー工程を経ることで半田付けが行われる。昨今では、リフロー炉に導かれる前段階においてクリーム半田の印刷状態を検査する必要があり、かかる検査に際して三次元計測装置が用いられることがある。
従来、所定のパターン光を投影して三次元計測を行う三次元計測装置が種々提案されている。中でも、位相シフト法を利用した三次元計測装置がよく知られている。
位相シフト法を利用した三次元計測装置は、プリント基板上の所定の検査範囲に対し、縞状の光強度分布を有するパターン光(以下、「縞パターン」という)を斜め上方より投影する投影装置と、該縞パターンの投影された検査範囲を撮像する撮像装置とを備えている。
かかる構成の下、プリント基板上の所定の検査範囲に投影される縞パターンの位相を複数通り(例えば4通り)にシフトさせると共に、位相の異なる各縞パターンの下で撮像を行い、該検査範囲に係る複数通りの画像データを取得する。そして、これら複数の画像データを基に位相シフト法により該検査範囲の三次元計測を行う。
しかしながら、プリント基板に反り等がある場合には、一部の検査範囲については撮像装置の被写界深度内に収めることが困難となり、ピントの合わない画像データが取得されてしまうため、計測精度が低下するおそれがあった。
これに対し、近年では、投影装置及び撮像装置を一体に備えた計測ヘッドと、プリント基板上の所定の検査範囲との距離が所定範囲内となるように、該検査範囲に係る計測を開始する前に、計測ヘッドを高さ方向へ移動させ調整する技術も見受けられる(例えば、特許文献1,2参照)。
従来では、撮像素子の画素数が少なく撮像装置の視野が狭かったことや、プリント基板に印刷されるクリーム半田の高さも演算回路用の低いもののみだったことから、プリント基板上の所定の検査範囲に係る計測を開始する前に、計測ヘッドを1回だけ高さ調整すれば、その後は高さ調整することなく、この1つの検査範囲(撮像視野)内のすべてのクリーム半田について計測を完了することが可能であった。
しかしながら、近年では、撮像素子の画素数が飛躍的に増加し同じ分解能であれば広範囲の撮像が可能になってきたため、1つの検査範囲内であってもプリント基板の反り等の影響を受けやすくなってきている。
さらに、半田印刷用メタルマスクのハーフエッチング技術やディスペンス方式の半田塗布技術などの発達により、演算回路用の高さの低いクリーム半田に加え、電源回路や動力回路用の高さの高いクリーム半田が印刷等された車載用のプリント基板等も自動車の電動化に伴い増加しており、1つの検査範囲内におけるクリーム半田の高さに大きな差が生じる場合もある。
その結果、1つの検査範囲内のすべてのクリーム半田(最も低い位置にあるクリーム半田から、最も高い位置にあるクリーム半田までの高さ範囲)を撮像装置の被写界深度内に収めることが困難となるおそれがある。
つまり、1つの検査範囲内のすべてのクリーム半田の計測を一回で完了する従来構成では、1つの検査範囲内のすべてのクリーム半田についてピントが合った画像データを取得することができず、計測精度が低下するおそれがある。
尚、上記課題は、必ずしもプリント基板上に印刷されたクリーム半田等の三次元計測に限らず、他の三次元計測の分野においても内在するものである。勿論、位相シフト法に限られる問題ではない。
本発明は、上記事情に鑑みてなされたものであり、その目的は、計測精度の向上等を図ることのできる三次元計測装置及び三次元計測方法を提供することにある。
以下、上記課題を解決するのに適した各手段につき項分けして説明する。なお、必要に応じて対応する手段に特有の作用効果を付記する。
手段1.所定の被計測物(例えばプリント基板)上の所定の被計測領域(被計測物の全域又はその一部)に対し、所定の計測手段(例えば計測ヘッド)を位置合わせし、前記被計測領域内に配設された被計測対象(例えばクリーム半田)について所定の三次元計測法(例えばパターン投影法)により三次元計測を行う三次元計測装置であって、
前記計測手段は、
前記被計測領域に対し、該被計測領域の高さ計測を行うための所定の光(例えばスリット光)を照射可能な第1照射手段と、
前記被計測領域に対し、前記被計測対象の三次元計測を行うための所定のパターン光を照射可能な第2照射手段と、
前記所定の光又は前記所定のパターン光が照射された前記被計測領域を撮像可能な撮像手段とを備え、
前記所定の光を照射して前記撮像手段により撮像された画像データを基に、前記被計測領域の高さ情報を取得する領域高さ取得手段と、
前記被計測領域の高さ情報を基に、該被計測領域に含まれる複数の前記被計測対象それぞれの計測基準面の高さ情報を算出する基準面高さ取得手段と、
前記複数の被計測対象について、それぞれ前記計測基準面の高さ情報を基に、該被計測対象の高さ方向全域を合焦状態で撮像するのに必要な要合焦範囲を特定する要合焦範囲特定手段と、
前記複数の被計測対象の要合焦範囲、及び、前記撮像手段の被写界深度を基に、前記計測手段(少なくとも前記撮像手段)の高さ位置と、該高さ位置において計測対象とする前記被計測対象との対応付けを行う対応付け手段と、
前記計測手段(少なくとも前記撮像手段)を高さ方向に移動可能に構成され、前記対応付けによって定められた所定の高さ位置に対し順次、前記計測手段(少なくとも前記撮像手段)を位置決め可能な高さ調整手段と、
前記計測手段(少なくとも前記撮像手段)が位置決めされた所定の高さ位置において、前記第2照射手段から照射した前記所定のパターン光の下で前記撮像手段により撮像された画像データを基に、該高さ位置において計測対象となる前記被計測対象について三次元計測を実行可能な三次元計測手段とを備えたことを特徴とする三次元計測装置。
前記計測手段は、
前記被計測領域に対し、該被計測領域の高さ計測を行うための所定の光(例えばスリット光)を照射可能な第1照射手段と、
前記被計測領域に対し、前記被計測対象の三次元計測を行うための所定のパターン光を照射可能な第2照射手段と、
前記所定の光又は前記所定のパターン光が照射された前記被計測領域を撮像可能な撮像手段とを備え、
前記所定の光を照射して前記撮像手段により撮像された画像データを基に、前記被計測領域の高さ情報を取得する領域高さ取得手段と、
前記被計測領域の高さ情報を基に、該被計測領域に含まれる複数の前記被計測対象それぞれの計測基準面の高さ情報を算出する基準面高さ取得手段と、
前記複数の被計測対象について、それぞれ前記計測基準面の高さ情報を基に、該被計測対象の高さ方向全域を合焦状態で撮像するのに必要な要合焦範囲を特定する要合焦範囲特定手段と、
前記複数の被計測対象の要合焦範囲、及び、前記撮像手段の被写界深度を基に、前記計測手段(少なくとも前記撮像手段)の高さ位置と、該高さ位置において計測対象とする前記被計測対象との対応付けを行う対応付け手段と、
前記計測手段(少なくとも前記撮像手段)を高さ方向に移動可能に構成され、前記対応付けによって定められた所定の高さ位置に対し順次、前記計測手段(少なくとも前記撮像手段)を位置決め可能な高さ調整手段と、
前記計測手段(少なくとも前記撮像手段)が位置決めされた所定の高さ位置において、前記第2照射手段から照射した前記所定のパターン光の下で前記撮像手段により撮像された画像データを基に、該高さ位置において計測対象となる前記被計測対象について三次元計測を実行可能な三次元計測手段とを備えたことを特徴とする三次元計測装置。
上記手段1によれば、被計測物上の所定の被計測領域における被計測対象の三次元計測を実行するにあたり、計測手段(少なくとも撮像手段)の高さ調整を行う構成となっている。
より詳しくは、まず被計測領域に対し所定の光を照射し該被計測領域の高さを計測する。続いて、この被計測領域の高さ情報を基に、該被計測領域に含まれる各被計測対象の計測基準面の高さを求めると共に、各被計測対象の高さ方向全域を合焦状態で撮像するのに必要な要合焦範囲を特定する。
次に、各被計測対象の要合焦範囲及び撮像手段の被写界深度を基に、計測手段(少なくとも撮像手段)の高さ位置と、該高さ位置において計測対象とする被計測対象との対応付けを行う。そして、ここで定められた所定の高さ位置に対し順次、計測手段(少なくとも撮像手段)を移動させ、該高さ位置において計測対象となる被計測対象について半田計測を実行する。
かかる構成により、1つの被計測領域内のすべての被計測対象(最も低い位置にある被計測対象から、最も高い位置にある被計測対象までの高さ範囲)について、適切な合焦状態で撮像された画像データを用いて三次元計測を行うことができる。結果として、計測精度の向上等を図ることができる。
手段2.前記高さ調整手段による高さ調整が行われる前段階において、前記計測手段が前記被計測領域に位置合わせされた際の最初の高さ位置にて、前記三次元計測手段による前記三次元計測を実行した場合に、該被計測領域において必要な前記三次元計測の回数が増えるか否かを判定する回数判定手段を備え、
前記三次元計測の回数が増えない場合には、前記最初の高さ位置にて前記三次元計測手段による最初の前記三次元計測を実行することを特徴とする手段1に記載の三次元計測装置。
前記三次元計測の回数が増えない場合には、前記最初の高さ位置にて前記三次元計測手段による最初の前記三次元計測を実行することを特徴とする手段1に記載の三次元計測装置。
上記手段2によれば、計測手段(少なくとも撮像手段)の高さ方向への移動回数(高さ調整回数)が1回分少なくなるため、1つの被計測領域に係る総計測時間を短縮することができる。
手段3.前記高さ調整手段による高さ調整が行われる場合において、前記計測手段が前記被計測領域に位置合わせされた際の最初の高さ位置からの移動距離が、前記対応付けによって定められた前記計測手段(少なくとも前記撮像手段)の複数の高さ位置のうちの最下位の高さ位置へ移動した場合と、最上位の高さ位置へ移動した場合とで、どちらが短いかを判定する距離判定手段を備え、
前記高さ調整手段は、前記計測手段(少なくとも前記撮像手段)を前記最初の高さ位置から、前記最下位の高さ位置又は前記最上位の高さ位置のうち移動距離が短い方へ移動させることを特徴とする手段1又は2に記載の三次元計測装置。
前記高さ調整手段は、前記計測手段(少なくとも前記撮像手段)を前記最初の高さ位置から、前記最下位の高さ位置又は前記最上位の高さ位置のうち移動距離が短い方へ移動させることを特徴とする手段1又は2に記載の三次元計測装置。
上記手段3によれば、1つの被計測領域内のすべての被計測対象の計測を完了するまでに必要な高さ方向の総移動距離を短くすることができる。結果として、1つの被計測領域に係る総計測時間を短縮することができる。
手段4.前記対応付け手段は、
前記複数の被計測対象それぞれについて、該被計測対象の要合焦範囲全体を含む前記被写界深度が少なくとも1つは存在するように、前記計測手段(少なくとも前記撮像手段)の高さ位置と前記被計測対象との対応付けを行うことを特徴とする手段1乃至3のいずれかに記載の三次元計測装置。
前記複数の被計測対象それぞれについて、該被計測対象の要合焦範囲全体を含む前記被写界深度が少なくとも1つは存在するように、前記計測手段(少なくとも前記撮像手段)の高さ位置と前記被計測対象との対応付けを行うことを特徴とする手段1乃至3のいずれかに記載の三次元計測装置。
上記手段4によれば、少なくとも1回は、被計測対象の高さ方向全体を分断することなく同時に三次元計測することができるため、計測精度の向上を図ることができる。
手段5.所定の被計測物(例えばプリント基板)上の所定の被計測領域(被計測物の全域又はその一部)に対し、所定の照射手段及び所定の撮像手段を有する所定の計測手段(例えば計測ヘッド)を位置合わせし、前記被計測領域内に配設された被計測対象(例えばクリーム半田)について所定の三次元計測法(例えばパターン投影法)により三次元計測を行う三次元計測方法であって、
前記被計測領域に対し所定の光(例えばスリット光)を照射して撮像された画像データを基に、前記被計測領域の高さ情報を取得する領域高さ取得工程と、
前記被計測領域の高さ情報を基に、該被計測領域に含まれる複数の前記被計測対象それぞれの計測基準面の高さ情報を算出する基準面高さ取得工程と、
前記複数の被計測対象について、それぞれ前記計測基準面の高さ情報を基に、該被計測対象の高さ方向全域を合焦状態で撮像するのに必要な要合焦範囲を特定する要合焦範囲特定工程と、
前記複数の被計測対象の要合焦範囲、及び、前記撮像手段の被写界深度を基に、前記計測手段(少なくとも前記撮像手段)の高さ位置と、該高さ位置において計測対象とする前記被計測対象との対応付けを行う対応付け工程と、
前記計測手段(少なくとも前記撮像手段)を高さ方向に移動させ、前記対応付けによって定められた所定の高さ位置に対し順次、前記計測手段(少なくとも前記撮像手段)を位置決めする高さ調整工程と、
前記計測手段(少なくとも前記撮像手段)が位置決めされた所定の高さ位置において、前記被計測領域に対し所定のパターン光を照射して撮像された画像データを基に、該高さ位置において計測対象となる前記被計測対象について三次元計測を実行する三次元計測工程とを備えたことを特徴とする三次元計測方法。
前記被計測領域に対し所定の光(例えばスリット光)を照射して撮像された画像データを基に、前記被計測領域の高さ情報を取得する領域高さ取得工程と、
前記被計測領域の高さ情報を基に、該被計測領域に含まれる複数の前記被計測対象それぞれの計測基準面の高さ情報を算出する基準面高さ取得工程と、
前記複数の被計測対象について、それぞれ前記計測基準面の高さ情報を基に、該被計測対象の高さ方向全域を合焦状態で撮像するのに必要な要合焦範囲を特定する要合焦範囲特定工程と、
前記複数の被計測対象の要合焦範囲、及び、前記撮像手段の被写界深度を基に、前記計測手段(少なくとも前記撮像手段)の高さ位置と、該高さ位置において計測対象とする前記被計測対象との対応付けを行う対応付け工程と、
前記計測手段(少なくとも前記撮像手段)を高さ方向に移動させ、前記対応付けによって定められた所定の高さ位置に対し順次、前記計測手段(少なくとも前記撮像手段)を位置決めする高さ調整工程と、
前記計測手段(少なくとも前記撮像手段)が位置決めされた所定の高さ位置において、前記被計測領域に対し所定のパターン光を照射して撮像された画像データを基に、該高さ位置において計測対象となる前記被計測対象について三次元計測を実行する三次元計測工程とを備えたことを特徴とする三次元計測方法。
上記手段5によれば、上記手段1と同様の作用効果が奏される。
手段6.前記高さ調整工程が行われる前段階において、前記計測手段が前記被計測領域に位置合わせされた際の最初の高さ位置にて、前記三次元計測を実行した場合に、該被計測領域において必要な前記三次元計測の回数が増えるか否かを判定する回数判定工程を備え、
前記三次元計測の回数が増えない場合には、前記最初の高さ位置にて最初の前記三次元計測を実行することを特徴とする手段5に記載の三次元計測方法。
前記三次元計測の回数が増えない場合には、前記最初の高さ位置にて最初の前記三次元計測を実行することを特徴とする手段5に記載の三次元計測方法。
上記手段6によれば、上記手段2と同様の作用効果が奏される。
手段7.前記高さ調整工程が行われる場合において、前記計測手段が前記被計測領域に位置合わせされた際の最初の高さ位置からの移動距離が、前記対応付けによって定められた前記計測手段(少なくとも前記撮像手段)の複数の高さ位置のうちの最下位の高さ位置へ移動した場合と、最上位の高さ位置へ移動した場合とで、どちらが短いかを判定する距離判定工程を備え、
前記高さ調整工程においては、前記計測手段(少なくとも前記撮像手段)を前記最初の高さ位置から、前記最下位の高さ位置又は前記最上位の高さ位置のうち移動距離が短い方へ移動させることを特徴とする手段5又は6に記載の三次元計測方法。
前記高さ調整工程においては、前記計測手段(少なくとも前記撮像手段)を前記最初の高さ位置から、前記最下位の高さ位置又は前記最上位の高さ位置のうち移動距離が短い方へ移動させることを特徴とする手段5又は6に記載の三次元計測方法。
上記手段7によれば、上記手段3と同様の作用効果が奏される。
手段8.前記対応付け工程において、
前記複数の被計測対象それぞれについて、該被計測対象の要合焦範囲全体を含む前記被写界深度が少なくとも1つは存在するように、前記計測手段(少なくとも前記撮像手段)の高さ位置と前記被計測対象との対応付けを行うことを特徴とする手段5乃至7のいずれかに記載の三次元計測方法。
前記複数の被計測対象それぞれについて、該被計測対象の要合焦範囲全体を含む前記被写界深度が少なくとも1つは存在するように、前記計測手段(少なくとも前記撮像手段)の高さ位置と前記被計測対象との対応付けを行うことを特徴とする手段5乃至7のいずれかに記載の三次元計測方法。
上記手段8によれば、上記手段4と同様の作用効果が奏される。
尚、上記「被計測物」としては、例えばクリーム半田が印刷(又は塗布)されたプリント基板などが挙げられる。つまり、上記各手段に記載の三次元計測装置(三次元計測方法)を用いることにより、プリント基板に印刷等されたクリーム半田の三次元計測を行うことができる。ひいては、クリーム半田の検査において、その計測値に基づいてクリーム半田の良否判定を行うことができる。従って、かかる検査において、上記作用効果が奏されることとなり、精度よく良否判定を行うことができる。結果として、半田検査における検査精度の向上を図ることができる。
また、上記「三次元計測を行うための所定のパターン光」としては、縞状(例えば正弦波状)の光強度分布を有するパターン光(縞パターン)などが挙げられる。かかるパターン光を照射することにより、位相シフト法による三次元計測を行うことができる。結果として、三次元計測の計測精度の向上等を図ることができる。
位相シフト法のように、位相の異なるパターン光の下で撮像し取得した複数の画像データの輝度値の違いを基に三次元計測を行う構成においては、輝度値の誤差が僅かであっても、計測精度に多大な影響を与えるおそれがある。従って、位相シフト法による三次元計測を行う構成の下において上記各手段の作用効果がより奏功することとなる。特に正弦波状の光強度分布を有するパターン光は、光強度分布(波形)が崩れやすいため、より高い精度が要求される。
位相シフト法を利用した三次元計測装置(三次元計測方法)における上記三次元計測手段(三次元計測工程)は、例えば所定のパターン光を位相を異ならせて複数通り照射して撮像された光強度分布の異なる複数通りの画像データを基に、位相シフト法により被計測対象に係る三次元計測を実行する構成となっている。
以下、一実施形態について図面を参照しつつ説明する。まず本実施形態において被計測物となるプリント基板1の構成について詳しく説明する(図2,3参照)。図2は、プリント基板1の部分拡大断面図である。図3は、プリント基板1の概略構成を示す平面模式図である。
図2,3に示すように、プリント基板1は、ガラスエポキシ樹脂等からなる平板状のベース基板2の表面上に、銅箔からなる電極パターン3Aやランド3Bが形成されてなる。ベース基板2の表面上には、ランド3B及びその近傍を除く部分にレジスト膜4がコーティングされている。そして、ランド3B上に、被計測対象となるクリーム半田5が印刷(又は塗布)される。
尚、本実施形態に係るプリント基板1は、例えば電気自動車などに搭載される車載用プリント基板であって、インバータ回路など、比較的大きな負荷電流が流れる電子部品が実装されるパワー回路部PAや、これを制御する制御回路など、比較的小さな信号電流が流れる電子部品が実装される制御回路部PBが混在した構成となっている。
次に、本実施形態における三次元計測装置を構成する基板検査装置10について詳しく説明する(図1参照)。図1は、基板検査装置10の概略構成を示す模式図である。以下、図1の紙面左右方向を「X軸方向」とし、紙面前後方向を「Y軸方向」とし、紙面上下方向(鉛直方向)を「Z軸方向」として説明する。
基板検査装置10は、プリント基板1に印刷されたクリーム半田5の印刷状態を検査する半田印刷検査装置である。基板検査装置10は、プリント基板1の搬送や位置決め等を行う搬送機構11と、プリント基板1の計測を行うための計測手段としての計測ヘッド12と、搬送機構11や計測ヘッド12の駆動制御など基板検査装置10内における各種制御や画像処理、演算処理を実施するための制御装置40(図4参照)とを備えている。
搬送機構11は、プリント基板1の搬送方向(Y軸方向)に沿って配置された一対の搬送レール11aと、各搬送レール11aに対し回転可能に配設された無端のコンベアベルト11bと、該コンベアベルト11bを駆動するモータ等の駆動手段(図示略)と、プリント基板1を所定位置に位置決めするためのチャック機構(図示略)と備え、制御装置40により駆動制御される。
上記構成の下、基板検査装置10へ搬入されたプリント基板1は、搬送方向と直交する幅方向(X軸方向)の両側縁部がそれぞれ搬送レール11aに挿し込まれると共に、コンベアベルト11b上に載置される。続いて、コンベアベルト11bが動作を開始し、プリント基板1が所定の検査位置まで搬送される。プリント基板1が検査位置に達すると、コンベアベルト11bが停止すると共に、チャック機構が作動する。このチャック機構の動作により、コンベアベルト11bが押し上げられ、コンベアベルト11bと搬送レール11aの上辺部によってプリント基板1の両側縁部が挟持された状態となる。これにより、プリント基板1が検査位置に位置決め固定される。検査が終了すると、チャック機構による固定が解除されると共に、コンベアベルト11bが動作を開始する。これにより、プリント基板1は、基板検査装置10から搬出される。勿論、搬送機構11の構成は、上記形態に限定されるものではなく、他の構成を採用してもよい。
計測ヘッド12は、プリント基板1の搬送路(一対の搬送レール11a)の上方に配設されている。計測ヘッド12は、プリント基板1上の所定の検査範囲W(図3参照)に対し斜め上方からスリット光(ライン光)を照射可能な照射装置13と、所定の検査範囲Wに対し斜め上方から縞状の光強度分布を有するパターン光(以下、「縞パターン」という)を投影可能な投影装置14と、前記スリット光が照射された検査範囲W又は前記縞パターンが投影された検査範囲Wを真上から撮像する撮像手段としてのカメラ15と、X軸方向への移動を可能とするX軸移動機構16(図4参照)と、Y軸方向への移動を可能とするY軸移動機構17(図4参照)と、Z軸方向への移動を可能とするZ軸移動機構18(図4参照)とを備え、制御装置40により駆動制御される。
尚、図3に示すように、プリント基板1上の所定の検査範囲Wは、カメラ15の撮像視野(撮像範囲)Kに合わせて、プリント基板1上に予め設定された複数のエリア(検査範囲W1,W2,W3,W4)のうちの1つのエリアである。従って、検査範囲Wの大きさは、カメラ15の撮像視野Kの大きさと略同一となっている。「検査範囲W」が本実施形態における「被計測領域」に相当する。
制御装置40は、X軸移動機構16及びY軸移動機構17を駆動制御することにより、計測ヘッド12(撮像視野K)を、検査位置に位置決め固定されたプリント基板1上の任意の検査範囲Wの上方位置へ移動することができる。そして、プリント基板1上に設定された複数の検査範囲W1~W4に計測ヘッド12を順次移動させつつ、各検査範囲Wに係る視野内検査処理を実行していくことで、プリント基板1全域に係る半田印刷検査を実行する構成となっている。
加えて、制御装置40は、Z軸移動機構18を駆動制御することにより、計測ヘッド12(カメラ15)とプリント基板1との相対高さ関係を変更することができる。従って、Z軸移動機構18及びこれを駆動制御する制御装置40の機能により本実施形態における「高さ調整手段」が構成されることとなる。
照射装置13は、公知のものであるため、詳細な図示は省略するが、所定の光を発する光源や、該光源からの光をスリット光に変換する変換部などを備え、制御装置40により駆動制御される。本実施形態では、プリント基板1に対し斜め上方からY軸方向と平行な複数ラインのスリット光を照射可能に構成されている。「照射装置13」が本実施形態における「第1照射手段」を構成し、「スリット光」が「高さ計測を行うための所定の光」に相当する。
投影装置14は、図1に示すように、所定の光を発する光源19と、該光源19からの光を縞パターンに変換する格子板20と、該格子板20により生成された縞パターンをプリント基板1上に結像する投影光学系としての投影レンズユニット21と、格子板20をスライド変位させ、プリント基板1に投影される縞パターンの位相をシフトさせるピエゾ素子等の駆動機構(図示略)とを備え、制御装置40により駆動制御される。
投影装置14は、その光軸J1がX-Z平面に平行し、かつ、Z軸方向に対し所定角度α(例えば30°)傾斜するように配置されている。「投影装置14」が本実施形態における「第2照射手段」を構成し、「縞パターン」が「三次元計測を行うための所定のパターン光」に相当する。
光源19は、白色光を出射するハロゲンランプにより構成されている。光源19から出射された光は、図示しない前処理レンズ群等を介して平行光化された状態で光軸J1に沿って格子板20に入射する。尚、光源19として、ハロゲンランプに代えて、白色LEDなど他の光源を用いる構成としてもよい。
格子板20は、所定の透光素材(例えばガラスやアクリル樹脂等)により平板状又はフィルム状に形成された基材上に、図示しない格子パターンが印刷(蒸着)形成されてなる。格子パターンは、Y軸方向に直線状に形成されかつ所定の透過率で光を透過する透光部と、Y軸方向に沿って直線状に形成されかつ少なくとも一部の光を遮る遮光部とがX-Z平面において交互に並ぶように構成されている。
投影レンズユニット21は、入射側レンズ及び出射側レンズを一体に備えた両側テレセントリックレンズ(両側テレセントリック光学系)により構成されている。但し、図1においては、簡素化のため、投影レンズユニット21を1つのレンズとして図示している。
ここで、入射側レンズは、格子板20から出射された光(縞パターン)を集光するものであり、入射側で光軸J1と主光線とが平行となるテレセントリック構造を有する。また、出射側レンズは、入射側レンズを透過した光(縞パターン)の像をプリント基板1上に結像させるためのものであり、出射側で光軸J1と主光線とが平行となるテレセントリック構造を有する。
尚、本実施形態に係る投影装置14においては、プリント基板1上に投影される縞パターンが投影範囲(本実施形態では撮像視野Kと略同一範囲)全域において合焦するように、すなわちプリント基板1に対して、格子板20及び投影レンズユニット21の主面がシャインプルーフの条件を満たすように、光軸J1に対し格子板20が傾くように設定されている(但し、図1においては簡素化して図示している。)。
上記構成の下、投影装置14において、光源19から出射された光は格子板20に入射する。そして、格子板20内を透過した光は、縞パターンとして出射され、投影レンズユニット21を介してプリント基板1上に投影される。これにより、本実施形態では、プリント基板1の搬送方向(Y軸方向)に平行な縞パターンが投影されることとなる。
尚、通常、格子を通過する光は完全な平行光でなく、透光部及び遮光部の境界部における回折作用等に起因して、投影される縞パターンの「明部」及び「暗部」の境界部に中間階調域が生じることとなる。そのため、プリント基板1に対し投影される縞パターンは、プリント基板1の搬送方向(Y軸方向)と直交する方向(X軸方向)に沿って正弦波状の光強度分布を有するパターン光となる。
カメラ15は、図1に示すように、複数の受光素子が二次元配列された受光面を有する撮像素子15aと、該撮像素子15aに対し撮像視野K内(縞パターンが投影されたプリント基板1の検査範囲W)の像を結像させる撮像光学系としての撮像レンズユニット15bとを有し、その光軸J2がプリント基板1の上面に垂直な鉛直方向(Z軸方向)に沿って設定されている。本実施形態では、撮像素子15aとしてCCDエリアセンサを採用している。
撮像レンズユニット15bは、物体側レンズ、開口絞り、像側レンズ等を一体に備えた両側テレセントリックレンズ(両側テレセントリック光学系)により構成されている。但し、図1においては、簡素化のため、撮像レンズユニット15bを1つのレンズとして図示している。
ここで、物体側レンズは、プリント基板1からの反射光を集光するものであり、物体側で光軸J2と主光線とが平行となるテレセントリック構造を有する。また、像側レンズは、物体側レンズから開口絞りを透過した光を撮像素子15aの受光面に結像させるためのものであり、像側で光軸J2と主光線とが平行となるテレセントリック構造を有する。
カメラ15によって撮像され取得された画像データは、随時、該カメラ15内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置40に入力され、後述する画像データ記憶装置44に記憶される。そして、制御装置40は、該画像データを基に、後述するような画像処理や演算処理等を実施する。
次に制御装置40の電気的構成について図4を参照して説明する。図4は、基板検査装置10の電気的構成を示すブロック図である。
図4に示すように、制御装置40は、基板検査装置10全体の制御を司るマイクロコンピュータ41、キーボードやマウス、タッチパネル等で構成される「入力手段」としての入力装置42、CRTや液晶などの表示画面を有する「表示手段」としての表示装置43、カメラ15により撮像され取得された画像データなどを記憶するための画像データ記憶装置44、該画像データに基づいて得られた三次元計測結果など、各種演算結果を記憶するための演算結果記憶装置45、ガーバデータなどの各種情報を予め記憶しておくための設定データ記憶装置46などを備えている。
マイクロコンピュータ41は、演算手段としてのCPU41aや、各種プログラムを記憶するROM41b、演算データや入出力データなどの各種データを一時的に記憶するRAM41cなどを備え、上記各装置42~46等と電気的に接続されている。そして、これら各装置42~46等との間で各種データや信号の入出力制御を行う機能を有する。
設定データ記憶装置46には、プリント基板1に設定された複数の検査範囲W1~W4、並びに、これらに対するカメラ15の撮像視野Kの移動順序に関する情報などが記憶されている。ここで「撮像視野Kの移動順序」とは、プリント基板1上に設定された複数の検査範囲W1~W4について、いかなる順序でカメラ15の撮像視野Kを移動させていくかを定めたものである。
尚、プリント基板1に係る複数の検査範囲W(本実施形態ではW1~W4)並びにこれらに対する撮像視野Kの移動順序の設定は、ガーバデータ等を基にして事前に所定のプログラムにより自動で又は作業者により手動で行われる。
例えば図3に示した例では、右上の検査範囲W1を起点として検査が開始され、撮像視野Kが「検査範囲W1」→「検査範囲W2」→「検査範囲W3」→「検査範囲W4」の順序で移動し各検査範囲Wについて検査が行なわれることで、プリント基板1全域を検査するように設定されている。
次に基板検査装置10により行われるプリント基板1の検査ルーチンについて詳しく説明する。かかる検査ルーチンは、制御装置40(マイクロコンピュータ41)により実行されるものである。
上述したように、基板検査装置10へ搬入されたプリント基板1が所定の検査位置に位置決め固定されると、制御装置40は、まずプリント基板1の位置検出処理を実行する。
より詳しくは、制御装置40は、プリント基板1上に付された位置決め用マーク(図示略)を検出し、該検出したマークの位置情報(座標)と、ガーバデータに記憶されたマークの位置情報(座標)とを基に、プリント基板1の位置情報(傾きや位置ズレなど)を算出する。これにより、プリント基板1の位置検出処理を終了する。そして、このプリント基板1の位置情報を基に、計測ヘッド12(カメラ15)とプリント基板1との相対位置関係のズレを補正する補正処理を実行する。
その後、制御装置40は、X軸移動機構16及びY軸移動機構17を駆動制御して、設定データ記憶装置46に記憶された検査順序に従って、計測ヘッド12をプリント基板1上の「1」番目の検査範囲W1に対応する位置へ移動させる移動処理を実行する。
計測ヘッド12の移動処理が完了し、カメラ15の撮像視野Kがプリント基板1上の「1」番目の検査範囲W1に合わせられると、該検査範囲W1に係る視野内検査処理を実行する。かかる視野内検査処理の詳細については後述する(他の検査範囲W2,W3,W4に係る視野内検査処理についても同様)。
その後、プリント基板1上の「1」番目の検査範囲W1に係る視野内検査処理が終了すると、設定データ記憶装置46に記憶された検査順序に従って、計測ヘッド12をプリント基板1上の「2」番目の検査範囲W2に対応する位置へ移動させる移動処理を開始する。
以降同様に、プリント基板1上の「2」番目~「4」番目の検査範囲W2~W4について視野内検査処理が実行されることにより、プリント基板1全体に係る半田印刷検査が終了する。
次にプリント基板1の各検査範囲Wにて行われる視野内検査処理について図5のフローチャートを参照して詳しく説明する。かかる視野内検査処理は、制御装置40(マイクロコンピュータ41)によって実行されるものである。
まず制御装置40は、ステップS1において検査範囲Wの高さ計測を行う。ここでは、検査範囲Wにおけるランド3B表面やレジスト膜4表面の高さ位置など計測することにより、検査範囲Wにおけるプリント基板1の大よその高さ位置を計測する。ステップS1に係る処理工程が本実施形態における「領域高さ取得工程」に相当し、かかる処理工程を実行する制御装置40の機能により「領域高さ取得手段」が構成される。
具体的に、本実施形態では、公知の光切断法により高さ計測を行う。つまり、照射装置13を駆動させ、検査範囲Wに対し斜め上方から、互いに平行な複数ラインのスリット光を照射しつつ、該検査範囲Wをカメラ15により撮像する。そして、カメラ15により取得された画像データを基にスリット光の像を三角測量の原理に基づいて解析することにより、検査範囲W(プリント基板1)の高さを計測する。ここで取得された検査範囲Wの高さ情報(高さ、反り、傾斜などの各種情報)は演算結果記憶装置45に記憶される。
次に、制御装置40は、ステップS2において、各クリーム半田5の計測基準面となる各ランド3Bの表面の高さ位置を算出する。ステップS2に係る処理工程が本実施形態における「基準面高さ取得工程」に相当し、かかる処理工程を実行する制御装置40の機能により「基準面高さ取得手段」が構成される。
具体的に、本実施形態では、ステップS1で取得した検査範囲Wの高さ情報を基に、予め設定データ記憶装置46に記憶されたガーバデータなどの各種情報を参酌して、検査範囲W内にある全てのランド3Bの表面の大よその高さ位置を算出する。ここで算出された各ランド3Bの表面の高さ情報は演算結果記憶装置45に記憶される。尚、ステップS2においては、厳密さを求めていないため、ランド3B近傍のレジスト膜4表面の高さを計測基準面の高さとして代用してもよい。
次に、制御装置40は、ステップS3において、検査範囲W内にある全てのクリーム半田5について、該クリーム半田5の高さ方向全域を合焦状態で撮像するのに必要な要合焦範囲をそれぞれ算出する。ステップS3に係る処理工程が本実施形態における「要合焦範囲特定工程」に相当し、かかる処理工程を実行する制御装置40の機能により「要合焦範囲特定手段」が構成される。
具体的には、まずステップS2で取得した各ランド3Bの表面の高さ位置を、該ランド3Bに印刷されたクリーム半田5の要合焦範囲の下限値として設定する。続いて、この下限値に対し、予め設定データ記憶装置46に記憶された良品のクリーム半田5の高さ許容最大値T(図6,7参照)を加算した値を、各クリーム半田5の要合焦範囲の上限値として設定する。
次に、制御装置40は、ステップS4において、計測ヘッド12の高さ位置と、該高さ位置において計測対象とするクリーム半田5との対応付けを行う。ステップS5に係る処理工程が本実施形態における「対応付け工程」に相当し、かかる処理工程を実行する制御装置40の機能により「対応付け手段」が構成される。
詳しくは、ステップS3で取得した各クリーム半田5の要合焦範囲、及び、予め設定データ記憶装置46に記憶されたカメラ15の被写界深度を基に前記対応付けを行う。
ここで、図6,7に示した2つの例を参照して前記対応付けについて説明する。図6,7は、計測ヘッド12の高さ位置と、該高さ位置において計測対象とするクリーム半田5との対応関係の一例を示す模式図である。
尚、図6,7においては、所定の検査範囲W内に9個のクリーム半田5(クリーム半田5A~5I)が存在するとの仮定の下、これら9個のクリーム半田5A~5Iを水平方向(X-Y平面)における位置関係を無視して、その高さ位置に配置している。
また、図6,7中において、「Q0」は、計測ヘッド12が検査範囲Wに位置合わせされた際の「最初の高さ位置」にある場合の被写界深度を示す。同様に、「Q1」、「Q2」、「Q3」は、それぞれ計測ヘッド12がZ軸方向における「第1高さ位置」、「第2高さ位置」、「第3高さ位置」にある場合の被写界深度を示す。
つまり、図6,7に示した例では、計測ヘッド12が「第1高さ位置」にある場合の被写界深度Q1において、クリーム半田5A,5B,5C,5Dの4つを合焦状態で撮像し計測することができ、計測ヘッド12が「第2高さ位置」にある場合の被写界深度Q2において、クリーム半田5E、5Fの2つを合焦状態で撮像し計測することができ、計測ヘッド12が「第3高さ位置」にある場合の被写界深度Q3において、クリーム半田5G,5H,5Iの3つを合焦状態で撮像し計測することができるように、前記対応付けが行われている。
次に、制御装置40は、ステップS5において、ステップS4にて行われた前記対応付けの結果を参酌して、現在の計測ヘッド12の高さ位置、すなわち計測ヘッド12が検査範囲Wに位置合わせされた際の「最初の高さ位置」にて、後述する「半田計測(位相シフト法を利用したクリーム半田5の三次元計測)」を実行した場合に、該検査範囲Wにおいて必要な「半田計測」の回数が増えるか否かを判定する。
ステップS5に係る処理工程が本実施形態における「回数判定工程」に相当し、かかる処理工程を実行する制御装置40の機能により「回数判定手段」が構成される。
ここで肯定判定された場合、すなわち「半田計測」の回数が増えると判定された場合にはステップS8へ移行し、否定判定された場合、すなわち「半田計測」の回数が増えないと判定された場合にはステップS6へ移行する。
そして、制御装置40は、ステップS6において、現在の高さ位置(最初の高さ位置)にて最初の「半田計測」を実行する。
例えば図6の例(ケース1)では、計測ヘッド12が「最初の高さ位置」のままでも、クリーム半田5E、5Fを合焦状態で撮像し計測することができる状態にある。この場合、計測ヘッド12は、まず「最初の高さ位置」において「被写界深度Q0」内に存在するクリーム半田5E、5Fについて「半田計測(この検査範囲Wにおける1回目の半田計測)」を実行する。
その後、図6の例(ケース1)では、例えば計測ヘッド12が「第1高さ位置」へ移動して「被写界深度Q1」内に存在するクリーム半田5A,5B,5C,5Dについて「半田計測(この検査範囲Wにおける2回目の半田計測)」を実行した後、「第3高さ位置」へ移動して「被写界深度Q3」内に存在するクリーム半田5G,5H,5Iについて「半田計測(この検査範囲Wにおける3回目の半田計測)」を実行すればよい。
つまり、図6の例(ケース1)では、計測ヘッド12が「第2高さ位置」へ移動する動作工程を省略することができ、Z軸方向への移動回数(高さ調整回数)を1回少なくすることができる。このような場合に、本実施形態では、ステップS5において否定判定(「半田計測」の回数が増えないと判定)されることとなる。
一方、図7の例(ケース2)においても、計測ヘッド12が「最初の高さ位置」のまま、クリーム半田5C,5D,5Eの3つを合焦状態で撮像し計測することができる状態にはある。
しかしながら、このケースでは、仮に計測ヘッド12が「最初の高さ位置」において「被写界深度Q0」内に存在する3つのクリーム半田5C,5D,5Eについて「半田計測(この検査範囲Wにおける1回目の半田計測)」を実行したとしても、その後、例えば計測ヘッド12は「第1高さ位置」へ移動して「被写界深度Q1」内に存在するクリーム半田5A,5Bについて「半田計測(この検査範囲Wにおける2回目の半田計測)」を実行した後、「第2高さ位置」へ移動して「被写界深度Q2」内に存在するクリーム半田5Fについて「半田計測(この検査範囲Wにおける3回目の半田計測)」を実行し、さらにその後、「第3高さ位置」へ移動して「被写界深度Q3」内に存在するクリーム半田5G,5H,5Iについて「半田計測(この検査範囲Wにおける4回目の半田計測)」を実行しなければならず、必要な「半田計測」の回数が4回に増えてしまう。
このような場合に、本実施形態では、ステップS5において肯定判定(「半田計測」の回数が増えると判定)されることとなる。つまり、ステップS5の処理工程を経ることにより、例えば図7の例(ケース2)では、計測ヘッド12が「最初の高さ位置」において「被写界深度Q0」に係る「半田計測」を実行することなく、例えば「第1高さ位置」へ移動して「被写界深度Q1」内に存在するクリーム半田5A,5B,5C,5Dについて「半田計測(この検査範囲Wにおける1回目の半田計測)」を実行した後、「第2高さ位置」へ移動して「被写界深度Q2」内に存在するクリーム半田5E,5Fについて「半田計測(この検査範囲Wにおける2回目の半田計測)」を実行し、さらにその後、「第3高さ位置」へ移動して「被写界深度Q3」内に存在するクリーム半田5G,5H,5Iについて「半田計測(この検査範囲Wにおける3回目の半田計測)」を実行することとなり、必要な「半田計測」の回数は3回となる。
さて、ステップ6に続くステップS7において、制御装置40は、検査範囲W内のすべてのクリーム半田5について「半田計測」が完了したか否かを判定する。つまり、計測ヘッド12が「最初の高さ位置」において「被写界深度Q0」内について行った1回の「半田計測」によって、検査範囲W内のすべてのクリーム半田5について「半田計測」が完了したか否かを判定する。
ここで肯定判定された場合、すなわち検査範囲W内のすべてのクリーム半田5について「半田計測」が完了した場合には、そのまま本処理を終了する。一方、ステップS7において、否定判定された場合、すなわち検査範囲W内のすべてのクリーム半田5について「半田計測」が完了していない場合には、ステップS8へ移行する。
ステップS8において、制御装置40は、未計測のクリーム半田5を計測するために、計測ヘッド12の高さ調整が複数回必要か否かを判定する。
ここで肯定判定された場合、すなわち計測ヘッド12の高さ調整が残り複数回必要な場合には、ステップS11へ移行する。一方、否定判定された場合、すなわち計測ヘッド12の高さ調整が残り1回のみで良い場合には、ステップS9へ移行する。
ステップS9において、制御装置40は、Z軸移動機構18を駆動制御して、計測ヘッド12を所定の高さ位置へ移動させ位置決めする。続くステップS10において、制御装置40は、この高さ位置において、未計測のクリーム半田5について「半田計測」を実行する。その後、本処理を終了する。「半田計測」の詳細については後述する。
ステップS9(後述のステップS12,S14,S16についても同様)に係る処理工程が本実施形態における「高さ調整工程」に相当し、かかる処理工程を実行する制御装置40の機能により「高さ調整手段」が構成される。また、ステップS10(後述のステップS13,S15,S17についても同様)に係る処理工程(半田計測)が本実施形態における「三次元計測工程」に相当し、かかる処理工程を実行する制御装置40の機能により「三次元計測手段」が構成される。
一方、ステップS8において肯定判定され移行したステップS11において、制御装置40は、現在の計測ヘッド12の高さ位置、すなわち計測ヘッド12が検査範囲Wに位置合わせされた際の「最初の高さ位置」から、上記ステップS4の対応付けによって定められた計測ヘッド12の複数の高さ位置の中で最も下位に位置する高さ位置(最下高さ位置)へ移動した場合と、最も上位に位置する高さ位置(最上高さ位置)へ移動した場合とでは、最下高さ位置へ移動した方が計測ヘッド12の移動距離が短いか否かを判定する。
尚、上記対応付けによって定められた複数の高さ位置に対し、最下高さ位置からZ軸方向へ順次上昇していく計測ヘッド12の移動距離と、最上高さ位置からZ軸方向へ順次降下していく計測ヘッド12の移動距離は同じであるため、最下高さ位置又は最上高さ位置のうち、「最初の高さ位置」からの移動距離が短い方へ移動した方が、検査範囲W内のすべてのクリーム半田5について「半田計測」が完了するまでに計測ヘッド12が移動する移動距離の合計(総移動距離)は短くなる。
ステップS11に係る処理工程が本実施形態における「距離判定工程」に相当し、かかる処理工程を実行する制御装置40の機能により「距離判定手段」が構成される。
ここで、肯定判定された場合、すなわち最下高さ位置へ移動した方が計測ヘッド12の移動距離が短いと判定された場合には、ステップS12へ移行する。
そして、制御装置40は、ステップS12において、Z軸移動機構18を駆動制御して、計測ヘッド12を最下高さ位置へ移動させ位置決めすると共に、続くステップS13において、最下高さ位置に係る「半田計測」を実行する。その後、ステップS16へ移行する。
一方、ステップS11において否定判定された場合、すなわち最上高さ位置へ移動した方が計測ヘッド12の移動距離が短いと判定された場合には、ステップS14へ移行する。
そして、制御装置40は、ステップS14において、Z軸移動機構18を駆動制御して、計測ヘッド12を最上高さ位置へ移動させ位置決めすると共に、続くステップS15において、最上高さ位置に係る「半田計測」を実行する。その後、ステップS16へ移行する。
例えば図6,7の例(ケース1,2)では、両者とも、計測ヘッド12が「最初の高さ位置」により近い「第1高さ位置」へ移動して「被写界深度Q1」内について「半田計測」を実行することとなる。
ここで、仮に計測ヘッド12が「最初の高さ位置」からより遠い「第3高さ位置」へ移動して「被写界深度Q3」内に係る「半田計測」を先に実行した場合には、検査範囲W内のすべてのクリーム半田5について「半田計測」が完了するまでに計測ヘッド12が移動する総移動距離が長くなってしまう。
ステップS16において、制御装置40は、Z軸移動機構18を駆動制御して、計測ヘッド12を現在の高さ位置に最も近い未計測の高さ位置へ移動させ位置決めすると共に、続くステップS17において、この高さ位置に係る「半田計測」を実行する。その後、ステップS18へ移行する。
ステップS18において、制御装置40は、検査範囲W内のすべてのクリーム半田5について「半田計測」が完了したか否かを判定する。ここで肯定判定された場合、すなわち検査範囲W内のすべてのクリーム半田5について「半田計測」が完了した場合には、そのまま本処理を終了する。
一方、ステップS18において、否定判定された場合、すなわち検査範囲W内のすべてのクリーム半田5について「半田計測」が完了していない場合には、再度ステップS16へ移行し、検査範囲W内のすべてのクリーム半田5について「半田計測」が完了するまで、上記一連の処理を繰り返す。
次に上記ステップS10等において行われる「半田計測(位相シフト法を利用したクリーム半田5の三次元計測)」について詳しく説明する。
本実施形態に係る「半田計測」では、検査範囲Wについて、投影装置14から投影される縞パターンの位相を変化させつつ、位相の異なる縞パターンの下で4回の撮像処理を行うことにより、光強度分布の異なる4通りの画像データを取得する。以下、詳しく説明する。
上述したように、制御装置40は、所定の検査範囲Wにおいて、計測ヘッド12の高さ調整が完了すると、まず投影装置14の格子板20をスライド変位させ、該格子板20に形成された格子パターンの位置を所定の基準位置(例えば位相「0°」の位置)に設定する。
格子板20の位置決めが完了すると、制御装置40は、投影装置14の光源19を発光させ、所定の縞パターンを投影すると共に、カメラ15を駆動制御して、該縞パターンの下での1回目の撮像処理を実行する。
その後、制御装置40は、所定の縞パターンの下での1回目の撮像処理の終了と同時に、光源19を消灯すると共に、格子板20をスライド変位させる。具体的には、格子板20に形成された格子パターンの位置を前記基準位置から、縞パターンの位相が4分の1ピッチ(90°)ずれる第2の位置へスライド変位させる。
格子板20のスライド変位が完了すると、制御装置40は、光源19を発光させ、所定の縞パターンを投影すると共に、カメラ15を駆動制御して、該縞パターンの下での2回目の撮像処理を実行する。
以後、同様の処理を繰り返し行うことで、90°ずつ(4分の1ピッチずつ)位相の異なる縞パターンの下で光強度分布の異なる4通りの画像データを取得する。これにより、正弦波状の光強度分布を有する縞パターンの位相を90°ずつシフトさせた4通りの画像データを取得することができる。
そして、制御装置40は、上記のように取得した所定の高さ位置に係る4通りの画像データ(各座標の4通りの輝度値)を基に公知の位相シフト法により、該高さ位置において計測対象となるクリーム半田5について三次元計測(各座標の高さ計測)を行う。かかる三次元計測結果は演算結果記憶装置45に記憶される。
ここで、公知の位相シフト法について説明する。上記4通りの画像データにおけるプリント基板1上の所定座標位置の光強度(輝度)I0,I1,I2,I3は、それぞれ下記式(1)、(2)、(3)、(4)により表すことができる。
I0=αsinθ+β ・・・(1)
I1=αsin(θ+90°)+β =αcosθ+β ・・・(2)
I2=αsin(θ+180°)+β=-αsinθ+β ・・・(3)
I3=αsin(θ+270°)+β=-αcosθ+β ・・・(4)
但し、α:ゲイン、β:オフセット、θ:縞パターンの位相。
I1=αsin(θ+90°)+β =αcosθ+β ・・・(2)
I2=αsin(θ+180°)+β=-αsinθ+β ・・・(3)
I3=αsin(θ+270°)+β=-αcosθ+β ・・・(4)
但し、α:ゲイン、β:オフセット、θ:縞パターンの位相。
そして、上記式(1)、(2)、(3)、(4)を位相θについて解くと、下記式(5)を導き出すことができる。
θ=tan-1{(I0-I2)/(I1-I3)} ・・(5)
このように算出された位相θを用いることにより、三角測量の原理に基づき、プリント基板1上の各座標(X,Y)における高さ(Z)を求めることができる。
このように算出された位相θを用いることにより、三角測量の原理に基づき、プリント基板1上の各座標(X,Y)における高さ(Z)を求めることができる。
次に、制御装置40は、上記のようにして得られた三次元計測結果(各座標における高さデータ)に基づき、クリーム半田5の印刷状態の良否判定処理を行う。具体的に、制御装置40は、上記のように得られた各クリーム半田5の計測結果に基づいて、各ランド3B(パワー回路部PA用のランドや、制御回路部PB用のランド)ごとに定められた判定値より所定長以上、高くなったクリーム半田5の印刷範囲を検出し、この範囲内での各部位の高さを積分することにより、印刷されたクリーム半田5の量を算出する。
続いて、制御装置40は、このようにして求めた各クリーム半田5の位置、面積、高さ又は量等のデータを、予め設定データ記憶装置46に記憶されている基準データ(ガーバデータなど)と比較判定し、この比較結果が許容範囲内にあるか否かによって、そのクリーム半田5の印刷状態の良否を判定する。各クリーム半田5の良否判定結果は演算結果記憶装置45に記憶される。
そして、制御装置40は、検査範囲W内のすべてのクリーム半田5について「半田計測(良否判定を含む)」が完了し、該検査範囲Wに係る視野内検査処理が終了すると、計測ヘッド12を次の検査範囲Wへと移動させる。以降、上記一連の処理が、プリント基板1上の全ての検査範囲W1~W4で繰り返し行われることで、プリント基板1全体に係る半田印刷検査が終了する。
以上詳述したように、本実施形態によれば、プリント基板1上の所定の検査範囲Wにおけるクリーム半田5の三次元計測(半田計測)を実行するにあたり、計測ヘッド12の高さ調整を行う構成となっている。
より詳しくは、まず検査範囲Wに対し照射装置13からスリット光を照射し該検査範囲Wの高さを計測する。続いて、この検査範囲Wの高さ情報を基に、該検査範囲Wに含まれる各クリーム半田5の計測基準面となる各ランド3Bの表面の高さを求めると共に、各クリーム半田5の高さ方向全域を合焦状態で撮像するのに必要な要合焦範囲を特定する。
次に、各クリーム半田5の要合焦範囲及びカメラ15の被写界深度を基に、計測ヘッド12の高さ位置と、該高さ位置において計測対象とするクリーム半田5との対応付けを行う。そして、ここで定められた所定の高さ位置に対し順次、計測ヘッド12を移動させ、該高さ位置において計測対象となるクリーム半田5について半田計測を実行する。
かかる構成により、1つの検査範囲W内のすべてのクリーム半田5(最も低い位置にあるクリーム半田5から、最も高い位置にあるクリーム半田5までの高さ範囲)について、適切な合焦状態で撮像された画像データを用いて三次元計測を行うことができる。結果として、計測精度の向上等を図ることができる。
また、本実施形態では、計測ヘッド12の高さ位置と、該高さ位置において計測対象とするクリーム半田5との対応付けを行う工程(ステップS4)において、図6,7に示した例では、複数のクリーム半田5それぞれについて、該クリーム半田5の要合焦範囲全体を含むカメラ15の被写界深度が少なくとも1つは存在するように対応付けが行われる構成となっている。
これにより、少なくとも1回は、クリーム半田5の高さ方向全体を分断することなく同時に三次元計測(半田計測)することができるため、計測精度の向上を図ることができる。
さらに、上記実施形態では、計測ヘッド12が検査範囲Wに位置合わせされた際の「最初の高さ位置」にて「半田計測」を実行した場合に、該検査範囲Wにおいて必要な「半田計測」の回数が増えるか否かを判定し(ステップS5)、ここで「半田計測」の回数が増えないと判定された場合には、「最初の高さ位置」にて最初の「半田計測」を実行する(ステップS6)構成となっている。
これにより、計測ヘッド12の高さ方向への移動回数(高さ調整回数)が1回分少なくなるため、1つの検査範囲Wに係る総計測時間を短縮することができる。
加えて、本実施形態では、計測ヘッド12が検査範囲Wに位置合わせされた際の「最初の高さ位置」から、高さ調整が複数回必要な場合(ステップS8)において、移動先となる複数の高さ位置のうちの最下高さ位置又は最上高さ位置のいずれに移動する方が、計測ヘッド12の移動距離が短くなるかを判定し(ステップS11)、移動距離が短い方へ計測ヘッド12を移動させる構成(ステップS12、S14)となっている。
これにより、1つの検査範囲W内のすべてのクリーム半田5の計測を完了するまでに必要な高さ方向の総移動距離を短くすることができる。結果として、1つの検査範囲Wに係る総計測時間を短縮することができる。
尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。
(a)上記実施形態では、本願発明である三次元計測装置を、プリント基板1に印刷されたクリーム半田5の印刷状態を検査する基板検査装置(半田印刷検査装置)10に具体化したが、これに限らず、例えばプリント基板上に実装された電子部品など、他の対象を検査する装置に具体化してもよい。勿論、基板とは異なる対象物を被計測物として三次元計測を行う構成としてもよい。
(b)上記実施形態では、被計測領域として、カメラ15の撮像視野Kに合わせて、プリント基板1上に4つの検査範囲W1~W4が設定された構成となっているが、被計測領域の割振りは、これに限定されるものではない。例えばプリント基板1全域を1つの計測領域として設定してもよい。
また、上記実施形態では、所定位置に固定されたプリント基板1上の4つの検査範囲W1~W4に対し、計測ヘッド12をXY軸方向へ順次移動させることにより、プリント基板1全域の検査を行う構成となっている。これに限らず、XY軸方向に対し計測ヘッド12を固定させた状態で、プリント基板1をXY軸方向へ移動させることにより、プリント基板1全域の検査を行う構成としてもよい。
(c)上記実施形態では、位相シフト法による三次元計測(半田計測)を行う上で、縞パターンの位相が90°ずつ異なる4通りの画像データを取得する構成となっているが、位相シフト回数及び位相シフト量は、これらに限定されるものではない。位相シフト法により三次元計測可能な他の位相シフト回数及び位相シフト量を採用してもよい。
例えば位相が120°(又は90°)ずつ異なる3通りの画像データを取得して三次元計測を行う構成としてもよいし、位相が180°(又は90°)ずつ異なる2通りの画像データを取得して三次元計測を行う構成としてもよい。
(d)上記実施形態では、位相シフト法による三次元計測を行う上で、正弦波状の光強度分布を有するパターン光を投影する構成となっているが、これに限らず、例えば矩形波状や三角波状など非正弦波状の光強度分布を有するパターン光を投影する構成としてもよい。
但し、非正弦波状の光強度分布を有するパターン光を投影し三次元計測を行うよりも、正弦波状の光強度分布を有するパターン光を投影し三次元計測を行う方が計測精度が良い。そのため、計測精度の向上を図る点においては、正弦波状の光強度分布を有するパターン光を投影し三次元計測を行う構成とすることが好ましい。
(e)上記実施形態では、プリント基板1に対し縞パターンを投影し、クリーム半田5について位相シフト法により三次元計測を行う構成となっている。これに限らず、例えば空間コード法やモアレ法など、他の三次元計測法(パターン投影法)を利用して三次元計測を行う構成としてもよい。但し、クリーム半田5など小さな被計測対象を計測する場合には、位相シフト法など、計測精度の高い計測方法を採用することがより好ましい。
(f)上記実施形態では、プリント基板1に対しスリット光を照射し、光切断法により検査範囲W(プリント基板1)の高さ計測を行う構成となっているが、検査範囲Wの高さ計測方法は、これに限定されるものではない。
例えば照射装置13からレーザポインタを照射したり、投影装置14から照射される縞パターン(クリーム半田5の三次元計測用のパターン光)よりも縞の周期が長い(粗い)パターン光を照射して高さ計測を行うなど、光切断法とは異なる他の計測方法を採用してもよい。
(g)三次元計測用のパターン光を照射する第2照射手段(投影手段)の構成は、上記実施形態に限定されるものではない。
例えば上記実施形態の投影装置14は、光源19からの光を縞パターンに変換する変換手段として格子板20を用いた構成となっている。これに代えて、変換手段として液晶光学シャッタなどを用いた構成としてもよい。
また、投影装置14の投影レンズユニット21は、入射側レンズ及び出射側レンズを一体に備えた両側テレセントリックレンズ(両側テレセントリック光学系)により構成されている。これに限らず、投影レンズユニット21として、物体側テレセントリックレンズ(物体側テレセントリック光学系)を採用してもよい。また、テレセントリック構造を有しない構成としてもよい。
さらに、上記実施形態に係る投影装置14においては、プリント基板1に対して、格子板20及び投影レンズユニット21の主面がシャインプルーフの条件を満たすように設定されている。これに限らず、投影範囲全域における縞パターンの合焦状態によっては、必ずしもシャインプルーフの条件を満たすように設定されていなくともよい。
(h)撮像手段は、上記実施形態のカメラ15に限定されるものではない。例えば上記実施形態では、撮像素子15aとしてCCDエリアセンサを採用しているが、これに限らず、例えばCMOSエリアセンサ等を採用してもよい。
また、撮像レンズユニット15bが両側テレセントリックレンズ(両側テレセントリック光学系)により構成されている。これに限らず、撮像レンズユニット15bとして、物体側テレセントリックレンズ(物体側テレセントリック光学系)を採用してもよい。また、テレセントリック構造を有しない構成としてもよい。
(i)上記実施形態では、計測ヘッド12の高さ位置と、該高さ位置において計測対象とするクリーム半田5との対応付けを行う工程(ステップS4)において、図6,7に示した例では、複数のクリーム半田5それぞれについて、該クリーム半田5の要合焦範囲全体を含むカメラ15の被写界深度が少なくとも1つは存在するように対応付けが行われる構成となっているが、対応付け方法に、これに限定されるものではない。
例えば検査範囲W内のすべてのクリーム半田5を含む高さ範囲(最も低い位置にあるクリーム半田5の要合焦範囲の下限から、最も高い位置にあるクリーム半田5の要合焦範囲の上限までの高さ範囲)に対し、カメラ15の被写界深度が重ならないように、位置決めされる計測ヘッド12の高さ位置を割り振る構成としてもよい。
尚、かかる構成では、カメラ15の被写界深度内にクリーム半田5が含まれない計測ヘッド12の高さ位置も存在し得るため、この場合、この高さ位置においては、計測ヘッド12を停止させず、三次元計測(半田計測)を実施しない構成としてもよい。
また、前記構成では、1つのクリーム半田5の高さ方向複数部位を、異なる高さ位置での三次元計測(半田計測)により計測する場合も生じ得るため、計測精度の低下抑制を図る上では、上記実施形態に示したような方法が好ましい。
(j)上記実施形態では、計測ヘッド12が検査範囲Wに位置合わせされた際の「最初の高さ位置」にて「半田計測」を実行した場合に、該検査範囲Wにおいて必要な「半田計測」の回数が増えるか否かを判定し(ステップS5)、ここで「半田計測」の回数が増えないと判定された場合には、「最初の高さ位置」にて最初の「半田計測」を実行する(ステップS6)構成となっている。
計測ヘッド12の移動順序(計測手順)は、これに限定されるものではない。例えば上記判定処理等(ステップS5,S6)を行うことなく、計測ヘッド12が検査範囲Wに位置合わせされた際の「最初の高さ位置」から、上記対応付け(ステップS4)によって定められた複数の高さ位置のうちの最下高さ位置又は最上高さ位置へ移動し、最初の「半田計測」を実行する構成としてもよい。
(k)上記実施形態では、計測ヘッド12が検査範囲Wに位置合わせされた際の「最初の高さ位置」から、高さ調整が複数回必要な場合(ステップS8)において、移動先となる複数の高さ位置のうちの最下高さ位置又は最上高さ位置のいずれに移動する方が、計測ヘッド12の移動距離が短くなるかを判定し(ステップS11)、移動距離が短い方へ計測ヘッド12を移動させる構成(ステップS12、S14)となっている。
計測ヘッド12の移動順序(計測手順)は、これに限定されるものではない。例えば最下高さ位置又は最上高さ位置のうち、「最初の高さ位置」からの移動距離が遠い方へ計測ヘッド12を移動させる構成としてもよい。
(l)上記実施形態では、Z軸移動機構18により計測ヘッド12全体がZ軸方向へ移動するように構成されている。これに代えて、計測ヘッド12において、カメラ15が照射装置13及び投影装置14に対し相対移動可能に設けられ、カメラ15のみがZ軸方向へ移動可能となるような構成としてもよい。かかる場合、上記対応付け(ステップS4)に関しても、カメラ15の高さ位置と、該高さ位置において計測対象とするクリーム半田5との関係において行われることとなる。
1…プリント基板、3B…ランド、4…レジスト膜、5…クリーム半田、10…基板検査装置、12…計測ヘッド、13…照射装置、14…投影装置、15…カメラ、15a…撮像素子、18…Z軸移動機構、40…制御装置、44…画像データ記憶装置、45…演算結果記憶装置、46…設定データ記憶装置、K…撮像視野、Q0~Q3…被写界深度、W(W1~W4)…検査範囲。
Claims (8)
- 所定の被計測物上の所定の被計測領域に対し、所定の計測手段を位置合わせし、前記被計測領域内に配設された被計測対象について所定の三次元計測法により三次元計測を行う三次元計測装置であって、
前記計測手段は、
前記被計測領域に対し、該被計測領域の高さ計測を行うための所定の光を照射可能な第1照射手段と、
前記被計測領域に対し、前記被計測対象の三次元計測を行うための所定のパターン光を照射可能な第2照射手段と、
前記所定の光又は前記所定のパターン光が照射された前記被計測領域を撮像可能な撮像手段とを備え、
前記所定の光を照射して前記撮像手段により撮像された画像データを基に、前記被計測領域の高さ情報を取得する領域高さ取得手段と、
前記被計測領域の高さ情報を基に、該被計測領域に含まれる複数の前記被計測対象それぞれの計測基準面の高さ情報を算出する基準面高さ取得手段と、
前記複数の被計測対象について、それぞれ前記計測基準面の高さ情報を基に、該被計測対象の高さ方向全域を合焦状態で撮像するのに必要な要合焦範囲を特定する要合焦範囲特定手段と、
前記複数の被計測対象の要合焦範囲、及び、前記撮像手段の被写界深度を基に、前記計測手段の高さ位置と、該高さ位置において計測対象とする前記被計測対象との対応付けを行う対応付け手段と、
前記計測手段を高さ方向に移動可能に構成され、前記対応付けによって定められた所定の高さ位置に対し順次、前記計測手段を位置決め可能な高さ調整手段と、
前記計測手段が位置決めされた所定の高さ位置において、前記第2照射手段から照射した前記所定のパターン光の下で前記撮像手段により撮像された画像データを基に、該高さ位置において計測対象となる前記被計測対象について三次元計測を実行可能な三次元計測手段とを備えたことを特徴とする三次元計測装置。 - 前記高さ調整手段による高さ調整が行われる前段階において、前記計測手段が前記被計測領域に位置合わせされた際の最初の高さ位置にて、前記三次元計測手段による前記三次元計測を実行した場合に、該被計測領域において必要な前記三次元計測の回数が増えるか否かを判定する回数判定手段を備え、
前記三次元計測の回数が増えない場合には、前記最初の高さ位置にて前記三次元計測手段による最初の前記三次元計測を実行することを特徴とする請求項1に記載の三次元計測装置。 - 前記高さ調整手段による高さ調整が行われる場合において、前記計測手段が前記被計測領域に位置合わせされた際の最初の高さ位置からの移動距離が、前記対応付けによって定められた前記計測手段の複数の高さ位置のうちの最下位の高さ位置へ移動した場合と、最上位の高さ位置へ移動した場合とで、どちらが短いかを判定する距離判定手段を備え、
前記高さ調整手段は、前記計測手段を前記最初の高さ位置から、前記最下位の高さ位置又は前記最上位の高さ位置のうち移動距離が短い方へ移動させることを特徴とする請求項1又は2に記載の三次元計測装置。 - 前記対応付け手段は、
前記複数の被計測対象それぞれについて、該被計測対象の要合焦範囲全体を含む前記被写界深度が少なくとも1つは存在するように、前記計測手段の高さ位置と前記被計測対象との対応付けを行うことを特徴とする請求項1乃至3のいずれかに記載の三次元計測装置。 - 所定の被計測物上の所定の被計測領域に対し、所定の照射手段及び所定の撮像手段を有する所定の計測手段を位置合わせし、前記被計測領域内に配設された被計測対象について所定の三次元計測法により三次元計測を行う三次元計測方法であって、
前記被計測領域に対し所定の光を照射して撮像された画像データを基に、前記被計測領域の高さ情報を取得する領域高さ取得工程と、
前記被計測領域の高さ情報を基に、該被計測領域に含まれる複数の前記被計測対象それぞれの計測基準面の高さ情報を算出する基準面高さ取得工程と、
前記複数の被計測対象について、それぞれ前記計測基準面の高さ情報を基に、該被計測対象の高さ方向全域を合焦状態で撮像するのに必要な要合焦範囲を特定する要合焦範囲特定工程と、
前記複数の被計測対象の要合焦範囲、及び、前記撮像手段の被写界深度を基に、前記計測手段の高さ位置と、該高さ位置において計測対象とする前記被計測対象との対応付けを行う対応付け工程と、
前記計測手段を高さ方向に移動させ、前記対応付けによって定められた所定の高さ位置に対し順次、前記計測手段を位置決めする高さ調整工程と、
前記計測手段が位置決めされた所定の高さ位置において、前記被計測領域に対し所定のパターン光を照射して撮像された画像データを基に、該高さ位置において計測対象となる前記被計測対象について三次元計測を実行する三次元計測工程とを備えたことを特徴とする三次元計測方法。 - 前記高さ調整工程が行われる前段階において、前記計測手段が前記被計測領域に位置合わせされた際の最初の高さ位置にて、前記三次元計測を実行した場合に、該被計測領域において必要な前記三次元計測の回数が増えるか否かを判定する回数判定工程を備え、
前記三次元計測の回数が増えない場合には、前記最初の高さ位置にて最初の前記三次元計測を実行することを特徴とする請求項5に記載の三次元計測方法。 - 前記高さ調整工程が行われる場合において、前記計測手段が前記被計測領域に位置合わせされた際の最初の高さ位置からの移動距離が、前記対応付けによって定められた前記計測手段の複数の高さ位置のうちの最下位の高さ位置へ移動した場合と、最上位の高さ位置へ移動した場合とで、どちらが短いかを判定する距離判定工程を備え、
前記高さ調整工程においては、前記計測手段を前記最初の高さ位置から、前記最下位の高さ位置又は前記最上位の高さ位置のうち移動距離が短い方へ移動させることを特徴とする請求項5又は6に記載の三次元計測方法。 - 前記対応付け工程において、
前記複数の被計測対象それぞれについて、該被計測対象の要合焦範囲全体を含む前記被写界深度が少なくとも1つは存在するように、前記計測手段の高さ位置と前記被計測対象との対応付けを行うことを特徴とする請求項5乃至7のいずれかに記載の三次元計測方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019099886A JP7000380B2 (ja) | 2019-05-29 | 2019-05-29 | 三次元計測装置及び三次元計測方法 |
PCT/JP2020/015674 WO2020241061A1 (ja) | 2019-05-29 | 2020-04-07 | 三次元計測装置及び三次元計測方法 |
MX2021013700A MX2021013700A (es) | 2019-05-29 | 2020-04-07 | Aparato de medición tridimensional y método de medición tridimensional. |
CN202080032457.4A CN113767263B (zh) | 2019-05-29 | 2020-04-07 | 三维测量装置以及三维测量方法 |
DE112020002626.4T DE112020002626T5 (de) | 2019-05-29 | 2020-04-07 | Dreidimensionale Messvorrichtung und dreidimensionales Messverfahren |
US17/523,266 US11930600B2 (en) | 2019-05-29 | 2021-11-10 | Three-dimensional measurement apparatus and three-dimensional measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019099886A JP7000380B2 (ja) | 2019-05-29 | 2019-05-29 | 三次元計測装置及び三次元計測方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020193880A JP2020193880A (ja) | 2020-12-03 |
JP7000380B2 true JP7000380B2 (ja) | 2022-01-19 |
Family
ID=73548653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019099886A Active JP7000380B2 (ja) | 2019-05-29 | 2019-05-29 | 三次元計測装置及び三次元計測方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11930600B2 (ja) |
JP (1) | JP7000380B2 (ja) |
CN (1) | CN113767263B (ja) |
DE (1) | DE112020002626T5 (ja) |
MX (1) | MX2021013700A (ja) |
WO (1) | WO2020241061A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019126419A1 (de) * | 2019-05-08 | 2020-11-12 | Docter Optics Se | Vorrichtung zum optischen Abbilden von Merkmalen einer Hand |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014504721A (ja) | 2010-12-29 | 2014-02-24 | コ ヤン テクノロジー インコーポレイテッド | 基板検査方法 |
JP2017142188A (ja) | 2016-02-12 | 2017-08-17 | Ckd株式会社 | 三次元計測装置 |
JP2017227609A (ja) | 2016-06-24 | 2017-12-28 | 株式会社キーエンス | 三次元測定装置及びその制御方法 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3872007B2 (ja) | 2002-12-16 | 2007-01-24 | シーケーディ株式会社 | 計測装置及び検査装置 |
JP4862149B2 (ja) * | 2005-09-02 | 2012-01-25 | 国立大学法人 岡山大学 | クリームはんだ印刷の検査方法および装置 |
US7545512B2 (en) * | 2006-01-26 | 2009-06-09 | Koh Young Technology Inc. | Method for automated measurement of three-dimensional shape of circuit boards |
CN201069355Y (zh) * | 2007-07-09 | 2008-06-04 | 深圳市隆威自动化科技有限公司 | 一种三维锡膏测厚仪 |
JP4931728B2 (ja) * | 2007-08-08 | 2012-05-16 | シーケーディ株式会社 | 三次元計測装置及び基板検査機 |
CN101960253B (zh) * | 2008-02-26 | 2013-05-01 | 株式会社高永科技 | 三维形状测量装置及测量方法 |
JP4744610B2 (ja) * | 2009-01-20 | 2011-08-10 | シーケーディ株式会社 | 三次元計測装置 |
TWI432699B (zh) * | 2009-07-03 | 2014-04-01 | Koh Young Tech Inc | 用於檢查測量物件之方法 |
KR101078781B1 (ko) * | 2010-02-01 | 2011-11-01 | 주식회사 고영테크놀러지 | 3차원 형상 검사방법 |
US9124810B2 (en) * | 2010-04-14 | 2015-09-01 | Koh Young Technology Inc. | Method of checking an inspection apparatus and method of establishing a measurement variable of the inspection apparatus |
JP2011252864A (ja) * | 2010-06-03 | 2011-12-15 | Sony Corp | 検査装置及び検査方法 |
KR101547218B1 (ko) * | 2010-11-19 | 2015-08-25 | 주식회사 고영테크놀러지 | 기판 검사방법 |
US20130027538A1 (en) * | 2011-07-29 | 2013-01-31 | Mitutoyo Corporation | Multi-region focus navigation interface |
JP5847568B2 (ja) * | 2011-12-15 | 2016-01-27 | Ckd株式会社 | 三次元計測装置 |
KR101215083B1 (ko) * | 2011-12-27 | 2012-12-24 | 경북대학교 산학협력단 | 기판 검사장치의 높이정보 생성 방법 |
TWI546518B (zh) * | 2012-04-20 | 2016-08-21 | 德律科技股份有限公司 | 三維量測系統與三維量測方法 |
JP6116164B2 (ja) * | 2012-09-11 | 2017-04-19 | 株式会社キーエンス | 形状測定装置、形状測定方法および形状測定プログラム |
JP5997127B2 (ja) * | 2013-11-18 | 2016-09-28 | Ckd株式会社 | 半田印刷検査装置及び基板製造システム |
TWI526671B (zh) * | 2015-01-20 | 2016-03-21 | 德律科技股份有限公司 | 板彎量測裝置和其板彎量測方法 |
US10317205B2 (en) * | 2015-02-24 | 2019-06-11 | Rambus Inc. | Depth measurement using a phase grating |
JP6109255B2 (ja) * | 2015-07-14 | 2017-04-05 | Ckd株式会社 | 三次元計測装置 |
JP6027204B1 (ja) * | 2015-10-05 | 2016-11-16 | Ckd株式会社 | 三次元計測装置 |
JP2017122641A (ja) * | 2016-01-07 | 2017-07-13 | Ckd株式会社 | 三次元計測装置 |
JP6450697B2 (ja) * | 2016-03-22 | 2019-01-09 | Ckd株式会社 | 基板検査装置 |
JP6450700B2 (ja) * | 2016-03-29 | 2019-01-09 | Ckd株式会社 | 基板検査装置 |
-
2019
- 2019-05-29 JP JP2019099886A patent/JP7000380B2/ja active Active
-
2020
- 2020-04-07 CN CN202080032457.4A patent/CN113767263B/zh active Active
- 2020-04-07 MX MX2021013700A patent/MX2021013700A/es unknown
- 2020-04-07 DE DE112020002626.4T patent/DE112020002626T5/de active Pending
- 2020-04-07 WO PCT/JP2020/015674 patent/WO2020241061A1/ja active Application Filing
-
2021
- 2021-11-10 US US17/523,266 patent/US11930600B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014504721A (ja) | 2010-12-29 | 2014-02-24 | コ ヤン テクノロジー インコーポレイテッド | 基板検査方法 |
JP2017142188A (ja) | 2016-02-12 | 2017-08-17 | Ckd株式会社 | 三次元計測装置 |
JP2017227609A (ja) | 2016-06-24 | 2017-12-28 | 株式会社キーエンス | 三次元測定装置及びその制御方法 |
Also Published As
Publication number | Publication date |
---|---|
MX2021013700A (es) | 2022-05-30 |
US20220071073A1 (en) | 2022-03-03 |
CN113767263A (zh) | 2021-12-07 |
US11930600B2 (en) | 2024-03-12 |
JP2020193880A (ja) | 2020-12-03 |
CN113767263B (zh) | 2024-05-07 |
DE112020002626T5 (de) | 2022-02-17 |
WO2020241061A1 (ja) | 2020-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10563977B2 (en) | Three-dimensional measuring device | |
KR101121691B1 (ko) | 삼차원 계측 장치 | |
KR100716131B1 (ko) | 3차원 계측장치, 필터 격자 줄무늬판 및 조명 수단 | |
KR101158323B1 (ko) | 기판 검사방법 | |
JP5421763B2 (ja) | 検査装置および検査方法 | |
JP3878165B2 (ja) | 三次元計測装置 | |
US20050254066A1 (en) | Three-dimensional measuring instrument | |
KR20100051589A (ko) | 삼차원 계측 장치 및 기판 검사기 | |
KR101269976B1 (ko) | 엘이디 부품의 3차원비전검사장치 및 비전검사방법 | |
KR101578056B1 (ko) | 삼차원 계측 장치 | |
JP6276809B2 (ja) | 基板位置検出装置 | |
JP2005337943A (ja) | 三次元計測装置 | |
JP7000380B2 (ja) | 三次元計測装置及び三次元計測方法 | |
JP2007192623A (ja) | プリント回路基板のクリーム半田印刷状態の検査装置および検査方法 | |
JP3723139B2 (ja) | 三次元計測装置 | |
WO2020116052A1 (ja) | 投影装置及び三次元計測装置 | |
TWI580927B (zh) | Three - dimensional measuring device and three - dimensional measurement method | |
JP6847088B2 (ja) | 投影装置及び三次元計測装置 | |
JP2002081924A (ja) | 三次元計測装置 | |
KR20240060825A (ko) | 삼차원 계측용 연산 장치, 삼차원 계측용 프로그램, 기록 매체, 삼차원 계측 장치 및 삼차원 계측용 연산 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7000380 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |