JP6298116B2 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP6298116B2 JP6298116B2 JP2016154190A JP2016154190A JP6298116B2 JP 6298116 B2 JP6298116 B2 JP 6298116B2 JP 2016154190 A JP2016154190 A JP 2016154190A JP 2016154190 A JP2016154190 A JP 2016154190A JP 6298116 B2 JP6298116 B2 JP 6298116B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- pixel
- electrode
- transistor
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 270
- 239000003990 capacitor Substances 0.000 claims description 142
- 239000004973 liquid crystal related substance Substances 0.000 description 770
- 239000010408 film Substances 0.000 description 538
- 238000000034 method Methods 0.000 description 520
- 239000010410 layer Substances 0.000 description 458
- 239000000758 substrate Substances 0.000 description 375
- 238000006243 chemical reaction Methods 0.000 description 299
- 230000002829 reductive effect Effects 0.000 description 273
- 230000033001 locomotion Effects 0.000 description 223
- 230000006870 function Effects 0.000 description 151
- 238000004519 manufacturing process Methods 0.000 description 150
- 230000004044 response Effects 0.000 description 90
- 238000003860 storage Methods 0.000 description 90
- 239000000463 material Substances 0.000 description 83
- 238000012545 processing Methods 0.000 description 77
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 69
- 230000015654 memory Effects 0.000 description 59
- 229910052814 silicon oxide Inorganic materials 0.000 description 59
- 230000008901 benefit Effects 0.000 description 56
- 229910052710 silicon Inorganic materials 0.000 description 55
- 238000009832 plasma treatment Methods 0.000 description 53
- 230000008859 change Effects 0.000 description 51
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 49
- 239000010703 silicon Substances 0.000 description 49
- 239000012535 impurity Substances 0.000 description 47
- 229910052581 Si3N4 Inorganic materials 0.000 description 39
- 239000011159 matrix material Substances 0.000 description 39
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 39
- 230000005684 electric field Effects 0.000 description 37
- 125000006850 spacer group Chemical group 0.000 description 35
- 239000013598 vector Substances 0.000 description 34
- 230000000694 effects Effects 0.000 description 31
- 206010047571 Visual impairment Diseases 0.000 description 30
- 239000007789 gas Substances 0.000 description 29
- 230000006872 improvement Effects 0.000 description 29
- 238000002834 transmittance Methods 0.000 description 28
- 239000011521 glass Substances 0.000 description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- 238000010586 diagram Methods 0.000 description 23
- 230000005540 biological transmission Effects 0.000 description 22
- 238000004544 sputter deposition Methods 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 21
- 238000005259 measurement Methods 0.000 description 21
- 229910052760 oxygen Inorganic materials 0.000 description 21
- 239000001301 oxygen Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 21
- 229910045601 alloy Inorganic materials 0.000 description 20
- 239000000956 alloy Substances 0.000 description 20
- 230000006854 communication Effects 0.000 description 20
- 238000004891 communication Methods 0.000 description 20
- 239000002356 single layer Substances 0.000 description 20
- 238000000206 photolithography Methods 0.000 description 19
- 239000013078 crystal Substances 0.000 description 18
- 239000010936 titanium Substances 0.000 description 18
- 229910052719 titanium Inorganic materials 0.000 description 17
- 229910052750 molybdenum Inorganic materials 0.000 description 16
- 239000011651 chromium Substances 0.000 description 15
- 230000006866 deterioration Effects 0.000 description 15
- 238000005530 etching Methods 0.000 description 15
- 239000012298 atmosphere Substances 0.000 description 14
- 239000003086 colorant Substances 0.000 description 14
- 238000012937 correction Methods 0.000 description 14
- 230000002093 peripheral effect Effects 0.000 description 14
- 238000007639 printing Methods 0.000 description 14
- 229910052721 tungsten Inorganic materials 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 229910052804 chromium Inorganic materials 0.000 description 13
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 13
- 229910052743 krypton Inorganic materials 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 13
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 12
- 238000009792 diffusion process Methods 0.000 description 12
- 238000006073 displacement reaction Methods 0.000 description 12
- 238000009826 distribution Methods 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 125000001424 substituent group Chemical group 0.000 description 12
- 229910052715 tantalum Inorganic materials 0.000 description 12
- 238000002425 crystallisation Methods 0.000 description 11
- -1 electrophoresis Substances 0.000 description 11
- 229910052734 helium Inorganic materials 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 239000010409 thin film Substances 0.000 description 11
- 229910052779 Neodymium Inorganic materials 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 229910052754 neon Inorganic materials 0.000 description 10
- 229920003023 plastic Polymers 0.000 description 10
- 239000004033 plastic Substances 0.000 description 10
- 239000010453 quartz Substances 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 229910021417 amorphous silicon Inorganic materials 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 230000001590 oxidative effect Effects 0.000 description 9
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 9
- 238000002310 reflectometry Methods 0.000 description 9
- 230000002123 temporal effect Effects 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 125000001153 fluoro group Chemical group F* 0.000 description 8
- 238000012966 insertion method Methods 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 238000005121 nitriding Methods 0.000 description 8
- 125000000962 organic group Chemical group 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 229910052724 xenon Inorganic materials 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 229910052732 germanium Inorganic materials 0.000 description 7
- 150000004767 nitrides Chemical class 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 230000005236 sound signal Effects 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 238000001312 dry etching Methods 0.000 description 6
- 238000001962 electrophoresis Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 210000003491 skin Anatomy 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000006837 decompression Effects 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 239000011147 inorganic material Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000012780 transparent material Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 3
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 3
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 3
- 229920000298 Cellophane Polymers 0.000 description 3
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 3
- 235000009120 camo Nutrition 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 235000005607 chanvre indien Nutrition 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 210000004207 dermis Anatomy 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000011487 hemp Substances 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000010985 leather Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 206010033675 panniculitis Diseases 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000002964 rayon Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 210000004304 subcutaneous tissue Anatomy 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 239000005264 High molar mass liquid crystal Substances 0.000 description 2
- 239000004976 Lyotropic liquid crystal Substances 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 239000004988 Nematic liquid crystal Substances 0.000 description 2
- 229910020751 SixGe1-x Inorganic materials 0.000 description 2
- 229910002808 Si–O–Si Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000005407 aluminoborosilicate glass Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 238000005499 laser crystallization Methods 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 2
- 229960001730 nitrous oxide Drugs 0.000 description 2
- 235000013842 nitrous oxide Nutrition 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004985 Discotic Liquid Crystal Substance Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 1
- 206010057040 Temperature intolerance Diseases 0.000 description 1
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- ZCLBLRDCYNGAGV-UHFFFAOYSA-N [Si]=O.[Sn].[In] Chemical compound [Si]=O.[Sn].[In] ZCLBLRDCYNGAGV-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- NNBFNNNWANBMTI-UHFFFAOYSA-M brilliant green Chemical compound OS([O-])(=O)=O.C1=CC(N(CC)CC)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](CC)CC)C=C1 NNBFNNNWANBMTI-UHFFFAOYSA-M 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000008543 heat sensitivity Effects 0.000 description 1
- 238000000097 high energy electron diffraction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002497 iodine compounds Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005184 irreversible process Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Description
装置に関するものである。さらに、その表示装置を表示部に有する電子機器に関する。
らなる高品質化に向けて多くの研究がなされている。
いった利点を有する一方で、視野角が狭いといった問題を有する。近年では、視野角特性
を改善するためにマルチドメイン方式、即ち配向分割法の研究が多くなされている。例え
ば、VA方式(Vertical Alignment;垂直配向方式)にマルチドメイ
ン方式を組み合わせたMVA方式(Multi−domain Vertical Al
ignment;マルチドメイン型垂直配向方式)やPVA方式(Patterned
Vertical Alignment;パターン型垂直配向方式)等がある。
らせることで視野角の向上を図るといった研究も行われている(特許文献1)。
められる。そこで、本発明では、視野角特性に優れたさらに高品質な表示装置を提供する
ことを課題とする。
4に示す画素は、TFT30、液晶容量L1、液晶容量L2、保持容量C1及び保持容量
C2を有し、走査線3a及びデータ線(信号線)6aに接続されている。
とによるリークの存在が懸念される。図84に示す画素では、リークが生じた場合、ノー
ド11において保持容量C1、保持容量C2、及び液晶容量L2で閉ざされた部分におけ
る電荷保存則により一定の電位に保たれていた状態は失われ、ノード11の電位はリーク
が生じる前の初期状態の電位からかけ離れてくる。そのため、液晶容量L2の透過率は、
データ線6aに書き込む画像信号、即ち階調に応じた電位によって決定される透過率より
変化してしまう。その結果、所望の階調を得ることができなくなったり、画質が低下して
まう。このようにして、時間の経過に伴い、徐々に表示品位が低下する。よって、製品の
寿命が短くなってしまう。特に、ノーマリーブラックモードの表示装置では黒を表示する
ことができず、コントラストの低下を招く。
トラストに優れた表示装置を提供することを課題とする。または、表示品位に優れた表示
装置を提供することを課題とする。または、ノイズの影響を受けにくく、綺麗な表示を行
うことが可能な表示装置を提供することを課題とする。または、表示の劣化が生じにくい
表示装置を提供することを課題とする。または、製品寿命に優れた表示装置を提供するこ
とを課題とする。
記第1の走査線及び第2の走査線により制御される第3のスイッチと、第1の抵抗と、第
2の抵抗と、第1の液晶素子と、第2の液晶素子とを含む画素を有し、前記第1の液晶素
子及び第2の液晶素子の各々は、少なくとも画素電極と、共通電極と、前記画素電極及び
前記共通電極に制御される液晶とから構成され、前記第1の液晶素子の画素電極は、前記
第1のスイッチを介して第1の配線に電気的に接続され、前記第1の液晶素子の画素電極
は、前記第2のスイッチ及び前記第1の抵抗を介して前記第2の液晶素子の画素電極に電
気的に接続され、前記第2の液晶素子の画素電極は、前記第3のスイッチ及び前記第2の
抵抗を介して第2の配線と電気的に接続され、前記第1の液晶素子の共通電極は、前記第
2の液晶素子の共通電極と電気的に接続されることを特徴とする液晶表示装置である。
記第1の走査線及び第2の走査線により制御される第3のスイッチと、第1の抵抗と、第
2の抵抗と、第1の液晶素子と、第2の液晶素子と、第1の保持容量と、第2の保持容量
とを含む画素を有し、前記第1の液晶素子及び第2の液晶素子の各々は、少なくとも画素
電極と、共通電極と、前記画素電極及び前記共通電極に制御される液晶とから構成され、
前記第1の液晶素子の画素電極は、前記第1のスイッチを介して第1の配線に電気的に接
続され、前記第1の液晶素子の画素電極は、前記第2のスイッチ及び前記第1の抵抗を介
して前記第2の液晶素子の画素電極に電気的に接続され、前記第2の液晶素子の画素電極
は、前記第3のスイッチ及び前記第2の抵抗を介して第2の配線と電気的に接続され、前
記第1の液晶素子の画素電極は、前記第1の保持容量を介して前記第2の配線と電気的に
接続され、前記第2の液晶素子の画素電極は、前記第2の保持容量を介して前記第2の配
線と電気的に接続され、前記第1の液晶素子の共通電極は、前記第2の液晶素子の共通電
極と電気的に接続されることを特徴とする液晶表示装置である。
御される第2のスイッチと、前記第1の走査線及び第2の走査線により制御される第3の
スイッチと、第1の抵抗と、第2の抵抗と、第1の液晶素子と、第2の液晶素子とを含む
画素を有し、前記第1の液晶素子及び第2の液晶素子の各々は、少なくとも画素電極と、
共通電極と、前記画素電極及び前記共通電極に制御される液晶とから構成され、前記第1
の液晶素子の画素電極は、前記第1のスイッチを介して第1の配線に電気的に接続され、
前記第1の液晶素子の画素電極は、前記第2のスイッチ及び前記第1の抵抗を介して前記
第2の液晶素子の画素電極に電気的に接続され、前記第2の液晶素子の画素電極は、前記
第3のスイッチ及び前記第2の抵抗を介して第2の配線と電気的に接続され、前記第1の
液晶素子の共通電極は、前記第2の液晶素子の共通電極と電気的に接続されることを特徴
とする液晶表示装置である。
御される第2のスイッチと、前記第1の走査線及び第2の走査線により制御される第3の
スイッチと、第1の抵抗と、第2の抵抗と、第1の液晶素子と、第2の液晶素子とを含む
画素を有し、前記第1の液晶素子及び第2の液晶素子の各々は、少なくとも画素電極と、
共通電極と、前記画素電極及び前記共通電極に制御される液晶とから構成され、前記第1
の液晶素子の画素電極は、前記第1のスイッチを介して第1の配線に電気的に接続され、
前記第1の液晶素子の画素電極は、前記第2のスイッチ及び前記第1の抵抗を介して前記
第2の液晶素子の画素電極に電気的に接続され、前記第2の液晶素子の画素電極は、前記
第3のスイッチ及び前記第2の抵抗を介して第2の配線と電気的に接続され、前記第1の
液晶素子の画素電極は、前記第1の保持容量を介して前記第2の配線と電気的に接続され
、前記第2の液晶素子の画素電極は、前記第2の保持容量を介して前記第2の配線と電気
的に接続され、前記第1の液晶素子の共通電極は、前記第2の液晶素子の共通電極と電気
的に接続されることを特徴とする液晶表示装置である。
値より大きいことを特徴とする液晶表示装置である。
2のトランジスタと、第1の液晶素子と、第2の液晶素子と、第1の保持容量と、第2の
保持容量とを含む画素を有し、前記第1のトランジスタのゲート電極は、前記第1の走査
線に電気的に接続され、前記第2のトランジスタは、ゲート電極が前記第1の走査線に電
気的に接続されたトランジスタと、当該トランジスタと直列に設けられ、なおかつゲート
電極が第2の走査線に電気的に接続されたトランジスタとを有するトランジスタであり、
前記第1の液晶素子及び第2の液晶素子の各々は、少なくとも画素電極と、共通電極と、
前記画素電極及び前記共通電極に制御される液晶とから構成され、前記第1の液晶素子の
画素電極は、前記スイッチを介して第1の配線に電気的に接続され、前記第1の液晶素子
の画素電極は、前記第1のトランジスタを介して前記第2の液晶素子の画素電極に電気的
に接続され、前記第2の液晶素子の画素電極は、前記第2のトランジスタを介して第2の
配線と電気的に接続され、前記第1の液晶素子の画素電極は、前記第1の保持容量を介し
て前記第2の配線と電気的に接続され、前記第2の液晶素子の画素電極は、前記第2の保
持容量を介して前記第2の配線と電気的に接続され、前記第1の液晶素子の共通電極は、
前記第2の液晶素子の共通電極と電気的に接続されることを特徴とする液晶表示装置であ
る。
、第1の液晶素子と、第2の液晶素子と、第1の保持容量と、第2の保持容量とを含む画
素を有し、前記第1のトランジスタ及び前記第3のトランジスタのゲート電極は、前記第
1の走査線に電気的に接続され、前記第2のトランジスタは、ゲート電極が前記第1の走
査線に電気的に接続されたトランジスタと、当該トランジスタと直列に設けられ、なおか
つゲート電極が第2の走査線に電気的に接続されたトランジスタとを有するトランジスタ
であり、前記第1の液晶素子及び第2の液晶素子の各々は、少なくとも画素電極と、共通
電極と、前記画素電極及び前記共通電極に制御される液晶とから構成され、前記第1の液
晶素子の画素電極は、前記第3のトランジスタを介して第1の配線に電気的に接続され、
前記第1の液晶素子の画素電極は、前記第1のトランジスタを介して前記第2の液晶素子
の画素電極に電気的に接続され、前記第2の液晶素子の画素電極は、前記第2のトランジ
スタを介して第2の配線と電気的に接続され、前記第1の液晶素子の画素電極は、前記第
1の保持容量を介して前記第2の配線と電気的に接続され、前記第2の液晶素子の画素電
極は、前記第2の保持容量を介して前記第2の配線と電気的に接続され、前記第1の液晶
素子の共通電極は、前記第2の液晶素子の共通電極と電気的に接続されることを特徴とす
る液晶表示装置である。
ると、前記第3のトランジスタのW/Lは、前記第1のトランジスタまたは前記第2のト
ランジスタのW/Lより小さいことを特徴とする液晶表示装置である。
すると、前記第2のトランジスタのW/Lは前記第1のトランジスタのW/Lより大きい
ことを特徴とする液晶表示装置である。
発光素子を各画素に備えた発光装置、DMD(Digital Micromirror
Device)、PDP(Plasma Display Panel)、FED(F
ield Emission Display)等、アクティブマトリクス型の表示装置
がその範疇に含まれる。またパッシブマトリクス型の表示装置も含まれる。
チや機械的なスイッチなどがある。つまり、電流の流れを制御できるものであればよく、
特定のものに限定されない。例えば、スイッチとして、トランジスタ(例えば、バイポー
ラトランジスタ、MOSトランジスタなど)、ダイオード(例えば、PNダイオード、P
INダイオード、ショットキーダイオード、MIM(Metal Insulator
Metal)ダイオード、MIS(Metal Insulator Semicond
uctor)ダイオード、ダイオード接続のトランジスタなど)、サイリスタなどを用い
ることが出来る。または、これらを組み合わせた論理回路をスイッチとして用いることが
出来る。
MEMS(マイクロ・エレクトロ・メカニカル・システム)技術を用いたスイッチがある
。そのスイッチは、機械的に動かすことが出来る電極を有し、その電極が動くことによっ
て、接続と非接続とを制御して動作する。
動作するため、トランジスタの極性(導電型)は特に限定されない。ただし、オフ電流を
抑えたい場合、オフ電流が少ない方の極性のトランジスタを用いることが望ましい。オフ
電流が少ないトランジスタとしては、LDD領域を有するトランジスタやマルチゲート構
造を有するトランジスタ等がある。または、スイッチとして動作させるトランジスタのソ
ース端子の電位が、低電位側電源(Vss、GND、0Vなど)の電位に近い状態で動作
する場合はNチャネル型トランジスタを用いることが望ましい。反対に、ソース端子の電
位が、高電位側電源(Vddなど)の電位に近い状態で動作する場合はPチャネル型トラ
ンジスタを用いることが望ましい。なぜなら、Nチャネル型トランジスタではソース端子
が低電位側電源の電位に近い状態で動作するとき、Pチャネル型トランジスタではソース
端子が高電位側電源の電位に近い状態で動作するとき、ゲートとソースの間の電圧の絶対
値を大きくできるため、スイッチとして動作しやすいからである。また、ソースフォロワ
動作をしてしまうことが少ないため、出力電圧の大きさが小さくなってしまうことが少な
いからである。
型のスイッチをスイッチとして用いてもよい。CMOS型のスイッチにすると、Pチャネ
ル型トランジスタまたはNチャネル型トランジスタのどちらか一方のトランジスタが導通
すれば電流が流れるため、スイッチとして機能しやすくなる。例えば、スイッチへの入力
信号の電圧が高い場合でも、低い場合でも、適切に電圧を出力させることが出来る。さら
に、スイッチをオン、オフさせるための信号の電圧振幅値を小さくすることが出来るので
、消費電力を小さくすることも出来る。
たはドレイン端子の一方)と、出力端子(ソース端子またはドレイン端子の他方)と、導
通を制御する端子(ゲート端子)とを有している。一方、スイッチとしてダイオードを用
いる場合、スイッチは、導通を制御する端子を有していない場合がある。そのため、トラ
ンジスタよりもダイオードをスイッチとして用いた方が、端子を制御するための配線を少
なくすることが出来る。
されている場合と、AとBとが機能的に接続されている場合と、AとBとが直接接続され
ている場合とを含むものとする。ここで、A、Bは、対象物(例えば、装置、素子、回路
、配線、電極、端子、導電膜、層、など)であるとする。したがって、所定の接続関係、
例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関
係以外のものも含むものとする。
とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイ
オードなど)が、AとBとの間に1個以上配置されていてもよい。あるいは、AとBとが
機能的に接続されている場合として、AとBとの機能的な接続を可能とする回路(例えば
、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回
路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、
降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、
切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、
差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制
御回路など)が、AとBとの間に1個以上配置されていてもよい。あるいは、AとBとが
直接接続されている場合として、AとBとの間に他の素子や他の回路を挟まずに、AとB
とが直接接続されていてもよい。
されている場合(つまり、AとBとの間に他の素子や他の回路を間に介さずに接続されて
いる場合)と、AとBとが電気的に接続されている場合(つまり、AとBとの間に別の素
子や別の回路を挟んで接続されている場合)とを含むものとする。
的に接続されている場合(つまり、AとBとの間に別の素子や別の回路を挟んで接続され
ている場合)と、AとBとが機能的に接続されている場合(つまり、AとBとの間に別の
回路を挟んで機能的に接続されている場合)と、AとBとが直接接続されている場合(つ
まり、AとBとの間に別の素子や別の回路を挟まずに接続されている場合)とを含むもの
とする。つまり、電気的に接続されている、と明示的に記載する場合は、単に、接続され
ている、とのみ明示的に記載されている場合と同じであるとする。
置である発光装置は、様々な形態を用い、また様々な素子を有することが出来る。例えば
、表示素子、表示装置、発光素子または発光装置としては、EL素子(有機物及び無機物
を含むEL素子、有機EL素子、無機EL素子)、電子放出素子、液晶素子、電子インク
、電気泳動素子、グレーティングライトバルブ(GLV)、プラズマディスプレイ(PD
P)、デジタルマイクロミラーデバイス(DMD)、圧電セラミックディスプレイ、カー
ボンナノチューブ、など、電気磁気的作用により、コントラスト、輝度、反射率、透過率
などが変化する表示媒体を用いることができる。なお、EL素子を用いた表示装置として
はELディスプレイ、電子放出素子を用いた表示装置としてはフィールドエミッションデ
ィスプレイ(FED)やSED方式平面型ディスプレイ(SED:Surface−co
nduction Electron−emitter Disply)など、液晶素子
を用いた表示装置としては液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶デ
ィスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレ
イ)、電子インクや電気泳動素子を用いた表示装置としては電子ペーパーがある。
子である。なお、EL層としては、1重項励起子からの発光(蛍光)を利用するもの、3
重項励起子からの発光(燐光)を利用するもの、1重項励起子からの発光(蛍光)を利用
するものと3重項励起子からの発光(燐光)を利用するものとを含むもの、有機物によっ
て形成されたもの、無機物によって形成されたもの、有機物によって形成されたものと無
機物によって形成されたものとを含むもの、高分子の材料、低分子の材料、高分子の材料
と低分子の材料とを含むものなどを用いることができる。ただし、これに限定されず、E
L素子として様々なものを用いることができる。
えば、電子放出素子として、スピント型、カーボンナノチューブ(CNT)型、金属―絶
縁体―金属を積層したMIM(Metal−Insulator−Metal)型、金属
―絶縁体―半導体を積層したMIS(Metal−Insulator−Semicon
ductor)型、MOS型、シリコン型、薄膜ダイオード型、ダイヤモンド型、表面伝
導エミッタSCD型、オード型、ダイヤモンド型、表面伝導エミッタSCD型、金属―絶
縁体―半導体−金属型等の薄膜型、HEED型、EL型、ポーラスシリコン型、表面伝導
(SED)型などを用いることができる。ただし、これに限定されず、電子放出素子とし
て様々なものを用いることができる。
子であり、一対の電極、及び液晶により構成される。なお、液晶の光学的変調作用は、液
晶にかかる電界(横方向の電界、縦方向の電界又は斜め方向の電界を含む)によって制御
される。なお、液晶素子としては、ネマチック液晶、コレステリック液晶、スメクチック
液晶、ディスコチック液晶、サーモトロピック液晶、ライオトロピック液晶、リオトロピ
ック液晶、低分子液晶、高分子液晶、強誘電液晶、反強誘電液晶、主鎖型液晶、側鎖型高
分子液晶、プラズマアドレス液晶(PDLC)、バナナ型液晶、TN(Twisted
Nematic)モード、STN(Super Twisted Nematic)モー
ド、IPS(In−Plane−Switching)モード、FFS(Fringe
Field Switching)モード、MVA(Multi−domain Ver
tical Alignment)モード、PVA(Patterned Vertic
al Alignment)、ASV(Advanced Super View)モー
ド、ASM(Axially Symmetric aligned Micro−ce
ll)モード、OCB(Optical Compensated Birefring
ence)モード、ECB(Electrically Controlled Bir
efringence)モード、FLC(Ferroelectric Liquid
Crystal)モード、AFLC(AntiFerroelectric Liqui
d Crystal)モード、PDLC(Polymer Dispersed Liq
uid Crystal)モード、ゲストホストモードなどを用いることができる。ただ
し、これに限定されず、液晶素子として様々なものを用いることができる。
もの、電気泳動、粒子移動、粒子回転、相変化のような粒子により表示されるもの、フィ
ルムの一端が移動することにより表示されるもの、分子の発色/相変化により表示される
もの、分子の光吸収により表示されるもの、電子とホールが結合して自発光により表示さ
れるものなどのことをいう。例えば、電子ペーパーとして、マイクロカプセル型電気泳動
、水平移動型電気泳動、垂直移動型電気泳動、球状ツイストボール、磁気ツイストボール
、円柱ツイストボール方式、帯電トナー、電子粉流体、磁気泳動型、磁気感熱式、エレク
トロウェッテイング、光散乱(透明白濁)、コレステリック液晶/光導電層、コレステリ
ック液晶、双安定性ネマチック液晶、強誘電性液晶、2色性色素・液晶分散型、可動フィ
ルム、ロイコ染料発消色、フォトクロミック、エレクトロクロミック、エレクトロデポジ
ション、フレキシブル有機ELなどを用いることができる。ただし、これに限定されず、
電子ペーパーとして様々なものを用いることができる。ここで、マイクロカプセル型電気
泳動を用いることによって、電気泳動方式の欠点である泳動粒子の凝集、沈殿を解決する
ことができる。電子粉流体は、高速応答性、高反射率、広視野角、低消費電力、メモリ性
などのメリットを有する。
に形成し且つ溝内に蛍光体層を形成した基板とを狭い間隔で対向させて、希ガスを封入し
た構造を有する。なお、電極間に電圧をかけることによって紫外線を発生させ、蛍光体を
光らせることで、表示を行うことができる。なお、プラズマディスプレイとしては、DC
型PDP、AC型PDPでもよい。ここで、プラズマディスプレイパネルとしては、AS
W(Address While Sustain)駆動、サブフレームをリセット期間
、アドレス期間、維持期間に分割するADS(Address Display Sep
arated)駆動、CLEAR(Low Energy Address and R
eduction of False Contour Sequence)駆動、AL
IS(Alternate Lighting of Surfaces)方式、TER
ES(Techbology of Reciprocal Susfainer)駆動
などを用いることができる。ただし、これに限定されず、プラズマディスプレイとして様
々なものを用いることができる。
、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射
型液晶ディスプレイ)、グレーティングライトバルブ(GLV)を用いた表示装置、デジ
タルマイクロミラーデバイス(DMD)を用いた表示装置などの光源としては、エレクト
ロルミネッセンス、冷陰極管、熱陰極管、LED、レーザー光源、水銀ランプなどを用い
ることができる。ただし、これに限定されず、光源して様々なものを用いることができる
。
用いるトランジスタの種類に限定はない。例えば、非晶質シリコン、多結晶シリコン、微
結晶(マイクロクリスタル、セミアモルファスとも言う)シリコンなどに代表される非単
結晶半導体膜を有する薄膜トランジスタ(TFT)などを用いることが出来る。TFTを
用いる場合、様々なメリットがある。例えば、単結晶シリコンの場合よりも低い温度で製
造できるため、製造コストの削減、又は製造装置の大型化を図ることができる。製造装置
を大きくできるため、大型基板上に製造できる。そのため、同時に多くの個数の表示装置
を製造できるため、低コストで製造できる。さらに、製造温度が低いため、耐熱性の弱い
基板を用いることができる。そのため、透明基板上にトランジスタを製造できる。そして
、透明な基板上のトランジスタを用いて表示素子での光の透過を制御することが出来る。
あるいは、トランジスタの膜厚が薄いため、トランジスタを構成する膜の一部は、光を透
過させることが出来る。そのため、開口率が向上させることができる。
晶性をさらに向上させ、電気特性のよいトランジスタを製造することが可能となる。その
結果、ゲートドライバ回路(走査線駆動回路)やソースドライバ回路(信号線駆動回路)
、信号処理回路(信号生成回路、ガンマ補正回路、DA変換回路など)を基板上に一体形
成することが出来る。
晶性をさらに向上させ、電気特性のよいトランジスタを製造することが可能となる。この
とき、レーザー光の照射を行うことなく、熱処理を加えるだけで、結晶性を向上させるこ
とができる。その結果、ゲートドライバ回路(走査線駆動回路)やソースドライバ回路の
一部(アナログスイッチなど)を基板上に一体形成することが出来る。さらに、結晶化の
ためにレーザー光の照射を行わない場合は、シリコンの結晶性のムラを抑えることができ
る。そのため、綺麗な画像を表示することが出来る。
ことは可能である。
で行うことが望ましいが、それに限定されない。パネルの一部の領域のみにおいて、シリ
コンの結晶性を向上させてもよい。選択的に結晶性を向上させることは、レーザー光を選
択的に照射することなどにより可能である。例えば、画素以外の領域である周辺回路領域
にのみ、レーザー光を照射してもよい。または、ゲートドライバ回路、ソースドライバ回
路等の領域にのみ、レーザー光を照射してもよい。あるいは、ソースドライバ回路の一部
(例えば、アナログスイッチ)の領域にのみ、レーザー光を照射してもよい。その結果、
回路を高速に動作させる必要がある領域にのみ、シリコンの結晶化を向上させることがで
きる。画素領域は、高速に動作させる必要性が低いため、結晶性が向上されなくても、問
題なく画素回路を動作させることが出来る。結晶性を向上させる領域が少なくて済むため
、製造工程も短くすることが出来、スループットが向上し、製造コストを低減させること
が出来る。また、必要とされる製造装置の数も少なくて製造できるため、製造コストを低
減させることが出来る。
れらにより、特性やサイズや形状などのバラツキが少なく、電流供給能力が高く、サイズ
の小さいトランジスタを製造することができる。これらのトランジスタを用いると、回路
の低消費電力化、又は回路の高集積化を図ることができる。
どの化合物半導体または酸化物半導体を有するトランジスタや、さらに、これらの化合物
半導体または酸化物半導体を薄膜化した薄膜トランジスタなどを用いることが出来る。こ
れらにより、製造温度を低くでき、例えば、室温でトランジスタを製造することが可能と
なる。その結果、耐熱性の低い基板、例えばプラスチック基板やフィルム基板に直接トラ
ンジスタを形成することが出来る。なお、これらの化合物半導体または酸化物半導体を、
トランジスタのチャネル部分に用いるだけでなく、それ以外の用途で用いることも出来る
。例えば、これらの化合物半導体または酸化物半導体を抵抗素子、画素電極、透明電極と
して用いることができる。さらに、それらをトランジスタと同時に成膜又は形成できるた
め、コストを低減できる。
る。これらにより、室温で製造、低真空度で製造、又は大型基板上に製造することができ
る。また、マスク(レチクル)を用いなくても製造することが可能となるため、トランジ
スタのレイアウトを容易に変更することが出来る。さらに、レジストを用いる必要がない
ので、材料費が安くなり、工程数を削減できる。さらに、必要な部分にのみ膜を付けるた
め、全面に成膜した後でエッチングする、という製法よりも、材料が無駄にならず、低コ
ストにできる。
る。これらにより、曲げることが可能な基板上にトランジスタを形成することが出来る。
そのため、衝撃に強くできる。
タ、接合型トランジスタ、バイポーラトランジスタなどをトランジスタとして用いること
が出来る。MOS型トランジスタを用いることにより、トランジスタのサイズを小さくす
ることが出来る。よって、多数のトランジスタを搭載することができる。バイポーラトラ
ンジスタを用いることにより、大きな電流を流すことが出来る。よって、高速に回路を動
作させることができる。
成してもよい。これにより、低消費電力、小型化、高速動作などを実現することが出来る
。
のものに限定されることはない。トランジスタが形成される基板としては、例えば、単結
晶基板、SOI基板、ガラス基板、石英基板、プラスチック基板、紙基板、セロファン基
板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリ
ウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポ
リエステル)などを含む)、皮革基板、ゴム基板、ステンレス・スチル基板、ステンレス
・スチル・ホイルを有する基板などを用いることが出来る。あるいは、人などの動物の皮
膚(皮表、真皮)又は皮下組織を基板として用いてもよい。または、ある基板を用いてト
ランジスタを形成し、その後、別の基板にトランジスタを転置し、別の基板上にトランジ
スタを配置してもよい。トランジスタが転置される基板としては、単結晶基板、SOI基
板、ガラス基板、石英基板、プラスチック基板、紙基板、セロファン基板、石材基板、木
材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエ
ステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)など
を含む)、皮革基板、ゴム基板、ステンレス・スチル基板、ステンレス・スチル・ホイル
を有する基板などを用いることができる。あるいは、人などの動物の皮膚(皮表、真皮)
又は皮下組織を基板として用いてもよい。または、ある基板を用いてトランジスタを形成
し、その基板を研磨して薄くしてもよい。研磨される基板としては、単結晶基板、SOI
基板、ガラス基板、石英基板、プラスチック基板、紙基板、セロファン基板、石材基板、
木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリ
エステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)な
どを含む)、皮革基板、ゴム基板、ステンレス・スチル基板、ステンレス・スチル・ホイ
ルを有する基板などを用いることができる。あるいは、人などの動物の皮膚(皮表、真皮
)又は皮下組織を基板として用いてもよい。これらの基板を用いることにより、特性のよ
いトランジスタの形成、消費電力の小さいトランジスタの形成、壊れにくい装置の製造、
耐熱性の付与、軽量化、又は薄型化を図ることができる。
い。例えば、ゲート電極が2個以上のマルチゲート構造を用いてもよい。マルチゲート構
造にすると、チャネル領域が直列に接続されるため、複数のトランジスタが直列に接続さ
れた構成となる。マルチゲート構造により、オフ電流の低減、トランジスタの耐圧向上に
よる信頼性の向上を図ることができる。あるいは、マルチゲート構造により、飽和領域で
動作する時に、ドレイン・ソース間電圧が変化しても、ドレイン・ソース間電流があまり
変化せず、電圧・電流特性の傾きがフラットな特性にすることができる。電圧・電流特性
の傾きがフラットである特性を利用すると、理想的な電流源回路や、非常に高い抵抗値を
もつ能動負荷を実現することが出来る。その結果、特性のよい差動回路やカレントミラー
回路を実現することが出来る。また、チャネルの上下にゲート電極が配置されている構造
でもよい。チャネルの上下にゲート電極が配置されている構造にすることにより、チャネ
ル領域が増えるため、電流値の増加、又は空乏層ができやすくなることによるS値の低減
を図ることができる。チャネルの上下にゲート電極が配置されると、複数のトランジスタ
が並列に接続されたような構成となる。
域の下にゲート電極が配置されている構造でもよい。あるいは、正スタガ構造または逆ス
タガ構造でもよいし、チャネル領域が複数の領域に分かれていてもよいし、チャネル領域
が並列に接続されていてもよいし、チャネル領域が直列に接続されていてもよい。また、
チャネル領域(もしくはその一部)にソース電極やドレイン電極が重なっていてもよい。
チャネル領域(もしくはその一部)にソース電極やドレイン電極が重なる構造にすること
により、チャネル領域の一部に電荷がたまって、動作が不安定になることを防ぐことがで
きる。また、LDD領域を設けても良い。LDD領域を設けることにより、オフ電流の低
減、又はトランジスタの耐圧向上による信頼性の向上を図ることができる。あるいは、L
DD領域を設けることにより、飽和領域で動作する時に、ドレイン・ソース間電圧が変化
しても、ドレイン・ソース間電流があまり変化せず、電圧・電流特性の傾きがフラットな
特性にすることができる。
ることができる。したがって、所定の機能を実現させるために必要な回路の全てが、同一
の基板に形成されていてもよい。例えば、所定の機能を実現させるために必要な回路の全
てが、ガラス基板、プラスチック基板、単結晶基板、またはSOI基板を用いて形成され
ていてもよく、さまざまな基板を用いて形成されていてもよい。所定の機能を実現させる
ために必要な回路の全てが同じ基板を用いて形成されていることにより、部品点数の削減
によるコストの低減、又は回路部品との接続点数の低減による信頼性の向上を図ることが
できる。あるいは、所定の機能を実現させるために必要な回路の一部が、ある基板に形成
されており、所定の機能を実現させるために必要な回路の別の一部が、別の基板に形成さ
れていてもよい。つまり、所定の機能を実現させるために必要な回路の全てが同じ基板を
用いて形成されていなくてもよい。例えば、所定の機能を実現させるために必要な回路の
一部は、ガラス基板上にトランジスタを用いて形成され、所定の機能を実現させるために
必要な回路の別の一部は、単結晶基板上に形成され、単結晶基板上のトランジスタで構成
されたICチップをCOG(Chip On Glass)でガラス基板に接続して、ガ
ラス基板上にそのICチップを配置してもよい。あるいは、そのICチップをTAB(T
ape Automated Bonding)やプリント基板を用いてガラス基板と接
続してもよい。このように、回路の一部が同じ基板に形成されていることにより、部品点
数の削減によるコストの低減、又は回路部品との接続点数の低減による信頼性の向上を図
ることができる。また、駆動電圧が高い部分や駆動周波数が高い部分の回路は、消費電力
が大きくなってしまうので、そのような部分の回路は同じ基板に形成せず、そのかわりに
、例えば、単結晶基板上にその部分の回路を形成して、その回路で構成されたICチップ
を用いるようにすれば、消費電力の増加を防ぐことができる。
ては、一画素とは、一つの色要素を示すものとし、その色要素一つで明るさを表現する。
従って、そのときは、R(赤)G(緑)B(青)の色要素からなるカラー表示装置の場合
には、画像の最小単位は、Rの画素とGの画素とBの画素との三画素から構成されるもの
とする。なお、色要素は、三色に限定されず、三色以上を用いても良いし、RGB以外の
色を用いても良い。例えば、白色を加えて、RGBW(Wは白)としてもよい。また、R
GBに、例えば、イエロー、シアン、マゼンタ、エメラルドグリーン、朱色などを一色以
上追加してもよい。また、例えば、RGBの中の少なくとも一色に類似した色を、RGB
に追加してもよい。例えば、R、G、B1、B2としてもよい。B1とB2とは、どちら
も青色であるが、少し周波数が異なっている。同様に、R1、R2、G、Bとしてもよい
。このような色要素を用いることにより、より実物に近い表示を行うことができる。ある
いは、このような色要素を用いることにより、消費電力を低減することが出来る。また、
別の例としては、1つの色要素について、複数の領域を用いて明るさを制御する場合は、
その領域一つ分を一画素としてもよい。よって、一例として、面積階調を行う場合または
副画素(サブ画素)を有している場合、一つの色要素につき、明るさを制御する領域が複
数あり、その全体で階調を表現するわけであるが、明るさを制御する領域の一つ分を一画
素としてもよい。よって、その場合は、一つの色要素は、複数の画素で構成されることと
なる。あるいは、明るさを制御する領域が1つの色要素の中に複数あっても、それらをま
とめて、1つの色要素を1画素としてもよい。よって、その場合は、一つの色要素は、一
つの画素で構成されることとなる。また、1つの色要素について、複数の領域を用いて明
るさを制御する場合、画素によって、表示に寄与する領域の大きさが異なっている場合が
ある。また、一つの色要素につき複数ある、明るさを制御する領域において、各々に供給
する信号を僅かに異ならせるようにして、視野角を広げるようにしてもよい。つまり、1
つの色要素について、複数個ある領域が各々有する画素電極の電位が、各々異なっていて
もよい。その結果、液晶分子に加わる電圧が各画素電極によって各々異なる。よって、視
野角を広くすることが出来る。
える場合であるとする。一画素(一色分)と明示的に記載する場合は、一つの色要素につ
き、複数の領域がある場合、それらをまとめて一画素と考える場合であるとする。
に配置(配列)されている場合がある。ここで、画素がマトリクスに配置(配列)されて
いるとは、縦方向もしくは横方向において、画素が直線上に並んで配置されている場合や
、ギザギザな線上に配置されている場合を含む。よって、例えば三色の色要素(例えばR
GB)でフルカラー表示を行う場合に、ストライプ配置されている場合や、三つの色要素
のドットがデルタ配置されている場合も含む。さらに、ベイヤー配置されている場合も含
む。なお、色要素は、三色に限定されず、それ以上でもよく、例えば、RGBW(Wは白
)や、RGBに、イエロー、シアン、マゼンタなどを一色以上追加したものなどがある。
また、色要素のドット毎にその表示領域の大きさが異なっていてもよい。これにより、低
消費電力化、又は表示素子の長寿命化を図ることができる。
しないパッシブマトリクス方式を用いることが出来る。
ンジスタだけでなく、さまざまな能動素子(アクティブ素子、非線形素子)を用いること
が出来る。例えば、MIM(Metal Insulator Metal)やTFD(
Thin Film Diode)などを用いることも可能である。これらの素子は、製
造工程が少ないため、製造コストの低減、又は歩留まりの向上を図ることができる。さら
に、素子のサイズが小さいため、開口率を向上させることができ、低消費電力化や高輝度
化をはかることが出来る。
素子)を用いないパッシブマトリクス型を用いることも可能である。能動素子(アクティ
ブ素子、非線形素子)を用いないため、製造工程が少なく、製造コストの低減、又は歩留
まりの向上を図ることができる。また、能動素子(アクティブ素子、非線形素子)を用い
ないため、開口率を向上させることができ、低消費電力化や高輝度化をはかることが出来
る。
を有する素子であり、ドレイン領域とソース領域の間にチャネル領域を有しており、ドレ
イン領域とチャネル領域とソース領域とを介して電流を流すことが出来る。ここで、ソー
スとドレインとは、トランジスタの構造や動作条件等によって変わるため、いずれがソー
スまたはドレインであるかを限定することが困難である。そこで、本書類(明細書、特許
請求の範囲又は図面など)においては、ソース及びドレインとして機能する領域を、ソー
スもしくはドレインと呼ばない場合がある。その場合、一例としては、それぞれを第1端
子、第2端子と表記する場合がある。あるいは、それぞれを第1の電極、第2の電極と表
記する場合がある。あるいは、ソース領域、ドレイン領域と表記する場合がある。
する素子であってもよい。この場合も同様に、エミッタとコレクタとを、第1端子、第2
端子と表記する場合がある。
号線等とも言う)とを含んだ全体、もしくは、それらの一部のことを言う。ゲート電極と
は、チャネル領域を形成する半導体と、ゲート絶縁膜を介してオーバーラップしている部
分の導電膜のことを言う。なお、ゲート電極の一部は、LDD(Lightly Dop
ed Drain)領域又はソース領域(又はドレイン領域)と、ゲート絶縁膜を介して
オーバーラップしている場合もある。ゲート配線とは、各トランジスタのゲート電極の間
を接続するための配線、各画素の有するゲート電極の間を接続するための配線、又はゲー
ト電極と別の配線とを接続するための配線のことを言う。
電膜、配線など)も存在する。そのような部分(領域、導電膜、配線など)は、ゲート電
極と呼んでも良いし、ゲート配線と呼んでも良い。つまり、ゲート電極とゲート配線とが
、明確に区別できないような領域も存在する。例えば、延伸して配置されているゲート配
線の一部とチャネル領域がオーバーラップしている場合、その部分(領域、導電膜、配線
など)はゲート配線として機能しているが、ゲート電極としても機能していることになる
。よって、そのような部分(領域、導電膜、配線など)は、ゲート電極と呼んでも良いし
、ゲート配線と呼んでも良い。
つながっている部分(領域、導電膜、配線など)も、ゲート電極と呼んでも良い。同様に
、ゲート配線と同じ材料で形成され、ゲート配線と同じ島(アイランド)を形成してつな
がっている部分(領域、導電膜、配線など)も、ゲート配線と呼んでも良い。このような
部分(領域、導電膜、配線など)は、厳密な意味では、チャネル領域とオーバーラップし
ていない場合、又は別のゲート電極と接続させる機能を有していない場合がある。しかし
、製造時の仕様等の関係でゲート電極またはゲート配線と同じ材料で形成され、ゲート電
極またはゲート配線と同じ島(アイランド)を形成してつながっている部分(領域、導電
膜、配線など)がある。よって、そのような部分(領域、導電膜、配線など)もゲート電
極またはゲート配線と呼んでも良い。
電極とは、ゲート電極と同じ材料で形成された導電膜で接続される場合が多い。そのよう
な部分(領域、導電膜、配線など)は、ゲート電極とゲート電極とを接続させるための部
分(領域、導電膜、配線など)であるため、ゲート配線と呼んでも良いが、マルチゲート
のトランジスタを1つのトランジスタと見なすことも出来るため、ゲート電極と呼んでも
良い。つまり、ゲート電極またはゲート配線と同じ材料で形成され、ゲート電極またはゲ
ート配線と同じ島(アイランド)を形成してつながっている部分(領域、導電膜、配線な
ど)は、ゲート電極やゲート配線と呼んでも良い。さらに、例えば、ゲート電極とゲート
配線とを接続させている部分の導電膜であって、ゲート電極またはゲート配線とは異なる
材料で形成された導電膜も、ゲート電極と呼んでも良いし、ゲート配線と呼んでも良い。
極と電気的に接続されている部分(領域、導電膜、配線など)について、その一部分のこ
とを言う。
にトランジスタのゲートが接続されていない場合もある。この場合、ゲート配線、ゲート
線、ゲート信号線、走査線、走査信号線は、トランジスタのゲートと同じ層で形成された
配線、トランジスタのゲートと同じ材料で形成された配線またはトランジスタのゲートと
同時に成膜された配線を意味している場合がある。例としては、保持容量用配線、電源線
、基準電位供給配線などがある。
ータ線、データ信号線等とも言う)とを含んだ全体、もしくは、それらの一部のことを言
う。ソース領域とは、P型不純物(ボロンやガリウムなど)やN型不純物(リンやヒ素な
ど)が多く含まれる半導体領域のことを言う。従って、少しだけP型不純物やN型不純物
が含まれる領域、いわゆる、LDD(Lightly Doped Drain)領域は
、ソース領域には含まれない。ソース電極とは、ソース領域とは別の材料で形成され、ソ
ース領域と電気的に接続されて配置されている部分の導電層のことを言う。ただし、ソー
ス電極は、ソース領域も含んでソース電極と呼ぶこともある。ソース配線とは、各トラン
ジスタのソース電極の間を接続するための配線、各画素の有するソース電極の間を接続す
るための配線、又はソース電極と別の配線とを接続するための配線のことを言う。
域、導電膜、配線など)も存在する。そのような部分(領域、導電膜、配線など)は、ソ
ース電極と呼んでも良いし、ソース配線と呼んでも良い。つまり、ソース電極とソース配
線とが、明確に区別できないような領域も存在する。例えば、延伸して配置されているソ
ース配線の一部とソース領域とがオーバーラップしている場合、その部分(領域、導電膜
、配線など)はソース配線として機能しているが、ソース電極としても機能していること
になる。よって、そのような部分(領域、導電膜、配線など)は、ソース電極と呼んでも
良いし、ソース配線と呼んでも良い。
つながっている部分(領域、導電膜、配線など)や、ソース電極とソース電極とを接続す
る部分(領域、導電膜、配線など)も、ソース電極と呼んでも良い。さらに、ソース領域
とオーバーラップしている部分も、ソース電極と呼んでも良い。同様に、ソース配線と同
じ材料で形成され、ソース配線と同じ島(アイランド)を形成してつながっている領域も
、ソース配線と呼んでも良い。このような部分(領域、導電膜、配線など)は、厳密な意
味では、別のソース電極と接続させる機能を有していない場合がある。しかし、製造時の
仕様等の関係でソース電極またはソース配線と同じ材料で形成され、ソース電極またはソ
ース配線とつながっている部分(領域、導電膜、配線など)がある。よって、そのような
部分(領域、導電膜、配線など)もソース電極またはソース配線と呼んでも良い。
ス電極またはソース配線とは異なる材料で形成された導電膜も、ソース電極と呼んでも良
いし、ソース配線と呼んでも良い。
されている部分(領域、導電膜、配線など)について、その一部分のことを言う。
配線にトランジスタのソース(ドレイン)が接続されていない場合もある。この場合、ソ
ース配線、ソース線、ソース信号線、データ線、データ信号線は、トランジスタのソース
(ドレイン)と同じ層で形成された配線、トランジスタのソース(ドレイン)と同じ材料
で形成された配線またはトランジスタのソース(ドレイン)と同時に成膜された配線を意
味している場合がある。例としては、保持容量用配線、電源線、基準電位供給配線などが
ある。
回路を有する装置のことをいう。さらに、半導体特性を利用することで機能しうる装置全
般を半導体装置と呼んでもよい。または、半導体材料を有する装置のことを半導体装置と
言う。
機EL素子又は有機物及び無機物を含むEL素子)、電子放出素子、電気泳動素子、放電
素子、光反射素子、光回折素子、デジタルマイクロミラーデバイス(DMD)、などのこ
とを言う。ただし、これに限定されない。
を含む複数の画素を含んでいても良い。なお、表示装置は、複数の画素を駆動させる周辺
駆動回路を含んでいても良い。なお、複数の画素を駆動させる周辺駆動回路は、複数の画
素と同一基板上に形成されてもよい。なお、表示装置は、ワイヤボンディングやバンプな
どによって基板上に配置された周辺駆動回路、いわゆる、チップオングラス(COG)で
接続されたICチップ、または、TABなどで接続されたICチップを含んでいても良い
。なお、表示装置は、ICチップ、抵抗素子、容量素子、インダクタ、トランジスタなど
が取り付けられたフレキシブルプリントサーキット(FPC)を含んでもよい。なお、表
示装置は、フレキシブルプリントサーキット(FPC)などを介して接続され、ICチッ
プ、抵抗素子、容量素子、インダクタ、トランジスタなどが取り付けられたプリント配線
基盤(PWB)を含んでいても良い。なお、表示装置は、偏光板または位相差板などの光
学シートを含んでいても良い。なお、表示装置は、照明装置、筐体、音声入出力装置、光
センサなどを含んでいても良い。ここで、バックライトユニットのような照明装置は、導
光板、プリズムシート、拡散シート、反射シート、光源(LED、冷陰極管など)、冷却
装置(水冷式、空冷式)などを含んでいても良い。
シート、光源(LED、冷陰極管、熱陰極管など)、冷却装置などを有している装置のこ
とをいう。
素子を有している場合は、発光装置は、表示装置の具体例の一つである。
をいう。
視型、投写型、透過型、反射型、半透過型などがある。
ば、ソース信号線から画素内への信号の入力を制御するトランジスタ(選択用トランジス
タ、スイッチング用トランジスタなどと呼ぶことがある)、画素電極に電圧または電流を
供給するトランジスタ、発光素子に電圧または電流を供給するトランジスタなどは、駆動
装置の一例である。さらに、ゲート信号線に信号を供給する回路(ゲートドライバ、ゲー
ト線駆動回路などと呼ぶことがある)、ソース信号線に信号を供給する回路(ソースドラ
イバ、ソース線駆動回路などと呼ぶことがある)などは、駆動装置の一例である。
は、互いに重複して有している場合がある。例えば、表示装置が、半導体装置および発光
装置を有している場合がある。あるいは、半導体装置が、表示装置および駆動装置を有し
ている場合がある。
記載する場合は、Aの上にBが直接接して形成されていることに限定されない。直接接し
てはいない場合、つまり、AとBと間に別の対象物が介在する場合も含むものとする。こ
こで、A、Bは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、
など)であるとする。
載されている場合は、層Aの上に直接接して層Bが形成されている場合と、層Aの上に直
接接して別の層(例えば層Cや層Dなど)が形成されていて、その上に直接接して層Bが
形成されている場合とを含むものとする。なお、別の層(例えば層Cや層Dなど)は、単
層でもよいし、複層でもよい。
であり、Aの上にBが直接接していることに限定されず、AとBとの間に別の対象物が介
在する場合も含むものとする。従って例えば、層Aの上方に、層Bが形成されている、と
いう場合は、層Aの上に直接接して層Bが形成されている場合と、層Aの上に直接接して
別の層(例えば層Cや層Dなど)が形成されていて、その上に直接接して層Bが形成され
ている場合とを含むものとする。なお、別の層(例えば層Cや層Dなど)は、単層でもよ
いし、複層でもよい。
接接してBが形成されている場合を含み、AとBと間に別の対象物が介在する場合は含ま
ないものとする。
ただし、これに限定されず、複数であることも可能である。同様に、明示的に複数として
記載されているものについては、複数であることが望ましい。ただし、これに限定されず
、単数であることも可能である。
示装置を得ることができる。また、表示品位に優れた表示装置を提供することをできる。
また、ノイズの影響を受けにくく、綺麗な表示を行うことが可能な表示装置を提供するこ
とができる。または、表示の劣化が生じにくい表示装置を提供することができる。または
、製品寿命に優れた表示装置を提供することができる。
ことが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を
様々に変更し得ることは当業者であれば容易に理解される。従って、本形態の記載内容に
限定して解釈されるものではない。なお、以下に説明する本発明の構成において、同じも
のを指す符号は異なる図面間においても共通して用い、その説明は省略する。
本発明の画素の基本構成について、図1を用いて説明する。図1に示す画素は、第1の
スイッチ111、第2のスイッチ112、第3のスイッチ113、第1の抵抗114、第
2の抵抗115、第1の液晶素子121、第2の液晶素子122、第1の保持容量131
及び第2の保持容量132を有する。また、画素は、信号線116、第1の走査線117
、第2の走査線120及びCs線119に接続されている。なお、第1の液晶素子121
及び第2の液晶素子122の各々は、少なくとも画素電極と、共通電極118と、画素電
極及び共通電極118によって制御される液晶とを有する。
線116に接続されている。また、第1の液晶素子121の画素電極は第2のスイッチ1
12及び第1の抵抗114を介して第2の液晶素子122の画素電極とも接続されている
。第1の抵抗114と第2の液晶素子122の画素電極との接続箇所をノード142とす
ると、ノード142は第3のスイッチ113及び第2の抵抗115を介してCs線119
と接続されている。また、第2のスイッチ112と、第1の液晶素子121の画素電極と
第1のスイッチ111とが接続されている配線との接続箇所をノード141とする。
7に入力される信号により、第3のスイッチ113のオンオフは第1の走査線117及び
第2の走査線120に入力される双方の信号により制御される。ここでは、各々のスイッ
チを走査線を用いて制御した場合について述べるが、スイッチの制御方法はこれに限定さ
れない。
力される。
た電圧を維持するために図1に示す画素では第1の液晶素子121及び第2の液晶素子1
22のそれぞれに対応して第1の保持容量131、第2の保持容量132が設けられてい
る。具体的には、第1の液晶素子121の画素電極は第1の保持容量131を介してCs
線119に接続され、第2の液晶素子122の画素電極は第2の保持容量132を介して
Cs線119に接続されている。なお、液晶素子における電圧保持特性は液晶材料、それ
に混入された不純物や画素の大きさ等にもよるため、液晶素子の電圧保持率が高い場合に
は図77に示すように保持容量を特に設けなくても良い。また、例えば第1の液晶素子1
21より第2の液晶素子122の方が表示への寄与が少ない場合には、表示寄与に少ない
第2の液晶素子122に対して設けられた第2の保持容量132を省略しても良い。
介してノード142に接続されているが、第1の抵抗114、第2のスイッチ112の順
に接続されていても良い。また、ノード142は第2の抵抗115、第3のスイッチの1
13を順に介してCs線119に接続されていても良い。もちろん、図78に示すように
第2のスイッチ112と第1の抵抗114、第3のスイッチ113と第2の抵抗115に
おいてスイッチと抵抗の接続関係がそれぞれ逆になっていても良い。
成されていても良い。同様にして第1の保持容量131、第2の保持容量132の各々に
おいても、複数の保持容量から構成されていても良い。例えば、第1の液晶素子121、
第2の液晶素子122の各々が2つの液晶素子から、第1の保持容量131、第2の保持
容量132の各々が2つの保持容量から構成されている場合について図79に示す。
のスイッチ112のオンオフは第1の走査線117に信号を入力することにより制御され
、ここでは第1の走査線117にHighレベル(以下、Hレベルと記す)を入力するこ
とにより第1のスイッチ111及び第2のスイッチ112がオンする場合について述べる
。また、第1の走査線117及び第2の走査線120に入力される双方の信号によって制
御される第3のスイッチ113は、第1の走査線117及び第2の走査線120の両方に
Hレベルが入力された際のみにオンする場合について述べる。よって、この場合、第1の
走査線117にLowレベル(以下、Lレベルと記す)が入力された際にはこれらスイッ
チはオフし、第3のスイッチ113に関してはさらに第1の走査線117にHレベル、第
2の走査線120にLレベルが入力された場合であってもオフするものとする。
用いて、画素へ当該画素の階調に応じた電位を入力する期間、即ち書き込み期間を、前半
と後半に分割する。前半部分では、第3のスイッチ113を除く第1のスイッチ111及
び第2のスイッチ112をオンとし、後半部分では第1のスイッチ111、第2のスイッ
チ112に加え、第3のスイッチ113をオンとする。このように、前半部分では信号線
116とCs線119とを電気的に切断し、後半部分ではこれらを電気的に接続すること
により、素早く画素にビデオ信号を書き込むことが可能となる。
20にLレベルを入力し、第1のスイッチ111及び第2のスイッチ112をオンさせる
。信号線116より入力された画素の階調に応じた電位は、第1のスイッチ111を介し
て第1の液晶素子121の画素電極及び第1の保持容量131の第1の電極に供給される
。さらに、この電位は第2のスイッチ112及び第1の抵抗114を介して第2の液晶素
子122の画素電極及び第2の保持容量132の第1の電極に供給される。この際、第3
のスイッチ113をオフとしていることで、第1の液晶素子121及び第2の液晶素子1
22のそれぞれの画素電極にはやく電位を供給することが可能となる。
で、第1のスイッチ111及び第2のスイッチ112に加え、第3のスイッチ113をオ
ンとさせる。このようにして、信号線116とCs線119とを電気的に接続させる。こ
れにより、書き込み期間の前半部分に第1の液晶素子121及び第2の液晶素子122の
画素電極の各々に供給された電位を、画素の階調に応じた最適な電位に調整することがで
きる。
される電位はノード142における電位と同じであり、その電位はノード141とCs線
119との電位差並びに第1の抵抗114及び第2の抵抗115における抵抗値によって
決定される。即ち、第2の液晶素子122の画素電極には、信号線116より入力された
画素の階調に応じた電位が第1の抵抗114と第2の抵抗115とによって抵抗分割され
た電位が供給されていることになる。なお、信号線116より入力される画素の階調に応
じた電位をVsig、第1の抵抗114の抵抗値をR1、第2の抵抗115の抵抗値をR
2、Cs線119に供給される電位をVcsとすると、ノード141の電位はVsigと
なることから、書き込み期間の後半部分におけるノード142の電位はVcs+(Vsi
g−Vcs)×R2/(R1+R2)となる。
線119の電位との電位差が、第2の保持容量132には抵抗分割された電位とCs線1
19の電位との電位差が保持される。
2のスイッチ112及び第3のスイッチ113がオフし、信号線116、第1の液晶素子
121及び第2の液晶素子122は互いに電気的に遮断される。しかしながら、第1の保
持容量131には信号線116より入力された階調に応じた電位とCs線119の電位と
の電位差が保持され、第2の保持容量132には抵抗分割された電位とCs線119の電
位との電位差が保持されている。そのため、第1の液晶素子121の画素電極は信号線1
16より入力された画素の階調に応じた電位を維持することができ、第2の液晶素子12
2の画素電極においても抵抗分割された電位を維持することができる。なお、第1の走査
線117に限らず、第1の走査線117と共に第2の走査線120にもLレベルを供給し
ても良い。いずれにせよ、第1のスイッチ111、第2のスイッチ112及び第3のスイ
ッチ113がオフとなれば良い。
、即ち電圧を用いて画素の階調を表現する。第1の液晶素子121と第2の液晶素子12
2とでは異なる電圧が印加されているため、各々の液晶素子が有する液晶は異なる配向を
示す。よって、視野角特性を向上することが可能となる。
液晶素子122の各々が有する液晶の配向により決定されるため、信号線116より供給
する画素の階調に応じた電位はこれらを考慮して決定する必要がある。
後半部分ではこれらを電気的に接続することにより、第1の液晶素子121及び第2の液
晶素子122の画素電極の各々を画素の階調に応じた電位により早くすることができる。
よって、素早く画素にビデオ信号を書き込むことが可能となる。
イッチ113とを異なる走査線を用いて制御しても良い。図2では、第1のスイッチ11
1は第3の走査線201を、第2のスイッチ112は第1の走査線117を、第3のスイ
ッチ113は第1の走査線117及び第2の走査線120を用いて制御した場合について
記載している。なお、図2に示した画素においても図1の画素と同様に動作させることが
可能である。
121に比べて印加される電圧が小さくなる。そのため、第2の抵抗115を第1の抵抗
114より小さくしすぎると第2の液晶素子122に印加される電圧が液晶のしきい値電
圧より小さくなり、第2の液晶素子122が有する液晶が駆動しない場合がある。よって
、第2の抵抗115の抵抗値R2は第1の抵抗114の抵抗値R1より大きい方(R2>
R1)が好ましい。もちろん、抵抗値の関係はこれに限定されることはなく、第1の液晶
素子121及び第2の液晶素子122の液晶が駆動し、両者の液晶を用いて階調を表現で
きれば良い。なお、液晶のしきい値電圧とは、液晶が駆動するために必要となる電圧の臨
界値を指す。
イッチ112及び第3のスイッチ113がなくてもノード141、ノード142の各々に
おいて第1のスイッチ111をオフした後も信号線116より入力された際の電位を維持
することができれば、これらスイッチは特に設けなくても良い。例えば、第1の抵抗11
4の抵抗値が大きければノード141とノード142の間に設けられた第2のスイッチ1
12を省略しても良いし、第2の抵抗115の抵抗値が大きければノード142とCs線
119の間に設けられた第3のスイッチ113を省略しても良い。もちろん、両者ともに
大きい場合には、第2のスイッチ112及び第3のスイッチ113を省略することも可能
である。
画素部313には、信号線駆動回路311から列方向に伸張して配置された複数の信号線
S1〜Sm、走査線駆動回路312から行方向に伸張して配置された第1の走査線G1_
1〜G1_n、第2の走査線G2_1〜G2_n及びCs線Cs_1〜Cs_n、並びに
信号線S1〜Smに対応してマトリクス状に配置された複数の画素314を有する。そし
て、各画素314は、信号線Sj(信号線S1〜Smのうちのいずれか一)、第1の走査
線G1_i(走査線G1〜Gnのうちのいずれか一)、第2の走査線G2_i、Cs線C
s_iと接続されている。
、それぞれ図1の信号線116、第1の走査線117、第2の走査線120、Cs線11
9に相当する。図1における共通電極118は、複数の画素314間で共通もしくは電気
的に接続されており、同じ電位が供給されている。なお、Cs線119と共通電極118
とを同電位とする場合には、画素部313の外部で導電性微粒子や配線等を用いてこれら
を電気的に接続すればよい。
素の行を順次選択し、選択された行に属する画素の各々に信号線駆動回路311から信号
線S1〜Smを介して各画素の階調に応じた電位を供給する。
する画素へ信号の書き込みを行う。なお、図17には、各行における書き込み期間を表す
ためにこれを忠実に表すことができる図1に示した第1のスイッチ111の動作を抜粋し
記載している。そして、i行目において書き込み期間を終えた画素は、前記期間において
第1の液晶素子及び第2の液晶素子に保持された電圧によって階調を表現する。
し、後半部分では第2の走査線G2_iにもHレベルの信号を入力する。よって、画素は
書き込み期間に信号線Sjより供給された電位により上述のようにして階調を表現するこ
とができる。
期間毎に液晶素子における共通電極の電位(コモン電位)に対して画素電極に印加される
電圧の極性を反転させて駆動させる反転駆動を用いることが好ましい。本明細書において
、共通電極より画素電極の電位の方が高い場合には正極性の電圧が、画素電極より共通電
極の電位の方が高い場合には負極性の電圧が液晶素子に印加されたと表記する。また、液
晶素子に正極性の電圧が印加される際に信号線より入力されるビデオ信号を正極性の信号
とし、負極性の電圧が印加される際に信号線より入力されるビデオ信号を負極性の信号と
して表記する。なお、反転駆動の例としては、フレーム反転駆動をはじめ、ソースライン
反転駆動、ゲートライン反転駆動、ドット反転駆動などが挙げられる。
せる駆動方法である。なお、1フレーム期間とは、1画素分の画像を表示する期間に相当
し、その期間には特に限定はないが、画像をみる人がちらつき(フリッカ)を感じないよ
うに少なくとも1/60秒以下とすることが好ましい。
い。望ましくは、周期を1/120秒以下(周波数が120Hz以上)であることが望ま
しい。より望ましくは、周期を1/180秒以下(周波数が180Hz以上)であること
が望ましい。このようにフレーム周波数を向上させる場合、元の画像のデータのフレーム
周波数と一致しないときには、画像データを補間する必要がある。この場合は、動きベク
トルを用いて、画像データを補間することにより、高いフレーム周波数で表示させること
が出来る。以上のようにして、画像の動きが滑らかに表示され、残像の少ない表示を行う
事が出来る。
印加される電圧の極性を、隣接する信号線に接続された画素に属する液晶素子に対し反転
させ、さらに各画素に対しフレーム反転を行う駆動方法である。一方、ゲートライン反転
駆動とは、同一の走査線に接続された画素に属する液晶素子に印加される電圧の極性を、
隣接する走査線に接続された画素に属する液晶素子に対し反転させ、さらに各画素に対し
フレーム反転を行う駆動方法である。また、ドット反転駆動とは、隣接する画素間で液晶
素子に印加される電圧の極性を反転させる駆動方法であり、ソースライン反転駆動とゲー
トライン反転駆動を組み合わせた駆動方法である。
ドット反転駆動などを採用した場合、信号線に書き込まれるビデオ信号に必要となる電位
の幅は、反転駆動を行わない場合に比べて2倍となる。そのため、これを解消するために
フレーム反転駆動やゲートライン反転駆動の場合、さらに共通電極の電位を反転させるコ
モン反転駆動を採用することもある。
させる駆動方法であり、コモン反転駆動を行うことによって信号線に書き込まれるビデオ
信号に必要となる電位の幅を低減させることができる。この場合、共通電極118とCs
線119(図3においては、Cs線Cs_1〜Cs_n)とは電気的に接続されているこ
とが好ましい。共通電極118及びCs線119に同じ信号が入力されることになり、よ
り適切に表示させることができる。
オ信号、即ち正極性と負極性のビデオ信号が1フレーム期間毎に信号線を介して交互に供
給される。なお、このような場合、ビデオ信号はCs線に供給される電位に対しても正も
しくは負となる信号である。
素を取り出して記載しており、その各々の画素は図1に示す構成をとっている。図中にお
いて、信号線116_1、116_2は図1における信号線116に、第1の走査線11
7_1、117_2は第1の走査線117に、第2の走査線120_1、120_2は第
2の走査線120に、Cs線119_1、119_2、419_1、419_2はCs線
119に相当する。信号線116_1、116_2には異なる極性の信号を入力する。そ
の極性に併せて、同一行に属する画素であっても隣接する画素と異なるCs線、即ちCs
線119_1、419_2もしくは119_1、419_2を用いて隣接画素とは異なる
電位を図80に示すように供給する。図80に示すように駆動させることで、ドット反転
駆動を行えば良い。
ときには白を表示させる際の信号を|Vsig(0)|とし、共通電極の電位をVcom
とすると、画素に信号線より正極性の信号が供給される場合にはVcom以上Vsig(
0)+Vcom以下の電位がCs線に供給されていれば良い。一方、画素に負極性の信号
が供給される場合には−Vsig(0)+Vcom以上Vcom以下の電位がCs線に供
給されていれば良い。
com以下の電位が、負極性の信号が画素に供給される場合には−Vsig(0)+Vc
om以上Vcom−α以下の電位がCs線に供給されることが好ましい。ここで、αはV
sig/2である。さらに、より好ましくは正極性の信号が画素に供給される場合にはV
sig(0)+Vcomの電位が、負極性の信号が画素に供給される場合には−Vsig
(0)+Vcomの電位が供給されると良い。
)+Vcomと、負極性の信号が供給される場合には−Vsig(0)+Vcomとする
ことで、第2の液晶素子122に印加される電圧を増大させることが可能となり、より第
2の液晶素子122の制御を容易なものとすることができる。
mより高い電位とすると液晶には常にVsig(0)より高い電圧が印加されてしまい、
ノーマリーブラックのときには黒を、ノーマリーホワイトのときには白を表示させること
ができなくなる。また、負極性の信号が画素に供給される場合には、−Vsig(0)+
Vcomより低い電位がCs線に供給されると、正極性の信号の際と同様、ノーマリーブ
ラックのときには黒を、ノーマリーホワイトのときには白を表示させることができなくな
る。
線の電位をVsig(0)、画素に負極性の信号が供給される場合のCs線の電位を−V
sig(0)とした場合について記載している。
とが可能である。この場合、正常に動作をするのであれば様々な配線を画素間で共有する
ことができる。例えば、次行の画素と配線を共有することが可能であり、その一例につい
て述べる。
、第3のスイッチ113、第1の抵抗114、第2の抵抗115、第1の液晶素子121
、第2の液晶素子122、第1の保持容量131及び第2の保持容量132を有する。な
お、画素500は、信号線116、第1の走査線517、Cs線119及び次行の第1の
走査線517に接続されている。
走査線117を用いていたのに対し、図5では次行の第1の走査線517を用いる。この
ように次行と配線を共有することで配線数を減らすことが可能となり、開口率を向上させ
ることができる。
る前に次行の画素における第1のスイッチ111及び第2のスイッチ112がオンとなっ
てしまう。即ち、図18に示すように画素500における書き込み期間の後半部分に次行
の画素が選択されてしまう。なお、図18はi−1行、i行、i+1行目における書き込
み期間を表し、図17と同様これを忠実に表すことができる第1のスイッチ111の動作
を抜粋し記載している。
画素が有する第1の液晶素子121及び第2の液晶素子122に印加されいた電圧が当該
画素の階調に応じた電圧から変化してしまう。しかしながら、次行の画素は画素500の
次にビデオ信号が書き込まれるため、第3のスイッチ113をオンする期間、即ち書き込
み期間の後半部分を表示に影響がない程度に設定することで特に問題となることはない。
もちろん、図2の画素構成、即ち第1のスイッチ111を制御する走査線を第1の走査線
517とは別に設ける場合には、このようなことは生じない。
113には様々な形態のものを用いることが可能であり、電気的なスイッチや機械的なス
イッチなどを適用することができる。つまり、電流の流れを制御できるものであればよく
、特定のものに限定されない。例えば、トランジスタやダイオードでもよいし、これらを
組み合わせた論理回路でも良い。
れぞれに第2のトランジスタ612、第3のトランジスタ613を用い、さらにこれらの
トランジスタのオン抵抗を用いて図1における第1の抵抗114及び第2の抵抗115を
実現し、これら抵抗を省略した構成としても良い。ただし、第3のトランジスタ613は
、第1の走査線117及び第2の走査線120に入力される双方の信号によって制御され
る必要があるため、ゲート電極が第1の走査線117及び第2の走査線120にそれぞれ
接続された2つのトランジスタ620、621から構成される。
の抵抗値R1より大きい方(R2>R1)が好ましいため、図6における構成においても
第2のトランジスタ612のオン抵抗に比べ第3のトランジスタ613のオン抵抗が大き
い方が好ましい。よって、第2のトランジスタ612のチャネル幅をW2、チャネル長を
L2、第3のトランジスタ613のチャネル幅をW3、チャネル長をL3とした場合、W
2/L2>W3/L3となるようなトランジスタを各々に用いることが好ましい。ここで
、第3のトランジスタ613のチャネル長Lは、直列に接続されたトランジスタ620、
621のチャネル幅Wが等しい場合、各トランジスタのチャネル長の合計に相当する値を
言う。ただし、この関係に限定されるわけではない。もちろん、画素の構成においてもこ
れに限定されるわけではなく、例えば図81に示すように、図1における第2のスイッチ
112及び第3のスイッチ113のそれぞれに第2のトランジスタ612、第3のトラン
ジスタ613を用いて、抵抗を省略しなくても良い。
スタという)を用いた場合には、第1のトランジスタのオン抵抗はより低い方が好ましく
、第1のトランジスタのチャネル幅をW1、チャネル長をL1とするとW1/L1はより
大きい方が好ましい。図83に図6に示す構成において、第1のスイッチ111に第1の
トランジスタ8411を用いた場合について示す。なお、第1のトランジスタ8411を
第2のトランジスタ612及び第3のトランジスタ613と比較した場合には、W1/L
1>W2/L2>W3/L3となるようなトランジスタを用いることが好ましい。ただし
、これに限定されるわけではない。
、図6に示すようにノード142がトランジスタ620とトランジスタ621とを順に介
してCs線119に接続されるように設けられていても良いし、図7に示すようにノード
142がトランジスタ621とトランジスタ620とを順に介してCs線119に接続さ
れるように設けられていても良い。図7に示す画素構成では、第3のトランジスタ613
を構成するトランジスタのうちノード142と接続されているトランジスタがオフしてい
ることによりそのトランジスタのゲート容量をオンしている場合より小さくすることがで
きるため、図6に比べさらに書き込み期間の前半部分においてよりはやく第1の液晶素子
121及び第2の液晶素子122のそれぞれの画素電極に電位を供給することが可能とな
る。
すように図6において第3のトランジスタ613を構成するトランジスタ621に、トラ
ンジスタを2つ直列に接続したマルチゲート型トランジスタ821を用いても良い。なお
、図8では2つのトランジスタを直列に接続した場合について示しているが、直列に接続
されるトランジスタの数は特に限定されない。
チャネル幅Wが等しい場合、各トランジスタのチャネル長の合計として作用する。そのた
め、W/Lはより小さくなりやすく、オン抵抗を大きくすることができる。よって、トラ
ンジスタ821のオン抵抗は、マルチゲート型トランジスタを用いることで容易に大きく
することができる。よって、第3のトランジスタ613のオン抵抗を第2のトランジスタ
212のオン抵抗に比べ容易に大きくすることが可能となる。
チゲート型のトランジスタ920を用いても良い。
非常に小さい場合など、第2の液晶素子122に印加される電圧が第2の液晶素子122
が有する液晶のしきい値電圧以下となる場合には、図10に示すように抵抗としてダイオ
ード接続されたトランジスタ1014を第3のトランジスタ613に対し直列に設けた構
成としても良い。
ともトランジスタ1014のしきい値電圧以上の電圧を保持させることができる。よって
、ダイオード接続されたトランジスタ1014を用いることにより第2の液晶素子122
に印加される電圧を増大させることが可能となり、より確実に第2の液晶素子122が有
する液晶を駆動させることができる。ダイオードは非線形性を有しており、電圧が小さい
領域では抵抗値がより大きくなるため、このような場合に特に効果的である。もちろん、
抵抗を用いることも可能である。なお、ここでは信号線116より入力される階調に応じ
た電位は正であるものとして図示しており、トランジスタ1014にはNチャネル型のト
ランジスタを用い、そのドレイン電極が第3のトランジスタ613に接続されている例に
ついて示している。もちろん、トランジスタ1014にはPチャネル型のトランジスタを
用いることも可能である。ただし、この場合第3のトランジスタ613にはソース電極が
接続される。
の電位を中心として正と負の画像信号、即ち正極性と負極性の画像信号が1フレーム期間
毎に信号線を介して交互に供給される。このような場合、画像信号はCs線に供給される
電位に対しても正と負となる信号である。そのため、Cs線119を、正極性の画像信号
が入力されるときと、負極性の画像信号が入力されるときとで、電位を変化させればよい
。つまり、正極性の信号が入力されるときよりも、負極性の信号が入力されるときの方が
、Cs線119の電位が低くなるようにすればよい。これにより、各画素電極に適切に電
圧を供給することが出来る。なお、図10に示す画素は正と負の両方の画像信号に対応で
きるように図11のような構成とすれば良い。図11に示す画素は、図10におけるダイ
オード接続されたトランジスタ1014と並列にダイオード接続されたトランジスタ11
14をさらに設けた構成である。なお、これらトランジスタが同一の導電型のトランジス
タである場合には、ドレイン電極が互いに異なるようにトランジスタ1014、トランジ
スタ1114を接続する。このような構成とすることで、Cs線119の電位と信号線1
16から供給される電位の関係が逆転しても、第2の保持容量132には少なくともトラ
ンジスタ1014もしくはトランジスタ1414のしきい値電圧以上の電圧を保持させる
ことができる。よって、第2の液晶素子122に印加される電圧を増大させることが可能
となり、より確実に第2の液晶素子122が有する液晶を駆動させることができる。なお
、このような駆動方法を行わない場合においても、図11に示す画素構成を用いても良い
。
ても良いし、同じ電位が供給されていても良い。また、図82に示すように、共通電極1
18とCs線119とが共有されていても良い。なお、図82では図1における共通電極
118とCs線119とが配線8300を用いて共有化されている場合について示してい
る。
が、画素に含まれる液晶素子の数は特に限定されない。図12に、一画素に液晶素子が3
つ含まれる場合について示す。図12に示す画素は、図6に示す画素の構成に加え、トラ
ンジスタ1214、液晶素子1223及び保持容量1233を有する。図12において、
液晶素子1223の画素電極は、第2のトランジスタ612及び第1のスイッチ111を
介して信号線116に接続されている。また、液晶素子1223の画素電極と第2のトラ
ンジスタ612との接続箇所をノード1200とすると、ノード1200はトランジスタ
1214を介してノード142と接続されている。なお、トランジスタ1214のゲート
電極は、第2のトランジスタ612、第3のトランジスタ613と同様、第1の走査線1
17に接続されている。また、ノード1200は保持容量1233を介してCs線119
と接続されている。このように、図12ではトランジスタ1214と、液晶素子1223
と、保持容量1233とを有するユニット1201が第2のトランジスタ612とノード
142との間に設けられた構成となっている。なお、画素に含まれる液晶素子の数を増加
させる場合、例えばユニット1201の数を増加させれば良い。もちろん、これに限定さ
れるものではない。
を図13に示す。図13に示す画素は、2つのサブ画素1300a、1300bを有し、
これらサブ画素を用いて一つの画素の階調を表現している。図13において、サブ画素の
各々には図6に示す画素構成を記載している。ただし、サブ画素1300a、1300b
に接続されている信号線116、第1の走査線117及び第2の走査線120はサブ画素
間で共有して用いられている。なお、サブ画素1300a、1300bに接続されるCs
線119の各々に異なる電位を供給することで、それぞれのサブ画素に属する液晶素子に
異なる電圧を印加することもできる。このようにして、それぞれのサブ画素における液晶
の配向の違いを利用して、さらに視野角を向上させることも可能となる。
の走査線120を共通配線として利用した場合について示したが、図14に示すように第
1の走査線117及び第2の走査線120の走査線のみをサブ画素1400a、1400
b間で共有しても良い。また、図15に示すように信号線116のみをサブ画素1500
a、1500b間で共有し、これらのサブ画素を用いて一つの画素の階調を表現しても良
い。なお、サブ画素間で共有して用いる配線は上記に限定されず、Cs線119であって
も良いし、図13や図14に示したように2以上の配線を共有しても良い。
図16に示すように一方のサブ画素1600aが有する第3のスイッチ113を制御する
走査線のうち第1の走査線117とは異なる走査線に、次段に位置する他方のサブ画素1
600bが有する第1の走査線117を用いることも可能である。
に対し書き込みが終わる前に次行の画素における第1のスイッチ111及び第2のスイッ
チ112がオンとなってしまう。そのため、次行が有する第1の液晶素子121及び第2
の液晶素子122に印加されていた電圧が当該画素の階調の階調に応じた電圧から変化し
てしまう。しかしながら、図6の画素構成の際と同様、次行の画素はサブ画素1600a
及びサブ画素1600bを有する画素の次にビデオ信号が書き込まれるため、第3のスイ
ッチ113をオンする期間、即ち書き込み期間の後半部分を表示に影響がない程度に設定
することで特に問題となることはない。
て示したが、サブ画素間で構成は異なっていても良い。また、上述では主に第1のスイッ
チ111、第2のスイッチ112及び第3のスイッチ113を同一の走査線を用いて制御
している場合について説明しているが、図2に示すように異なる走査線を用いて制御して
も良い。
ラストの低下を招くことなく駆動させることが可能な構成であるため、より表示品位の高
い液晶表示装置を提供することが可能となる。
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に
行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施
の形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
本実施形態では、実施の形態1と異なる画素構成の一例について述べる。図19に示す
画素は、第1のスイッチ111、第2のスイッチ1712、第3のスイッチ113、第1
の抵抗114、第2の抵抗115、第1の液晶素子121、第2の液晶素子122、第1
の保持容量131及び第2の保持容量132を有する。また、画素は、信号線116、第
1の走査線117、第2の走査線120及びCs線119に接続されている。
、第2のスイッチ1712及び第3のスイッチ113のオンオフは第1の走査線117及
び第2の走査線120に入力される双方の信号により制御される。このように図19に示
す画素では、第2のスイッチ1712が第1の走査線117及び第2の走査線120の双
方の信号により制御されている点で図1に示す画素構成と異なる。もちろん、同じものを
指す符号は図面間において共通して用い、その説明は省略する。
、第2のスイッチ1712及び第3のスイッチ113を用いて書き込み期間を、前半と後
半に分割する。
オンし、第1の走査線117及び第2の走査線120の両方にHレベルが入力される場合
のみに第2のスイッチ1712及び第3のスイッチ113がオンする場合について述べる
。
20にLレベルを入力し、第1のスイッチ111をオンさせる。この際、第2のスイッチ
1712及び第3のスイッチ113をオフとしていることで、第1の液晶素子121の画
素電極にはやく電位を供給することが可能となる。
で、第1のスイッチ111に加え、第2のスイッチ1712及び第3のスイッチ113を
オンとさせる。このようにして、電気的に切断されていた信号線116とCs線119と
を電気的に接続させる。これにより、書き込み期間の前半部分に第1の液晶素子121の
画素電極に供給された電位を画素の階調に応じた最適な電位にはやく調整することができ
る。また、第2の液晶素子122の画素電極にも画素の階調に応じた電位が供給される。
、即ち電圧を用いて画素の階調を表現する。第1の液晶素子121と第2の液晶素子12
2とでは異なる電圧が印加されているため、各々の液晶素子が有する液晶は異なる配向を
示す。よって、視野角特性を向上することができる。また、素早く画素にビデオ信号を書
き込むことが可能となる。
液晶素子122の各々が有する液晶の配向により決定されるため、信号線116より供給
する画素の階調に応じた電位はこれらを考慮して決定する必要がある。
イッチ113には様々な形態のものを用いることが可能であり、電気的なスイッチや機械
的なスイッチなどを適用することができる。つまり、電流の流れを制御できるものであれ
ばよく、特定のものに限定されない。例えば、トランジスタやダイオードでもよいし、こ
れらを組み合わせた論理回路でも良い。
び第3のスイッチ113のそれぞれに第2のトランジスタ1722、第3のトランジスタ
613を用い、さらにこれらのトランジスタのオン抵抗を用いて図19における第1の抵
抗114及び第2の抵抗115を実現し、これら抵抗を省略した構成としても良い。ただ
し、第2のトランジスタ1722及び第3のトランジスタ613は、第1の走査線117
及び第2の走査線120に入力される双方の信号によって制御される必要がある。そのた
め、第2のトランジスタ1722及び第3のトランジスタ613の各々は、ゲート電極が
第1の走査線117及び第2の走査線にそれぞれ接続された2つのトランジスタから構成
される。
するために実施の形態1における図1では第3のスイッチ113のみを、図19では第2
のスイッチ1712及び第3のスイッチ113を用いたが、これに限定されるものではな
い。例えば、図21に示すように第2のスイッチ1712のみであっても良い。この場合
、第1のスイッチ111及び第3のスイッチ1733のオンオフは第1の走査線117に
入力される信号により、第2のスイッチ1712のオンオフは第1の走査線117及び第
2の走査線120に入力される双方の信号により制御される。
1733のそれぞれに第2のトランジスタ1722、第3のトランジスタ1743を用い
、さらにこれらのトランジスタのオン抵抗を用いて図21における第1の抵抗114及び
第2の抵抗115を実現し、これら抵抗を省略した構成としても良い。
。例えば、図23に示すように図20におけるノード141とトランジスタ1722との
間に、トランジスタ1750、液晶素子1751、保持容量1752とを有するユニット
がさらに設けられていても良い。なお、書き込み期間の前半部分において信号線116と
Cs線119とを電気的に切断するために用いるスイッチは、トランジスタ1722やト
ランジスタ613に限定されず、ユニットが有するトランジスタを用いて信号線116と
Cs線119とを電気的に切断しても良い。
ラストの低下を招くことなく駆動させることが可能な構成であるため、より表示品位の高
い液晶表示装置を提供することが可能となる。
なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に
行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施
の形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
本実施形態では、実施の形態1と異なる画素構成の一例について述べる。図24に示す
画素は、スイッチ111、トランジスタ612、トランジスタ613、第1の液晶素子1
21、第2の液晶素子122、第1の保持容量131、第2の保持容量132及び第3の
保持容量1601を有する。なお、図24に示す画素は、信号線116、第1の走査線1
17、第2の走査線120及びCs線119に接続されており、実施の形態1で示した図
6の画素におけるトランジスタ613を構成する一トランジスタであるトランジスタ62
0の一方の電極とノード142との間に、第3の保持容量1901が設けられた構成とな
っている。なお、同じものを指す符号は図面間において共通して用い、その説明は省略す
る。
お、第3の保持容量1901を設けることで、第2の液晶素子122の画素電極に供給さ
れるべき階調に応じた電位に達するまでに時間を要する。そのため、第1の液晶素子12
1より印加される電圧が低い第2の液晶素子122が有する液晶の応答速度をあえて遅く
することで、より視野角を向上させることができる。この場合においても、画素が表現す
る階調は当該画素における第1の液晶素子121と第2の液晶素子122の各々が有する
液晶の配向により決定されるため、信号線116より供給する電位はこれらを考慮して決
定する。
2との間に設けられていても良い。図25においても、図6で示した画素と同様に動作さ
せることができる。なお、図24に示した画素と同様、第2の液晶素子122の画素電極
が供給されるべき階調に応じた電位に達するまでに時間を要する。これを利用して、より
視野角を向上させることができる。この場合、第2の液晶素子122に印加される電圧は
第3の保持容量1911との容量分割によって決定されることを考慮にいれたうえで、信
号線116より供給する電位を決定する必要がある。
素における第1の液晶素子121と第2の液晶素子122の各々が有する液晶の配向によ
り決定されるため、視野角を向上させることができる。さらに、コントラストの低下を招
くことなく駆動させることが可能な構成であるため、より表示品位の高い液晶表示装置を
提供することが可能となる。
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に
行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施
の形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
本実施形態では、実施の形態1乃至3とは異なる画素構成の一例について述べる。図2
6に示す画素は、スイッチ111、トランジスタ612、トランジスタ613、トランジ
スタ1924、第1の液晶素子121、第2の液晶素子122、第1の保持容量131、
第2の保持容量132及び第3の保持容量1921を有する。なお、図26に示す画素は
、信号線116、第1の走査線117、第2の走査線120及びCs線119に接続され
ており、実施の形態1で示した図6の画素においてさらにトランジスタ1924及び第3
の保持容量1921が設けられた構成となっている。図6と同じものを指す符号は図面間
において共通して用い、その説明は省略する。
2の液晶素子122の画素電極とが接続されている配線との接続箇所をノード1922と
すると、ノード1922と第2の液晶素子122の画素電極との間に設けられている。ま
た、トランジスタ1924は、第3の保持容量1921と第2の液晶素子122の画素電
極との接続箇所をノード1923とすると、ノード1923と信号線116との間に設け
られている。即ち、ノード1923はトランジスタ1924を介して信号線116と接続
されている。このトランジスタ1924は、スイッチ111、トランジスタ612やトラ
ンジスタ620と同様、第1の走査線117に入力される信号によってオンオフが制御さ
れる。
お、図26に示す画素では、第1の液晶素子121及び第2の液晶素子122の画素電極
に、それぞれスイッチ111、トランジスタ1924を介して信号線116より同時に電
位が供給される。そのため、それぞれの液晶素子の画素電極の電位を画素の階調に応じた
最適な電位によりはやく調整することができる。よって、高速動作等の際に効果的である
。また、図26に示す画素においても画素が表現する階調は当該画素における第1の液晶
素子121と第2の液晶素子122の各々が有する液晶の配向により決定されるため、視
野角を向上させることができる。なお、トランジスタ1924のオン抵抗は、スイッチ1
11のオン抵抗より大きい方が好ましい。
トラストの低下を招くことなく駆動させることが可能な構成であるため、より表示品位の
高い液晶表示装置を提供することが可能となる。
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に
行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施
の形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
本実施形態では、実施の形態1乃至4とは異なる画素構成の一例について述べる。図27
に示す画素は、スイッチ111、トランジスタ612、トランジスタ613、第1の液晶
素子121、第2の液晶素子122、第1の保持容量131、第2の保持容量132及び
第3の保持容量1931を有する。なお、図27に示す画素は、信号線116、第1の走
査線117、第2の走査線120及びCs線119に接続されており、実施の形態1で示
した図6の画素においてさらに第3の保持容量1931が設けられた構成となっている。
図2と同じものを指す符号は図面間において共通して用い、その説明は省略する。
2の液晶素子122の画素電極とが接続されている配線との接続箇所をノード1932と
すると、ノード1932と第2の液晶素子122の画素電極との間に設けられている。
お、第3の保持容量1931を設けることで、第2の液晶素子122の画素電極に供給さ
れるべき階調に応じた電位に達するまでに時間を要する。これを利用して、より視野角を
向上させることができる。また、第2の液晶素子122に印加される電圧は、第3の保持
容量1931との容量分割により決定されるため、第2の液晶素子122に小さな電圧を
印加したい場合などに有効である。
素子121と第2の液晶素子122の各々が有する液晶の配向により決定されるため、視
野角を向上させることができる。
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に
行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施
の形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
本実施の形態においては、表示装置の画素構造について説明する。特に、液晶表示装置の
画素構造について説明する。
参照して説明する。
スタル、セミアモルファスとも言う)シリコンなどに代表される非単結晶半導体層を有す
る薄膜トランジスタ(TFT)などを用いることが出来る。また、トランジスタの構造と
しては、トップゲート型又はボトムゲート型などを用いることができる。なお、ボトムゲ
ート型のトランジスタとしては、チャネルエッチ型又はチャネル保護型などを用いること
ができる。
図28に示す画素構造の特徴について説明する。
液晶分子2018の向きを図中に記す液晶分子の長さによって表現している。すなわち、
長く表現された液晶分子2018は、その長軸の向きが紙面(図28に示す断面方向)に
対し平行であり、短く表現された液晶分子2018ほどその長軸の向きが紙面に対し法線
方向に近くなっているとする。図28に示した液晶分子2018は、第1の基板2001
に近いものと、第2の基板2016に近いものとでは液晶分子の長軸の向きが90度異な
っており、これら基板の中間に位置する液晶分子2018の長軸の向きは、これらを滑ら
かにつなぐような向きとなっている。つまり、図28に示した液晶分子2018は、第1
の基板2001と第2の基板2016の間で、90度ねじれているような配向状態となっ
ている。
た場合について説明する。非晶質半導体を用いたトランジスタを用いた場合、大面積の基
板を用いて、安価に液晶表示装置を製造することができる。
、加工を施した2枚の基板を、数マイクロメートルのギャップを持たせて貼り合わせ、2
枚の基板間に液晶材料を注入することで作製される。即ち、液晶は、第1の基板及び第2
の基板の2枚の基板によって挟持された構成となっている。図28において、液晶201
1は、第1の基板2001及び第2の基板2016に挟持されている。第1の基板200
1には、トランジスタ及び画素電極が形成され、第2の基板2016には、遮光膜201
4、カラーフィルタ2015、第4の導電層2013、スペーサ2017、及び第2の配
向膜2012が形成される。
とができる。なお、第2の基板2016に遮光膜2014は特に形成されていなくてもよ
い。遮光膜2014を形成しない場合は、工程数を少なくすることが可能となるため、製
造コストの低減及び歩留まりの向上を図ることができる。
ーフィルタ2015を形成しない場合においても、遮光膜と同様、工程数が減少すること
が可能となるため、製造コストを低減し、歩留まりの向上を図ることができる。ただし、
カラーフィルタ2015を形成しない場合であって、フィールドシーケンシャル駆動によ
ってカラー表示ができる表示装置を得ることができる。
散布する場合は、工程数が減少するため、製造コストを低減することができる。また、歩
留まりの向上を図ることができる。一方、スペーサ2017を形成する場合にはスペーサ
の位置がばらつかないため、2枚の基板間の距離をより容易に一定にすることができ、表
示ムラの少ない表示装置を得ることができる。
どによって成膜される。第1の絶縁膜2002は、基板からの不純物が半導体層に影響を
及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。ただし、なお、基
板2001として石英を用いるような場合には第1の絶縁膜2002は成膜されていなく
てもよい。
ザー直描法又はインクジェット法等を利用して形成される。
れている。第2の絶縁膜2004は、基板からの不純物が半導体層に影響を及ぼし、トラ
ンジスタの性質が変化してしまうのを防ぐ機能を有する。
半導体層2005及び第2の半導体層2006は連続して成膜され、これらの形状は同時
に加工される。
ト法などによって形成される。なお、第2の導電層2007の形状が加工されるときに行
われるエッチング方法としては、ドライエッチングを用いることが好適である。なお、第
2の導電層2007としては、透明性を有する材料を用いてもよいし、反射性を有する材
料を用いてもよい。
体層2006は、第2の導電層2007をマスクとして用いてエッチングされる。また、
マスクには第2の導電層2007の形状を加工するためのマスクを用いてエッチングして
も良い。そして、第2の半導体層2006が除去された部分の第1の半導体層2005が
トランジスタのチャネル領域となる。このようにチャネル領域を形成することで、マスク
枚数を減らすことが可能となり、製造コストを低減することができる。
ホールが形成されている。なお、第3の絶縁膜2008にコンタクトホールを形成すると
同時に、第2の絶縁膜2004にもコンタクトホールを形成してもよい。なお、第3の絶
縁膜2008の表面は、できるだけ平坦であることが好ましい。液晶が接する面、即ち第
3の絶縁膜2008の表面の凹凸は液晶分子の配向に影響を与えてしまうからである。
ト法などによって形成される。
分子の配向を制御するためにラビング処理を行なってもよい。
、第4の導電層2013、スペーサ2017及び第2の配向膜2012が形成された第2
の基板2016とが数マイクロメートルのギャップを持たせてシール材によって貼り合わ
せられる。そして、2枚の基板間に液晶材料が注入される。なお、TN方式では、第4の
導電層2013は、第2の基板2016の全面に形成される。
ent)方式とトランジスタとを組み合わせた場合の画素の断面図の一例である。図29
(A)に示す画素構造を本発明の液晶表示装置に適用することによって、さらに視野角が
大きくすることができる。
て説明する。図29(A)に示した液晶分子2118は、図28に示した液晶分子201
8と同様、長軸と短軸を持った細長い分子である。そのため、図29(A)においても液
晶分子2118の向きを図中に記す液晶分子の長さによって表現している。つまり、図2
9(A)に示した液晶分子2118は、その長軸の向きが配向膜に対し法線方向を向くよ
うに配向している。また、配向制御用突起2119のある部分の液晶分子2118は、配
向制御用突起2119を中心として放射状に配向する。この状態となることによって、視
野角の大きい液晶表示装置を得ることができる。
た場合について説明する。非晶質半導体を用いたトランジスタを用いた場合、大面積の基
板を用いて、安価に液晶表示装置を製造することができる。
第2の基板2116に相当する。なお、第1の基板2101には、トランジスタ及び画素
電極が形成され、第2の基板2116には、遮光膜2114、カラーフィルタ2115、
第4の導電層2113、スペーサ2117、第2の配向膜2112、及び配向制御用突起
2119が形成されている。
とができる。なお、第2の基板2116に遮光膜2114は特に形成されていなくてもよ
い。遮光膜2114を形成しない場合は、工程数を少なくすることが可能となるため、製
造コストの低減及び歩留まりの向上を図ることができる。
ーフィルタ2115を形成しない場合においても、遮光膜と同様、工程数が減少すること
が可能となるため、製造コストを低減し、歩留まりの向上を図ることができる。ただし、
カラーフィルタ2115を形成しない場合であって、フィールドシーケンシャル駆動によ
ってカラー表示ができる表示装置を得ることができる。
散布する場合は、工程数が減少するため、製造コストを低減することができる。また、歩
留まりの向上を図ることができる。一方、スペーサ2117を形成する場合にはスペーサ
の位置がばらつかないため、2枚の基板間の距離をより容易に一定にすることができ、表
示ムラの少ない表示装置を得ることができる。
どによって成膜される。第1の絶縁膜2102は、基板からの不純物が半導体層に影響を
及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。ただし、なお、基
板2101として石英を用いるような場合には第1の絶縁膜2102は成膜されていなく
てもよい。
ザー直描法又はインクジェット法等を利用して形成される。
れている。第2の絶縁膜2104は、基板からの不純物が半導体層に影響を及ぼし、トラ
ンジスタの性質が変化してしまうのを防ぐ機能を有する。
半導体層2105及び第2の半導体層2106は連続して成膜され、これらの形状は同時
に加工される。
ト法などによって形成される。なお、第2の導電層2107の形状が加工されるときに行
われるエッチング方法としては、ドライエッチングを用いることが好適である。なお、第
2の導電層2107としては、透明性を有する材料を用いてもよいし、反射性を有する材
料を用いてもよい。
体層225は、第2の導電層2107をマスクとして用いてエッチングされる。また、マ
スクには第2の導電層2107の形状を加工するためのマスクを用いてエッチングしても
良い。そして、第2の半導体層2106が除去された部分の第1の半導体層2105がト
ランジスタのチャネル領域となる。このようにチャネル領域を形成することで、マスク枚
数を減らすことが可能となり、製造コストを低減することができる。
ホールが形成されている。なお、第3の絶縁膜2108にコンタクトホールを形成すると
同時に、第2の絶縁膜2104にもコンタクトホールを形成してもよい。
ト法などによって形成される。
分子の配向を制御するために、ラビング処理を行なってもよい。
、第4の導電層2113、スペーサ2117、及び第2の配向膜2112を作製した第2
の基板2116とが数マイクロメートルのギャップを持たせてシール材によって貼り合わ
せられる。そして、2枚の基板間に液晶材料が注入される。
ている。また、第4の導電層2113に接して、配向制御用突起2119が形成されてい
る。配向制御用突起2119の形状は、滑らかな曲面を持った形状であることが好ましい
。こうすることで、配向制御用突起2119による液晶分子2118の配向不良を低減す
る。また、配向制御用突起2119上に形成される配向膜の段切れを防止することができ
るため、この段切れによる配向膜の不良も低減することができる。
方式とトランジスタとを組み合わせた場合の画素の断面図の一例である。図29(B)に
示す画素構造を本発明の液晶表示装置に適用することによって、さらに視野角が大きくす
ることができる。
148も、図28に示した液晶分子2018と同様、図29(B)においても液晶分子2
148の向きを図中に記す液晶分子の長さによって表現している。そのため、図29(B
)に示した液晶分子2148は、その長軸の向きが配向膜に対し法線方向を向くように配
向している。また、第4の導電層2143が設けられていない電極切り欠き部2149の
周囲に存在する液晶分子2148は、電極切り欠き部2149と第4の導電層2143の
境界を中心として放射状に配向する。この状態となることによって、視野角の大きい液晶
表示装置を得ることができる。
た場合について説明する。非晶質半導体を用いたトランジスタを用いた場合、大面積の基
板を用いて、安価に液晶表示装置を製造することができる。
第2の基板2146に相当する。なお、第1の基板2131には、トランジスタ及び画素
電極が形成され、第2の基板2146には、遮光膜2144、カラーフィルタ2145、
第4の導電層2143、スペーサ2147、及び第2の配向膜2142が形成されている
。
とができる。なお、第2の基板2146に遮光膜2144は特に形成されていなくてもよ
い。遮光膜2144を形成しない場合は、工程数を少なくすることが可能となるため、製
造コストの低減及び歩留まりの向上を図ることができる。
ーフィルタ2145を形成しない場合においても、遮光膜と同様、工程数が減少すること
が可能となるため、製造コストを低減し、歩留まりの向上を図ることができる。ただし、
カラーフィルタ2145を形成しない場合であって、フィールドシーケンシャル駆動によ
ってカラー表示ができる表示装置を得ることができる。
散布する場合は、工程数が減少するため、製造コストを低減することができる。また、歩
留まりの向上を図ることができる。一方、スペーサ2147を形成する場合にはスペーサ
の位置がばらつかないため、2枚の基板間の距離をより容易に一定にすることができ、表
示ムラの少ない表示装置を得ることができる。
などによって成膜される。第1の絶縁膜2132は、基板からの不純物が半導体層に影響
を及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。ただし、なお、
基板2131として石英を用いるような場合には第1の絶縁膜2132は成膜されていな
くてもよい。
ザー直描法又はインクジェット法等を利用して形成される。
れている。第2の絶縁膜2134は、基板からの不純物が半導体層に影響を及ぼし、トラ
ンジスタの性質が変化してしまうのを防ぐ機能を有する。
半導体層2135及び第2の半導体層2136は連続して成膜され、これらの形状は同時
に加工される。
ト法などによって形成される。なお、第2の導電層2137の形状が加工されるときに行
われるエッチング方法としては、ドライエッチングを用いることが好適である。なお、第
2の導電層2137としては、透明性を有する材料を用いてもよいし、反射性を有する材
料を用いてもよい。
体層2136は、第2の導電層2137をマスクとして用いてエッチングされる。また、
マスクには第2の導電層2137の形状を加工するためのマスクを用いてエッチングして
も良い。そして、第2の半導体層2136が除去された部分の第1の半導体層2135が
トランジスタのチャネル領域となる。このようにチャネル領域を形成することで、マスク
枚数を減らすことが可能となり、製造コストを低減することができる。
ホールが形成されている。なお、第3の絶縁膜2138にコンタクトホールを形成すると
同時に、第2の絶縁膜2134にもコンタクトホールを形成してもよい。
ト法などによって形成される。
分子の配向を制御するために、ラビング処理を行なってもよい。
、第4の導電層2143、スペーサ2147及び第2の配向膜2142を作製した第2の
基板2146とが数マイクロメートルのギャップを持たせてシール材によって貼り合わせ
られる。そして、2枚の基板間に液晶材料が注入される。
2149が形成される。なお、電極切り欠き部2149の形状に特に限定はないが、異な
る向きを持った複数の矩形を組み合わせた形状であるのが好適である。こうすることで、
配向の異なる複数の領域が形成できるので、視野角の大きな液晶表示装置を得ることがで
きる。なお、電極切り欠き部2149と第4の導電層2143の境界における第4の導電
層2143の形状は、その底辺に対し滑らかな斜面を有することが好適である。こうする
ことで、当該斜面に近接する液晶分子2148の配向不良を低減する。また、第4の導電
層2143上に形成される配向膜の段切れを防止することができるため、この段切れによ
る配向膜の不良も低減することができる。
とを組み合わせた場合の画素の断面図の一例である。図30(A)に示す画素構造を本発
明の液晶表示装置に適用することによって、さらに視野角が大きくすることができる。
248は、図28に示した液晶分子2018と同様、長軸と短軸を持った細長い分子であ
る。そのため、図30(A)においても液晶分子2218の向きをの向きを図中に記す液
晶分子の長さによって表現している。つまり、図30(A)に示した液晶分子2218は
、その長軸の向きが常に基板に対し水平の方向を向くように配向している。図30(A)
においては、液晶2211が存在する領域に電界が生じていない状態における液晶分子2
218配向を表しているが、液晶分子2218に電界が印加されたときは、その長軸の向
きが常に基板に対し水平の方向を維持したまま、水平面内において回転する。この状態と
なることによって、視野角の大きい液晶表示装置を得ることができる。
た場合について説明する。非晶質半導体を用いたトランジスタを用いた場合、大面積の基
板を用いて、安価に液晶表示装置を製造することができる。
び第2の基板2216に相当する。なお、第1の基板2201には、トランジスタ及び画
素電極が形成され、第2の基板2216には、遮光膜2214、カラーフィルタ2215
、スペーサ2217、及び第2の配向膜2212が形成されている。
とができる。なお、第2の基板2216に遮光膜2214は特に形成されていなくてもよ
い。遮光膜2214を形成しない場合は、工程数を少なくすることが可能となるため、製
造コストの低減及び歩留まりの向上を図ることができる。
ーフィルタ2215を形成しない場合においても、遮光膜と同様、工程数が減少すること
が可能となるため、製造コストを低減し、歩留まりの向上を図ることができる。ただし、
カラーフィルタ2215を形成しない場合であって、フィールドシーケンシャル駆動によ
ってカラー表示ができる表示装置を得ることができる。
散布する場合は、工程数が減少するため、製造コストを低減することができる。また、歩
留まりの向上を図ることができる。一方、スペーサ2217を形成する場合にはスペーサ
の位置がばらつかないため、2枚の基板間の距離をより容易に一定にすることができ、表
示ムラの少ない表示装置を得ることができる。
どによって成膜される。第1の絶縁膜2202は、基板からの不純物が半導体層に影響を
及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。ただし、なお、基
板2201として石英を用いるような場合には第1の絶縁膜2202は成膜されていなく
てもよい。
ザー直描法又はインクジェット法等を利用して形成される。
れている。第2の絶縁膜2204は、基板からの不純物が半導体層に影響を及ぼし、トラ
ンジスタの性質が変化してしまうのを防ぐ機能を有する。
半導体層2205及び第2の半導体層2206は連続して成膜され、これらの形状は同時
に加工される。
ト法などによって形成される。なお、第2の導電層2207の形状が加工されるときに行
われるエッチング方法としては、ドライエッチングを用いることが好適である。なお、第
2の導電層2207としては、透明性を有する材料を用いてもよいし、反射性を有する材
料を用いてもよい。
体層2206は、第2の導電層2207をマスクとして用いてエッチングされる。また、
マスクには第2の導電層2207の形状を加工するためのマスクを用いてエッチングして
も良い。そして、第2の半導体層2206が除去された部分の第1の半導体層2205が
トランジスタのチャネル領域となる。このようにチャネル領域を形成することで、マスク
枚数を減らすことが可能となり、製造コストを低減することができる。
ホールが形成されている。なお、第3の絶縁膜2208にコンタクトホールを形成すると
同時に、第2の絶縁膜2204にもコンタクトホールを形成してもよい。
ト法などによって形成される。ここで、第3の導電層2209の形状は、互いにかみ合っ
た2つの櫛歯状とする。一方の櫛歯状の電極がトランジスタのソース電極及びドレイン電
極の一方と電気的に接続され、他方の櫛歯状の電極が共通電極と電気的に接続される。こ
うすることで、液晶分子2218に効果的に横方向の電界をかけることができる。
分子の配向を制御するために、ラビング処理を行なってもよい。
、スペーサ2217、及び第2の配向膜2212を作製した第2の基板2216とが数マ
イクロメートルのギャップを持たせてシール材によって貼り合わせられる。そして、2枚
の基板間に液晶材料が注入される。
ランジスタとを組み合わせた場合の画素の断面図の一例である。図30(B)に示す画素
構造を本発明の液晶表示装置に適用することによって、さらに視野角が大きくすることが
できる。
248、図28に示した液晶分子2018と同様、図30(B)においても液晶分子21
48の向きを図中に記す液晶分子の長さによって表現している。そのため、図30(B)
に示した液晶分子2248は、その長軸の向きが常に基板に対し水平の方向を向くように
配向している。図30(B)においては、液晶2241が存在する領域に電電界が生じて
いない状態における液晶分子2248配向を表しているが、液晶分子2248に電界が印
加されたときは、その長軸の向きが常に基板に対し水平の方向を維持したまま、水平面内
において回転する。この状態となることによって、視野角の大きい液晶表示装置を得るこ
とができる。
た場合について説明する。非晶質半導体を用いたトランジスタを用いた場合、大面積の基
板を用いて、安価に液晶表示装置を製造することができる。
第2の基板2246に相当する。なお、第1の基板2241には、トランジスタ及び画素
電極が形成され、第2の基板2246には、遮光膜2244、カラーフィルタ2245、
スペーサ2247、及び第2の配向膜2242が形成されている。
とができる。なお、第2の基板2246に遮光膜2244は特に形成されていなくてもよ
い。遮光膜2244を形成しない場合は、工程数を少なくすることが可能となるため、製
造コストの低減及び歩留まりの向上を図ることができる。
ーフィルタ2245を形成しない場合においても、遮光膜と同様、工程数が減少すること
が可能となるため、製造コストを低減し、歩留まりの向上を図ることができる。ただし、
カラーフィルタ2245を形成しない場合であって、フィールドシーケンシャル駆動によ
ってカラー表示ができる表示装置を得ることができる。
散布する場合は、工程数が減少するため、製造コストを低減することができる。また、歩
留まりの向上を図ることができる。一方、スペーサ2247を形成する場合にはスペーサ
の位置がばらつかないため、2枚の基板間の距離をより容易に一定にすることができ、表
示ムラの少ない表示装置を得ることができる。
などによって成膜される。第1の絶縁膜2232は、基板からの不純物が半導体層に影響
を及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。ただし、なお、
基板2231として石英を用いるような場合には第1の絶縁膜2232は成膜されていな
くてもよい。
ザー直描法又はインクジェット法等を利用して形成される。
れている。第2の絶縁膜2234は、基板からの不純物が半導体層に影響を及ぼし、トラ
ンジスタの性質が変化してしまうのを防ぐ機能を有する。
半導体層2235及び第2の半導体層2236は連続して成膜され、これらの形状は同時
に加工される。
ト法などによって形成される。なお、第2の導電層2237の形状が加工されるときに行
われるエッチング方法としては、ドライエッチングを用いることが好適である。なお、第
2の導電層2237としては、透明性を有する材料を用いてもよいし、反射性を有する材
料を用いてもよい。
体層2236は、第2の導電層2237をマスクとして用いてエッチングされる。また、
マスクには第2の導電層2237の形状を加工するためのマスクを用いてエッチングして
も良い。そして、第2の半導体層2236が除去された部分の第1の半導体層2235が
トランジスタのチャネル領域となる。このようにチャネル領域を形成することで、マスク
枚数を減らすことが可能となり、製造コストを低減することができる。
ホールが形成されている。
ト法などによって形成されている。
ホールが形成されている。
ト法などによって形成される。ここで、第4の導電層2243の形状は、櫛歯状とする。
分子の配向を制御するために、ラビング処理を行なってもよい。
、スペーサ2247、及び第2の配向膜2242を作製した第2の基板2246とがシー
ル材によって数マイクロメートルのギャップを持たせて貼り合わせ、2枚の基板間に液晶
材料を注入することで、液晶パネルが作製できる。
第1の絶縁膜2132、図30(A)の第1の絶縁膜2202、図30(B)の第1の絶
縁膜2232としては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(Si
OxNy)等の絶縁膜を用いることができる。また、これら絶縁膜は、酸化シリコン膜、
窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)等のうちの2つ以上の膜を組み
合わせた積層構造の絶縁膜を用いることができる。
第1の導電層2133、図30(A)の第1の導電層2203、図30(B)の第1の導
電層2233としては、Mo、Ti、Al、Nd、Crなどの導電性材料を用いることが
できる。また、これら導電層は、Mo、Ti、Al、Nd、Crなどの導電性材料うち、
2つ以上を組み合わせた積層構造を用いることもできる。
第2の絶縁膜2134、図30(A)の第2の絶縁膜2204、図30(B)の第2の絶
縁膜2234としては、熱酸化膜、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコ
ン膜などを用いることができる。また、熱酸化膜、酸化シリコン膜、窒化シリコン膜又は
酸化窒化シリコン膜などのうち2以上を組み合わせた積層構造などを用いることができる
。なお、半導体層と接する部分では、酸化シリコン膜であることが好ましい。酸化シリコ
ン膜にすることにより、半導体層との界面におけるトラップ準位が少なくなるからである
。なお、Moと接する部分では、窒化シリコン膜であることが好ましい。窒化シリコン膜
はMoを酸化させないからである。
)の第1の半導体層2135、図30(A)の第1の半導体層2205、図30(B)の
第1の半導体層2235としては、シリコン又はシリコンゲルマニウム(SiGe)など
を用いることができる。
)の第2の半導体層2136、図30(A)の第2の半導体層2206、図30(B)の
第2の半導体層2236としては、リン等を含んだシリコン等を用いることができる。
2107及び第3の導電層2109、図29(B)の第2の導電層2137及び第2の導
電層2139、図30(A)の第2の導電層2207及び第2の導電層2209、もしく
は図30(B)の第2の導電層2237、第3の導電層2239及び第4の導電層224
3の透明性を有する材料としては、酸化インジウムに酸化スズを混ぜたインジウムスズ酸
化物(ITO)膜、インジウムスズ酸化物(ITO)に酸化珪素を混ぜたインジウムスズ
珪素酸化物(ITSO)膜、酸化インジウムに酸化亜鉛を混ぜたインジウム亜鉛酸化物(
IZO)膜、酸化亜鉛膜又は酸化スズ膜などを用いることができる。なお、IZOは、I
TOに2〜20wt%の酸化亜鉛(ZnO)を混合させたターゲットを用いてスパッタリ
ングにより形成することができる。
導電層2107及び第3の導電層2109、図29(B)の第2の導電層2137及び第
2の導電層2139、図30(A)の第2の導電層2207及び第2の導電層2209、
もしくは図30(B)の第2の導電層2237、第2の導電層2239及び第4の導電層
2243の反射性を有する材料としては、Ti、Mo、Ta、Cr、W、Alなどを用い
ることができる。あるいは、Ti、Mo、Ta、Cr、WとAlを積層させた2層構造、
AlをTi、Mo、Ta、Cr、Wなどの金属で挟んだ3層積層構造としてもよい。
第3の絶縁膜2138、図29(B)の第3の導電層2139、図30(A)の第3の絶
縁膜2208、図30(B)の第3の絶縁膜2238及び第4の絶縁膜2249としては
、無機材料(酸化シリコン、窒化シリコン、酸化窒化シリコンなど)あるいは低誘電率の
有機化合物材料(感光性又は非感光性の有機樹脂材料)などを用いることができる。また
、シロキサンを含む材料を用いることもできる。なお、シロキサンは、シリコン(Si)
と酸素(O)との結合で骨格構造が構成される材料である。置換基として、少なくとも水
素を含む有機基(例えばアルキル基、アリール基)が用いられる。あるいは、置換基とし
てフルオロ基を用いてもよい。あるいは、置換基として、少なくとも水素を含む有機基と
、フルオロ基とを用いてもよい。
第1の配向膜2140、図29(B)の第1の配向膜2210、図30(B)の第1の配
向膜2240としては、ポリイミドなどの高分子膜を用いることができる。
面図(レイアウト図)を参照して説明する。
In−Plane−Switching)モード、FFS(Fringe Field
Switching)モード、MVA(Multi−domain Vertical
Alignment)モード、PVA(Patterned Vertical Ali
gnment)、ASM(Axially Symmetric aligned Mi
cro−cell)モード、OCB(Optical Compensated Bir
efringence)モード、FLC(Ferroelectric Liquid
Crystal)モード、AFLC(AntiFerroelectric Liqui
d Crystal)などを用いることができる。
スタル、セミアモルファスとも言う)シリコンなどに代表される非単結晶半導体層を有す
る薄膜トランジスタ(TFT)などを用いることが出来る。
とができる。ボトムゲート型のトランジスタとしては、チャネルエッチ型又はチャネル保
護型などを用いることができる。
ンジスタ2320及びトランジスタ2321から構成される第3のトランジスタ、第1の
液晶容量、第2の液晶容量、第1の保持容量及び第2の保持容量とを有し、第1の走査線
2300と、第2の走査線2301と、信号線2302と、Cs線2311に接続されて
いる。なお、図31に示す画素構成の等価回路図は、図83と同様であるため詳細な説明
は省略する。
容量を構成する画素電極は画素電極2308に相当する。また、第1の保持容量は、画素
部の外部でCs線2311と接続された容量線2312と、画素電極2307に接続され
た半導体層2309と、これらの間に設けられた絶縁膜より構成されている。第2の保持
容量においても、第1の保持容量と同様に、容量線2312と、画素電極2308に接続
された半導体層2310と、これらの間に設けられた絶縁膜より構成されている。なお、
第1の保持容量及び第2の保持容量を構成する容量線2312は、トランジスタ2304
、2305、2320を構成するゲート電極を含む第1の走査線2300、トランジスタ
2321を構成するゲート電極を含む第2の走査線2301やCs線2301と、半導体
層2309、2310はトランジスタ2304、2305、2320、2321を構成す
るソース領域、ドレイン領域やチャネル形成領域を含む半導体層と同一工程にて作製され
ている。また、第1の保持容量及び第2の保持容量を構成する絶縁膜においても、トラン
ジスタ2304、2305、2320、2321を構成するゲート絶縁膜と同一工程にて
作製された膜を利用することができる。
晶表示装置を得ることができる。なお、図31に示す上面図は一例であり、これに限定さ
れるものではない。
包み囲むような構造とすることで、チャネル幅をかせぐことができる。このような構造は
、画素を構成するトランジスタの半導体層に結晶性半導体層より移動度の低い非晶質半導
体層を用いた際には特に有効である。
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
び実施例の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換え
などを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関し
て、別の実施の形態および実施例の部分を組み合わせることにより、さらに多くの図を構
成させることが出来る。
具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した
場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての
一例などを示している。したがって、他の実施の形態および実施例で述べた内容は、本実
施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
本実施の形態においては、各種液晶モードについて断面図を用いて説明する。
3300が挟持されている。第1の基板3301の上面には、第1の電極3305が形成
されている。第2の基板3302の上面には、第2の電極3306が形成されている。第
1の基板3301の液晶層と反対側には、第1の偏光板3303が配置されている。第2
の基板3302の液晶層と反対側には、第2の偏光板3304が配置されている。なお、
第1の偏光板3303と第2の偏光板3304とは、クロスニコルになるように配置され
ている。
3304は、第2の基板3302の上面に配置されてもよい。
が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有
し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
と呼ぶ)された場合の断面の模式図である。液晶分子が縦に並んだ状態となるため、バッ
クライトからの光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板3303
と第2の偏光板3304とがクロスニコルになるように配置されているため、バックライ
トからの光は基板を通過できない。したがって、黒色表示が行われる。
場合の断面の模式図である。液晶分子が横に並び、第1の電極3305から第2の電極3
306にかけて回転している状態となるため、バックライトからの光は液晶分子の複屈折
の影響を受ける。そして、第1の偏光板3303と第2の偏光板3304とがクロスニコ
ルになるように配置されているため、バックライトからの光は基板を通過する。したがっ
て、白色表示が行われる。いわゆるノーマリーホワイトモードである。
の状態、即ち配向を制御することが可能である。したがって、バックライトからの光を液
晶分子によって制御することができるため、所定の映像表示を行うことが可能である。
とで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板3301側又
は第2の基板3302側に設けることができる。
に液晶分子が基板に垂直となるように配向されているモードである。
3400が挟持されている。第1の基板3401の上面には、第1の電極3405が形成
されている。第2の基板3402の上面には、第2の電極3406が形成されている。第
1の基板3401の液晶層と反対側には、第1の偏光板3403が配置されている。第2
の基板3402の液晶層と反対側には、第2の偏光板3404が配置されている。なお、
第1の偏光板3403と第2の偏光板3404とは、クロスニコルになるように配置され
ている。
3404は、第2の基板3402の上面に配置されてもよい。
が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有
し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
と呼ぶ)された場合の断面の模式図である。液晶分子が横に並んだ状態となるため、バッ
クライトからの光は液晶分子の複屈折の影響を受ける。そして、第1の偏光板3403と
第2の偏光板3404とがクロスニコルになるように配置されているため、バックライト
からの光は基板を通過する。したがって、白色表示が行われる。
場合の断面の模式図である。液晶分子が縦に並んだ状態となるため、バックライトからの
光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板3403と第2の偏光板
3404とがクロスニコルになるように配置されているため、バックライトからの光は基
板を通過しない。したがって、黒色表示が行われる。いわゆるノーマリーブラックモード
である。
の状態、即ち配向を制御することが可能である。したがって、バックライトからの光を液
晶分子によって制御することができるため、所定の映像表示を行うことが可能である。
とで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板3401側又
は第2の基板3402側に設けることができる。
れの部分の視野角依存性を互いに補償する方法である。
3410が挟持されている。第1の基板3411の上面には、第1の電極3415が形成
されている。第2の基板3412の上面には、第2の電極3416が形成されている。第
1の電極3415上には、配向制御用に第1の突起物3417が形成されている。第2の
電極3416上には、配向制御用に第2の突起物3418が形成されている。第1の基板
3411の液晶層と反対側には、第1の偏光板3413が配置されている。第2の基板3
412の液晶層と反対側には、第2の偏光板3414が配置されている。なお、第1の偏
光板3413と第2の偏光板3414とは、クロスニコルになるように配置されている。
3414は、第2の基板3412の上面に配置されてもよい。
が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有
し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
と呼ぶ)された場合の断面の模式図である。バックライトからの光は液晶分子の複屈折の
影響を受ける。そして、第1の偏光板3413と第2の偏光板3414とがクロスニコル
になるように配置されているため、バックライトからの光は基板を通過する。したがって
、白色表示が行われる。また、液晶分子が第1の突起物3417及び第2の突起物341
8に影響を受け、第1の突起物3417及び第2の突起物3418に対して倒れて並んだ
状態となる。よって、視野角をさらに向上させることが可能である。
場合の断面の模式図である。液晶分子が縦に並んだ状態となるため、バックライトからの
光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板3413と第2の偏光板
3414とがクロスニコルになるように配置されているため、バックライトからの光は基
板を通過しない。したがって、黒色表示が行われる。いわゆるノーマリーブラックモード
である。
晶分子の状態即ち配向を制御することが可能である。したがって、バックライトからの光
を液晶分子によって制御することができるため、所定の映像表示を行うことが可能である
。
とで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板3411側又
は第2の基板3412側に設けることができる。
内で液晶分子の配列が光学的に補償状態を形成しているため、視野角依存性が少ない。こ
の液晶分子の状態は、ベンド配向と呼ばれる。
3500が挟持されている。第1の基板3501の上面には、第1の電極3505が形成
されている。第2の基板3502の上面には、第2の電極3506が形成されている。第
1の基板3501の液晶層と反対側には、第1の偏光板3503が配置されている。第2
の基板3502の液晶層と反対側には、第2の偏光板336が配置されている。なお、第
1の偏光板3503と第2の偏光板336とは、クロスニコルになるように配置されてい
る。
336は、第2の基板3502の上面に配置されてもよい。
が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有
し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
と呼ぶ)された場合の断面の模式図である。液晶分子が縦に並んだ状態となるため、バッ
クライトからの光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板3503
と第2の偏光板336とがクロスニコルになるように配置されているため、バックライト
からの光は基板を通過しない。したがって、黒色表示が行われる。
場合の断面の模式図である。液晶分子がベンド配向の状態となるため、バックライトから
の光は液晶分子の複屈折の影響を受ける。そして、第1の偏光板3503と第2の偏光板
336とがクロスニコルになるように配置されているため、バックライトからの光は基板
を通過する。したがって、白色表示が行われる。いわゆるノーマリーホワイトモードであ
る。
晶分子の状態、即ち配向を制御することが可能である。したがって、バックライトからの
光を液晶分子によって制御することができるため、所定の映像表示を行うことが可能であ
る。
とで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板3501側又
は第2の基板3502側に設けることができる。
3510が挟持されている。第1の基板3511の上面には、第1の電極3515が形成
されている。第2の基板3512の上面には、第2の電極3516が形成されている。第
1の基板3511の液晶層と反対側には、第1の偏光板3513が配置されている。第2
の基板3512の液晶層と反対側には、第2の偏光板3514が配置されている。なお、
第1の偏光板3513と第2の偏光板3514とは、クロスニコルになるように配置され
ている。
3514は、第2の基板3512の上面に配置されてもよい。
が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有
し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
と呼ぶ)された場合の断面の模式図である。液晶分子がラビング方向からずれた方向で横
に並んでいる状態となるため、バックライトからの光は液晶分子の複屈折の影響を受ける
。そして、第1の偏光板3513と第2の偏光板3514とがクロスニコルになるように
配置されているため、バックライトからの光は基板を通過する。したがって、白色表示が
行われる。
場合の断面の模式図である。液晶分子がラビング方向に沿って横に並んだ状態となるため
、バックライトからの光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板3
513と第2の偏光板3514とがクロスニコルになるように配置されているため、バッ
クライトからの光は基板を通過しない。したがって、黒色表示が行われる。いわゆるノー
マリーブラックモードである。
晶分子の状態、即ち配向を制御することが可能である。したがって、バックライトからの
光を液晶分子によって制御することができるため、所定の映像表示を行うことが可能であ
る。
とで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板3511側又
は第2の基板3512側に設けることができる。
。
子を基板に対して常に平面内で回転させるモードであり、電極は一方の基板側のみに設け
た横電界方式をとる。
3600が挟持されている。第1の基板3601の上面には、第1の電極3605及び第
2の電極3606が形成されている。第1の基板3601の液晶層と反対側には、第1の
偏光板3603が配置されている。第2の基板3602の液晶層と反対側には、第2の偏
光板3604が配置されている。なお、第1の偏光板3603と第2の偏光板3604と
は、クロスニコルになるように配置されている。
3604は、第2の基板3602の上面に配置されてもよい。
が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有
し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
断面の模式図である。液晶分子がラビング方向からずれた電気力線に沿って配向した状態
となるため、バックライトからの光は液晶分子の複屈折の影響を受ける。そして、第1の
偏光板3603と第2の偏光板3604とがクロスニコルになるように配置されているた
め、バックライトからの光は基板を通過する。したがって、白色表示が行われる。
場合の断面の模式図である。液晶分子がラビング方向に沿って横に並んだ状態となるため
、バックライトからの光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板3
603と第2の偏光板3604とがクロスニコルになるように配置されているため、バッ
クライトからの光は基板を通過しない。したがって、黒色表示が行われる。いわゆるノー
マリーブラックモードである。
の状態、即ち配向を制御することが可能である。したがって、バックライトからの光を液
晶分子によって制御することができるため、所定の映像表示を行うことが可能である。
とで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板3601側又
は第2の基板3602側に設けることができる。
、液晶分子を基板に対して常に平面内で回転させるモードであり、電極は一方の基板側の
みに設けた横電界方式をとる。
3610が挟持されている。第1の基板3611の上面には、第2の電極3616が形成
されている。第2の電極3616の上面には、絶縁膜3617が形成されている。絶縁膜
3617上には、第2の電極3616が形成されている。第1の基板3611の液晶層と
反対側には、第1の偏光板3613が配置されている。第2の基板3612の液晶層と反
対側には、第2の偏光板3614が配置されている。なお、第1の偏光板3613と第2
の偏光板3614とは、クロスニコルになるように配置されている。
3614は、第2の基板3612の上面に配置されてもよい。
が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有
し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
断面の模式図である。液晶分子がラビング方向からずれた電気力線に沿って配向した状態
となるため、バックライトからの光は液晶分子の複屈折の影響を受ける。そして、第1の
偏光板3613と第2の偏光板3614とがクロスニコルになるように配置されているた
め、バックライトからの光は基板を通過する。したがって、白色表示が行われる。
場合の断面の模式図である。液晶分子がラビング方向に沿って横に並んだ状態となるため
、バックライトからの光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板3
613と第2の偏光板3614とがクロスニコルになるように配置されているため、バッ
クライトからの光は基板を通過しない。したがって、黒色表示が行われる。いわゆるノー
マリーブラックモードである。
晶分子の状態、即ち配向を制御することが可能である。したがって、バックライトからの
光を液晶分子によって制御することができるため、所定の映像表示を行うことが可能であ
る。
とで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板3611側又
は第2の基板3612側に設けることができる。
示す。
及び突起物3703を示している。第1の電極3701は、対向基板の全面に形成されて
いる。形状がくの字型となるように、第2の電極(3702a、3702b、3702c
)が形成されている。形状が第2の電極(3702a、3702b、3702c)と対応
するように、第1の電極3701上に第2の電極(3702a、3702b、3702c
)が形成されている。
る。
加(縦電界方式と呼ぶ)された場合、液晶分子が第2の電極(3702a、3702b、
3702c)の開口部及び突起物3703に対して倒れて並んだ状態となる。よって、視
野角を向上させることが可能である。なお、一対の偏光板がクロスニコルとなるように配
置されているときには、バックライトからの光が基板を通過するため、白色表示が行われ
る。
加されていない場合、液晶分子が縦に並んだ状態となる。一対の偏光板がクロスニコルと
なるように配置されているときには、バックライトからの光がパネルを通過しないため、
黒色表示が行われる。いわゆる、ノーマリーブラックモードである。
加する電圧を制御することで、液晶分子の状態、即ち配向を制御することが可能である。
したがって、バックライトからの光を液晶分子によって制御することができるため、所定
の映像表示を行うことが可能である。
を示す。IPSモードは、液晶分子を基板に対して常に平面内で回転させるモードであり
、電極は一方の基板側のみに設けた横電界方式をとる。
3801及び第2の電極3802は、波状形状である。
3811及び第2の電極3812は、同心円状の開口部を有する形状である。
3831及び第2の電極3832は、櫛場状であり一部重なっている形状である。
3841及び第2の電極3842は、櫛場状であり電極同士がかみ合うような形状である
。
812、3822、3832)に電圧が印加された場合、液晶分子がラビング方向からず
れた電気力線に沿って配向した状態となる。一対の偏光板がクロスニコルとなるように配
置されているときには、バックライトからの光が基板を通過するため、白色表示が行われ
る。
812、3822、3832)に電圧が印加されていない場合、液晶分子がラビング方向
に沿って横に並んだ状態となる。一対の偏光板がクロスニコルとなるように配置されてい
るときには、バックライトからの光が基板を通過しないため、黒色表示が行われる。いわ
いるノーマリーブラックモードである。
ち配向を制御することが可能である。したがって、バックライトからの光を液晶分子によ
って制御することができるため、所定の映像表示を行うことが可能である。
を示す。FFSモードは、液晶分子を基板に対して常に平面内で回転させるモードであり
、電極は一方の基板側のみに設けた横電界方式をとる。
る。
3901は、屈曲したくの字形状である。第2の電極3902は、パターン形成されてい
なくてもよい。
3911は、同心円状の形状である。第2の電極3912は、パターン形成されていなく
てもよい。
3931は、櫛場状で電極同士がかみ合うような形状である。第2の電極3932は、パ
ターン形成されていなくてもよい。
3941は、櫛場状の形状である。第2の電極3942は、パターン形成されていなくて
もよい。
912、3922、3932)に電圧が印加された場合、液晶分子がラビング方向からず
れた電気力線に沿って配向した状態となる。一対の偏光板がクロスニコルとなるように配
置されているときには、バックライトからの光が基板を通過するため、白色表示が行われ
る。
912、3922、3932)に電圧が印加されていない場合、液晶分子がラビング方向
に沿って横に並んだ状態となる。一対の偏光板がクロスニコルとなるように配置されてい
るときには、バックライトからの光が基板を通過しないため、黒色表示が行われる。いわ
いるノーマリーブラックモードである。
ち配向を制御することが可能である。したがって、バックライトからの光を液晶分子によ
って制御することができるため、所定の映像表示を行うことが可能である。
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
び実施例の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換え
などを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関し
て、別の実施の形態および実施例の部分を組み合わせることにより、さらに多くの図を構
成させることが出来る。
具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した
場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての
一例などを示している。したがって、他の実施の形態および実施例で述べた内容は、本実
施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
本実施の形態においては、液晶パネルの周辺部について説明する。
07とを有している液晶表示装置の一例を示す。エッジライト式とは、バックライトユニ
ットの端部に光源を配置し、その光源の発光を発光面全体から放射する方式である。エッ
ジライト式のバックライトユニットは、薄型で省電力化を図ることができる。
ランプリフレクタ2605及び光源2606によって構成される。
冷陰極管、熱陰極管、発光ダイオード、無機EL又は有機ELなどが用いられる。ランプ
リフレクタ2605は、光源2606からの発光を効率よく導光板2603に導く機能を
有する。導光板2603は、光源2603からの光を全反射させて、全面に光を導く機能
を有する。拡散板2602は、明度のムラを低減する機能を有する。反射板2604は、
導光板2603から液晶パネル2603より反対方向に漏れた光を反射させて再利用する
機能を有する。
路が接続されている。この制御回路によって、光源2606の輝度を調整することができ
る。
詳細な構成を示す図である。なお、拡散板、導光板及び反射板などはその説明を省略する
。
いた構成である。そして、冷陰極管2703からの光を効率よく反射させるため、ランプ
リフレクタ2702が設けられている。このような構成は、大型表示装置に用いることが
多い。
D)2713を用いた構成である。例えば、白色に発する発光ダイオード(W)2713
は所定の間隔に配置される。そして、発光ダイオード2713からの光を効率よく反射さ
せるため、ランプリフレクタ2712が設けられている。
する。また、発光ダイオードは色再現性に優れているので、入力される画像情報に対して
忠実な画像を表示することができる。また、発光ダイオードは小さいため、配置面積を小
さくすることができる。したがって、表示装置の狭額縁化を図ることができる。
面に配置することができる。発光ダイオードは、所定の間隔を維持し、各色の発光ダイオ
ードが順に配置される。
オード(LED)2723、発光ダイオード(LED)2724、発光ダイオード(LE
D)2725を用いた構成である。RGB各色の発光ダイオード2723(LED)、発
光ダイオード(LED)2724、発光ダイオード(LED)2725は、それぞれ所定
の間隔ごとに配置される。RGB各色の発光ダイオード(LED)2723、発光ダイオ
ード(LED)2724、発光ダイオード(LED)2725を用いることによって、色
再現性を高くすることができる。また、発光ダイオードからの光を効率よく反射させるた
め、ランプリフレクタ2722が設けられている。
は大型表示装置に適する。また、発光ダイオードは色再現性に優れているので、入力され
る画像情報に対して忠実な画像を表示することができる。また、発光ダイオードは小さい
ため、配置面積を小さくすることができる。したがって、表示装置の狭額縁化を図ること
ができる。
を行うことができる。いわいるフィールドシーケンシャルモードで表示することができる
。
、発光ダイオード(LED)2724、発光ダイオード(LED)2725とを組み合わ
せることができる。
面に配置することができる。また、発光ダイオードの各々は所定の間隔を維持し、各色の
発光ダイオードが順に配置される。このような配置によって、色再現性を高めることがで
きる。
オード(LED)2733、発光ダイオード(LED)2734、発光ダイオード(LE
D)2735を用いた構成である。例えば、RGB各色の発光ダイオード(LED)27
33、発光ダイオード(LED)2734、発光ダイオード(LED)2735のうち発
光強度の低い色(例えば緑)の発光ダイオード、図40(D)においては発光ダイオード
(LED)2734は複数配置されている。このような構成とするによって、さらに色再
現性を高くすることができる。また、発光ダイオードからの光を効率よく反射させるため
、ランプリフレクタ2732が設けられている。
構成は大型表示装置に適する。また、発光ダイオードは色再現性に優れているので、入力
される画像情報に対して忠実な画像を表示することができる。また、発光ダイオードは小
さいため、配置面積を小さくすることができる。したがって、表示装置の狭額縁化を図る
ことができる。
を行うことができる。
、発光ダイオード(LED)2734、発光ダイオード(LED)2735とを組み合わ
せることができる。
面に配置することができる。発光ダイオードの各々は所定の間隔を維持し、各色の発光ダ
イオードが順に配置される。このような配置によって、色再現性を高めることができる。
5とを有する液晶表示装置の一例を示す。直下式とは、発光面の直下に光源を配置するこ
とで、その光源の発光を発光面全体から放射する方式である。直下式のバックライトユニ
ットは、発光光量を効率よく利用することができる。
2803及び光源2804によって構成される。
は、冷陰極管、熱陰極管、発光ダイオード、無機EL又は有機ELなどが用いられる。ラ
ンプリフレクタ2803は、光源2804の発光を効率よく拡散板2801及び遮光板2
802に導く機能を有する。遮光板2802は、光源2804の配置に合わせて光が強い
ところほど遮光を多くすることで、明度のムラを低減する機能を有する。拡散板2801
は、さらに明度のムラを低減する機能を有する。
路が接続されている。この制御回路によって、光源2804の輝度を調整することができ
る。
0とを有する液晶表示装置の一例を示す。
2813、RGB各色の光源(R)2814a、光源(G)2814b及び光源(B)2
814cによって構成される。
、必要に応じて発光する機能を有する。例えば、光源2814a(R)、光源2814b
(G)及び光源2814c(B)としては、冷陰極管、熱陰極管、発光ダイオード、無機
EL又は有機ELなどが用いられる。ランプリフレクタ2813は、光源2814の発光
を効率よく拡散板2811及び遮光板2812に導く機能を有する。遮光板2812は、
光源2814の配置に合わせて光が強いところほど遮光を多くすることで、明度のムラを
低減する機能を有する。拡散板2811は、さらに明度のムラを低減する機能を有する。
814b(G)及び光源2814c(B)の輝度を調整するための制御回路が接続されて
いる。この制御回路によって、RGB各色の光源2814a(R)、光源2814b(G
)及び光源2814c(B)の輝度を調整することができる。
ィルム2903、基板フィルム2904、粘着剤層2905及び離型フィルム2906を
有する。
する。具体的には、PVA偏光フィルム2903は、電子の密度が縦と横で大きく異なる
分子(偏光子)を含んでいる。この電子の密度が縦と横で大きく異なる分子の方向が揃っ
たPVA偏光フィルム2903により、直線偏光とすることが可能となる。
yl Alcohol)の高分子フィルムにヨウ素化合物をドープし、PVAフィルムを
ある方向に引っ張ることで、一定方向にヨウ素分子の並んだフィルムを得ることができる
。そして、ヨウ素分子の長軸と平行な光は、ヨウ素分子に吸収される。なお、高耐久用途
及び高耐熱用途として、ヨウ素の代わりに2色性の染料が用いてもよい。なお、染料は、
車載用LCD又はプロジェクタ用LCDなどの耐久性、耐熱性が求められる液晶表示装置
に適している。
2及び基板フィルム2904)で挟むことで、信頼性を増すことができる。また、PVA
偏光フィルム2903は、高透明性、高耐久性を有するトリアセチルロース(TAC)フ
ィルムによって挟まれていてもよい。このような基板フィルム及びTACフィルムは、P
VA偏光フィルム2903が有する偏光子の保護層として機能する。
剤層2905が貼られている。なお、粘着剤層2905は、粘着剤を片側の基板フィルム
(基板フィルム2904)に塗布することで形成される。粘着剤層2905には、離型フ
ィルム2906(セパレートフィルム)が備えられている。
いる。
ていてもよい。ハードコート散乱層は、AG処理によって表面に微細な凹凸が形成されて
おり、外光を散乱させる防眩機能を有するため、液晶パネルへの外光の映り込みを防ぐこ
とができる。よって、表面反射を防ぐことができる。
リフレクション処理、若しくはAR処理ともいう)してもよい。多層化された複数の屈折
率のことなる光学薄膜層は、光の干渉効果によって表面の反射率を低減することができる
。
3から延伸して配置されている。また、走査線3010が走査線駆動回路3004から延
伸して配置されている。そして、信号線3012と走査線3010との交差領域に、複数
の画素がマトリクス状に配置されている。なお、複数の画素の各々はスイッチング素子を
有し、画素部3005の詳細については上述の実施形態で述べたため、ここでは省略する
。
03及び走査線駆動回路3004を有する。制御回路3002には映像信号3001が入
力されている。制御回路3002は、この制御信号3001に応じて信号線駆動回路30
03及び走査線駆動回路3004を制御する。そのため、制御回路3002は信号線駆動
回路3003及び走査線駆動回路3004にそれぞれの制御信号を入力する。そして、こ
の制御信号に応じて、信号線駆動回路3003はビデオ信号を信号線3012に入力し、
走査線駆動回路3004は走査信号を走査線3010に入力する。そして、画素が有する
スイッチング素子が走査信号に応じて選択され、画素の画素電極にビデオ信号が入力され
る。
お、電源3007は照明手段3006へ電力を供給する手段を有している。照明手段30
06としては、エッジライト式のバックライトユニット又は直下型のバックライトユニッ
トを用いることができる。また、照明手段3006にフロントライトを用いてもよい。フ
ロントライトとは、画素部の前面側に取りつけ、全体を照らす発光体及び導光体で構成さ
れた板状のライトユニットである。このような照明手段により、低消費電力で、均等に画
素部を照らすことができる。
レベルシフタ3042、バッファ3043として機能する回路を有する。なお、シフトレ
ジスタ3041にはゲートスタートパルス(GSP)、ゲートクロック信号(GCK)等
の信号が制御回路2902より入力される。
ラッチ3032、第2のラッチ3033、レベルシフタ3034、バッファ3035とし
て機能する回路を有する。バッファ3035として機能する回路とは、弱い信号を増幅さ
せる機能を有する回路であり、オペアンプ等を有する。レベルシフタ3034には、スタ
ートパルス(SSP)、ソースクロック信号(SCK)等の信号が、第1のラッチ303
2にはビデオ信号等のデータ(DATA)が入力される。第2のラッチ3033にはラッ
チ(LAT)信号を一時保持することができ、一斉に画素部3005へ入力させる。これ
を線順次駆動と呼ぶ。そのため、線順次駆動ではなく、点順次駆動を行う画素であれば、
第2のラッチは不要とすることができる。
、液晶パネルとして、2つの基板の間に液晶層が封止された構成を用いることができる。
一方の基板上には、トランジスタ、容量素子、画素電極又は配向膜などが形成されている
。なお、前記基板の上面と反対側には、偏光板、位相差板又はプリズムシートが配置され
ていてもよい。他方の基板上には、カラーフィルタ、ブラックマトリクス、対向電極又は
配向膜などが形成されている。なお、他方の基板の上面と反対側には、偏光板又は位相差
板が配置されていてもよい。なお、カラーフィルタ及びブラックマトリクスは、一方の基
板の上面に形成されてもよい。なお、一方の基板の上面側又はその反対側にスリット(格
子)を配置することで、3次元表示を行うことができる。
が可能である。あるいは、2つの基板のうちのいずれかと一体とすることが可能である。
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
び実施例の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換え
などを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関し
て、別の実施の形態および実施例の部分を組み合わせることにより、さらに多くの図を構
成させることが出来る。
具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した
場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての
一例などを示している。したがって、他の実施の形態および実施例で述べた内容は、本実
施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
本実施形態においては、表示装置の駆動方法について説明する。特に、液晶表示装置の駆
動方法について説明する。
を2枚の基板によって挟んだ構造であるとする。2枚の基板は、それぞれ、液晶材料に印
加する電界を制御するための電極を備えている。液晶材料は、外部から印加される電界に
よって、光学的および電気的な性質が変化する材料である。したがって、液晶パネルは、
基板が有する電極を用いて液晶材料に印加する電圧を制御することによって、所望の光学
的および電気的な性質を得ることができるデバイスである。そして、多数の電極を平面的
に並置することでそれぞれを画素とし、画素に印加する電圧を個別に制御することにより
、精細な画像を表示できる液晶パネルとすることができる。
および液晶材料の種類等に依存するが、一般的に数ミリ秒から数十ミリ秒である。さらに
、電界の変化量が小さい場合は、液晶材料の応答時間はさらに長くなる。この性質は、液
晶パネルによって動きのある画像を表示する場合に、残像、尾引き、コントラストの低下
といった画像表示上の障害を引き起こし、特に中間調から別の中間調へ変化する場合(電
界の変化が小さい)場合に、前述の障害の程度が著しくなる。
書き込み電圧の変化がある。以下に、本実施形態における定電荷駆動について説明する。
する容量素子を含む。アクティブマトリクスにおける画素回路の駆動方法は、スイッチを
オン状態として所定の電圧を画素回路に書き込んだ後、直ちにスイッチをオフ状態として
画素回路内の電荷を保持する(ホールド状態)というものである。ホールド状態時、画素
回路の内部と外部には電荷のやり取りが行なわれない(定電荷)。通常、スイッチがオン
状態となっている期間に比べて、オフ状態となっている期間は数百(走査線本数)倍程度
長い。そのため、画素回路のスイッチは、ほとんどオフ状態となっていると考えてよい。
以上より、本実施形態における定電荷駆動とは、液晶パネルの駆動時、画素回路はほとん
どの期間においてホールド状態である駆動方法であるとする。
変化すると、光学的性質が変化するのと同時に、誘電率も変化する。すなわち、液晶パネ
ルの各画素を2枚の電極に挟まれた容量素子(液晶素子)として考えたとき、当該容量素
子は、印加される電圧によって静電容量が変化する容量素子である。この現象を、ダイナ
ミックキャパシタンスと呼ぶこととする。
動によって駆動する場合、次のような問題が生じる。すなわち、電荷の移動が行なわれな
いホールド状態において、液晶素子の静電容量が変化すると、印加される電圧も変化して
しまうという問題である。これは、(電荷量)=(静電容量)×(印加電圧)という関係
式において、電荷量が一定であるということから理解できる。
とによって、ホールド状態時における電圧が、書き込み時における電圧から変化してしま
う。その結果、液晶素子の透過率は、ホールド状態を取らない駆動法における変化とは異
なったものとなる。この様子を示したのが、図44である。図44(A)は、横軸に時間
、縦軸に電圧の絶対値をとり、画素回路に書き込む電圧の制御例を表したものである。図
44(B)は、横軸に時間、縦軸に電圧をとった場合の、画素回路に書き込む電圧の制御
例を表したものである。図44(C)は、横軸に時間、縦軸に液晶素子の透過率をとり、
図44(A)または図44(B)によって表した電圧を画素回路に書き込んだ場合の、液
晶素子の透過率の時間変化を表したものである。図44(A)乃至(C)において、期間
Fは電圧の書き換え周期を表し、電圧を書き換える時刻をt1、t2、t3、t4、・・
・として説明する。
る書き換えでは|V1|、時刻t1、t2、t3、t4、・・・における書き換えでは|
V2|であるとする。(図44(A)参照)
的に入れ替えてもよい。(反転駆動:図44(B)参照)この方法によって、液晶に直流
電圧をできるだけ印加しないようにすることができるので、液晶素子の劣化による焼きつ
き等を防ぐことができる。なお、極性を入れ替える周期(反転周期)は、電圧の書き換え
周期と同じでもよい。この場合は、反転周期が短いので、反転駆動によるフリッカの発生
を低減することができる。さらに、反転周期は、電圧の書き換え周期の整数倍の周期であ
ってもよい。この場合は、反転周期が長く、極性を変えて電圧を書き込む頻度を減少させ
ることができるため、消費電力を低減することができる。
の液晶素子の透過率の時間変化を、図44(C)に示す。ここで、液晶素子に電圧|V1
|が印加され、十分時間が経過した後の液晶素子の透過率をTR1とする。同様に、液晶
素子に電圧|V2|が印加され、十分時間が経過した後の液晶素子の透過率をTR2とす
る。時刻t1において、液晶素子に印加される電圧が|V1|から|V2|に変化すると
、液晶素子の透過率は、破線30401に示したように、すぐにTR2とはならず、ゆっ
くりと変化する。たとえば、電圧の書き換え周期が、60Hzの画像信号のフレーム周期
(16.7ミリ秒)と同じであるとき、透過率がTR2に変化するまでは、数フレーム程
度の時間が必要となる。
に電圧|V2|が印加されたときのものである。実際の液晶パネル、たとえば、アクティ
ブマトリクスを用いた液晶パネルでは、定電荷駆動であることによって、ホールド状態時
における電圧が、書き込み時における電圧から変化してしまうため、液晶素子の透過率は
破線30401に示したような時間変化とはならず、かわりに、実線30402に示した
ような、段階的な時間変化となる。これは、定電荷駆動であることによって電圧が変化し
てしまうため、1回の書き込みでは目的の電圧に到達することができないためである。そ
の結果、液晶素子の透過率の応答時間は、本来の応答時間(破線30401)よりも、見
かけ上、さらに長くなってしまい、残像、尾引き、コントラストの低下といった画像表示
上の障害を顕著に引き起こしてしまうということになる。
ナミックキャパシタンスおよび定電荷駆動による書き込み不足に起因する見かけ上の応答
時間がさらに長くなる現象を、同時に解決することができる。この様子を示したのが、図
45である。図45(A)は、横軸に時間、縦軸に電圧の絶対値をとり、画素回路に書き
込む電圧の制御例を表したものである。図45(B)は、横軸に時間、縦軸に電圧をとっ
た場合の、画素回路に書き込む電圧の制御例を表したものである。図45(C)は、横軸
に時間、縦軸に液晶素子の透過率をとり、図45(A)または図45(B)によって表し
た電圧を画素回路に書き込んだ場合の、液晶素子の透過率の時間変化を表したものである
。図45(A)乃至(C)において、期間Fは電圧の書き換え周期を表し、電圧を書き換
える時刻をt1、t2、t3、t4、・・・として説明する。
る書き換えでは|V1|、時刻t1における書き換えでは|V3|、時刻t2、t3、t
4、・・・における書き換えでは|V2|であるとする。(図45(A)参照)
的に入れ替えてもよい。(反転駆動:図45(B)参照)この方法によって、液晶に直流
電圧をできるだけ印加しないようにすることができるので、液晶素子の劣化による焼きつ
き等を防ぐことができる。なお、極性を入れ替える周期(反転周期)は、電圧の書き換え
周期と同じでもよい。この場合は、反転周期が短いので、反転駆動によるフリッカの発生
を低減することができる。さらに、反転周期は、電圧の書き換え周期の整数倍の周期であ
ってもよい。この場合は、反転周期が長く、極性を変えて電圧を書き込む頻度を減少させ
ることができるため、消費電力を低減することができる。
の液晶素子の透過率の時間変化を、図45(C)に示す。ここで、液晶素子に電圧|V1
|が印加され、十分時間が経過した後の液晶素子の透過率をTR1とする。同様に、液晶
素子に電圧|V2|が印加され、十分時間が経過した後の液晶素子の透過率をTR2とす
る。同様に、液晶素子に電圧|V3|が印加され、十分時間が経過した後の液晶素子の透
過率をTR3とする。時刻t1において、液晶素子に印加される電圧が|V1|から|V
3|に変化すると、液晶素子の透過率は、破線30501に示したように、数フレームを
かけて透過率をTR3まで変化しようとする。しかし、電圧|V3|の印加は時刻t2で
終わり、時刻t2より後は、電圧|V2|が印加される。そのため、液晶素子の透過率は
破線30501に示したようにはならず、実線30502に示したようになる。ここで、
時刻t2の時点において、透過率が概ねTR2となっているように、電圧|V3|の値を
設定するのが好ましい。ここで、電圧|V3|を、オーバードライブ電圧とも呼ぶことと
する。
る程度制御することができる。なぜならば、液晶の応答時間は、電界の強さによって変化
するからである。具体的には、電界が強いほど、液晶素子の応答時間は短くなり、電界が
弱いほど、液晶素子の応答時間は長くなる。
過率TR1およびTR2を与える電圧|V1|および|V2|、にしたがって変化させる
のが好ましい。なぜならば、液晶素子の応答時間が電圧の変化量によって変わってしまっ
ても、オーバードライブ電圧である|V3|をそれに合わせて変化させれば、常に最適な
応答時間を得ることができるからである。
モードによって変化させるのが好ましい。なぜならば、液晶の応答速度が液晶のモードに
よって異なってしまっても、オーバードライブ電圧である|V3|をそれに合わせて変化
させれば、常に最適な応答時間を得ることができるからである。
晶表示装置の周辺駆動回路を簡単にできるため、製造コストの低い液晶表示装置を得るこ
とができる。
電圧書き換え周期Fは入力信号のフレーム周期の1/2倍でもよいし、1/3倍でもよい
し、それ以下でもよい。この方法は、黒挿入駆動、バックライト点滅、バックライトスキ
ャン、動き補償による中間画像挿入駆動等、液晶表示装置のホールド駆動に起因する動画
品質の低下の対策法と合わせて用いるのが効果的である。すなわち、液晶表示装置のホー
ルド駆動に起因する動画品質の低下の対策法は、要求される液晶素子の応答時間が短いた
め、本実施形態で説明したオーバードライブ駆動法を用いることで、比較的容易に液晶素
子の応答時間を短くすることができる。液晶素子の応答時間は、セルギャップ、液晶材料
および液晶モード等によって本質的に短くすることは可能ではあるが、技術的に困難であ
る。そのため、オーバードライブのような、駆動方法から液晶素子の応答時間を短くする
方法を用いることは、非常に重要である。
電圧書き換え周期Fは入力信号のフレーム周期の2倍でもよいし、3倍でもよいし、それ
以上でもよい。この方法は、長期間電圧の書き換えが行なわれないか否かを判断する手段
(回路)と合わせて用いるのが効果的である。すなわち、長期間電圧の書き換えが行なわ
れない場合は、電圧の書き換え動作自体を行わないことによって、回路の動作をその期間
中は停止させることができるので、消費電力の低い液晶表示装置を得ることができる。
電圧|V1|および|V2|、にしたがって変化させるための具体的な方法について説明
する。
よび|V2|にしたがって、オーバードライブ電圧|V3|を適切に制御するための回路
であるため、オーバードライブ回路に入力される信号は、透過率TR1を与える電圧|V
1|に関係する信号と、透過率TR2を与える電圧|V2|に関係する信号であり、オー
バードライブ回路から出力される信号は、オーバードライブ電圧|V3|に関係する信号
となる。ここで、これらの信号としては、液晶素子に印加する電圧(|V1|、|V2|
、|V3|)のようなアナログの電圧値であってもよいし、液晶素子に印加する電圧を与
えるためのデジタル信号であってもよい。ここでは、オーバードライブ回路に関係する信
号はデジタル信号であるとして説明する。
る。ここでは、オーバードライブ電圧を制御するための信号として、入力画像信号310
1aおよび3101bを用いる。これらの信号を処理した結果、オーバードライブ電圧を
与える信号として、出力画像信号3104が出力されるとする。
互いに隣り合ったフレームにおける画像信号であるため、入力画像信号3101aおよび
3101bも、同様に互いに隣り合ったフレームにおける画像信号であることが好ましい
。このような信号を得るためには、入力画像信号3101aを、図46の(A)における
遅延回路3102に入力し、その結果出力される信号を、入力画像信号3101bとする
ことができる。遅延回路3102としては、たとえば、メモリが挙げられる。すなわち、
入力画像信号3101aを1フレーム分遅延させるために、メモリに当該入力画像信号3
101aを記憶させておき、同時に、1つ前のフレームにおいて記憶させておいた信号を
、入力画像信号3101bとしてメモリから取り出し、入力画像信号3101aと、入力
画像信号3101bを、同時に補正回路3103に入力することで、互いに隣り合ったフ
レームにおける画像信号を扱えるようにすることができる。そして、互いに隣り合ったフ
レームにおける画像信号を、補正回路3103に入力することで、出力画像信号3104
を得ることができる。なお、遅延回路3102としてメモリを用いたときは、1フレーム
分遅延させるために、1フレーム分の画像信号を記憶できる容量を持ったメモリ(すなわ
ち、フレームメモリ)とすることができる。こうすることで、メモリ容量の過不足なく、
遅延回路としての機能を有することができる。
て説明する。遅延回路3102としてこのような回路を用いることで、メモリの容量を削
減することができるため、製造コストを低減することができる。
なものを用いることができる。図46の(B)に示す遅延回路3102は、エンコーダ3
105と、メモリ3106と、デコーダ3107を有する。
入力画像信号3101aをメモリ3106に記憶させる前に、エンコーダ3105によっ
て、圧縮処理を行なう。これによって、メモリ3106に記憶させるべきデータのサイズ
を減らすことができる。その結果、メモリの容量を削減することができるため、製造コス
トを低減することができる。そして、圧縮処理を施された画像信号は、デコーダ3107
に送られ、ここで伸張処理を行なう。これによって、エンコーダ3105によって圧縮処
理された前の信号を復元することができる。ここで、エンコーダ3105およびデコーダ
3107によって行なわれる圧縮伸張処理は、可逆的な処理であってもよい。こうするこ
とで、圧縮伸張処理を行なった後でも画像信号の劣化がないため、最終的に装置に表示さ
れる画像の品質を落とすことなく、メモリの容量を削減することができる。さらに、エン
コーダ3105およびデコーダ3107によって行なわれる圧縮伸張処理は、非可逆的な
処理であってもよい。こうすることで、圧縮後の画像信号のデータのサイズを非常に小さ
くすることができるため、メモリの容量を大幅に削減することができる。
法を用いることができる。エンコーダによって画像圧縮するのではなく、画像信号が有す
る色情報を削減する(たとえば、26万色から6万5千色に減色する)、またはデータ数
を削減する(解像度を小さくする)、などの方法を用いることができる。
る。補正回路3103は、2つの入力画像信号から、ある値の出力画像信号を出力するた
めの回路である。ここで、2つの入力画像信号と出力画像信号の関係が非線形であり、簡
単な演算で求めることが難しい場合には、補正回路3103として、ルックアップテーブ
ル(LUT)を用いてもよい。LUTには、2つの入力画像信号と出力画像信号の関係が
、測定によってあらかじめ求められているため、2つの入力画像信号に対応する出力画像
信号を、LUTを参照するだけで求めることができる。(図46の(C)参照)補正回路
3103としてLUT3108を用いることで、複雑な回路設計等を行なうことなく、補
正回路3103を実現することができる。
造コストを低減する上で、好ましい。それを実現するための補正回路3103の例として
、図46の(D)に示す回路が考えられる。図46の(D)に示す補正回路3103は、
LUT3109と、加算器3110を有する。LUT3109には、入力画像信号310
1aと、出力するべき出力画像信号3104の差分データが格納されている。つまり、入
力画像信号3101aおよび入力画像信号3101bから、対応する差分データをLUT
3109から取り出し、取り出した差分データと入力画像信号3101aを、加算器31
10によって加算することで、出力画像信号3104を得ることができる。なお、LUT
3109に格納するデータを差分データとすることで、LUTのメモリ容量の削減が実現
できる。なぜならば、そのままの出力画像信号3104よりも、差分データの方がデータ
サイズが小さいため、LUT3109に必要なメモリ容量を小さくできるからである。
れるならば、加算器、減算器、乗算器等の簡単な回路の組み合わせによって実現できる。
その結果、LUTを用いる必要が無くなり、製造コストを大幅に低減することができる。
このような回路としては、図46の(E)に示す回路を挙げることができる。図46の(
E)に示す補正回路3103は、減算器3111と、乗算器3112と、加算器3113
、を有する。まず、入力画像信号3101aと、入力画像信号3101bの差分を、減算
器3111によって求める。その後、乗算器3112によって、適切な係数を差分値に乗
ずる。そして、入力画像信号3101aに、適切な係数を乗じた差分値を、加算器311
3によって加算することで、出力画像信号3104を得ることができる。このような回路
を用いることによって、LUTを用いる必要が無くなり、製造コストを大幅に低減するこ
とができる。
不適切な出力画像信号3104を出力することを防止することができる。その条件とは、
オーバードライブ電圧を与える出力画像信号3104と、入力画像信号3101aおよび
入力画像信号3101bの差分値に、線形性があることである。そして、この線形性の傾
きを、乗算器3112によって乗ずる係数とする。すなわち、このような性質を持つ液晶
素子に、図46の(E)に示す補正回路3103を用いることが好ましい。このような性
質を持つ液晶素子としては、応答速度の階調依存性の小さい、IPSモードの液晶素子が
挙げられる。このように、たとえば、IPSモードの液晶素子に図46の(E)に示す補
正回路3103を用いることによって、製造コストを大幅に低減でき、かつ、不適切な出
力画像信号3104を出力することを防止することができるオーバードライブ回路を得る
ことができる。
て実現してもよい。遅延回路に用いるメモリについては、液晶表示装置が有する他のメモ
リ、液晶表示装置に表示する画像を送り出す側の装置(たとえば、パーソナルコンピュー
タやそれに準じた装置が有するビデオカード等)が有するメモリ等を流用することができ
る。こうすることで、製造コストを低減できるだけでなく、オーバードライブの強さや利
用する状況などを、ユーザが好みに応じて選択できるようにすることができる。
A)は、液晶素子のような容量的な性質を持つ表示素子を用いた表示装置において、走査
線一本に対し、コモン線が一本配置されているときの、複数の画素回路を表した図である
。図47の(A)に示す画素回路は、トランジスタ3201、補助容量3202、表示素
子3203、映像信号線3204、走査線3205、コモン線3206、を備えている。
タ3201のソース電極及びドレイン電極の一方は、映像信号線3204に電気的に接続
され、トランジスタ3201のソース電極及びドレイン電極の他方は、補助容量3202
の一方の電極、及び表示素子3203の一方の電極に電気的に接続されている。
また、補助容量3202の他方の電極は、コモン線3206に電気的に接続されている。
め、それぞれ、映像信号線3204を介して、表示素子3203及び補助容量3202に
映像信号に対応した電圧がかかる。このとき、その映像信号が、コモン線3206に接続
された全ての画素に対して最低階調を表示させるものだった場合、あるいは、コモン線3
206に接続された全ての画素に対して最高階調を表示させるものだった場合は、画素に
それぞれ映像信号線3204を介して映像信号を書き込む必要はない。映像信号線320
4を介して映像信号を書き込む代わりに、コモン線3206の電位を動かすことで、表示
素子3203にかかる電圧を変えることができる。
置において、走査線一本に対し、コモン線が2本配置されているときの、複数の画素回路
を表した図である。図47の(B)に示す画素回路は、トランジスタ3211、補助容量
3212、表示素子3213、映像信号線3214、走査線3215、第1のコモン線3
216、第2のコモン線3217、を備えている。
タ3211のソース電極及びドレイン電極の一方は、映像信号線3214に電気的に接続
され、トランジスタ3211のソース電極及びドレイン電極の他方は、補助容量3212
の一方の電極、及び表示素子3213の一方の電極に電気的に接続されている。
また、補助容量3212の他方の電極は、第1のコモン線3216に電気的に接続されて
いる。
また、当該画素と隣接する画素においては、補助容量3212の他方の電極は、第2のコ
モン線3217に電気的に接続されている。
ないため、映像信号線3214を介して映像信号を書き込む代わりに、第1のコモン線3
216又は第2のコモン線3217の電位を動かすことで、表示素子3213にかかる電
圧を変えることができる頻度が、顕著に大きくなる。また、ソース反転駆動又はドット反
転駆動が可能になる。ソース反転駆動又はドット反転駆動により、素子の信頼性を向上さ
せつつ、フリッカを抑えることができる。
陰極管を並置した走査型バックライトを示す図である。図66の(A)に示す走査型バッ
クライトは、拡散板6601と、N個の冷陰極管6602―1から6602―Nと、を備
える。N個の冷陰極管6602―1から6602―Nを、拡散板6601の後ろに並置す
ることで、N個の冷陰極管6602―1から6602―Nは、その輝度を変化させて走査
することができる。
陰極管6602―1の輝度を、一定時間変化させる。そして、その後に、冷陰極管660
2―1の隣に配置された冷陰極管6602―2の輝度を、同じ時間だけ変化させる。この
ように、冷陰極管6602―1から6602―Nまで、輝度を順に変化させる。なお、図
66の(C)においては、一定時間変化させる輝度は、元の輝度より小さいものとしたが
、元の輝度より大きくてもよい。また、冷陰極管6602―1から6602―Nまで走査
するとしたが、逆方向に冷陰極管6602―Nから6602―1まで走査してもよい。
たがって、液晶表示装置の消費電力の大部分を占める、バックライトの消費電力を低減す
ることができる。
クライトは、図66の(B)のようになる。図66の(B)に示す走査型バックライトは
、拡散板6611と、LEDを並置した光源6612―1から6612―Nと、を備える
。走査型バックライトの光源として、LEDを用いた場合、バックライトを薄く、軽くで
きる利点がある。また、色再現範囲を広げることができるという利点がある。さらに、L
EDを並置した光源6612―1から6612―Nのそれぞれに並置したLEDも、同様
に走査することができるので、点走査型のバックライトとすることもできる。点走査型と
すれば、動画像の画質をさらに向上させることができる。
度を変化させて駆動することができる。
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
本実施の形態においては、表示装置の動作について説明する。
04を有する。画素部6701には、複数の信号線S1乃至Smが信号線駆動回路670
3から列方向に延伸して配置されている。画素部6701には、複数の走査線G1乃至G
nが走査線駆動回路6704から行方向に延伸して配置されている。そして、複数の信号
線S1乃至Smと複数の走査線G1乃至Gnとがそれぞれ交差するところで、画素670
2がマトリクス状に配置されている。
有する。この信号をビデオ信号と呼んでもよい。なお、走査線駆動回路6704は、走査
線G1乃至Gmそれぞれに信号を出力する機能を有する。この信号を走査信号と呼んでも
よい。
このスイッチング素子は、走査線の電位(走査信)によってオン、オフが制御される。そ
して、スイッチング素子がオンしている場合に画素6702は選択され、オフしている場
合に画素6702は選択されない。
号が入力される。そして、画素6702の状態(例えば、輝度、透過率、保持容量の電圧
など)は、この入力されたビデオ信号に応じて変化する。
力されない。ただし、画素6702は選択時に入力されたビデオ信号に応じた電位を保持
しているため、画素6702はビデオ信号に応じた(例えば、輝度、透過率、保持容量の
電圧など)を維持する。
、新たに配線(走査線、信号線、電源線、容量線又はコモン線など)を追加してもよい。
別の例として、様々な機能を有する回路を追加してもよい。
間を示す。1フレーム期間は特に限定はしないが、画像を見る人がちらつき(フリッカ)
を感じないように少なくとも1/60秒以下とすることが好ましい。
乃至Gmのうちいずれか一)、i+1行目の走査線Gi+1及びm行目の走査線Gmがそ
れぞれ選択されるタイミングを示している。
れる。例えば、i行目の走査線Giが選択されていると、i行目の走査線Giに接続され
ている画素6702も選択される。
で順に選択される(以下、走査するともいう)。例えば、i行目の走査線Giが選択され
ている期間は、i行目の走査線Gi以外の走査線(G1乃至Gi−1、Gi+1乃至Gm
)は選択されない。そして、次の期間に、i+1行目の走査線Gi+1が選択される。な
お、1つの走査線が選択されている期間を1ゲート選択期間と呼ぶ。また、当該走査線に
選択された行における書き込み期間とも言う。
2に、信号線G1乃至信号線Gmそれぞれからビデオ信号が入力される。例えば、i行目
の走査線Giが選択されている間、i行目の走査線Giに接続されている複数の画素67
02は、各々の信号線S1乃至Snから任意のビデオ信号をそれぞれ入力する。こうして
、個々の複数の画素6702を走査信号及びビデオ信号によって、独立して制御すること
ができる。
図69は、1ゲート選択期間を2つのサブゲート選択期間(第1のサブゲート選択期間及
び第2のサブゲート選択期間)に分割した場合のタイミングチャートを示す。
間を示す。1フレーム期間は特に限定はしないが、画像を見る人がちらつき(フリッカ)
を感じないように少なくとも1/60秒以下とすることが好ましい。
に分割されている。
行目の走査線Gj(走査線Gi+1乃至Gmのうちいずれか一)、j+1行目の走査線及
びGj+1行目の走査線Gj+1がそれぞれ選択されるタイミングを示している。
れる。例えば、i行目の走査線Giが選択されていると、i行目の走査線Giに接続され
ている画素6702も選択される。
る。例えば、ある1ゲート選択期間において、第1のサブゲート選択期間ではi行目の走
査線Giが選択され、第2のサブゲート選択期間ではj行目の走査線Gjが選択される。
すると、1ゲート選択期間において、あたかも同時に2行分の走査信号を選択したかのよ
うに動作させることが可能となる。このとき、第1のサブゲート選択期間と第2のサブゲ
ート選択期間とで、別々のビデオ信号が信号線S1乃至Snに入力される。したがって、
i行目に接続されている複数の画素6702とj行目に接続されている複数の画素670
2とには、別々のビデオ信号を入力することができる。
のフレームレート(表示フレームレートとも記す)を変換する駆動方法について説明する
。なお、フレームレートとは、1秒間あたりのフレームの数であり、単位はHzである。
いなくてもよい。入力フレームレートと表示フレームレートが異なる場合は、画像データ
のフレームレートを変換する回路(フレームレート変換回路)によって、フレームレート
を変換することができる。こうすることによって、入力フレームレートと表示フレームレ
ートが異なっている場合でも、様々な表示フレームレートで表示を行なうことができる。
部を破棄することで、様々な表示フレームレートに変換して表示を行なうことができる。
この場合は、表示フレームレートを小さくできるため、表示するための駆動回路の動作周
波数を小さくすることができ、消費電力を低減できる。一方、入力フレームレートが表示
フレームレートよりも小さい場合、入力される画像データの全部または一部を複数回表示
させる、入力される画像データから別の画像を生成する、入力される画像データとは関係
のない画像を生成する、等の手段を用いることで、様々な表示フレームレートに変換して
表示を行なうことができる。この場合は、表示フレームレートを大きくすることによって
、動画の品質を向上することができる。
フレームレート変換方法について詳細に説明する。なお、入力フレームレートが表示フレ
ームレートよりも大きい場合のフレームレート変換方法については、入力フレームレート
が表示フレームレートよりも小さい場合のフレームレート変換方法の逆の手順を実行する
ことによって実現することができる。
ことを基本画像と呼ぶこととする。一方、基本画像とは異なるフレームレートで表示され
る画像であって、入力フレームレートと表示フレームレートの整合を取るために表示され
る画像のことを、補間画像と呼ぶこととする。基本画像には、入力される画像データと同
じ画像を用いることができる。補間画像には、基本画像と同じ画像を用いることができる
。さらに、基本画像とは異なる画像を作成し、作成した画像を補間画像とすることもでき
る。
、これらの中間状態の画像を補間画像とする方法、基本画像の輝度にある係数をかけた画
像を補間画像とする方法、入力された画像データから、異なる複数の画像を作成し、当該
複数の画像を時間的に連続して提示する(当該複数の画像のうちの1つを基本画像とし、
残りを補間画像とする)ことで、入力された画像データに対応する画像が表示されたよう
に観察者に知覚させる方法、等がある。入力された画像データから異なる複数の画像を作
成する方法としては、入力された画像データのガンマ値を変換する方法、入力された画像
データに含まれる階調値を分割する方法、等がある。
き)を検出し、検出された動きを内挿して求められた画像である。このような方法によっ
て中間画像を求めることを、動き補償と呼ぶこととする。
理数(n/m)倍のフレームレート変換を実現することができる。ここで、nおよびmは
1以上の整数とする。本実施の形態におけるフレームレート変換方法は、第1のステップ
と、第2のステップに分けて取り扱うことができる。ここで、第1のステップは、任意の
有理数(n/m)倍にフレームレート変換するステップである。ここでは、補間画像とし
て基本画像を用いてもよいし、動き補償によって求めた中間画像を補間画像として用いて
もよい。第2のステップは、入力された画像データまたは第1のステップにおいてフレー
ムレート変換された各々の画像から、異なる複数の画像(サブ画像)を作成し、当該複数
のサブ画像を時間的に連続して表示する方法を行なうためのステップである。第2のステ
ップによる方法を用いることによって、実際は複数の異なる画像を表示しているのにもか
かわらず、見た目上、元の画像が表示されたように人間の目に知覚させることもできる。
テップを両方用いてもよいし、第1のステップを省略して第2のステップのみ用いてもよ
いし、第2のステップを省略して第1のステップのみを用いてもよい。
説明する。(図70参照)図70は、横軸は時間であり、縦軸は様々なnおよびmについ
て場合分けを行なって示したものである。図70内の図形は、表示される画像の模式図を
表しており、その横位置によって表示されるタイミングを表している。さらに、図形内に
表示した点によって、画像の動きを模式的に表しているものとする。ただし、これは説明
のための例であり、表示される画像はこれに限定されない。この方法は、様々な画像に対
して適用することができる。
ームレートに対応している。たとえば、入力フレームレートが60Hzの場合は、入力画
像データの周期は1/60秒である。同様に、入力フレームレートが50Hzであれば、
入力画像データの周期は1/50秒である。このように、入力画像データの周期(単位:
秒)は入力フレームレート(単位:Hz)の逆数となる。なお、入力フレームレートは様
々なものを用いることができる。たとえば、24Hz、50Hz、60Hz、70Hz、
48Hz、100Hz、120Hz、140Hz、等を挙げることができる。ここで、2
4Hzはフィルム映画等に用いられるフレームレートである。50Hzは、PAL規格の
映像信号等に用いられるフレームレートである。60Hzは、NTSC規格の映像信号等
に用いられるフレームレートである。70Hzは、パーソナルコンピュータのディスプレ
イ入力信号等に用いられるフレームレートである。48Hz、100Hz、120Hz、
140Hz、は、これらの2倍のフレームレートである。なお、2倍に限らず、様々な倍
数のフレームレートであってもよい。このように、本実施の形態に示す方法によれば、様
々な規格の入力信号に対してフレームレートの変換を実現することができる。
のとおりである。
手順1として、第1の基本画像に対する第kの補間画像(kは1以上の整数;初期値は1
)の表示タイミングを決定する。第kの補間画像の表示タイミングは、第1の基本画像が
表示されてから、入力画像データの周期をk(m/n)倍した期間が経過した時点である
とする。
手順2として、第kの補間画像の表示タイミングの決定に用いた係数k(m/n)が、整
数であるかどうかを判別する。整数であった場合は、第kの補間画像の表示タイミングに
おいて第(k(m/n)+1)の基本画像を表示し、第1のステップを終了する。整数で
なかった場合は、手順3に進む。
手順3として、第kの補間画像として用いる画像を決定する。具体的には、第kの補間画
像の表示タイミングの決定に用いた係数k(m/n)を、x+y/nの形に変換する。こ
こで、xおよびyは整数であり、yはnよりも小さい数であるとする。そして、第kの補
間画像を動き補償によって求めた中間画像とする場合は、第kの補間画像は、第(x+1
)の基本画像から第(x+2)の基本画像までの画像の動きを(y/n)倍した動きに相
当する画像として求めた中間画像とする。第kの補間画像を基本画像と同じ画像とする場
合は、第(x+1)の基本画像を用いることができる。なお、画像の動きを(y/n)倍
した動きに相当する画像として中間画像を求める方法については、別の部分で詳細に述べ
る。
手順4として、対象とする補間画像を次の補間画像に移す。具体的には、kの値を1増加
させ、手順1に戻る。
明する。
もよいし、装置の設計段階であらかじめ決められたものであってもよい。第1のステップ
における手順を実行する仕組みが装置に実装されていれば、状況に応じた最適な動作が行
われるように、駆動方法を切り替えることが可能となる。なお、ここでいう状況とは、画
像データの内容、装置内外の環境(温度、湿度、気圧、光、音、磁界、電界、放射線量、
高度、加速度、移動速度、等)、ユーザ設定、ソフトウエアバージョン、等を含む。一方
、第1のステップにおける手順を実行する仕組みが装置の設計段階であらかじめ決められ
たものであれば、それぞれの駆動方法に最適な駆動回路を用いることができ、さらに、仕
組みが決められていることによって、量産効果による製造コストの低減が期待できる。
合は、第1のステップにおける動作は次のようになる。まず、k=1のとき、手順1では
、第1の基本画像に対する第1の補間画像の表示タイミングを決定する。第1の補間画像
の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk(m
/n)倍すなわち1倍した期間が経過した時点である。
、整数であるかどうかを判別する。ここで、係数k(m/n)は1であるので、整数であ
る。したがって、第1の補間画像の表示タイミングにおいては第(k(m/n)+1)す
なわち第2の基本画像を表示し、第1のステップを終了する。
本画像であり、画像表示周期は、入力画像データの周期の1倍であることを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、を、入力画像データの周期と等倍の間隔で順次表示する表示装置の駆
動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第i+1の画像データにしたがって表示される
ことを特徴とする。
、製造コストを低減できるという利点を有する。さらに、変換比が1である場合は、変換
比が1より小さい場合よりも動画の品質を向上できるという利点を有する。さらに、変換
比が1である場合は、変換比が1より大きい場合よりも消費電力および製造コストを低減
できるという利点を有する。
合は、第1のステップにおける動作は次のようになる。まず、k=1のとき、手順1では
、第1の基本画像に対する第1の補間画像の表示タイミングを決定する。第1の補間画像
の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk(m
/n)倍すなわち1/2倍した期間が経過した時点である。
、整数であるかどうかを判別する。ここで、係数k(m/n)は1/2であるので、整数
ではない。したがって、手順3に進む。
+y/nの形に変換する。係数1/2の場合は、x=0,y=1である。そして、第1の
補間画像を動き補償によって求めた中間画像とする場合は、第1の補間画像は、第(x+
1)すなわち第1の基本画像から第(x+2)すなわち第2の基本画像までの画像の動き
をy/n倍すなわち1/2倍した動きに相当する画像として求めた中間画像とする。第1
の補間画像を基本画像と同じ画像とする場合は、第(x+1)すなわち第1の基本画像を
用いることができる。
する画像を決定することができた。次に、手順4では、対象とする補間画像を、第1の補
間画像から第2の補間画像へ移す。すなわち、kを1から2に変更し、手順1に戻る。
決定する。第2の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力
画像データの周期をk(m/n)倍すなわち1倍した期間が経過した時点である。
、整数であるかどうかを判別する。ここで、係数k(m/n)は1であるので、整数であ
る。したがって、第2の補間画像の表示タイミングにおいては第(k(m/n)+1)す
なわち第2の基本画像を表示し、第1のステップを終了する。
第kの画像は基本画像であり、
第k+1の画像は補間画像であり、
第k+2の画像は基本画像であり、画像表示周期は、入力画像データの周期の1/2倍で
あることを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、を、入力画像データの周期の1/2倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を1/2倍した動きに相当する画像データにしたがって表示され、
前記第k+2の画像は、前記第i+1の画像データにしたがって表示される
ことを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、を、入力画像データの周期の1/2倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データにしたがって表示され、
前記第k+2の画像は、前記第i+1の画像データにしたがって表示される
ことを特徴とする。
たとえば、入力フレームレートが60Hzであれば、表示フレームレートは120Hz(
120Hz駆動)である。そして、ひとつの入力画像に対し、画像を2回連続して表示す
ることになる。このとき、補間画像が動き補償によって求められた中間画像である場合は
、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可
能である。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、
特に顕著な画質改善効果をもたらす。これは、液晶素子の静電容量が印加電圧によって変
動してしまう、いわゆるダイナミックキャパシタンスによる書き込み電圧不足の問題に関
係する。すなわち、表示フレームレートを入力フレームレートよりも大きくすることによ
って、画像データの書き込み動作の頻度を大きくできるので、ダイナミックキャパシタン
スによる書き込み電圧不足に起因する、動画の尾引き、残像等の障害を低減することがで
きる。さらに、液晶表示装置の交流駆動と120Hz駆動を組み合わせるのも効果的であ
る。すなわち、液晶表示装置の駆動周波数を120Hzとしつつ、交流駆動の周波数をそ
の整数倍または整数分の一(たとえば、30Hz、60Hz、120Hz、240Hz等
)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程
度に低減することができる。
合は、第1のステップにおける動作は次のようになる。まず、k=1のとき、手順1では
、第1の基本画像に対する第1の補間画像の表示タイミングを決定する。第1の補間画像
の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk(m
/n)倍すなわち1/3倍した期間が経過した時点である。
、整数であるかどうかを判別する。ここで、係数k(m/n)は1/3であるので、整数
ではない。したがって、手順3に進む。
+y/nの形に変換する。係数1/3の場合は、x=0,y=1である。そして、第1の
補間画像を動き補償によって求めた中間画像とする場合は、第1の補間画像は、第(x+
1)すなわち第1の基本画像から第(x+2)すなわち第2の基本画像までの画像の動き
をy/n倍すなわち1/3倍した動きに相当する画像として求めた中間画像とする。第1
の補間画像を基本画像と同じ画像とする場合は、第(x+1)すなわち第1の基本画像を
用いることができる。
する画像を決定することができた。次に、手順4では、対象とする補間画像を、第1の補
間画像から第2の補間画像へ移す。すなわち、kを1から2に変更し、手順1に戻る。
決定する。第2の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力
画像データの周期をk(m/n)倍すなわち2/3倍した期間が経過した時点である。
、整数であるかどうかを判別する。ここで、係数k(m/n)は2/3であるので、整数
ではない。したがって、手順3に進む。
+y/nの形に変換する。係数2/3の場合は、x=0,y=2である。そして、第2の
補間画像を動き補償によって求めた中間画像とする場合は、第2の補間画像は、第(x+
1)すなわち第1の基本画像から第(x+2)すなわち第2の基本画像までの画像の動き
をy/n倍すなわち2/3倍した動きに相当する画像として求めた中間画像とする。第2
の補間画像を基本画像と同じ画像とする場合は、第(x+1)すなわち第1の基本画像を
用いることができる。
する画像を決定することができた。次に、手順4では、対象とする補間画像を、第2の補
間画像から第3の補間画像へ移す。すなわち、kを2から3に変更し、手順1に戻る。
決定する。第3の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力
画像データの周期をk(m/n)倍すなわち1倍した期間が経過した時点である。
、整数であるかどうかを判別する。ここで、係数k(m/n)は1であるので、整数であ
る。したがって、第3の補間画像の表示タイミングにおいては第(k(m/n)+1)す
なわち第2の基本画像を表示し、第1のステップを終了する。
第kの画像は基本画像であり、
第k+1の画像は補間画像であり、
第k+2の画像は補間画像であり、
第k+3の画像は基本画像であり、画像表示周期は、入力画像データの周期の1/3倍で
あることを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、
第k+3の画像と、を、入力画像データの周期の1/3倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を1/3倍した動きに相当する画像データにしたがって表示され、
前記第k+2の画像は、前記第iの画像から前記第i+1の画像までの動きを2/3倍し
た動きに相当する画像データにしたがって表示され、
前記第k+3の画像は、前記第i+1の画像データにしたがって表示される
ことを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、
第k+3の画像と、を、入力画像データの周期の1/3倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データにしたがって表示され、
前記第k+2の画像は、前記第iの画像データにしたがって表示され、
前記第k+3の画像は、前記第i+1の画像データにしたがって表示される
ことを特徴とする。
きるという利点を有する。さらに、変換比が3である場合は、変換比が3より大きい場合
よりも消費電力および製造コストを低減できるという利点を有する。
ムレートが60Hzであれば、表示フレームレートは180Hz(180Hz駆動)であ
る。そして、ひとつの入力画像に対し、画像を3回連続して表示することになる。このと
き、補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らか
にすることができるため、動画の品質を顕著に向上させることが可能である。さらに、表
示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシ
タンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に
対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と180Hz
駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を180H
zとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、45Hz、9
0Hz、180Hz、360Hz等)とすることによって、交流駆動によって現れるフリ
ッカを、人間の目に知覚されない程度に低減することができる。
の場合は、第1のステップにおける動作は次のようになる。まず、k=1のとき、手順1
では、第1の基本画像に対する第1の補間画像の表示タイミングを決定する。第1の補間
画像の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk
(m/n)倍すなわち2/3倍した期間が経過した時点である。
、整数であるかどうかを判別する。ここで、係数k(m/n)は2/3であるので、整数
ではない。したがって、手順3に進む。
+y/nの形に変換する。係数2/3の場合は、x=0,y=2である。そして、第1の
補間画像を動き補償によって求めた中間画像とする場合は、第1の補間画像は、第(x+
1)すなわち第1の基本画像から第(x+2)すなわち第2の基本画像までの画像の動き
をy/n倍すなわち2/3倍した動きに相当する画像として求めた中間画像とする。第1
の補間画像を基本画像と同じ画像とする場合は、第(x+1)すなわち第1の基本画像を
用いることができる。
する画像を決定することができた。次に、手順4では、対象とする補間画像を、第1の補
間画像から第2の補間画像へ移す。すなわち、kを1から2に変更し、手順1に戻る。
決定する。第2の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力
画像データの周期をk(m/n)倍すなわち4/3倍した期間が経過した時点である。
、整数であるかどうかを判別する。ここで、係数k(m/n)は4/3であるので、整数
ではない。したがって、手順3に進む。
+y/nの形に変換する。係数4/3の場合は、x=1,y=1である。そして、第2の
補間画像を動き補償によって求めた中間画像とする場合は、第2の補間画像は、第(x+
1)すなわち第2の基本画像から第(x+2)すなわち第3の基本画像までの画像の動き
をy/n倍すなわち1/3倍した動きに相当する画像として求めた中間画像とする。第2
の補間画像を基本画像と同じ画像とする場合は、第(x+1)すなわち第2の基本画像を
用いることができる。
する画像を決定することができた。次に、手順4では、対象とする補間画像を、第2の補
間画像から第3の補間画像へ移す。すなわち、kを2から3に変更し、手順1に戻る。
決定する。第3の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力
画像データの周期をk(m/n)倍すなわち2倍した期間が経過した時点である。
、整数であるかどうかを判別する。ここで、係数k(m/n)は2であるので、整数であ
る。したがって、第3の補間画像の表示タイミングにおいては第(k(m/n)+1)す
なわち第3の基本画像を表示し、第1のステップを終了する。
第kの画像は基本画像であり、
第k+1の画像は補間画像であり、
第k+2の画像は補間画像であり、
第k+3の画像は基本画像であり、画像表示周期は、入力画像データの周期の2/3倍で
あることを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、
第i+2の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、
第k+3の画像と、を、入力画像データの周期の2/3倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を2/3倍した動きに相当する画像データにしたがって表示され、
前記第k+2の画像は、前記第i+1の画像から前記第i+2の画像までの動きを1/3
倍した動きに相当する画像データにしたがって表示され、
前記第k+3の画像は、前記第i+2の画像データにしたがって表示される
ことを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、
第i+2の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、
第k+3の画像と、を、入力画像データの周期の2/3倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データにしたがって表示され、
前記第k+2の画像は、前記第i+1の画像データにしたがって表示され、
前記第k+3の画像は、前記第i+2の画像データにしたがって表示される
ことを特徴とする。
を向上できるという利点を有する。さらに、変換比が3/2である場合は、変換比が3/
2より大きい場合よりも消費電力および製造コストを低減できるという利点を有する。
ばれる。たとえば、入力フレームレートが60Hzであれば、表示フレームレートは90
Hz(90Hz駆動)である。そして、2つの入力画像に対し、画像を3回連続して表示
することになる。このとき、補間画像が動き補償によって求められた中間画像である場合
は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが
可能である。特に、120Hz駆動(倍速駆動)、180Hz駆動(3倍速駆動)等の駆
動周波数の大きな駆動方法と比較すると、動き補償によって中間画像を求める回路の動作
周波数を低減できるため、安価な回路が使用でき、製造コストおよび消費電力を低減でき
る。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナ
ミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、
残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆
動と90Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波
数を90Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、3
0Hz、45Hz、90Hz、180Hz等)とすることによって、交流駆動によって現
れるフリッカを、人間の目に知覚されない程度に低減することができる。
けるフレームレート変換の手順にしたがうことで、変換比は任意の有理数(n/m)とし
て設定することができる。なお、正の整数nおよびmの組み合わせのうち、変換比(n/
m)が約分できる組み合わせについては、約分した後の変換比と同様に取り扱うことがで
きる。
箇所)の場合は、
第kの画像は基本画像であり、
第k+1の画像は補間画像であり、
第k+2の画像は補間画像であり、
第k+3の画像は補間画像であり、
第k+4の画像は基本画像であり、画像表示周期は、入力画像データの周期の1/4倍で
あることを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、
第k+3の画像と、
第k+4の画像と、を、入力画像データの周期の1/4倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を1/4倍した動きに相当する画像データにしたがって表示され、
前記第k+2の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を1/2倍した動きに相当する画像データにしたがって表示され、
前記第k+3の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を3/4倍した動きに相当する画像データにしたがって表示され、
前記第k+4の画像は、前記第i+1の画像データにしたがって表示される
ことを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、
第k+3の画像と、
第k+4の画像と、を、入力画像データの周期の1/4倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データにしたがって表示され、
前記第k+2の画像は、前記第iの画像データにしたがって表示され、
前記第k+3の画像は、前記第iの画像データにしたがって表示され、
前記第k+4の画像は、前記第i+1の画像データにしたがって表示される
ことを特徴とする。
きるという利点を有する。さらに、変換比が4である場合は、変換比が4より大きい場合
よりも消費電力および製造コストを低減できるという利点を有する。
ムレートが60Hzであれば、表示フレームレートは240Hz(240Hz駆動)であ
る。そして、1つの入力画像に対し、画像を4回連続して表示することになる。このとき
、補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかに
することができるため、動画の品質を顕著に向上させることが可能である。特に、120
Hz駆動(倍速駆動)、180Hz駆動(3倍速駆動)等の駆動周波数の小さな駆動方法
と比較すると、さらに精度の高い動き補償によって求めた中間画像を補間画像として用い
ることができるため、さらに動画の動きを滑らかにすることができ、動画の品質を顕著に
向上させることが可能である。さらに、表示装置がアクティブマトリクス方式の液晶表示
装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避で
きるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さら
に、液晶表示装置の交流駆動と240Hz駆動を組み合わせるのも効果的である。すなわ
ち、液晶表示装置の駆動周波数を240Hzとしつつ、交流駆動の周波数をその整数倍ま
たは整数分の一(たとえば、30Hz、40Hz、60Hz、120Hz等)とすること
によって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減する
ことができる。
4,m=3の箇所)の場合は、
第kの画像は基本画像であり、
第k+1の画像は補間画像であり、
第k+2の画像は補間画像であり、
第k+3の画像は補間画像であり、
第k+4の画像は基本画像であり、画像表示周期は、入力画像データの周期の3/4倍で
あることを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、
第i+2の画像データと、
第i+3の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、
第k+3の画像と、
第k+4の画像と、を、入力画像データの周期の3/4倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を3/4倍した動きに相当する画像データにしたがって表示され、
前記第k+2の画像は、前記第i+1の画像から前記第i+2の画像までの動きを1/2
倍した動きに相当する画像データにしたがって表示され、
前記第k+3の画像は、前記第i+2の画像から前記第i+3の画像までの動きを1/4
倍した動きに相当する画像データにしたがって表示され、
前記第k+4の画像は、前記第i+3の画像データにしたがって表示される
ことを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、
第i+2の画像データと、
第i+3の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、
第k+3の画像と、
第k+4の画像と、を、入力画像データの周期の3/4倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データにしたがって表示され、
前記第k+2の画像は、前記第i+1の画像データにしたがって表示され、
前記第k+3の画像は、前記第i+2の画像データにしたがって表示され、
前記第k+4の画像は、前記第i+3の画像データにしたがって表示される
ことを特徴とする。
を向上できるという利点を有する。さらに、変換比が4/3である場合は、変換比が4/
3より大きい場合よりも消費電力および製造コストを低減できるという利点を有する。
呼ばれる。たとえば、入力フレームレートが60Hzであれば、表示フレームレートは8
0Hz(80Hz駆動)である。そして、3つの入力画像に対し、画像を4回連続して表
示することになる。このとき、補間画像が動き補償によって求められた中間画像である場
合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させること
が可能である。特に、120Hz駆動(倍速駆動)、180Hz駆動(3倍速駆動)等の
駆動周波数の大きな駆動方法と比較すると、動き補償によって中間画像を求める回路の動
作周波数を低減できるため、安価な回路が使用でき、製造コストおよび消費電力を低減で
きる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイ
ナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き
、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流
駆動と80Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周
波数を80Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、
40Hz、80Hz、160Hz、240Hz等)とすることによって、交流駆動によっ
て現れるフリッカを、人間の目に知覚されない程度に低減することができる。
m=1の箇所)の場合は、
第kの画像は基本画像であり、
第k+1の画像は補間画像であり、
第k+2の画像は補間画像であり、
第k+3の画像は補間画像であり、
第k+4の画像は補間画像であり、
第k+5の画像は基本画像であり、画像表示周期は、入力画像データの周期の1/5倍で
あることを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、
第k+3の画像と、
第k+4の画像と、
第k+5の画像と、を、入力画像データの周期の1/5倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を1/5倍した動きに相当する画像データにしたがって表示され、
前記第k+2の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を2/5倍した動きに相当する画像データにしたがって表示され、
前記第k+3の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を3/5倍した動きに相当する画像データにしたがって表示され、
前記第k+4の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を4/5倍した動きに相当する画像データにしたがって表示され、
前記第k+5の画像は、前記第i+1の画像データにしたがって表示される
ことを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、
第k+3の画像と、
第k+4の画像と、
第k+5の画像と、を、入力画像データの周期の1/5倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データにしたがって表示され、
前記第k+2の画像は、前記第iの画像データにしたがって表示され、
前記第k+3の画像は、前記第iの画像データにしたがって表示され、
前記第k+4の画像は、前記第iの画像データにしたがって表示され、
前記第k+5の画像は、前記第i+1の画像データにしたがって表示される
ことを特徴とする。
きるという利点を有する。さらに、変換比が5である場合は、変換比が5より大きい場合
よりも消費電力および製造コストを低減できるという利点を有する。
ムレートが60Hzであれば、表示フレームレートは300Hz(300Hz駆動)であ
る。そして、1つの入力画像に対し、画像を5回連続して表示することになる。このとき
、補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかに
することができるため、動画の品質を顕著に向上させることが可能である。特に、120
Hz駆動(倍速駆動)、180Hz駆動(3倍速駆動)等の駆動周波数の小さな駆動方法
と比較すると、さらに精度の高い動き補償によって求めた中間画像を補間画像として用い
ることができるため、さらに動画の動きを滑らかにすることができ、動画の品質を顕著に
向上させることが可能である。さらに、表示装置がアクティブマトリクス方式の液晶表示
装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避で
きるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さら
に、液晶表示装置の交流駆動と300Hz駆動を組み合わせるのも効果的である。すなわ
ち、液晶表示装置の駆動周波数を300Hzとしつつ、交流駆動の周波数をその整数倍ま
たは整数分の一(たとえば、30Hz、50Hz、60Hz、100Hz等)とすること
によって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減する
ことができる。
5,m=2の箇所)の場合は、
第kの画像は基本画像であり、
第k+1の画像は補間画像であり、
第k+2の画像は補間画像であり、
第k+3の画像は補間画像であり、
第k+4の画像は補間画像であり、
第k+5の画像は基本画像であり、画像表示周期は、入力画像データの周期の1/5倍で
あることを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、
第i+2の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、
第k+3の画像と、
第k+4の画像と、
第k+5の画像と、を、入力画像データの周期の1/5倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を2/5倍した動きに相当する画像データにしたがって表示され、
前記第k+2の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を4/5倍した動きに相当する画像データにしたがって表示され、
前記第k+3の画像は、前記第i+1の画像データから前記第i+2の画像データまでの
動きを1/5倍した動きに相当する画像データにしたがって表示され、
前記第k+4の画像は、前記第i+1の画像データから前記第i+2の画像データまでの
動きを3/5倍した動きに相当する画像データにしたがって表示され、
前記第k+5の画像は、前記第i+2の画像データにしたがって表示される
ことを特徴とする。
第i(iは正の整数)の画像データと、
第i+1の画像データと、
第i+2の画像データと、が、入力画像データとして一定の周期で順次入力され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、
第k+3の画像と、
第k+4の画像と、
第k+5の画像と、を、入力画像データの周期の1/5倍の間隔で順次表示する表示装置
の駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データにしたがって表示され、
前記第k+2の画像は、前記第iの画像データにしたがって表示され、
前記第k+3の画像は、前記第i+1の画像データにしたがって表示され、
前記第k+4の画像は、前記第i+1の画像データにしたがって表示され、
前記第k+5の画像は、前記第i+2の画像データにしたがって表示される
ことを特徴とする。
を向上できるという利点を有する。さらに、変換比が5/2である場合は、変換比が5よ
り大きい場合よりも消費電力および製造コストを低減できるという利点を有する。
る。たとえば、入力フレームレートが60Hzであれば、表示フレームレートは150H
z(150Hz駆動)である。そして、2つの入力画像に対し、画像を5回連続して表示
することになる。このとき、補間画像が動き補償によって求められた中間画像である場合
は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが
可能である。特に、120Hz駆動(倍速駆動)等の駆動周波数の小さな駆動方法と比較
すると、さらに精度の高い動き補償によって求めた中間画像を補間画像として用いること
ができるため、さらに動画の動きを滑らかにすることができ、動画の品質を顕著に向上さ
せることが可能である。さらに、180Hz駆動(3倍速駆動)等の駆動周波数の大きな
駆動方法と比較すると、動き補償によって中間画像を求める回路の動作周波数を低減でき
るため、安価な回路が使用でき、製造コストおよび消費電力を低減できる。さらに、表示
装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタ
ンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対
し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と150Hz駆
動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を150Hz
としつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、50
Hz、75Hz、150Hz等)とすることによって、交流駆動によって現れるフリッカ
を、人間の目に知覚されない程度に低減することができる。
(n/m)として設定することができる。詳細な説明は省略するが、nが10以下の範囲
では、
n=1,m=1、すなわち変換比(n/m)=1(1倍速駆動、60Hz)、
n=2,m=1、すなわち変換比(n/m)=2(2倍速駆動、120Hz)、
n=3,m=1、すなわち変換比(n/m)=3(3倍速駆動、180Hz)、
n=3,m=2、すなわち変換比(n/m)=3/2(3/2倍速駆動、90Hz)、
n=4,m=1、すなわち変換比(n/m)=4(4倍速駆動、240Hz)、
n=4,m=3、すなわち変換比(n/m)=4/3(4/3倍速駆動、80Hz)、
n=5,m=1、すなわち変換比(n/m)=5/1(5倍速駆動、300Hz)、
n=5,m=2、すなわち変換比(n/m)=5/2(5/2倍速駆動、150Hz)、
n=5,m=3、すなわち変換比(n/m)=5/3(5/3倍速駆動、100Hz)、
n=5,m=4、すなわち変換比(n/m)=5/4(5/4倍速駆動、75Hz)、
n=6,m=1、すなわち変換比(n/m)=6(6倍速駆動、360Hz)、
n=6,m=5、すなわち変換比(n/m)=6/5(6/5倍速駆動、72Hz)、
n=7,m=1、すなわち変換比(n/m)=7(7倍速駆動、420Hz)、
n=7,m=2、すなわち変換比(n/m)=7/2(7/2倍速駆動、210Hz)、
n=7,m=3、すなわち変換比(n/m)=7/3(7/3倍速駆動、140Hz)、
n=7,m=4、すなわち変換比(n/m)=7/4(7/4倍速駆動、105Hz)、
n=7,m=5、すなわち変換比(n/m)=7/5(7/5倍速駆動、84Hz)、
n=7,m=6、すなわち変換比(n/m)=7/6(7/6倍速駆動、70Hz)、
n=8,m=1、すなわち変換比(n/m)=8(8倍速駆動、480Hz)、
n=8,m=3、すなわち変換比(n/m)=8/3(8/3倍速駆動、160Hz)、
n=8,m=5、すなわち変換比(n/m)=8/5(8/5倍速駆動、96Hz)、
n=8,m=7、すなわち変換比(n/m)=8/7(8/7倍速駆動、68.6Hz)
、
n=9,m=1、すなわち変換比(n/m)=9(9倍速駆動、540Hz)、
n=9,m=2、すなわち変換比(n/m)=9/2(9/2倍速駆動、270Hz)、
n=9,m=4、すなわち変換比(n/m)=9/4(9/4倍速駆動、135Hz)、
n=9,m=5、すなわち変換比(n/m)=9/5(9/5倍速駆動、108Hz)、
n=9,m=7、すなわち変換比(n/m)=9/7(9/7倍速駆動、77.1Hz)
、
n=9,m=8、すなわち変換比(n/m)=9/8(9/8倍速駆動、67.5Hz)
、
n=10,m=1、すなわち変換比(n/m)=10(10倍速駆動、600Hz)、
n=10,m=3、すなわち変換比(n/m)=10/3(10/3倍速駆動、200H
z)、
n=10,m=7、すなわち変換比(n/m)=10/7(10/7倍速駆動、85.7
Hz)、
n=10,m=9、すなわち変換比(n/m)=10/9(10/9倍速駆動、66.7
Hz)、
以上の組み合わせが考えられる。なお、周波数の表記は入力フレームレートが60Hzで
あるときの例であり、その他の入力フレームレートに対しては、それぞれの変換比を入力
フレームレートと積算した値が駆動周波数となる。
ないが、様々なnおよびmに対し、この、第1のステップにおけるフレームレート変換の
手順が適用できることは明らかである。
きる画像がどの程度含まれているかによって、変換比を決定することができる。具体的に
は、mが小さいほど、入力される画像データに動き補償を行なうことなく表示できる画像
の割合は大きくなる。動き補償を行なう頻度が小さいと、動き補償を行なう回路の動作頻
度を減少させることができるため、消費電力を小さくでき、さらに、動き補償によってエ
ラーが含まれる画像(画像の動きを正確に反映していない中間画像)が作成されてしまう
可能性を低くすることができるため、画像の品質を向上させることができる。このような
変換比としては、nが10以下の範囲においては、たとえば、1,2,3,3/2,4,
5,5/2,6,7,7/2,8,9,9/2,10が挙げられる。このような変換比を
用いると、特に補間画像として動き補償によって求められた中間画像を用いる場合におい
て、画像の品質を高くすることができ、かつ、消費電力を低減することができる。なぜな
らば、mが2である場合は、入力される画像データに動き補償を行なうことなく表示でき
る画像の数が比較的多く(入力される画像データの総数に対して1/2だけ存在する)、
動き補償を行う頻度が減少するためである。さらに、mが1である場合は、入力される画
像データに動き補償を行なうことなく表示できる画像の数が多く(入力される画像データ
の総数に等しい)、動き補償を行うことがないためである。一方、mは大きいほど、精度
の高い動き補償によって作成された中間画像を用いることができるので、画像の動きをよ
り滑らかにできるという利点を有する。
決定することができる。ここでは、液晶素子の応答時間とは、液晶素子に印加する電圧を
変化させてから液晶素子が応答するまでの時間である。液晶素子の応答時間が、液晶素子
に印加する電圧の変化量によって異なる場合は、複数の代表的な電圧変化における応答時
間の平均値とすることができる。または、液晶素子の応答時間は、MPRT(Movin
g Picture Response Time)で定義されるものであってもよい。
そして、フレームレート変換によって、画像表示周期が液晶素子の応答時間に近くなるよ
うに、変換比を決定できる。具体的には、液晶素子の応答時間は、入力画像データの周期
と変換比の逆数を積算した値から、この値の半分程度の値までの時間であることが好まし
い。こうすることで、液晶素子の応答時間に合った画像表示周期とすることができるので
、画質を向上することができる。たとえば、液晶素子の応答時間が4ミリ秒以上8ミリ秒
以下の場合に、倍速駆動(120Hz駆動)とすることができる。これは、120Hz駆
動の画像表示周期が約8ミリ秒であり、120Hz駆動の画像表示周期の半分が約4ミリ
秒であることによる。同様に、たとえば、液晶素子の応答時間が3ミリ秒以上6ミリ秒以
下の場合に、3倍速駆動(180Hz駆動)とすることができ、液晶素子の応答時間が5
ミリ秒以上11ミリ秒以下の場合に、1.5倍速駆動(90Hz駆動)とすることができ
、液晶素子の応答時間が2ミリ秒以上4ミリ秒以下の場合に、4倍速駆動(240Hz駆
動)とすることができ、液晶素子の応答時間が6ミリ秒以上12ミリ秒以下の場合に、1
.25倍速駆動(80Hz駆動)とすることができる。なお、他の駆動周波数についても
同様である。
定することができる。つまり、変換比を大きくすることによって動画の品質を上げること
ができる一方で、変換比を小さくすることによって消費電力および製造コストを低減でき
る。すなわち、nが10以下の範囲における各々の変換比は、以下のような利点を有する
。
比が1より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さ
いので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間
が入力画像データの周期の1倍程度である液晶表示装置に適用することで、画質を向上す
ることができる。
比が2より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さ
いので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間
が入力画像データの周期の1/2倍程度である液晶表示装置に適用することで、画質を向
上することができる。
比が3より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さ
いので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間
が入力画像データの周期の1/3倍程度である液晶表示装置に適用することで、画質を向
上することができる。
き、変換比が3/2より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素
子の応答時間が入力画像データの周期の2/3倍程度である液晶表示装置に適用すること
で、画質を向上することができる。
比が4より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さ
いので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間
が入力画像データの周期の1/4倍程度である液晶表示装置に適用することで、画質を向
上することができる。
き、変換比が4/3より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の3/4倍程度である液晶表示装置に適用することで、画質を向上
することができる。
比が5より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さ
いので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間
が入力画像データの周期の1/5倍程度である液晶表示装置に適用することで、画質を向
上することができる。
き、変換比が5/2より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素
子の応答時間が入力画像データの周期の2/5倍程度である液晶表示装置に適用すること
で、画質を向上することができる。
き、変換比が5/3より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の3/5倍程度である液晶表示装置に適用することで、画質を向上
することができる。
き、変換比が5/4より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の4/5倍程度である液晶表示装置に適用することで、画質を向上
することができる。
比が6より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さ
いので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間
が入力画像データの周期の1/6倍程度である液晶表示装置に適用することで、画質を向
上することができる。
き、変換比が6/5より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の5/6倍程度である液晶表示装置に適用することで、画質を向上
することができる。
比が7より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さ
いので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間
が入力画像データの周期の1/7倍程度である液晶表示装置に適用することで、画質を向
上することができる。
き、変換比が7/2より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素
子の応答時間が入力画像データの周期の2/7倍程度である液晶表示装置に適用すること
で、画質を向上することができる。
き、変換比が7/3より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の3/7倍程度である液晶表示装置に適用することで、画質を向上
することができる。
き、変換比が7/4より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の4/7倍程度である液晶表示装置に適用することで、画質を向上
することができる。
き、変換比が7/5より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の5/7倍程度である液晶表示装置に適用することで、画質を向上
することができる。
き、変換比が7/6より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の6/7倍程度である液晶表示装置に適用することで、画質を向上
することができる。
比が8より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さ
いので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間
が入力画像データの周期の1/8倍程度である液晶表示装置に適用することで、画質を向
上することができる。
き、変換比が8/3より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の3/8倍程度である液晶表示装置に適用することで、画質を向上
することができる。
き、変換比が8/5より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の5/8倍程度である液晶表示装置に適用することで、画質を向上
することができる。
き、変換比が8/7より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の7/8倍程度である液晶表示装置に適用することで、画質を向上
することができる。
比が9より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さ
いので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間
が入力画像データの周期の1/9倍程度である液晶表示装置に適用することで、画質を向
上することができる。
き、変換比が9/2より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素
子の応答時間が入力画像データの周期の2/9倍程度である液晶表示装置に適用すること
で、画質を向上することができる。
き、変換比が9/4より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の4/9倍程度である液晶表示装置に適用することで、画質を向上
することができる。
き、変換比が9/5より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の5/9倍程度である液晶表示装置に適用することで、画質を向上
することができる。
き、変換比が9/7より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の7/9倍程度である液晶表示装置に適用することで、画質を向上
することができる。
き、変換比が9/8より大きい場合よりも消費電力および製造コストを低減できる。さら
に、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が
入力画像データの周期の8/9倍程度である液晶表示装置に適用することで、画質を向上
することができる。
変換比が10より大きい場合よりも消費電力および製造コストを低減できる。さらに、m
が小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応
答時間が入力画像データの周期の1/10倍程度である液晶表示装置に適用することで、
画質を向上することができる。
上でき、変換比が10/3より大きい場合よりも消費電力および製造コストを低減できる
。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答
時間が入力画像データの周期の3/10倍程度である液晶表示装置に適用することで、画
質を向上することができる。
上でき、変換比が10/7より大きい場合よりも消費電力および製造コストを低減できる
。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答
時間が入力画像データの周期の7/10倍程度である液晶表示装置に適用することで、画
質を向上することができる。
上でき、変換比が10/9より大きい場合よりも消費電力および製造コストを低減できる
。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答
時間が入力画像データの周期の9/10倍程度である液晶表示装置に適用することで、画
質を向上することができる。
は明らかである。
ップにおいて任意の有理数(n/m)倍にフレームレート変換された各々の画像(元画像
と呼ぶこととする)から、異なる複数の画像(サブ画像)を作成し、当該複数のサブ画像
を時間的に連続して提示する方法について説明する。こうすることによって、実際は複数
の画像を提示しているのにもかかわらず、見た目上、1つの元画像が表示されたように人
間の目に知覚させることもできる。
を、第1のサブ画像と呼ぶこととする。ここで、第1のサブ画像を表示するタイミングは
、第1のステップで決められた元画像を表示するタイミングと同じであるとする。一方、
その後に表示されるサブ画像を、第2のサブ画像と呼ぶこととする。第2のサブ画像を表
示するタイミングは、第1のステップで決められた元画像を表示するタイミングに関わら
ず、任意に決めることができる。なお、実際に表示させる画像は、第2のステップにおけ
る方法により元画像から作成された画像である。なお、サブ画像を作成するための元画像
も、様々な画像を用いることができる。なお、サブ画像の数は2つに限定されず、2つよ
り大きくてもよい。第2のステップにおいては、サブ画像の数をJ個(Jは2以上の整数
)と表記する。このとき、第1のステップで決められた元画像を表示するタイミングと同
じタイミングで表示されるサブ画像を、第1のサブ画像と呼び、それ以降に続いて表示さ
れるサブ画像を、表示される順番にしたがって第2のサブ画像、第3のサブ画像、・・・
、第Jのサブ画像、と呼ぶこととする。
のとしては次のような方法を挙げることができる。1つは、元画像をそのままサブ画像と
して用いる方法である。1つは、元画像の明るさを複数のサブ画像に分配する方法である
。1つは、動き補償によって求めた中間画像をサブ画像として用いる方法である。
ことができる。主なものとしては次のような方法を挙げることができる。1つは、少なく
とも1つのサブ画像を黒画像とする方法(黒挿入法と呼ぶこととする)である。1つは、
元画像の明るさを複数の範囲に分割し、当該範囲における明るさを制御するときは、全て
のサブ画像のうち唯1つのサブ画像によって行なう方法(時分割階調制御法と呼ぶことと
する)である。1つは、一方のサブ画像を、元画像のガンマ値を変更した明るい画像とし
、他方のサブ画像を、元画像のガンマ値を変更した暗い画像とする方法(ガンマ補完法と
呼ぶこととする)である。
て用いる方法は、第1のサブ画像として、元画像をそのまま用いる。さらに、第2のサブ
画像として、元画像をそのまま用いる。この方法を用いると、サブ画像を新たに作成する
回路を動作させることがない、または当該回路そのものを用いる必要がなくなるため、消
費電力および製造コストを低減することができる。特に、液晶表示装置においては、第1
のステップにおいて、動き補償によって求めた中間画像を補間画像としたフレームレート
変換を行なった後にこの方法を用いることが好ましい。なぜならば、動き補償によって求
めた中間画像を補間画像とすることで、動画の動きを滑らかにしつつ、同じ画像を繰り返
し表示することで、液晶素子のダイナミックキャパシタンスによる書き込み電圧不足に起
因する、動画の尾引き、残像等の障害を低減することができるからである。
ブ画像が表示される期間の長さの設定方法について詳細に説明する。なお、Jはサブ画像
の数を表し、2以上の整数であるとする。小文字のjは大文字のJとは区別される。jは
1以上J以下の整数であるとする。
通常のホールド駆動における画素の明るさをL、元画像データの周期をT、
第jのサブ画像における画素の明るさをLj、第jのサブ画像が表示される期間の長さを
Tj、とすると、LjとTjについて積をとり、これのj=1からj=Jまでの総和(L
1T1+L2T2+・・・+LJTJ)が、LとTの積(LT)と等しくなっていること
(明るさが不変であること)が好ましい。さらに、Tjの、j=1からj=Jまでの総和
(T1+T2+・・・+TJ)が、Tと等しくなっていること(元画像の表示周期が維持
されること)が好ましい。ここで、明るさが不変であり、かつ、元画像の表示周期が維持
されることを、サブ画像分配条件と呼ぶこととする。
サブ画像を黒画像とする方法である。こうすることによって、表示方法を擬似的にインパ
ルス型とすることができるため、表示方法がホールド型であることに起因する動画の品質
の低下を防ぐことができる。ここで、黒画像の挿入に伴う、表示画像の明るさの低下を防
ぐために、サブ画像分配条件に従うことが好ましい。しかし、表示画像の明るさの低下が
許容できるような状況(周囲が暗い等)である場合、ユーザによって表示画像の明るさの
低下が許容する設定になっている場合などであれば、サブ画像分配条件に従わなくてもよ
い。たとえば、1つのサブ画像は元画像と同じものとし、他のサブ画像を黒画像としても
よい。この場合は、サブ画像分配条件にしたがったときと比べて、消費電力を低減できる
。さらに、液晶表示装置においては、一方のサブ画像を、明るさの最大値に制限をつけず
に元画像の全体的な明るさを大きくしたものとするとき、バックライトの明るさを大きく
することで、サブ画像分配条件を実現してもよい。この場合は、画素に書き込む電圧値を
制御することなく、サブ画像分配条件を満足することができるため、画像処理回路の動作
を省略でき、消費電力を低減できる。
を特徴とする。こうすることにより、表示方法を擬似的にインパルス型とすることができ
るため、表示方法がホールド型であることに起因する動画の品質の低下を防ぐことができ
る。
明るさを複数の範囲に分割し、当該範囲における明るさを制御するときは、全てのサブ画
像のうち唯1つのサブ画像によって行なう方法である。こうすることによって、明るさを
低下させることなく、表示方法を擬似的にインパルス型とすることができるため、表示方
法がホールド型であることに起因する動画の品質の低下を防ぐことができる。
サブ画像の数だけ分割する方法がある。これは、たとえば、0からLmaxまでの明るさ
が256段階(階調0から階調255)で調節できる表示装置において、サブ画像の数を
2としたとき、階調0から階調127までを表示するときは、一方のサブ画像の明るさを
階調0から階調255の範囲で調節する一方で、他方のサブ画像の明るさを階調0とし、
階調128から階調255までを表示するときは、一方のサブ画像の明るさを階調255
とする一方で、他方のサブ画像の明るさを階調0から階調255の範囲で調節する方法で
ある。こうすることによって、元画像が表示されたように人間の目に知覚させることがで
き、かつ、擬似的にインパルス型とすることができるので、ホールド型であることに起因
する動画の品質の低下を防ぐことができる。なお、サブ画像の数は2より大きくてもよい
。たとえば、サブ画像の数を3としたときは、元画像の明るさの段階(階調0から階調2
55)を、3つに分割する。なお、元画像の明るさの段階の数とサブ画像の数によっては
、明るさの段階の数がサブ画像の数で割り切れない場合もあるが、分割後のそれぞれの明
るさの範囲に含まれる明るさの段階の数は、ちょうど同じでなくても、適宜振り分ければ
よい。
低下などがおこらず、元画像と同様な画像を表示することができるため、好ましい。
像を、元画像のガンマ特性を変更した明るい画像とし、他方のサブ画像を、元画像のガン
マ特性を変更した暗い画像とする方法である。こうすることによって、明るさを低下させ
ることなく、表示方法を擬似的にインパルス型とすることができるため、表示方法がホー
ルド型であることに起因する動画の品質の低下を防ぐことができる。ここで、ガンマ特性
とは、明るさの段階(階調)に対する明るさの程度のことである。通常、ガンマ特性は線
形に近くなるように調整される。これは、明るさの段階である階調に対する明るさの変化
が比例するようにすれば、滑らかな階調を得ることができるからである。ガンマ補完法で
は、一方のサブ画像のガンマ特性を線形からずらして、中間の明るさ(中間調)の領域に
おいて、線形よりも明るくなるように調整する(中間調が本来よりも明るい画像となる)
。そして、他方のサブ画像のガンマ特性も線形からずらして、同じく中間調の領域におい
て、線形よりも暗くなるように調整する(中間調が本来よりも暗い画像となる)。ここで
、一方のサブ画像を線形より明るくした量と、他方のサブ画像を線形より暗くした量を、
全ての階調において概等しくすることが好ましい。こうすることで、元画像が表示された
ように人間の目に知覚させることができ、かつ、ホールド型であることに起因する動画の
品質の低下を防ぐことができる。なお、サブ画像の数は2より大きくてもよい。たとえば
、サブ画像の数を3としたときは、3つのサブ画像について、それぞれガンマ特性を調整
し、線形から明るくした量の合計と、線形から暗くした量の合計が概等しくなるようにす
ればよい。
などがおこらず、元画像と同様な画像を表示することができるため、好ましい。さらに、
ガンマ補完法においては、階調に対するそれぞれのサブ画像の明るさLjの変化がガンマ
曲線にしたがっているため、それぞれのサブ画像がそれ自体で階調を滑らかに表示でき、
最終的に人間の目で知覚される画像の品質も向上するという利点を有する。
後の画像から動き補償によって求めた中間画像とする方法である。こうすることで、画像
の動きを滑らかにすることができるので、動画の品質を向上できる。
する。第1のサブ画像を表示するタイミングは、第1のステップで決められた元画像を表
示するタイミングと同じであり、第2のサブ画像を表示するタイミングは、第1のステッ
プで決められた元画像を表示するタイミングに関わらず、任意に決めることができるとし
たが、第2のサブ画像を表示するタイミングにしたがって、サブ画像自体を変化させても
よい。こうすることで、第2のサブ画像を表示するタイミングを様々に変化させたとして
も、元画像が表示されたように人間の目に知覚させることができる。具体的には、第2の
サブ画像を表示するタイミングを早くした場合は、第1のサブ画像はより明るくし、第2
のサブ画像はより暗くすることができる。さらに、第2のサブ画像を表示するタイミング
を遅くした場合は、第1のサブ画像はより暗くし、第2のサブ画像はより明るくすること
ができる。これは、人間の目が知覚する明るさは、画像を表示する期間の長さによって変
わるためである。より詳細には、人間の目が知覚する明るさは、画像を表示する期間が長
いほど明るくなり、画像を表示する期間が短いほど暗くなる。すなわち、第2のサブ画像
を表示するタイミングを早くすることによって、第1のサブ画像を表示する期間の長さが
短くなり、第2のサブ画像を表示する期間の長さが長くなるため、そのままでは第1のサ
ブ画像は暗く、第2のサブ画像は明るく、人間の目に知覚されてしまう。その結果、元画
像とは異なる画像が人間の目に知覚されてしまうことになるが、これを防ぐために、第1
のサブ画像はより明るくし、第2のサブ画像はより暗くすることができる。同様に、第2
のサブ画像を表示するタイミングを遅くすることによって、第1のサブ画像を表示する期
間の長さが長くなり、第2のサブ画像を表示する期間の長さが短くなる場合は、第1のサ
ブ画像はより暗くし、第2のサブ画像はより明るくすることができる。
手順1として、1つの元画像から複数のサブ画像を作成する方法を決定する。より詳細に
は、複数のサブ画像を作成する方法は、元画像をそのままサブ画像として用いる方法、元
画像の明るさを複数のサブ画像に分配する方法、動き補償によって求めた中間画像をサブ
画像として用いる方法、から選択することができる。
手順2として、サブ画像の数Jを決定する。なお、Jは2以上の整数である。
手順3として、第jのサブ画像における画素の明るさLj、第jのサブ画像が表示される
期間の長さTjを、手順1で選択した方法にしたがって決定する。手順3により、それぞ
れのサブ画像が表示される期間の長さと、それぞれのサブ画像に含まれる個々の画素の明
るさが具体的に決められる。
手順4として、手順1乃至手順3のそれぞれで決定された事項にしたがって、元画像を処
理し、実際に表示する。
手順5として、対象とする元画像を次の元画像に移す。そして、手順1に戻る。
もよいし、装置の設計段階であらかじめ決められたものであってもよい。第2のステップ
における手順を実行する仕組みが装置に実装されていれば、状況に応じた最適な動作が行
われるように、駆動方法を切り替えることが可能となる。なお、ここでいう状況とは、画
像データの内容、装置内外の環境(温度、湿度、気圧、光、音、磁界、電界、放射線量、
高度、加速度、移動速度、等)、ユーザ設定、ソフトウエアバージョン、等を含む。一方
、第2のステップにおける手順を実行する仕組みが装置の設計段階であらかじめ決められ
たものであれば、それぞれの駆動方法に最適な駆動回路を用いることができ、さらに、仕
組みが決められていることによって、量産効果による製造コストの低減が期待できる。
1のステップにおけるnおよびmの値を具体的に示して詳細に説明する。
選択された場合、駆動方法は次のようになる。
第i+1の画像データと、が、一定の周期Tで順次用意され、
前記周期Tは、J(Jは2以上の整数)個のサブ画像表示期間に分割され、
前記第iの画像データは、複数の画素にそれぞれ固有の明るさLを持たせることができる
データであり、
第j(jは1以上J以下の整数)のサブ画像は、それぞれ固有の明るさLjを持つ画素が
複数並置されることによって構成され、第jのサブ画像表示期間Tjだけ表示される画像
であり、
前記L、前記T、前記Lj、前記Tj、を、サブ画像分配条件を満たす表示装置の駆動方
法であって、
全てのjにおいて、第jのサブ画像に含まれるそれぞれの画素の明るさLjが、それぞれ
の画素に対しLj=Lであることを特徴とする。
ここで、一定の周期Tで順次用意される画像データとしては、第1のステップにおいて作
成された元画像データを用いることができる。すなわち、第1のステップの説明で挙げた
全ての表示パターンを、上記駆動方法と組み合わせることができる。
3において、T1=T2=T/2と決定された場合、上記駆動方法は、図71に示すよう
なものとなる。
図71において、横軸は時間であり、縦軸は第1のステップにおいて用いた様々なnおよ
びmについて場合分けを行なって示したものである。
あるときは、図71のn=1,m=1の箇所に示すような駆動方法となる。このとき、表
示フレームレートは入力される画像データのフレームレートの2倍(2倍速駆動)となる
。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フレームレート
は120Hz(120Hz駆動)である。そして、ひとつの入力される画像データに対し
、画像を2回連続して表示することになる。ここで、2倍速駆動である場合は、フレーム
レートが2倍速より小さい場合よりも動画の品質を向上でき、2倍速より大きい場合より
も消費電力および製造コストを低減できる。さらに、第2のステップの手順1において、
元画像をそのままサブ画像として用いる方法が選択されることによって、動き補償によっ
て中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することがで
きるため、消費電力および装置の製造コストを低減することができる。さらに、表示装置
がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンス
による書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特
に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と120Hz駆動を
組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を120Hzとし
つつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、60Hz
、120Hz、240Hz等)とすることによって、交流駆動によって現れるフリッカを
、人間の目に知覚されない程度に低減することができる。さらに、液晶素子の応答時間が
入力画像データの周期の1/2倍程度である液晶表示装置に適用することで、画質を向上
することができる。
)が2であるときは、図71のn=2,m=1の箇所に示すような駆動方法となる。この
とき、表示フレームレートは入力される画像データのフレームレートの4倍(4倍速駆動
)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フレー
ムレートは240Hz(240Hz駆動)である。そして、ひとつの入力される画像デー
タに対し、画像を4回連続して表示することになる。このとき、第1のステップにおける
補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにす
ることができるため、動画の品質を顕著に向上させることが可能である。ここで、4倍速
駆動である場合は、フレームレートが4倍速より小さい場合よりも動画の品質を向上でき
、4倍速より大きい場合よりも消費電力および製造コストを低減できる。さらに、第2の
ステップの手順1において、元画像をそのままサブ画像として用いる方法が選択されるこ
とによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体
を装置から省略することができるため、消費電力および装置の製造コストを低減すること
ができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、
ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾
引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の
交流駆動と240Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の
駆動周波数を240Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(た
とえば、30Hz、60Hz、120Hz、240Hz等)とすることによって、交流駆
動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さ
らに、液晶素子の応答時間が入力画像データの周期の1/4倍程度である液晶表示装置に
適用することで、画質を向上することができる。
)が3であるときは、図71のn=3,m=1の箇所に示すような駆動方法となる。この
とき、表示フレームレートは入力される画像データのフレームレートの6倍(6倍速駆動
)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フレー
ムレートは360Hz(360Hz駆動)である。そして、ひとつの入力される画像デー
タに対し、画像を6回連続して表示することになる。このとき、第1のステップにおける
補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにす
ることができるため、動画の品質を顕著に向上させることが可能である。ここで、6倍速
駆動である場合は、フレームレートが6倍速より小さい場合よりも動画の品質を向上でき
、6倍速より大きい場合よりも消費電力および製造コストを低減できる。さらに、第2の
ステップの手順1において、元画像をそのままサブ画像として用いる方法が選択されるこ
とによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体
を装置から省略することができるため、消費電力および装置の製造コストを低減すること
ができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、
ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾
引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の
交流駆動と360Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の
駆動周波数を360Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(た
とえば、30Hz、60Hz、120Hz、180Hz等)とすることによって、交流駆
動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さ
らに、液晶素子の応答時間が入力画像データの周期の1/6倍程度である液晶表示装置に
適用することで、画質を向上することができる。
)が3/2であるときは、図71のn=3,m=2の箇所に示すような駆動方法となる。
このとき、表示フレームレートは入力される画像データのフレームレートの3倍(3倍速
駆動)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フ
レームレートは180Hz(180Hz駆動)である。そして、ひとつの入力される画像
データに対し、画像を3回連続して表示することになる。このとき、第1のステップにお
ける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らか
にすることができるため、動画の品質を顕著に向上させることが可能である。ここで、3
倍速駆動である場合は、フレームレートが3倍速より小さい場合よりも動画の品質を向上
でき、3倍速より大きい場合よりも消費電力および製造コストを低減できる。さらに、第
2のステップの手順1において、元画像をそのままサブ画像として用いる方法が選択され
ることによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路
自体を装置から省略することができるため、消費電力および装置の製造コストを低減する
ことができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合
は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画
の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装
置の交流駆動と180Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装
置の駆動周波数を180Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一
(たとえば、30Hz、60Hz、120Hz、180Hz等)とすることによって、交
流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる
。さらに、液晶素子の応答時間が入力画像データの周期の1/3倍程度である液晶表示装
置に適用することで、画質を向上することができる。
)が4であるときは、図71のn=4,m=1の箇所に示すような駆動方法となる。この
とき、表示フレームレートは入力される画像データのフレームレートの8倍(8倍速駆動
)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フレー
ムレートは480Hz(480Hz駆動)である。そして、ひとつの入力される画像デー
タに対し、画像を8回連続して表示することになる。このとき、第1のステップにおける
補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにす
ることができるため、動画の品質を顕著に向上させることが可能である。ここで、8倍速
駆動である場合は、フレームレートが8倍速より小さい場合よりも動画の品質を向上でき
、8倍速より大きい場合よりも消費電力および製造コストを低減できる。さらに、第2の
ステップの手順1において、元画像をそのままサブ画像として用いる方法が選択されるこ
とによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体
を装置から省略することができるため、消費電力および装置の製造コストを低減すること
ができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、
ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾
引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の
交流駆動と480Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の
駆動周波数を480Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(た
とえば、30Hz、60Hz、120Hz、240Hz等)とすることによって、交流駆
動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さ
らに、液晶素子の応答時間が入力画像データの周期の1/8倍程度である液晶表示装置に
適用することで、画質を向上することができる。
)が4/3であるときは、図71のn=4,m=3の箇所に示すような駆動方法となる。
このとき、表示フレームレートは入力される画像データのフレームレートの8/3倍(8
/3倍速駆動)となる。具体的には、たとえば、入力フレームレートが60Hzであれば
、表示フレームレートは160Hz(160Hz駆動)である。そして、3つの入力され
る画像データに対し、画像を8回連続して表示することになる。このとき、第1のステッ
プにおける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを
滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。ここ
で、8/3倍速駆動である場合は、フレームレートが8/3倍速より小さい場合よりも動
画の品質を向上でき、8/3倍速より大きい場合よりも消費電力および製造コストを低減
できる。さらに、第2のステップの手順1において、元画像をそのままサブ画像として用
いる方法が選択されることによって、動き補償によって中間画像を作成する回路の動作を
停止または当該回路自体を装置から省略することができるため、消費電力および装置の製
造コストを低減することができる。さらに、表示装置がアクティブマトリクス方式の液晶
表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回
避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。
さらに、液晶表示装置の交流駆動と160Hz駆動を組み合わせるのも効果的である。す
なわち、液晶表示装置の駆動周波数を160Hzとしつつ、交流駆動の周波数をその整数
倍または整数分の一(たとえば、40Hz、80Hz、160Hz、320Hz等)とす
ることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低
減することができる。さらに、液晶素子の応答時間が入力画像データの周期の3/8倍程
度である液晶表示装置に適用することで、画質を向上することができる。
)が5であるときは、図71のn=5,m=1の箇所に示すような駆動方法となる。この
とき、表示フレームレートは入力される画像データのフレームレートの10倍(10倍速
駆動)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フ
レームレートは600Hz(600Hz駆動)である。そして、ひとつの入力される画像
データに対し、画像を10回連続して表示することになる。このとき、第1のステップに
おける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑ら
かにすることができるため、動画の品質を顕著に向上させることが可能である。ここで、
10倍速駆動である場合は、フレームレートが10倍速より小さい場合よりも動画の品質
を向上でき、10倍速より大きい場合よりも消費電力および製造コストを低減できる。さ
らに、第2のステップの手順1において、元画像をそのままサブ画像として用いる方法が
選択されることによって、動き補償によって中間画像を作成する回路の動作を停止または
当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを
低減することができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置で
ある場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるた
め、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液
晶表示装置の交流駆動と600Hz駆動を組み合わせるのも効果的である。すなわち、液
晶表示装置の駆動周波数を600Hzとしつつ、交流駆動の周波数をその整数倍または整
数分の一(たとえば、30Hz、60Hz、100Hz、120Hz等)とすることによ
って、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減すること
ができる。さらに、液晶素子の応答時間が入力画像データの周期の1/10倍程度である
液晶表示装置に適用することで、画質を向上することができる。
)が5/2であるときは、図71のn=5,m=2の箇所に示すような駆動方法となる。
このとき、表示フレームレートは入力される画像データのフレームレートの5倍(5倍速
駆動)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フ
レームレートは300Hz(300Hz駆動)である。そして、1つの入力される画像デ
ータに対し、画像を5回連続して表示することになる。このとき、第1のステップにおけ
る補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかに
することができるため、動画の品質を顕著に向上させることが可能である。ここで、5倍
速駆動である場合は、フレームレートが5倍速より小さい場合よりも動画の品質を向上で
き、5倍速より大きい場合よりも消費電力および製造コストを低減できる。さらに、第2
のステップの手順1において、元画像をそのままサブ画像として用いる方法が選択される
ことによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自
体を装置から省略することができるため、消費電力および装置の製造コストを低減するこ
とができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は
、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の
尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置
の交流駆動と300Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置
の駆動周波数を300Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(
たとえば、30Hz、50Hz、60Hz、100Hz等)とすることによって、交流駆
動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さ
らに、液晶素子の応答時間が入力画像データの周期の1/5倍程度である液晶表示装置に
適用することで、画質を向上することができる。
用いる方法が選択され、
第2のステップにおける手順2において、サブ画像の数が2と決定され、
第2のステップにおける手順3において、T1=T2=T/2と決定された場合は、第1
のステップにおけるnおよびmの値によって決められる変換比のフレームレート変換に対
し、表示フレームレートをさらに2倍のフレームレートとすることができるため、動画の
品質をさらに向上させることが可能となる。さらに、当該表示フレームレートより小さい
表示フレームレートである場合よりも動画の品質を向上でき、当該表示フレームレートよ
り大きい表示フレームレートである場合よりも消費電力および製造コストを低減できる。
さらに、第2のステップの手順1において、元画像をそのままサブ画像として用いる方法
が選択されることによって、動き補償によって中間画像を作成する回路の動作を停止また
は当該回路自体を装置から省略することができるため、消費電力および装置の製造コスト
を低減することができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置
である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できる
ため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、
液晶表示装置の駆動周波数を大きくしつつ、交流駆動の周波数をその整数倍または整数分
の一とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない
程度に低減することができる。さらに、液晶素子の応答時間が入力画像データの周期の(
1/(変換比の2倍))倍程度である液晶表示装置に適用することで、画質を向上するこ
とができる。
有するのは明らかである。たとえば、nが10以下の範囲においては、上に挙げたものの
ほかに、
n=5,m=3、すなわち変換比(n/m)=5/3(10/3倍速駆動、200Hz)
、
n=5,m=4、すなわち変換比(n/m)=5/4(5/2倍速駆動、150Hz)、
n=6,m=1、すなわち変換比(n/m)=6(12倍速駆動、720Hz)、
n=6,m=5、すなわち変換比(n/m)=6/5(12/5倍速駆動、144Hz)
、
n=7,m=1、すなわち変換比(n/m)=7(14倍速駆動、840Hz)、
n=7,m=2、すなわち変換比(n/m)=7/2(7倍速駆動、420Hz)、
n=7,m=3、すなわち変換比(n/m)=7/3(14/3倍速駆動、280Hz)
、
n=7,m=4、すなわち変換比(n/m)=7/4(7/2倍速駆動、210Hz)、
n=7,m=5、すなわち変換比(n/m)=7/5(14/5倍速駆動、168Hz)
、
n=7,m=6、すなわち変換比(n/m)=7/6(7/3倍速駆動、140Hz)、
n=8,m=1、すなわち変換比(n/m)=8(16倍速駆動、960Hz)、
n=8,m=3、すなわち変換比(n/m)=8/3(16/3倍速駆動、320Hz)
、
n=8,m=5、すなわち変換比(n/m)=8/5(16/5倍速駆動、192Hz)
、
n=8,m=7、すなわち変換比(n/m)=8/7(16/7倍速駆動、137Hz)
、
n=9,m=1、すなわち変換比(n/m)=9(18倍速駆動、1080Hz)、
n=9,m=2、すなわち変換比(n/m)=9/2(9倍速駆動、540Hz)、
n=9,m=4、すなわち変換比(n/m)=9/4(9/2倍速駆動、270Hz)、
n=9,m=5、すなわち変換比(n/m)=9/5(18/5倍速駆動、216Hz)
、
n=9,m=7、すなわち変換比(n/m)=9/7(18/7倍速駆動、154Hz)
、
n=9,m=8、すなわち変換比(n/m)=9/8(9/4倍速駆動、135Hz)、
n=10,m=1、すなわち変換比(n/m)=10(20倍速駆動、1200Hz)、
n=10,m=3、すなわち変換比(n/m)=10/3(20/3倍速駆動、400H
z)、
n=10,m=7、すなわち変換比(n/m)=10/7(20/7倍速駆動、171H
z)、
n=10,m=9、すなわち変換比(n/m)=10/9(20/9倍速駆動、133H
z)、
以上の組み合わせが考えられる。なお、周波数の表記は入力フレームレートが60Hzで
あるときの例であり、その他の入力フレームレートに対しては、それぞれの変換比の2倍
を入力フレームレートと積算した値が駆動周波数となる。
ないが、様々なnおよびmに対し、この、第2のステップにおける手順が適用できること
は明らかである。
である。なぜならば、第2のステップにおいて、サブ画像の数をJ=2のように比較的小
さくすれば、その分、第1のステップにおける変換比を大きくすることができるからであ
る。このような変換比は、nが10以下の範囲においては、3、4、5、5/2、6、7
、7/2、7/3、8、8/3、9、9/2、9/4、10、10/3、が挙げられる。
第1のステップ後の表示フレームレートがこのような値の場合、J=3以上とすることに
よって、第2のステップにおけるサブ画像の数が小さいことによる利点(消費電力および
製造コストの低減等)と、最終的な表示フレームレートが大きいことによる利点(動画の
品質向上、フリッカの低減等)を、両立させることが可能となる。
T2=T/2と決定された場合について説明したが、これに限定されないのは明らかであ
る。
1のサブ画像をより明るく、第2のサブ画像をより暗くすることができる。さらに、第2
のステップにおける手順3において、T1>T2と決定された場合は、第1のサブ画像を
より暗く、第2のサブ画像をより明るくすることができる。こうすることで、元画像をき
ちんと人間の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にす
ることもできるため、動画の品質を向上できる。ただし、上記の駆動方法のように、手順
1において、元画像をそのままサブ画像として用いる方法が選択された場合は、サブ画像
の明るさを変化させずに、そのまま表示してもよい。なぜならば、この場合はサブ画像と
して用いる画像が同じであるため、サブ画像の表示タイミングに関わらず、元画像をきち
んと表示することができるからである。
いことは明らかである。この場合、第1のステップにおけるnおよびmの値によって決め
られる変換比のフレームレート変換に対し、表示フレームレートをさらにJ倍のフレーム
レートとすることができるため、動画の品質をさらに向上させることが可能となる。さら
に、当該表示フレームレートより小さい表示フレームレートである場合よりも動画の品質
を向上でき、当該表示フレームレートより大きい表示フレームレートである場合よりも消
費電力および製造コストを低減できる。さらに、第2のステップの手順1において、元画
像をそのままサブ画像として用いる方法が選択されることによって、動き補償によって中
間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができる
ため、消費電力および装置の製造コストを低減することができる。さらに、表示装置がア
クティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによ
る書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕
著な画質改善効果をもたらす。さらに、液晶表示装置の駆動周波数を大きくしつつ、交流
駆動の周波数をその整数倍または整数分の一とすることによって、交流駆動によって現れ
るフリッカを、人間の目に知覚されない程度に低減することができる。さらに、液晶素子
の応答時間が入力画像データの周期の(1/(変換比のJ倍))倍程度である液晶表示装
置に適用することで、画質を向上することができる。
質を向上でき、サブ画像の数が3より大きい場合よりも消費電力および製造コストを低減
できるという利点を有する。さらに、液晶素子の応答時間が入力画像データの周期の(1
/(変換比の3倍))倍程度である液晶表示装置に適用することで、画質を向上すること
ができる。
動画の品質を向上でき、サブ画像の数が4より大きい場合よりも消費電力および製造コス
トを低減できるという利点を有する。さらに、液晶素子の応答時間が入力画像データの周
期の(1/(変換比の4倍))倍程度である液晶表示装置に適用することで、画質を向上
することができる。
動画の品質を向上でき、サブ画像の数が5より大きい場合よりも消費電力および製造コス
トを低減できるという利点を有する。さらに、液晶素子の応答時間が入力画像データの周
期の(1/(変換比の5倍))倍程度である液晶表示装置に適用することで、画質を向上
することができる。
きるが、特に、第1のステップにおける変換比が比較的小さい場合(2以下)に、J=3
以上とするのが効果的である。なぜならば、第1のステップ後の表示フレームレートが比
較的小さければ、その分、第2のステップにおいて、Jを大きくすることができるからで
ある。このような変換比は、nが10以下の範囲においては、1、2、3/2、4/3、
5/3、5/4、6/5、7/4、7/5、7/6、8/7、9/5、9/7、9/8、
10/7、10/9、が挙げられる。このうち、変換比が1、2、3/2、4/3、5/
3、5/4の場合については、図72に図示する。このように、第1のステップ後の表示
フレームレートが比較的小さな値の場合、J=3以上とすることによって、第1のステッ
プにおける表示フレームレートが小さいことによる利点(消費電力および製造コストの低
減等)と、最終的な表示フレームレートが大きいことによる利点(動画の品質向上、フリ
ッカの低減等)を、両立させることが可能となる。
る。
法のうち、黒挿入法が選択された場合、駆動方法は次のようになる。
第i+1の画像データと、が、一定の周期Tで順次用意され、
前記周期Tは、J(Jは2以上の整数)個のサブ画像表示期間に分割され、
前記第iの画像データは、複数の画素にそれぞれ固有の明るさLを持たせることができる
データであり、
第j(jは1以上J以下の整数)のサブ画像は、それぞれ固有の明るさLjを持つ画素が
複数並置されることによって構成され、第jのサブ画像表示期間Tjだけ表示される画像
であり、
前記L、前記T、前記Lj、前記Tj、を、サブ画像分配条件を満たす表示装置の駆動方
法であって、
少なくとも1つのjにおいて、第jのサブ画像に含まれる全て画素の明るさLjが、Lj
=0である
ことを特徴とする。
ここで、一定の周期Tで順次用意される画像データとしては、第1のステップにおいて作
成された元画像データを用いることができる。すなわち、第1のステップの説明で挙げた
全ての表示パターンを、上記駆動方法と組み合わせることができる。
れぞれ組み合わせて実施できることは明らかである。
3において、T1=T2=T/2と決定された場合、上記駆動方法は、図71に示すよう
なものとなる。
図71に示す駆動方法(様々なnおよびmにおける表示タイミング)の特徴および利点は
既に述べたので、ここでは詳細な説明は省略するが、第2のステップにおける手順1にお
いて、元画像の明るさを複数のサブ画像に分配する方法のうち、黒挿入法が選択された場
合においても同様な利点を有するのは明らかである。たとえば、第1のステップにおける
補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにす
ることができるため、動画の品質を顕著に向上させることが可能である。さらに、表示フ
レームレートが大きい場合は、動画の品質を向上でき、表示フレームレートが小さい場合
は、消費電力および製造コストを低減できる。さらに、表示装置がアクティブマトリクス
方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足
の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果を
もたらす。さらに、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に
低減することができる
ち、黒挿入法が選択されることによる特徴的な利点としては、動き補償によって中間画像
を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、
消費電力および装置の製造コストを低減することができることである。さらに、画像デー
タに含まれる階調値によらずに擬似的にインパルス型の表示方法とすることができるため
、動画の品質を向上できる。
T2=T/2と決定された場合について説明したが、これに限定されないのは明らかであ
る。
1のサブ画像をより明るく、第2のサブ画像をより暗くすることができる。さらに、第2
のステップにおける手順3において、T1>T2と決定された場合は、第1のサブ画像を
より暗く、第2のサブ画像をより明るくすることができる。こうすることで、元画像をき
ちんと人間の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にす
ることもできるため、動画の品質を向上できる。ただし、上記の駆動方法のように、手順
1において、元画像の明るさを複数のサブ画像に分配する方法のうち、黒挿入法が選択さ
れた場合は、サブ画像の明るさを変化させずに、そのまま表示してもよい。なぜならば、
この場合はサブ画像の明るさを変えない場合は、元画像の全体の明るさが暗くなって表示
されるだけであるからである。すなわち、この方法を表示装置の明るさの制御に積極的に
用いることで、動画の品質を向上させつつ、明るさの制御も可能となる。
いことは明らかである。その場合の利点は既に述べたので、ここでは詳細な説明は省略す
るが、第2のステップにおける手順1において、元画像の明るさを複数のサブ画像に分配
する方法のうち、黒挿入法が選択された場合においても同様な利点を有するのは明らかで
ある。たとえば、液晶素子の応答時間が入力画像データの周期の(1/(変換比のJ倍)
)倍程度である液晶表示装置に適用することで、画質を向上することができる。
る。
法のうち、時分割階調制御法が選択された場合、駆動方法は次のようになる。
第i+1の画像データと、が、一定の周期Tで順次用意され、
前記周期Tは、J(Jは2以上の整数)個のサブ画像表示期間に分割され、
前記第iの画像データは、複数の画素にそれぞれ固有の明るさLを持たせることができる
データであり、
前記固有の明るさLは、最大値がLmaxであり、
第j(jは1以上J以下の整数)のサブ画像は、それぞれ固有の明るさLjを持つ画素が
複数並置されることによって構成され、第jのサブ画像表示期間Tjだけ表示される画像
であり、
前記L、前記T、前記Lj、前記Tj、を、サブ画像分配条件を満たす表示装置の駆動方
法であって、
前記固有の明るさLを表示するにあたって、(j−1)×Lmax/JからJ×Lmax
/Jの明るさの範囲における明るさの調節は、前記J個のサブ画像表示期間のうち唯1つ
のサブ画像表示期間における明るさの調節によって行なう
ことを特徴とする。
ここで、一定の周期Tで順次用意される画像データとしては、第1のステップにおいて作
成された元画像データを用いることができる。すなわち、第1のステップの説明で挙げた
全ての表示パターンを、上記駆動方法と組み合わせることができる。
れぞれ組み合わせて実施できることは明らかである。
3において、T1=T2=T/2と決定された場合、上記駆動方法は、図71に示すよう
なものとなる。
図71に示す駆動方法(様々なnおよびmにおける表示タイミング)の特徴および利点は
既に述べたので、ここでは詳細な説明は省略するが、第2のステップにおける手順1にお
いて、元画像の明るさを複数のサブ画像に分配する方法のうち、時分割階調制御法が選択
された場合においても同様な利点を有するのは明らかである。たとえば、第1のステップ
における補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑
らかにすることができるため、動画の品質を顕著に向上させることが可能である。さらに
、表示フレームレートが大きい場合は、動画の品質を向上でき、表示フレームレートが小
さい場合は、消費電力および製造コストを低減できる。さらに、表示装置がアクティブマ
トリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み
電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改
善効果をもたらす。さらに、交流駆動によって現れるフリッカを、人間の目に知覚されな
い程度に低減することができる
ち、時分割階調制御法が選択されることによる特徴的な利点としては、動き補償によって
中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができ
るため、消費電力および装置の製造コストを低減することができることである。さらに、
擬似的にインパルス型の表示方法とすることができるため、動画の品質が向上でき、かつ
、表示装置の明るさが小さくなってしまうことがないため、さらに消費電力を低減できる
。
T2=T/2と決定された場合について説明したが、これに限定されないのは明らかであ
る。
1のサブ画像をより明るく、第2のサブ画像をより暗くすることができる。さらに、第2
のステップにおける手順3において、T1>T2と決定された場合は、第1のサブ画像を
より暗く、第2のサブ画像をより明るくすることができる。こうすることで、元画像をき
ちんと人間の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にす
ることもできるため、動画の品質を向上できる。こうすることで、元画像をきちんと人間
の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にすることもで
きるため、動画の品質を向上できる。
いことは明らかである。その場合の利点は既に述べたので、ここでは詳細な説明は省略す
るが、第2のステップにおける手順1において、元画像の明るさを複数のサブ画像に分配
する方法のうち、時分割階調制御法が選択された場合においても同様な利点を有するのは
明らかである。たとえば、液晶素子の応答時間が入力画像データの周期の(1/(変換比
のJ倍))倍程度である液晶表示装置に適用することで、画質を向上することができる。
る。
法のうち、ガンマ補完法が選択された場合、駆動方法は次のようになる。
第i+1の画像データと、が、一定の周期Tで順次用意され、
前記周期Tは、J(Jは2以上の整数)個のサブ画像表示期間に分割され、
前記第iの画像データは、複数の画素にそれぞれ固有の明るさLを持たせることができる
データであり、
第j(jは1以上J以下の整数)のサブ画像は、それぞれ固有の明るさLjを持つ画素が
複数並置されることによって構成され、第jのサブ画像表示期間Tjだけ表示される画像
であり、
前記L、前記T、前記Lj、前記Tj、を、サブ画像分配条件を満たす表示装置の駆動方
法であって、
それぞれのサブ画像において、階調に対する明るさの変化の特性を、線形からずらし、線
形から明るい方へずらした明るさの量の合計と、線形から暗い方へずらした明るさの量の
合計が、全ての階調において概等しい
ことを特徴とする。
ここで、一定の周期Tで順次用意される画像データとしては、第1のステップにおいて作
成された元画像データを用いることができる。すなわち、第1のステップの説明で挙げた
全ての表示パターンを、上記駆動方法と組み合わせることができる。
れぞれ組み合わせて実施できることは明らかである。
3において、T1=T2=T/2と決定された場合、上記駆動方法は、図71に示すよう
なものとなる。
図71に示す駆動方法(様々なnおよびmにおける表示タイミング)の特徴および利点は
既に述べたので、ここでは詳細な説明は省略するが、第2のステップにおける手順1にお
いて、元画像の明るさを複数のサブ画像に分配する方法のうち、ガンマ補完法が選択され
た場合においても同様な利点を有するのは明らかである。たとえば、第1のステップにお
ける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らか
にすることができるため、動画の品質を顕著に向上させることが可能である。さらに、表
示フレームレートが大きい場合は、動画の品質を向上でき、表示フレームレートが小さい
場合は、消費電力および製造コストを低減できる。さらに、表示装置がアクティブマトリ
クス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧
不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効
果をもたらす。さらに、交流駆動によって現れるフリッカを、人間の目に知覚されない程
度に低減することができる
ち、ガンマ補完法が選択されることによる特徴的な利点としては、動き補償によって中間
画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるた
め、消費電力および装置の製造コストを低減することができることである。さらに、画像
データに含まれる階調値によらずに擬似的にインパルス型の表示方法とすることができる
ため、動画の品質を向上できる。さらに、画像データを直接ガンマ変換することによって
サブ画像を求めてもよい。この場合は、動画の動きの大きさなどによって、様々にガンマ
値を制御できる利点を有する。さらに、画像データは直接ガンマ変換せず、デジタルアナ
ログ変換回路(DAC)の参照電圧を変えることによって、ガンマ値を変化させたサブ画
像を求める構成であってもよい。この場合は、画像データを直接ガンマ変換することがな
いので、ガンマ変換を行なう回路を停止または当該回路自体を装置から省略することがで
きるため、消費電力および装置の製造コストを低減することができる。さらに、ガンマ補
完法においては、階調に対するそれぞれのサブ画像の明るさLjの変化がガンマ曲線にし
たがっているため、それぞれのサブ画像がそれ自体で階調を滑らかに表示でき、最終的に
人間の目で知覚される画像の品質も向上するという利点を有する。
T2=T/2と決定された場合について説明したが、これに限定されないのは明らかであ
る。
1のサブ画像をより明るく、第2のサブ画像をより暗くすることができる。さらに、第2
のステップにおける手順3において、T1>T2と決定された場合は、第1のサブ画像を
より暗く、第2のサブ画像をより明るくすることができる。こうすることで、元画像をき
ちんと人間の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にす
ることもできるため、動画の品質を向上できる。なお、上記の駆動方法のように、手順1
において、元画像の明るさを複数のサブ画像に分配する方法のうち、ガンマ法が選択され
た場合は、サブ画像の明るさを変化させる場合に、ガンマ値を変化させてもよい。すなわ
ち、第2のサブ画像の表示タイミングにしたがって、ガンマ値を決めてもよい。こうする
ことで、画像全体の明るさを変化させる回路を停止または当該回路自体を装置から省略す
ることができるため、消費電力および装置の製造コストを低減することができる。
いことは明らかである。その場合の利点は既に述べたので、ここでは詳細な説明は省略す
るが、第2のステップにおける手順1において、元画像の明るさを複数のサブ画像に分配
する方法のうち、時分割階調制御法が選択された場合においても同様な利点を有するのは
明らかである。たとえば、液晶素子の応答時間が入力画像データの周期の(1/(変換比
のJ倍))倍程度である液晶表示装置に適用することで、画質を向上することができる。
に説明する。
して用いる方法が選択され、
第2のステップにおける手順2において、サブ画像の数が2と決定され、
第2のステップにおける手順3において、T1=T2=T/2と決定された場合は、第2
のステップにおける手順によって決められる駆動方法は、次のようになる。
第i+1の画像データと、が、一定の周期Tで順次用意され、
第k(kは正の整数)の画像と、
第k+1の画像と、
第k+2の画像と、を、元画像データの周期の1/2倍の間隔で順次表示する表示装置の
駆動方法であって、
前記第kの画像は、前記第iの画像データにしたがって表示され、
前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動き
を1/2倍した動きに相当する画像データにしたがって表示され、
前記第k+2の画像は、前記第i+1の画像データにしたがって表示される
ことを特徴とする。
ここで、一定の周期Tで順次用意される画像データとしては、第1のステップにおいて作
成された元画像データを用いることができる。すなわち、第1のステップの説明で挙げた
全ての表示パターンを、上記駆動方法と組み合わせることができる。
れぞれ組み合わせて実施できることは明らかである。
して用いる方法が選択されることによる特徴的な利点は、第1のステップにおける手順に
おいて、動き補償によって求めた中間画像を補間画像とする場合に、第1のステップにお
いて用いた中間画像を求める方法が、第2のステップでもそのままの方法で用いることが
できる点である。すなわち、動き補償によって中間画像を求める回路を、第1のステップ
だけではなく、第2のステップでも利用することができるので、回路を有効に利用できる
ようになり、処理効率を向上できる。また、画像の動きをさらに滑らかにすることができ
るため、動画の品質をさらに向上させることができる。
T2=T/2と決定された場合について説明したが、これに限定されないのは明らかであ
る。
1のサブ画像をより明るく、第2のサブ画像をより暗くすることができる。さらに、第2
のステップにおける手順3において、T1>T2と決定された場合は、第1のサブ画像を
より暗く、第2のサブ画像をより明るくすることができる。こうすることで、元画像をき
ちんと人間の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にす
ることもできるため、動画の品質を向上できる。こうすることで、元画像をきちんと人間
の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にすることもで
きるため、動画の品質を向上できる。なお、上記の駆動方法のように、手順2において、
動き補償によって求めた中間画像をサブ画像として用いる方法が選択された場合は、サブ
画像の明るさを変化させなくてもよい。なぜならば、中間状態の画像はそれ自体で画像と
して完結しているため、第2のサブ画像の表示タイミングが変化しても、人間の目に知覚
される画像としては変化しないためである。この場合は、画像全体の明るさを変化させる
回路を停止または当該回路自体を装置から省略することができるため、消費電力および装
置の製造コストを低減することができる。
いことは明らかである。その場合の利点は既に述べたので、ここでは詳細な説明は省略す
るが、第2のステップにおける手順1において、動き補償によって求めた中間画像をサブ
画像として用いる方法が選択された場合においても同様な利点を有するのは明らかである
。たとえば、液晶素子の応答時間が入力画像データの周期の(1/(変換比のJ倍))倍
程度である液晶表示装置に適用することで、画質を向上することができる。
レームレート変換方法の具体例について説明する。図73(A)乃至(C)に示す方法に
おいては、画像上の円形の領域がフレームによって位置が変化する領域であり、画像上の
三角形の領域がフレームによって位置がほぼ変化しない領域であるとしている。ただし、
これは説明のための例であり、表示される画像はこれに限定されない。図73(A)乃至
(C)の方法は、様々な画像に対して適用することができる。
場合を表している。変換比が2である場合は、変換比が2より小さい場合よりも動画の品
質を向上できるという利点を有する。さらに、変換比が2である場合は、変換比が2より
大きい場合よりも消費電力および製造コストを低減できるという利点を有する。図73(
A)は、横軸を時間として、表示される画像の時間的な変化の様子を、模式的に表したも
のである。ここで、注目している画像のことを、第pの画像(pは正の整数)と表記する
こととする。そして、注目している画像の次に表示される画像を、第(p+1)の画像、
注目している画像の前に表示される画像を、第(p―1)の画像、というように、注目し
ている画像からどれだけ離れて表示されるかということを、便宜的に表記することとする
。そして、画像7301は第pの画像、画像7302は第(p+1)の画像、画像730
3は第(p+2)の画像、画像7304は第(p+3)の画像、画像7305は第(p+
4)の画像であるとする。期間Tinは、入力画像データの周期を表している。なお、図
73(A)は変換比が2である場合を表しているため、期間Tinは、第pの画像が表示
されてから第(p+1)の画像が表示されるまで期間の2倍の長さとなる。
303までの画像の変化量を検出することで、第pの画像7301および第(p+2)の
画像7303の中間状態となるように作成された画像であってもよい。図73(A)では
、フレームによって位置が変化する領域(円形の領域)と、フレームによって位置がほぼ
変化しない領域(三角形の領域)と、によって、中間状態の画像の様子を表している。す
なわち、第(p+1)の画像7302における円形の領域の位置は、第pの画像7301
における位置と、第(p+2)の画像7303における位置の中間の位置としている。つ
まり、第(p+1)の画像7302は、動き補償を行なって画像データを補間したもので
ある。このように、画像上で動きのある物体に対して動き補償を行い、画像データを補間
することによって、なめらかな表示を行なうことができる。
7303の中間状態となるように作成された上で、画像の輝度を一定の規則で制御した画
像であってもよい。一定の規則とは、たとえば、図73(A)のように、第pの画像73
01の代表的な輝度をL、第(p+1)の画像7302の代表的な輝度をLcとしたとき
、LとLcで、L>Lcという関係があってもよい。望ましくは、0.1L<Lc<0.
8Lという関係があってもよい。さらに望ましくは、0.2L<Lc<0.5Lという関
係があってもよい。または、逆にLとLcで、L<Lcという関係があってもよい。望ま
しくは、0.1Lc<L<0.8Lcという関係があってもよい。さらに望ましくは、0
.2Lc<L<0.5Lcという関係があってもよい。このようにすることで、表示を擬
似的にインパルス型とすることができるため、目の残像を抑えることができる。
および目の残像)を同時に解決することによって、動画ボケを大幅に低減することができ
る。
(p+4)の画像7305から同様な方法を用いて作成されてもよい。すなわち、第(p
+3)の画像7304は、第(p+2)の画像7303から第(p+4)の画像7305
までの画像の変化量を検出することで、第(p+2)の画像7303および第(p+4)
の画像7305の中間状態となるように作成された画像であって、さらに、画像の輝度を
一定の規則で制御した画像であってもよい。
る場合を表している。図73(B)は、横軸を時間として、表示される画像の時間的な変
化の様子を、模式的に表したものである。画像7311は第pの画像、画像7312は第
(p+1)の画像、画像7313は第(p+2)の画像、画像7314は第(p+3)の
画像、画像7315は第(p+4)の画像、画像7316は第(p+5)の画像、画像7
317は第(p+6)の画像であるとする。期間Tinは、入力画像データの周期を表し
ている。なお、図73(B)は変換比が3である場合を表しているため、期間Tinは、
第pの画像が表示されてから第(p+1)の画像が表示されるまで期間の3倍の長さとな
る。
7311から第(p+3)の画像7314までの画像の変化量を検出することで、第pの
画像7311および第(p+3)の画像7314の中間状態となるように作成された画像
であってもよい。図73(B)では、フレームによって位置が変化する領域(円形の領域
)と、フレームによって位置がほぼ変化しない領域(三角形の領域)と、によって、中間
状態の画像の様子を表している。すなわち、第(p+1)の画像7312および第(p+
2)の画像7313における円形の領域の位置は、第pの画像7311における位置と、
第(p+3)の画像7314における位置の中間の位置としている。具体的には、第pの
画像7311および第(p+3)の画像7314から検出した、円形の領域が移動する量
をXとしたとき、第(p+1)の画像7312における円形の領域の位置は、第pの画像
7311における位置から、(1/3)X程度変位した位置であっても良い。さらに、第
(p+2)の画像7313における円形の領域の位置は、第pの画像7311における位
置から、(2/3)X程度変位した位置であっても良い。つまり、第(p+1)の画像7
312および第(p+2)の画像7313は、動き補償を行なって画像データを補間した
ものである。このように、画像上で動きのある物体に対して動き補償を行い、画像データ
を補間することにより、なめらかな表示を行なうことができる。
7311および第(p+3)の画像7314の中間状態となるように作成された上で、画
像の輝度を一定の規則で制御した画像であってもよい。一定の規則とは、たとえば、図7
3(B)のように、第pの画像7311の代表的な輝度をL、第(p+1)の画像731
2の代表的な輝度をLc1、第(p+2)の画像7313の代表的な輝度をLc2とした
とき、L、Lc1、Lc2において、L>Lc1またはL>Lc2またはLc1=Lc2
という関係があってもよい。望ましくは、0.1L<Lc1=Lc2<0.8Lという関
係があってもよい。さらに望ましくは、0.2L<Lc=Lc2<0.5Lという関係が
あってもよい。または、逆にL、Lc1、Lc2において、L<Lc1またはL<Lc2
またはLc1=Lc2という関係があってもよい。望ましくは、0.1Lc1=0.1L
c2<L<0.8Lc1=0.8Lc2という関係があってもよい。さらに望ましくは、
0.2Lc1=0.2Lc2<L<0.5Lc1=0.5Lc2という関係があってもよ
い。このようにすることで、表示を擬似的にインパルス型とすることができるため、目の
残像を抑えることができる。または、輝度を変化させる画像が交互に現れるようにしても
よい。こうすることで、輝度が変化する周期を短くすることができるので、フリッカを低
減することができる。
および目の残像)を同時に解決することによって、動画ボケを大幅に低減することができ
る。
(p+3)の画像7314および第(p+6)の画像7317から同様な方法を用いて作
成されてもよい。すなわち、第(p+4)の画像7315および第(p+5)の画像73
16は、第(p+3)の画像7314から第(p+6)の画像7317までの画像の変化
量を検出することで、第(p+3)の画像7314および第(p+6)の画像7317の
中間状態となるように作成された画像であって、さらに、画像の輝度を一定の規則で制御
した画像であってもよい。
目の動きによく追従できるようになり、画像の動きをなめらかに表示することができるた
め、動画ボケを大幅に低減することができる。
)である場合を表している。図73(C)は、横軸を時間として、表示される画像の時間
的な変化の様子を、模式的に表したものである。画像7321は第pの画像、画像732
2は第(p+1)の画像、画像7323は第(p+2)の画像、画像7324は第(p+
3)の画像であるとする。なお、実際には表示されなくてもよいが、画像7325は入力
画像データであり、第(p+1)の画像7322および第(p+2)の画像7323が作
成されるために用いられていてもよい。期間Tinは、入力画像データの周期を表してい
る。なお、図73(C)は変換比が1.5である場合を表しているため、期間Tinは、
第pの画像が表示されてから第(p+1)の画像が表示されるまで期間の1.5倍の長さ
となる。
7321から画像7325を経由して第(p+3)の画像7324までの画像の変化量を
検出することで、第pの画像7321および第(p+3)の画像7324の中間状態とな
るように作成された画像であってもよい。図73(C)では、フレームによって位置が変
化する領域(円形の領域)と、フレームによって位置がほぼ変化しない領域(三角形の領
域)と、によって、中間状態の画像の様子を表している。すなわち、第(p+1)の画像
7322および第(p+2)の画像7323における円形の領域の位置は、第pの画像7
321における位置と、第(p+3)の画像7324における位置の中間の位置としてい
る。つまり、第(p+1)の画像7322および第(p+2)の画像7323は、動き補
償を行なって画像データを補間したものである。このように、画像上で動きのある物体に
対して動き補償を行い、画像データを補間することにより、なめらかな表示を行なうこと
ができる。
7321および第(p+3)の画像7324の中間状態となるように作成された上で、画
像の輝度を一定の規則で制御した画像であってもよい。一定の規則とは、たとえば、図7
3(C)のように、第pの画像7321の代表的な輝度をL、第(p+1)の画像732
2の代表的な輝度をLc1、第(p+2)の画像7323の代表的な輝度をLc2とした
とき、L、Lc1、Lc2において、L>Lc1またはL>Lc2またはLc1=Lc2
という関係があってもよい。望ましくは、0.1L<Lc1=Lc2<0.8Lという関
係があってもよい。さらに望ましくは、0.2L<Lc=Lc2<0.5Lという関係が
あってもよい。または、逆にL、Lc1、Lc2において、L<Lc1またはL<Lc2
またはLc1=Lc2という関係があってもよい。望ましくは、0.1Lc1=0.1L
c2<L<0.8Lc1=0.8Lc2という関係があってもよい。さらに望ましくは、
0.2Lc1=0.2Lc2<L<0.5Lc1=0.5Lc2という関係があってもよ
い。このようにすることで、表示を擬似的にインパルス型とすることができるため、目の
残像を抑えることができる。または、輝度を変化させる画像が交互に現れるようにしても
よい。こうすることで、輝度が変化する周期を短くすることができるので、フリッカを低
減することができる。
および目の残像)を同時に解決することによって、動画ボケを大幅に低減することができ
る。
号を書き込む時間を長くすることができる。そのため、表示装置のクロック周波数を小さ
くできるので、消費電力を低減することができる。また、動き補償を行なう処理速度を遅
くできるので、消費電力を低減することができる。
)に示す図は、横軸を時間として、表示される画像の時間的な変化の様子を、模式的に表
したものである。図74(E)は、ある領域内の画像の輝度を測定する方法の一例である
。
を測定する方法がある。この方法を用いると、画像の細部まで厳密に輝度を測定すること
ができる。
力を要するため、別の方法を用いてもよい。画像の輝度を測定する別の方法としては、画
像内のある領域に注目し、その領域の平均的な輝度を測定する方法がある。この方法によ
って、簡易に画像の輝度を測定することができる。本実施の形態においては、画像内のあ
る領域の平均的な輝度を測定する方法によって求めた輝度を、便宜的に、画像の代表的な
輝度と呼ぶこととする。
ついて、以下で説明する。
を、画像の代表的な輝度とする方法の例を表している。期間Tinは入力画像データの周
期、画像7401は第pの画像、画像7402は第(p+1)の画像、画像7403は第
(p+2)の画像、第1の領域7404は第pの画像7401における輝度測定領域、第
2の領域7405は第(p+1)の画像7402における輝度測定領域、第3の領域74
06は第(p+2)の画像7403における輝度測定領域を、それぞれ表している。ここ
で、第1乃至第3の領域は、装置内の空間的な位置としては、概同じであるとしてよい。
つまり、第1乃至第3の領域で画像の代表的な輝度を測定することによって、画像の代表
的な輝度の時間変化を求めることができる。
かを判断することができる。たとえば、第1の領域7404で測定される輝度をL、第2
の領域7405で測定される輝度をLcとしたとき、Lc<Lであれば、表示は擬似的に
インパルス型であるといえる。このようなときに、動画の品質は向上しているといえる。
度)が、次のような範囲であると、画質を向上することができる。相対輝度としては、た
とえば、第1の領域7404と第2の領域7405、第2の領域7405と第3の領域7
406、第1の領域7404と第3の領域7406のそれぞれに対し、大きい方の輝度に
対する小さい方の輝度の割合とすることができる。つまり、時間の変化に対する画像の代
表的な輝度の変化量が0であるとき、相対輝度は100%となる。そして、相対輝度が8
0%以下であれば、動画の品質を向上できる。特に、相対輝度が50%以下であれば、動
画の品質を顕著に向上できる。さらに、相対輝度が10%以上であれば、消費電力を低減
し、かつフリッカを抑えることができる。特に、相対輝度が20%以上であれば、消費電
力およびフリッカを顕著に低減することができる。すなわち、相対輝度が10%以上80
%以下であれば、動画の品質を向上させ、かつ、消費電力およびフリッカを低減すること
ができる。さらに、相対輝度が20%以上50%以下であれば、動画の品質を顕著に向上
させ、かつ、消費電力およびフリッカを顕著に低減することができる。
な輝度とする方法の例を表している。期間Tinは入力画像データの周期、画像7411
は第pの画像、画像7412は第(p+1)の画像、画像7413は第(p+2)の画像
、第1の領域7414は第pの画像7411における輝度測定領域、第2の領域7415
は第(p+1)の画像7412における輝度測定領域、第3の領域7416は第(p+2
)の画像7413における輝度測定領域を、それぞれ表している。ここで、第1乃至第3
の領域は、装置内の空間的な位置としては、概同じであるとしてよい。つまり、第1乃至
第3の領域で画像の代表的な輝度を測定することによって、画像の代表的な輝度の時間変
化を求めることができる。
かを判断することができる。たとえば、第1の領域7414で測定される輝度の全ての領
域における平均値をL、第2の領域7415で測定される輝度の全ての領域における平均
値をLcとしたとき、Lc<Lであれば、表示は擬似的にインパルス型であるといえる。
このようなときに、動画の品質は向上しているといえる。
度)が、次のような範囲であると、画質を向上することができる。相対輝度としては、た
とえば、第1の領域7414と第2の領域7415、第2の領域7415と第3の領域7
416、第1の領域7414と第3の領域7416のそれぞれに対し、大きい方の輝度に
対する小さい方の輝度の割合とすることができる。つまり、時間の変化に対する画像の代
表的な輝度の変化量が0であるとき、相対輝度は100%となる。そして、相対輝度が8
0%以下であれば、動画の品質を向上できる。特に、相対輝度が50%以下であれば、動
画の品質を顕著に向上できる。さらに、相対輝度が10%以上であれば、消費電力を低減
し、かつフリッカを抑えることができる。特に、相対輝度が20%以上であれば、消費電
力およびフリッカを顕著に低減することができる。すなわち、相対輝度が10%以上80
%以下であれば、動画の品質を向上させ、かつ、消費電力およびフリッカを低減すること
ができる。さらに、相対輝度が20%以上50%以下であれば、動画の品質を顕著に向上
させ、かつ、消費電力およびフリッカを顕著に低減することができる。
する方法の例を表している。期間Tinは入力画像データの周期、画像7421は第pの
画像、画像7422は第(p+1)の画像、画像7423は第(p+2)の画像、第1の
領域7424は第pの画像7421における輝度測定領域、第2の領域7425は第(p
+1)の画像7422における輝度測定領域、第3の領域7426は第(p+2)の画像
7423における輝度測定領域を、それぞれ表している。
かを判断することができる。たとえば、第1の領域7424で測定される輝度をL、第2
の領域7425で測定される輝度をLcとしたとき、Lc<Lであれば、表示は擬似的に
インパルス型であるといえる。このようなときに、動画の品質は向上しているといえる。
度)が、次のような範囲であると、画質を向上することができる。相対輝度としては、た
とえば、第1の領域7424と第2の領域7425、第2の領域7425と第3の領域7
426、第1の領域7424と第3の領域7426のそれぞれに対し、大きい方の輝度に
対する小さい方の輝度の割合とすることができる。つまり、時間の変化に対する画像の代
表的な輝度の変化量が0であるとき、相対輝度は100%となる。そして、相対輝度が8
0%以下であれば、動画の品質を向上できる。特に、相対輝度が50%以下であれば、動
画の品質を顕著に向上できる。さらに、相対輝度が10%以上であれば、消費電力を低減
し、かつフリッカを抑えることができる。特に、相対輝度が20%以上であれば、消費電
力およびフリッカを顕著に低減することができる。すなわち、相対輝度が10%以上80
%以下であれば、動画の品質を向上させ、かつ、消費電力およびフリッカを低減すること
ができる。さらに、相対輝度が20%以上50%以下であれば、動画の品質を顕著に向上
させ、かつ、消費電力およびフリッカを顕著に低減することができる。
画像の代表的な輝度とする方法の例を表している。期間Tinは入力画像データの周期、
画像7431は第pの画像、画像7432は第(p+1)の画像、画像7433は第(p
+2)の画像、第1の領域7434は第pの画像7431における輝度測定領域、第2の
領域7435は第(p+1)の画像7432における輝度測定領域、第3の領域7436
は第(p+2)の画像7433における輝度測定領域を、それぞれ表している。
かを判断することができる。たとえば、第1の領域7434で測定される輝度の全ての領
域における平均値をL、第2の領域7435で測定される輝度の全ての領域における平均
値をLcとしたとき、Lc<Lであれば、表示は擬似的にインパルス型であるといえる。
このようなときに、動画の品質は向上しているといえる。
度)が、次のような範囲であると、画質を向上することができる。相対輝度としては、た
とえば、第1の領域7434と第2の領域7435、第2の領域7435と第3の領域7
436、第1の領域7434と第3の領域7436のそれぞれに対し、大きい方の輝度に
対する小さい方の輝度の割合とすることができる。つまり、時間の変化に対する画像の代
表的な輝度の変化量が0であるとき、相対輝度は100%となる。そして、相対輝度が8
0%以下であれば、動画の品質を向上できる。特に、相対輝度が50%以下であれば、動
画の品質を顕著に向上できる。さらに、相対輝度が10%以上であれば、消費電力を低減
し、かつフリッカを抑えることができる。特に、相対輝度が20%以上であれば、消費電
力およびフリッカを顕著に低減することができる。すなわち、相対輝度が10%以上80
%以下であれば、動画の品質を向上させ、かつ、消費電力およびフリッカを低減すること
ができる。さらに、相対輝度が20%以上50%以下であれば、動画の品質を顕著に向上
させ、かつ、消費電力およびフリッカを顕著に低減することができる。
を示した図である。領域7441は注目している輝度測定領域、点7442は輝度測定領
域7441内の輝度測定点である。時間分解能の高い輝度計測機器は、その測定対象範囲
が小さい場合があるため、領域7441が大きい場合は、領域全てを測定するのではなく
、図74(E)のように、領域7441内を点状で偏り無く、複数の点で測定し、その平
均値をもって領域7441の輝度であるとしてもよい。
、Bを合わせた輝度であってもよいし、RおよびGを合わせた輝度、GおよびBを合わせ
た輝度、BおよびRを合わせた輝度であってもよいし、R、G、Bそれぞれの輝度であっ
てもよい。
および入力画像データに含まれる画像の動き等に従って駆動方法を制御する方法について
説明する。
成する方法の例について説明する。図75(A)は、表示フレームレートが、入力フレー
ムレートの2倍(変換比が2)である場合を表したものである。図75(A)は、横軸を
時間として、画像の動きを検出する方法を、模式的に表したものである。期間Tinは入
力画像データの周期、画像7501は第pの画像、画像7502は第(p+1)の画像、
画像7503は第(p+2)の画像を、それぞれ表している。また、画像中に、時間に依
存しない領域として、第1の領域7504、第2の領域7505および第3の領域750
6を設ける。
そのうちの1つの領域である第3の領域7506内の画像データに着目する。
6よりも大きな範囲に着目する。ここで、第3の領域7506を中心とした第3の領域7
506よりも大きな範囲は、データ検索範囲である。データ検索範囲は、水平方向(X方
向)の範囲を7507、垂直方向(Y方向)の範囲を7508とする。なお、データ検索
範囲の水平方向の範囲7507および垂直方向の範囲7508は、第3の領域7506の
水平方向の範囲および垂直方向の範囲を、それぞれ15画素分程度拡大した範囲であって
もよい。
した画像データを持つ領域を検索する。検索方法は、最小二乗法などを用いることができ
る。検索の結果、最も類似した画像データを持つ領域として、第1の領域7504が導出
されたとする。
して、ベクトル7509を導出する。なお、ベクトル7509を、動きベクトルと呼ぶこ
とにする。
トル7510と、第(p+2)の画像7503における第3の領域7506内の画像デー
タと、第pの画像7501における第1の領域7504内の画像データと、によって、第
2の領域7505を形成する。
する。変位ベクトル7510は、第2の領域7505を形成する位置を決める役割を持つ
。第2の領域7505は、第3の領域7506から変位ベクトル7510だけ離れた位置
に形成される。なお、変位ベクトル7510は、動きベクトル7509に係数(1/2)
をかけた量であってもよい。
)の画像7503における第3の領域7506内の画像データと、第pの画像7501に
おける第1の領域7504内の画像データによって決められるとしてもよい。たとえば、
第(p+1)の画像7502における第2の領域7505内の画像データは、第(p+2
)の画像7503における第3の領域7506内の画像データと、第pの画像7501に
おける第1の領域7504内の画像データの平均値であってもよい。
第(p+1)の画像7502における第2の領域7505を形成することができる。なお
、以上の処理を、第(p+2)の画像7503における他の領域にも行なうことで、第(
p+2)の画像7503と第pの画像7501の中間状態となる、第(p+1)の画像7
502を形成することができる。
る場合を表したものである。図75(B)は、横軸を時間として、画像の動きを検出する
方法を、模式的に表したものである。期間Tinは入力画像データの周期、画像7511
は第pの画像、画像7512は第(p+1)の画像、画像7513は第(p+2)の画像
、画像7514は第(p+3)の画像を、それぞれ表している。また、画像中に、時間に
依存しない領域として、第1の領域7515、第2の領域7516、第3の領域7517
および第4の領域7518を設ける。
そのうちの1つの領域である第4の領域7518内の画像データに着目する。
8よりも大きな範囲に着目する。ここで、第4の領域7518を中心とした第4の領域7
518よりも大きな範囲は、データ検索範囲である。データ検索範囲は、水平方向(X方
向)の範囲を7519、垂直方向(Y方向)の範囲を7520とする。なお、データ検索
範囲の水平方向の範囲7519および垂直方向の範囲7520は、第4の領域7518の
水平方向の範囲および垂直方向の範囲を、それぞれ15画素分程度拡大した範囲であって
もよい。
した画像データを持つ領域を検索する。検索方法は、最小二乗法などを用いることができ
る。検索の結果、最も類似した画像データを持つ領域として、第1の領域7515が導出
されたとする。
して、ベクトル7521を導出する。なお、ベクトル7521を、動きベクトルと呼ぶこ
とにする。
動きベクトル7521から求めたベクトル7522および7523と、第(p+3)の画
像7515における第4の領域7518内の画像データと、第pの画像7511における
第1の領域7515内の画像データと、によって、第2の領域7516および第3の領域
7517を形成する。
ことにする。また、ベクトル7523を第2の変位ベクトルと呼ぶことにする。第1の変
位ベクトル7522は、第2の領域7516を形成する位置を決める役割を持つ。第2の
領域7516は、第4の領域7518から第1の変位ベクトル7522だけ離れた位置に
形成される。なお、変位ベクトル7522は、動きベクトル7521に(1/3)をかけ
た量であってもよい。また、第2の変位ベクトル7523は、第3の領域7517を形成
する位置を決める役割を持つ。第3の領域7517は、第4の領域7518から第2の変
位ベクトル7523だけ離れた位置に形成される。なお、変位ベクトル7523は、動き
ベクトル7521に(2/3)をかけた量であってもよい。
)の画像7514における第4の領域7518内の画像データと、第pの画像7511に
おける第1の領域7515内の画像データによって決められるとしてもよい。たとえば、
第(p+1)の画像7512における第2の領域7516内の画像データは、第(p+3
)の画像7514における第4の領域7518内の画像データと、第pの画像7511に
おける第1の領域7515内の画像データの平均値であってもよい。
)の画像7514における第4の領域7518内の画像データと、第pの画像7511に
おける第1の領域7515内の画像データによって決められるとしてもよい。たとえば、
第(p+2)の画像7513における第3の領域7517内の画像データは、第(p+3
)の画像7514における第4の領域7518内の画像データと、第pの画像7511に
おける第1の領域7515内の画像データの平均値であってもよい。
第(p+1)の画像7502における第2の領域7516、および第(p+2)の画像7
513における第3の領域7517を形成することができる。なお、以上の処理を、第(
p+3)の画像7514における他の領域にも行なうことで、第(p+3)の画像751
4と第pの画像7511の中間状態となる、第(p+1)の画像7512および第(p+
2)の画像7513を形成することができる。
像を作成する回路の例について説明する。図76(A)は、表示領域に画像を表示するた
めのソースドライバ、ゲートドライバを含む周辺駆動回路と、周辺駆動回路を制御する制
御回路の接続関係を表した図である。図76(B)は、前記制御回路の詳細な回路構成の
一例を表した図である。図76(C)は、前記制御回路に含まれる画像処理回路の詳細な
回路構成の一例を表した図である。図76(D)は、前記制御回路に含まれる画像処理回
路の詳細な回路構成の別の例を表した図である。
イバ7612と、ゲートドライバ7613と、表示領域7614と、を含んでいてもよい
。
示領域7614が形成されている基板と同一の基板上に形成されていてもよい。
れらのうち一部が、表示領域7614が形成されている基板と同一の基板上に形成され、
その他の回路は、表示領域7614が形成されている基板とは異なる基板上に形成されて
いてもよい。たとえば、ソースドライバ7612およびゲートドライバ7613が、表示
領域7614が形成されている基板と同一の基板上に形成され、制御回路7611は異な
る基板上に外付けICとして形成されていてもよい。同様に、ゲートドライバ7613が
、表示領域7614が形成されている基板と同一の基板上に形成され、その他の回路は異
なる基板上に外付けICとして形成されていてもよい。同様に、ソースドライバ7612
、ゲートドライバ7613および制御回路7611の一部が、表示領域7614が形成さ
れている基板と同一の基板上に形成され、その他の回路は異なる基板上に外付けICとし
て形成されていてもよい。
7602と、が入力され、画像信号7603と、ソーススタートパルス7604と、ソー
スクロック7605と、ゲートスタートパルス7606と、ゲートクロック7607と、
が出力される構成であってもよい。
ースクロック7605と、が入力され、画像信号7603に従った電圧または電流を表示
領域7614に出力する構成であってもよい。
と、が入力され、ソースドライバ7612から出力される信号を表示領域7614に書き
込むタイミングを指定する信号が出力される構成であってもよい。
スドライバ7612およびゲートドライバ7613を駆動するタイミングを制御する信号
も、入力される水平同期信号7601および垂直同期信号7602とは異なる周波数を持
つことになる。そのため、画像信号7603の処理に加えて、ソースドライバ7612お
よびゲートドライバ7613を駆動するタイミングを制御する信号も処理する必要がある
。制御回路7611は、そのための機能を持った回路であってもよい。たとえば、外部画
像信号7600の周波数に対して画像信号7603の周波数が倍であった場合、制御回路
7611は、外部画像信号7600に含まれる画像信号を補間して倍の周波数の画像信号
7603を生成し、かつ、タイミングを制御する信号も倍の周波数になるように制御する
。
グ発生回路7616と、を含んでいてもよい。
され、画像信号7603が出力される構成であってもよい。
入力され、ソーススタートパルス7604と、ソースクロック7605と、ゲートスター
トパルス7606と、ゲートクロック7607と、周波数制御信号7608と、が出力さ
れる構成であってもよい。なお、タイミング発生回路7616は、周波数制御信号760
8の状態を指定するためのデータを保持するメモリまたはレジスタ等を含んでいてもよい
。また、タイミング発生回路7616は、外部から周波数制御信号7608の状態を指定
する信号が入力される構成であってもよい。
リ7621と、第2のメモリ7622と、第3のメモリ7623と、輝度制御回路762
3と、高速処理回路7625と、を含んでいてもよい。
数の画像データの中間状態である画像データが出力される構成であってもよい。
を一定期間保持しつつ、動き検出回路7620と第2のメモリ7622に前記外部映像信
号7600を出力する構成であってもよい。
前記画像データを一定期間保持しつつ、動き検出回路7620と高速処理回路7625に
前記画像データを出力する構成であってもよい。
前記画像データを一定期間保持しつつ、輝度制御回路7624に前記画像データを出力す
る構成であってもよい。
回路7624から出力された画像データと、周波数制御信号7608と、が入力され、前
記画像データを、画像信号7603として出力する構成であってもよい。
処理回路7615によって、外部画像信号7600に含まれる画像信号を補間して画像信
号7603を生成してもよい。入力された外部画像信号7600は、一旦第1のメモリ7
621に保持される。そのとき、第2のメモリ7622には、1つ前のフレームで入力さ
れた画像データが保持されている。動き検出回路7620は、第1のメモリ7621およ
び第2のメモリ7622に保持された画像データを適宜読み込み、両者の画像データの違
いから動きベクトルを検出し、さらに、中間状態の画像データを生成してもよい。生成さ
れた中間状態の画像データは、第3のメモリ7623によって保持される。
5は、第2のメモリ7622に保持されている画像データを、画像信号7603として出
力する。その後、第3のメモリ7623に保持された画像データを輝度制御回路7624
を通じて画像信号7603として出力する。このとき、第2のメモリ7622および第3
のメモリ7623が更新される周波数は外部画像信号7600の周波数と同じだが、高速
処理回路7625を通じて出力される画像信号7603の周波数は、外部画像信号760
0の周波数と異なっていてもよい。具体的には、たとえば、画像信号7603の周波数は
外部画像信号7600の周波数の1.5倍、2倍、3倍が挙げられる。しかし、これに限
定されるものではなく、様々な周波数とすることができる。なお、画像信号7603の周
波数は、周波数制御信号7608によって指定されてもよい。
路7615の構成に、第4のメモリ7626を加えたものである。このように、第1のメ
モリ7621から出力された画像データと、第2のメモリ7622から出力された画像デ
ータに加えて、第4のメモリ7626から出力された画像データも動き検出回路7620
に出力することで、正確に画像の動きを検出することが可能になる。
るような場合、たとえばMPEG(Moving Picture Expert Gr
oup)の規格に基づく画像データである場合は、これを用いて中間状態の画像を補間画
像として生成すればよい。このとき、動き検出回路7620に含まれる、動きベクトルを
生成する部分は不要となる。また、画像信号7623に係るエンコードおよびデコード処
理も簡単なものとなるため、消費電力を低減できる。
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行
うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の
形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、
詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示
している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合
わせ、又は置き換えを自由に行うことができる。
本実施の形態においては、トランジスタの構造及び作製方法について説明する。
す図である。図48(A)は、本発明に係る表示装置が有するトランジスタの構造の一例
を示す図である。また、図48(B)乃至(G)は、本発明に係る表示装置が有するトラ
ンジスタの作製方法の例を示す図である。
ものに限定されず、様々な構造及び作製方法を用いることができる。
ついて説明する。図48(A)は複数の異なる構造を有するトランジスタの断面図である
。ここで、図48(A)においては、複数の異なる構造を有するトランジスタを並置して
示しているが、これは本発明に係る表示装置が有するトランジスタの構造を説明するため
のものであり、実際に図48(A)のように並置されている必要はなく、必要に応じてつ
くり分けることができる。
板、石英基板、セラミック基板又はステンレスを含む金属基板等を用いることができる。
他にも、ポリエチレンテレフタレ−ト(PET)、ポリエチレンナフタレ−ト(PEN)
、ポリエ−テルサルフォン(PES)に代表されるプラスチック又はアクリル等の可撓性
を有する合成樹脂からなる基板を用いることも可能である。可撓性を有する基板を用いる
ことによって、折り曲げることが可能である表示装置を作製することが可能となる。
アルカリ金属又はアルカリ土類金属が半導体素子の特性に悪影響を及ぼすのを防ぐために
設ける。絶縁膜4012としては、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化
窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)等の酸
素又は窒素を有する絶縁膜の単層構造若しくはこれらの積層構造で設けることができる。
例えば、絶縁膜4012を2層構造で設ける場合、1層目の絶縁膜として窒化酸化珪素膜
を設け、2層目の絶縁膜として酸化窒化珪素膜を設けるとよい。また、絶縁膜4012を
3層構造で設ける場合、1層目の絶縁膜として酸化窒化珪素膜を設け、2層目の絶縁膜と
して窒化酸化珪素膜を設け、3層目の絶縁膜として酸化窒化珪素膜を設けるとよい。
ルファス半導体(SAS)で形成することができる。あるいは、多結晶半導体層を用いて
も良い。SASは、非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造を有し、
自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪
みを有する結晶質な領域を含んでいる。少なくとも膜中の一部の領域には、0.5〜20
nmの結晶領域を観測することができ、珪素を主成分とする場合にはラマンスペクトルが
520cm−1よりも低波数側にシフトしている。X線回折では珪素結晶格子に由来する
とされる(111)、(220)の回折ピ−クが観測される。未結合手(ダングリングボ
ンド)の補償するものとして水素又はハロゲンを少なくとも1原子%又はそれ以上含ませ
ている。SASは、材料ガスをグロ−放電分解(プラズマCVD)して形成する。材料ガ
スとしては、SiH4、その他にもSi2H6、SiH2Cl2、SiHCl3、SiC
l4、SiF4などを用いることが可能である。あるいは、GeF4を混合させても良い
。この材料ガスをH2、あるいは、H2とHe、Ar、Kr、Neから選ばれた一種又は
複数種の希ガス元素で希釈してもよい。希釈率は2〜1000倍の範囲。圧力は概略0.
1Pa〜133Paの範囲、電源周波数は1MHz〜120MHz、好ましくは13MH
z〜60MHz。基板加熱温度は300℃以下でよい。膜中の不純物元素として、酸素、
窒素、炭素などの大気成分の不純物は1×1020cm−1以下とすることが望ましく、
特に、酸素濃度は5×1019/cm3以下、好ましくは1×1019/cm3以下とす
る。ここでは、公知の手段(スパッタ法、LPCVD法、プラズマCVD法等)を用いて
シリコン(Si)を主成分とする材料(例えばSixGe1−x等)で非晶質半導体層を
形成し、当該非晶質半導体層をレ−ザ結晶化法、RTA又はファーネスアニール炉を用い
る熱結晶化法、結晶化を助長する金属元素を用いる熱結晶化法などの公知の結晶化法によ
り結晶化させる。
OxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)等の酸素又は窒素を有
する絶縁膜の単層構造、若しくはこれらの積層構造で設けることができる。
ことができる。ゲート電極4017の材料としては、公知の導電膜を用いることができる
。たとえば、タンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(
W)、クロム(Cr)、シリコン(Si)などの元素の単体膜、あるいは、前記元素の窒
化膜(代表的には窒化タンタル膜、窒化タングステン膜、窒化チタン膜)、あるいは、前
記元素を組み合わせた合金膜(代表的にはMo−W合金、Mo−Ta合金)、あるいは、
前記元素のシリサイド膜(代表的にはタングステンシリサイド膜、チタンシリサイド膜)
などを用いることができる。なお、上述した単体膜、窒化膜、合金膜、シリサイド膜など
は、単層で用いてもよいし、積層して用いてもよい。
素(SiOx)、窒化珪素(SiNx)、酸化窒化珪素(SiOxNy)(x>y)、窒
化酸化珪素(SiNxOy)(x>y)等の酸素又は窒素を有する絶縁膜やDLC(ダイ
ヤモンドライクカ−ボン)等の炭素を含む膜の単層構造、若しくはこれらの積層構造で設
けることができる。
Nx)、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x
>y)等の酸素又は窒素を有する絶縁膜やDLC(ダイヤモンドライクカ−ボン)等の炭
素を含む膜、あるいは、エポキシ、ポリイミド、ポリアミド、ポリビニルフェノ−ル、ベ
ンゾシクロブテン、アクリル等の有機材料、からなる単層若しくは積層構造で設けること
ができる。なお、シロキサン樹脂とは、Si−O−Si結合を含む樹脂に相当する。シロ
キサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基とし
て、少なくとも水素を含む有機基(例えばアルキル基、アリール基)が用いられる。置換
基として、フルオロ基を用いることもできる。あるいは、置換基として、少なくとも水素
を含む有機基と、フルオロ基とを用いてもよい。なお、本発明に適応できる表示装置にお
いて、絶縁膜4018を設けずにゲート電極4017を覆うように直接絶縁膜4019を
設けることも可能である。
元素の単体膜、あるいは、前記元素の窒化膜、あるいは、前記元素を組み合わせた合金膜
、あるいは、前記元素のシリサイド膜などを用いることができる。例えば、前記元素を複
数含む合金として、C及びTiを含有したAl合金、Niを含有したAl合金、C及びN
iを含有したAl合金、C及びMnを含有したAl合金等を用いることができる。また、
積層構造で設ける場合、AlをMo又はTiなどで挟み込んだ構造とすることができる。
こうすることで、Alの熱や化学反応に対する耐性を向上することができる。
て、各々の構造の特徴について説明する。
るため、製造コストが低く、歩留まりを高く製造できる利点がある。ここで、半導体層4
013、4015は、それぞれ不純物の濃度が異なり、半導体層4013はチャネル領域
、半導体層4015はソース領域及びドレイン領域として機能する。このように、不純物
の量を制御することで、半導体層の抵抗率を制御することができる。また、半導体層と導
電膜4023との電気的な接続状態を、オ−ミック接続に近づけることができる。なお、
不純物の量の異なる半導体層を作り分ける方法としては、ゲート電極4017をマスクと
して半導体層に不純物をド−ピングする方法を用いることができる。
スタであり、簡便な方法で製造できるため、製造コストが低く、歩留まりを高く製造でき
る利点がある。半導体層4013、4014、4015は、それぞれ不純物濃度が異なり
、半導体層4013はチャネル領域、半導体層4014は低濃度ドレイン(Lightl
y Doped Drain:LDD)領域、半導体層4015はソース領域及びドレイ
ン領域として用いる。このように、不純物の量を制御することで、半導体層の抵抗率を制
御できる。また、半導体層と導電膜4023との電気的な接続状態を、オ−ミック接続に
近づけることができる。また、LDD領域を有するため、トランジスタ内部に高電界がか
かりにくく、ホットキャリアによる素子の劣化を抑制することができる。なお、不純物の
量の異なる半導体層を作り分ける方法としては、ゲート電極4017をマスクとして半導
体層に不純物をド−ピングする方法を用いることができる。トランジスタ4002は、ゲ
ート電極4017がテーパー角を有しているため、ゲート電極4017を通過して半導体
層にド−ピングされる不純物の濃度に勾配を持たせることができ、簡便にLDD領域を形
成することができる。
017aが上層のゲート電極4017bよりも長い形状を有するトランジスタである。本
明細書中においては、上層のゲート電極及び下層のゲート電極の形状を、帽子型と呼ぶ。
ゲート電極の形状が帽子型であることによってフォトマスクを追加することなく、LDD
領域を形成することができる。なお、トランジスタ4003のように、LDD領域がゲー
ト電極と重なっている構造を、特にGOLD構造(Gate Overlapped L
DD)と呼ぶ。なお、ゲート電極の形状を帽子型とする方法としては、次のような方法を
用いてもよい。
及び上層のゲート電極をエッチングして側面に傾斜(テーパー)のある形状にする。続い
て、異方性エッチングにより上層のゲート電極の傾斜を垂直に近くなるように加工する。
これにより、断面形状が帽子型のゲート電極が形成される。その後、2回、不純物元素を
ド−ピングすることによって、チャネル領域として用いる半導体層4013、LDD領域
として用いる半導体層4014、ソ−ス電極及びドレイン電極として用いる半導体層40
15が形成される。
LDD領域をLoff領域と呼ぶことにする。ここで、Loff領域はオフ電流値を抑え
る効果は高いが、ドレイン近傍の電界を緩和してホットキャリアによるオン電流値の劣化
を防ぐ効果は低い。一方、Lov領域はドレイン近傍の電界を緩和し、オン電流値の劣化
の防止には有効であるが、オフ電流値を抑える効果は低い。よって、種々の回路毎に、求
められる特性に応じた構造のトランジスタを作製することが好ましい。たとえば、本発明
に適応できる表示装置を表示装置として用いる場合、画素トランジスタは、オフ電流値を
抑えるために、Loff領域を有するトランジスタを用いることが好適である。一方、周
辺回路におけるトランジスタは、ドレイン近傍の電界を緩和し、オン電流値の劣化を防止
するために、Lov領域を有するトランジスタを用いることが好適である。
を有するトランジスタである。サイドウォ−ル4021を有することによって、サイドウ
ォ−ル4021と重なる領域をLDD領域とすることができる。
(Loff)領域を形成したトランジスタである。こうすることにより、確実にLDD領
域を形成することができ、トランジスタのオフ電流値を低減することができる。
(Lov)領域を形成したトランジスタである。こうすることにより、確実にLDD領域
を形成することができ、トランジスタのドレイン近傍の電界を緩和し、オン電流値の劣化
を低減することができる。
の作製方法の例を説明する。
ものに限定されず、様々な構造及び作製方法を用いることができる。
、4015、絶縁膜4016、絶縁膜4018や絶縁膜4019の表面に、プラズマ処理
を用いて酸化又は窒化処理を行うことにより、その表面を酸化又は窒化することができる
。このように、プラズマ処理を用いて半導体層又は絶縁膜を酸化又は窒化することによっ
て、当該半導体層又は当該絶縁膜の表面を改質し、CVD法やスパッタ法により形成した
絶縁膜と比較してより緻密な絶縁膜を形成することができ。よって、ピンホール等の欠陥
を抑制し表示装置の特性等を向上させることが可能となる。
4011は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどのガラス基板、
石英基板、セラミック基板又はステンレスを含む金属基板等を用いることができる。他に
も、ポリエチレンテレフタレ−ト(PET)、ポリエチレンナフタレ−ト(PEN)、ポ
リエ−テルサルフォン(PES)に代表されるプラスチックや、アクリル等の可撓性を有
する合成樹脂からなる基板を用いることも可能である。なお、ここでは基板4011とし
てガラス基板を用いる場合を示す。
の表面に酸化膜又は窒化膜を形成してもよい(図48(B))。表面にプラズマ処理を行
うことで形成された酸化膜又は窒化膜などの絶縁膜を、以下ではプラズマ処理絶縁膜とも
記す。なお、図48(B)においては、絶縁膜4031がプラズマ処理絶縁膜である。一
般的に、ガラス又はプラスチック等の基板上に薄膜トランジスタ等の半導体素子を設けた
場合、ガラス又はプラスチック等に含まれる、Naなどのアルカリ金属又はアルカリ土類
金属等の不純物元素が半導体素子に混入することによって、半導体素子の特性に影響を及
ぼす恐れがある。しかし、ガラス又はプラスチック等からなる基板の表面を窒化すること
により、基板に含まれるNaなどの、アルカリ金属又はアルカリ土類金属等の不純物元素
が半導体素子に混入するのを防止することができる。
)と希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)雰囲気下、あるい
は、酸素と水素(H2)と希ガス雰囲気下、あるいは、一酸化二窒素と希ガス雰囲気下)
でプラズマ処理を行う。一方、プラズマ処理により半導体層を窒化する場合には、窒素雰
囲気下(例えば、窒素(N2)と希ガス(He、Ne、Ar、Kr、Xeの少なくとも一
つを含む)雰囲気下、あるいは、窒素と水素と希ガス雰囲気下、あるいは、NH3と希ガ
ス雰囲気下)でプラズマ処理を行う。希ガスとしては、例えばArやArとKrを混合し
たガス等を用いることができる。そのため、プラズマ処理絶縁膜は、プラズマ処理に用い
た希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)を含んでいる。たと
えば、Arを用いた場合にはプラズマ処理絶縁膜にArが含まれている。
以上1×1013cm−3以下であり、プラズマの電子温度が0.5ev以上1.5eV
以下で処理することが好適である。プラズマの電子密度が高密度であり、被処理物付近で
の電子温度が低いため、被処理物に対するプラズマによる損傷を防止することができるか
らである。また、プラズマの電子密度が1×1011cm−3以上と高密度であるため、
プラズマ処理を用いて、被照射物を酸化又は窒化することよって形成される酸化物又は窒
化膜は、CVD法やスパッタ法等により形成された膜と比較して膜厚等の均一性に優れ、
且つ緻密な膜を形成することができる。あるいは、プラズマの電子温度が1eV以下と低
いため、従来のプラズマ処理や熱酸化法と比較して低温度で酸化又は窒化処理を行うこと
ができる。たとえば、ガラス基板の歪点温度よりも100度以上低い温度でプラズマ処理
を行っても十分に酸化又は窒化処理を行うことができる。なお、プラズマを形成するため
の周波数としては、マイクロ波(2.45GHz)等の高周波を用いることができる。な
お、以下に特に断らない場合は、プラズマ処理として上記条件を用いて行うものとする。
ラズマ処理絶縁膜を形成する場合を示しているが、本実施の形態は、基板4011の表面
にプラズマ処理絶縁膜を形成しない場合も含む。
って形成されるプラズマ処理絶縁膜を図示しないが、本実施の形態においては、基板40
11、絶縁膜4012、半導体層4013、4014、4015、絶縁膜4016、絶縁
膜4018、又は絶縁膜4019の表面に、プラズマ処理を行なうことによって形成され
るプラズマ処理絶縁膜が存在する場合も含む。
を用いて絶縁膜4012を形成する(図48(C))。絶縁膜4012としては、酸化珪
素(SiOx)又は酸化窒化珪素(SiOxNy)(x>y)を用いることができる。
ることによって、絶縁膜4012の表面にプラズマ処理絶縁膜を形成してもよい。絶縁膜
4012の表面を酸化することによって、絶縁膜4012の表面を改質しピンホール等の
欠陥の少ない緻密な膜を得ることができる。また、絶縁膜4012の表面を酸化すること
によって、N原子の含有率が低いプラズマ処理絶縁膜を形成することができるため、プラ
ズマ処理絶縁膜に半導体層を設けた場合にプラズマ処理絶縁膜と半導体層界面特性が向上
する。また、プラズマ処理絶縁膜は、プラズマ処理に用いた希ガス(He、Ne、Ar、
Kr、Xeの少なくとも一つを含む)を含んでいる。なお、プラズマ処理は上述した条件
下で同様に行うことができる。
)。島状の半導体層4013、4014は、絶縁膜4012上に公知の手段(スパッタ法
、LPCVD法、プラズマCVD法等)を用いてシリコン(Si)を主成分とする材料(
例えばSixGe1−x等)等を用いて非晶質半導体層を形成し、当該非晶質半導体層を
結晶化させ、半導体層を選択的にエッチングすることにより設けることができる。なお、
非晶質半導体層の結晶化は、レ−ザ結晶化法、RTA又はファーネスアニール炉を用いる
熱結晶化法、結晶化を助長する金属元素を用いる熱結晶化法又はこれら方法を組み合わせ
た方法等の公知の結晶化法により行うことができる。なお、ここでは、島状の半導体層の
端部を直角に近い形状(θ=85〜100°)で設ける。あるいは、低濃度ドレイン領域
となる半導体層4014は、マスクを用いて不純物をド−ピングすることによって形成さ
れてもよい。
4014の表面を酸化又は窒化することによって、半導体層4013、4014の表面に
プラズマ処理絶縁膜を形成してもよい。例えば、半導体層4013、4014としてSi
を用いた場合、プラズマ処理絶縁膜として、酸化珪素(SiOx)又は窒化珪素(SiN
x)が形成される。あるいは、プラズマ処理により半導体層4013、4014を酸化さ
せた後に、再度プラズマ処理を行うことによって窒化させてもよい。この場合、半導体層
4013、4014に接して酸化珪素(SiOx)が形成され、当該酸化珪素の表面に窒
化酸化珪素(SiNxOy)(x>y)が形成される。なお、プラズマ処理により半導体
層を酸化する場合には、酸素雰囲気下(例えば、酸素(O2)と希ガス(He、Ne、A
r、Kr、Xeの少なくとも一つを含む)雰囲気下、あるいは、酸素と水素(H2)と希
ガス雰囲気下又は一酸化二窒素と希ガス雰囲気下)、でプラズマ処理を行う。一方、プラ
ズマ処理により半導体層を窒化する場合には、窒素雰囲気下(例えば、窒素(N2)と希
ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)雰囲気下、あるいは、窒
素と水素と希ガス雰囲気下又はNH3と希ガス雰囲気下)、でプラズマ処理を行う。希ガ
スとしては、例えばArを用いることができる。また、ArとKrを混合したガスを用い
てもよい。そのため、プラズマ処理絶縁膜は、プラズマ処理に用いた希ガス(He、Ne
、Ar、Kr、Xeの少なくとも一つを含む)を含んでいる。たとえば、Arを用いた場
合にはプラズマ処理絶縁膜にArが含まれている。
パッタ法、LPCVD法、プラズマCVD法等)を用いて、酸化珪素(SiOx)、窒化
珪素(SiNx)、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNx
Oy)(x>y)等の酸素又は窒素を有する絶縁膜の単層構造、又はこれらの積層構造で
設けることができる。なお、半導体層4013、4014の表面をプラズマ処理すること
により、半導体層4013、4014の表面にプラズマ処理絶縁膜を形成した場合には、
プラズマ処理絶縁膜を絶縁膜4016として用いることも可能である。
窒化することによって、絶縁膜4016の表面にプラズマ処理絶縁膜を形成してもよい。
なお、プラズマ処理絶縁膜は、プラズマ処理に用いた希ガス(He、Ne、Ar、Kr、
Xeの少なくとも一つを含む)を含んでいる。また、プラズマ処理は上述した条件下で同
様に行うことができる。
た後に、再度窒素雰囲気下でプラズマ処理を行うことにより窒化させてもよい。このよう
に、絶縁膜4016にプラズマ処理を行い、絶縁膜4016の表面を酸化又は窒化するこ
とによって、絶縁膜4016の表面を改質し緻密な膜を形成することができる。プラズマ
処理を行うことによって得られた絶縁膜は、CVD法やスパッタ法で形成された絶縁膜と
比較して緻密でピンホール等の欠陥も少ないため、薄膜トランジスタの特性を向上させる
ことができる。
手段(スパッタ法、LPCVD法、プラズマCVD法等)を用いて形成することができる
。
を行なうことで、ソース領域及びドレイン領域として用いる半導体層4015を形成する
ことができる。
を行なうことで、LDD領域として用いる4014と、半導体層4013、ソース領域及
びドレイン領域として用いる半導体層4015を形成することができる。
純物ド−ピングを行なうことで、LDD領域として用いる4014と、半導体層4013
、ソース領域及びドレイン領域として用いる半導体層4015を形成することができる。
を形成した後、不純物ド−ピングを行なうことで、LDD領域として用いる4014と、
半導体層4013、ソース領域及びドレイン領域として用いる半導体層4015を形成す
ることができる。
いることができる。サイドウォ−ル4021をゲート電極4017の側面に形成する方法
としては、たとえば、ゲート電極4017を形成した後に、酸化珪素(SiOx)又は窒
化珪素(SiNx)を公知の方法で成膜した後に、異方性エッチングによって酸化珪素(
SiOx)又は窒化珪素(SiNx)膜をエッチングする方法を用いることができる。こ
うすることで、ゲート電極4017の側面にのみ酸化珪素(SiOx)又は窒化珪素(S
iNx)膜を残すことができるので、ゲート電極4017の側面にサイドウォ−ル402
1を形成することができる。
成した後、不純物ド−ピングを行なうことで、LDD(Loff)領域として用いる40
14と、半導体層4013、ソース領域及びドレイン領域として用いる半導体層4015
を形成することができる。
を行なうことで、LDD(Lov)領域として用いる4014と、半導体層4013、ソ
ース領域及びドレイン領域として用いる半導体層4015を形成することができる。
パッタ法やプラズマCVD法等)により、酸化珪素(SiOx)、窒化珪素(SiNx)
、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)
等の酸素又は窒素を有する絶縁膜やDLC(ダイヤモンドライクカ−ボン)等の炭素を含
む膜の単層構造、又はこれらの積層構造で設けることができる。
窒化することによって、絶縁膜4018の表面にプラズマ処理絶縁膜を形成してもよい。
なお、プラズマ処理絶縁膜は、プラズマ処理に用いた希ガス(He、Ne、Ar、Kr、
Xeの少なくとも一つを含む)を含んでいる。また、プラズマ処理は上述した条件下で同
様に行うことができる。
パッタ法やプラズマCVD法等)により、酸化珪素(SiOx)、窒化珪素(SiNx)
、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)
等の酸素又は窒素を有する絶縁膜やDLC(ダイヤモンドライクカ−ボン)等の炭素を含
む膜を用いることができる他に、エポキシ、ポリイミド、ポリアミド、ポリビニルフェノ
−ル、ベンゾシクロブテン、アクリル等の有機材料やシロキサン樹脂の単層構造、又はこ
れらの積層構造で設けることができる。なお、シロキサン樹脂とは、Si−O−Si結合
を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構
造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、アリ
ール基)が用いられる。置換基として、フルオロ基を用いることもできる。あるいは、置
換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。また、プラ
ズマ処理絶縁膜には、プラズマ処理に用いた希ガス(He、Ne、Ar、Kr、Xeの少
なくとも一つを含む)が含まれており、例えばArを用いた場合にはプラズマ処理絶縁膜
中にArが含まれている。
テン、アクリル等の有機材料やシロキサン樹脂等を用いた場合、絶縁膜4019の表面を
プラズマ処理により酸化又は窒化することにより、当該絶縁膜の表面を改質することがで
きる。表面を改質することによって、絶縁膜4019の強度が向上し開口部形成時等にお
けるクラックの発生やエッチング時の膜減り等の物理的ダメ−ジを低減することが可能と
なる。また、絶縁膜4019の表面が改質されることによって、絶縁膜4019上に導電
膜4023を形成する場合に導電膜との密着性が向上する。例えば、絶縁膜4019とし
てシロキサン樹脂を用いてプラズマ処理を用いて窒化を行った場合、シロキサン樹脂の表
面が窒化されることにより窒素又は希ガスを含むプラズマ処理絶縁膜が形成され、物理的
強度が向上する。
019、絶縁膜4018、絶縁膜4016にコンタクトホールを形成する。なお、コンタ
クトホールの形状はテーパー状であってもよく、このような形状とすることで、導電膜4
023のカバレッジを向上させることができる。
膜は、基板側からの不純物が半導体層に影響を及ぼし、トランジスタの特性が変化してし
まうことを防ぐ機能を有する。つまり、第1の絶縁膜は下地膜としての機能を有する。し
たがって、信頼性の高いトランジスタを作製することができる。なお、第1の絶縁膜とし
ては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの
単層、又はこれらの積層を用いることができる。
る。導電層4103は、トランジスタ4120のゲート電極として機能する部分を含む。
導電層4104は、容量素子4121の第1の電極として機能する部分を含む。なお、第
1の導電層としては、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、Ag、Au、P
t、Si、Zn、Fe、Ba、Geなど、又はこれらの合金を用いることができる。ある
いは、これらの元素(合金も含む)の積層を用いることができる。
る。第2の絶縁膜は、ゲート絶縁膜としての機能を有する。なお、第2の絶縁膜としては
、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの単層
、又はこれらの積層を用いることができる。
ましい。なぜなら、半導体層と第2の絶縁膜とが接する界面におけるトラップ準位が少な
くなるからである。
シリコン膜を用いることが望ましい。なぜなら、酸化シリコン膜はMoを酸化させないか
らである。
グラフィ法、インクジェット法又は印刷法などによって、半導体層が形成されている。そ
して、半導体層の一部は、第2の絶縁膜上のうち第1の導電層と重なって形成されていな
い部分まで延長されている。半導体層は、チャネル形成領域(チャネル形成領域4110
)、LDD領域(LDD領域4108、LDD領域4109)、不純物領域(不純物領域
4105、不純物領域4106、不純物領域4107)を有している。なお、チャネル形
成領域4110は、トランジスタ4120のチャネル形成領域として機能する。LDD領
域4108及びLDD領域4109は、トランジスタ4120のLDD領域として機能す
る。なお、LDD領域4108及びLDD領域4109は必ずしも必要ではない。不純物
領域4105は、トランジスタ4120のソース領域及びドレイン領域の一方として機能
する部分を含む。不純物領域4106は、トランジスタ4120のソース領域及びドレイ
ン領域の他方として機能する部分を含む。不純物領域4107は、容量素子4121の第
2の電極として機能する部分を含む。
選択的にコンタクトホールが形成されている。絶縁膜4111は、層間膜としての機能を
有する。第3の絶縁膜としては、無機材料(酸化シリコン、窒化シリコン、酸化窒化シリ
コンなど)あるいは、低誘電率の有機化合物材料(感光性又は非感光性の有機樹脂材料)
などを用いることができる。あるいは、シロキサンを含む材料を用いることもできる。な
お、シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される材料
である。置換基として、少なくとも水素を含む有機基(例えばアルキル基、アリール基)
が用いられる。あるいは、置換基としてフルオロ基を用いてもよい。あるいは、置換基と
して、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。
は、第3の絶縁膜に形成されたコンタクトホールを介してトランジスタ4120のソース
領域及びドレイン領域の他方と接続されている。したがって、導電層4112は、トラン
ジスタ4120のソース電極及びドレイン電極の他方として機能する部分を含む。なお、
第2の導電層としては、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、Ag、Au、
Pt、Si、Zn、Fe、Ba、Geなど、又はこれらの合金を用いることができる。あ
るいは、これらの元素(合金も含む)の積層を用いることができる。
成されていてもよい。
のトランジスタ及び容量素子の構造について説明する。
膜は、基板側からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してし
まうことを防ぐ機能を有する。つまり、第1の絶縁膜は下地膜としての機能を有する。し
たがって、信頼性の高いトランジスタを作製することができる。なお、第1の絶縁膜とし
ては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの
単層、又はこれらの積層を用いることができる。
とができる。製造コストの削減を図ることができる。構造を簡単にできるので、歩留まり
の向上を図ることができる。
)が形成されている。導電層4203は、トランジスタ4220のソ−ス電極及びドレイ
ン電極の一方の電極として機能する部分を含む。導電層4204は、トランジスタ422
0のソ−ス電極及びドレイン電極の他方の電極として機能する部分を含む。導電層420
5は、容量素子4221の第1の電極として機能する部分を含む。なお、第1の導電層と
しては、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、Ag、Au、Pt、Si、Z
n、Fe、Ba、Geなど、又はこれらの合金を用いることができる。あるいは、これら
の元素(合金も含む)の積層を用いることができる。
導体層4207)が形成されている。半導体層4206は、ソ−ス領域とドレイン領域の
一方の電極として機能する部分を含む。半導体層4207は、ソ−ス領域とドレイン領域
の他方の電極として機能する部分を含む。なお、第1の半導体層としては、リン等を含ん
だシリコン等を用いることができる。
層(半導体層4208)が形成されている。そして、半導体層4208の一部は、導電層
4203上及び導電層4204上まで延長されている。半導体層4208は、トランジス
タ4220のチャネル領域として機能する部分を含む。なお、第2の半導体層としては、
アモルファスシリコン(a−Si:H)等の非結晶性を有する半導体層、又は微結晶半導
体(μ−Si:H)等の半導体層などを用いることができる。
209及び絶縁膜4210)が形成されている。第2の絶縁膜は、ゲート絶縁膜としての
機能を有する。なお、第2の絶縁膜としては、酸化シリコン膜、窒化シリコン膜又は酸化
窒化シリコン膜(SiOxNy)などの単層、又はこれらの積層を用いることができる。
とが望ましい。なぜなら、第2の半導体層と第2の絶縁膜とが接する界面におけるトラッ
プ準位が少なくなるからである。
シリコン膜を用いることが望ましい。なぜなら、酸化シリコン膜はMoを酸化させないか
らである。
る。導電層4211は、トランジスタ4220のゲート電極として機能する部分を含む。
導電層4212は、容量素子4221の第2の電極、又は配線としての機能を有する。な
お、第2の導電層としては、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、Ag、A
u、Pt、Si、Zn、Fe、Ba、Geなど、又はこれらの合金を用いることができる
。あるいは、これらの元素(合金も含む)の積層を用いることができる。
成されていてもよい。
構造を示す。特に、図51に示すトランジスタは、チャネルエッチ型と呼ばれる構造であ
る。
膜は、基板側からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してし
まうことを防ぐ機能を有する。つまり、第1の絶縁膜は下地膜としての機能を有する。し
たがって、信頼性の高いトランジスタを作製することができる。なお、第1の絶縁膜とし
ては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの
単層、又はこれらの積層を用いることができる。
とができる。製造コストの削減を図ることができる。構造を簡単にできるので、歩留まり
の向上を図ることができる。
る。導電層4303は、トランジスタ4320のゲート電極として機能する部分を含む。
導電層4304は、容量素子4321の第1の電極として機能する部分を含む。なお、第
1の導電層としては、Ti、Mo、TB、Cr、W、Bl、Nd、Cu、Bg、Bu、P
t、NA−Si、Zn、Fe、Ba、Geなど、又はこれらの合金を用いることができる
。あるいは、これらの元素(合金も含む)の積層を用いることができる。
る。第2の絶縁膜は、ゲート絶縁膜としての機能を有する。なお、第2の絶縁膜としては
、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの単層
、又はこれらの積層を用いることができる。
ましい。なぜなら、半導体層と第2の絶縁膜とが接する界面におけるトラップ準位が少な
くなるからである。
シリコン膜を用いることが望ましい。なぜなら、酸化シリコン膜はMoを酸化させないか
らである。
グラフィ法、インクジェット法又は印刷法などによって、第1の半導体層(半導体層43
06)が形成されている。そして、半導体層4306の一部は、第2の絶縁膜上のうち第
1の導電層と重なって形成されていない部分まで延長されている。半導体層4306は、
トランジスタ4320のチャネル領域として機能する部分を含む。なお、半導体層430
6としては、アモルファスシリコン(A−Si:H)等の非結晶性を有する半導体層、又
は微結晶半導体(μ−Si:H)等の半導体層などを用いることができる。
が形成されている。半導体層4307は、ソ−ス領域とドレイン領域の一方の電極として
機能する部分を含む。半導体層4308は、ソ−ス領域とドレイン領域の他方の電極とし
て機能する部分を含む。なお、第2の導体層としては、リン等を含んだシリコン等を用い
ることができる。
0及び導電層4311)が形成されている。導電層4309は、トランジスタ4320の
ソ−ス電極とドレイン電極の一方として機能する部分を含む。導電層4310は、トラン
ジスタ4320のソ−スとドレイン電極の他方として機能する部分を含む。導電層431
2は、容量素子4321の第2の電極として機能する部分を含む。なお、第2の導電層と
しては、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、Ag、Au、Pt、Si、Z
n、Fe、Ba、Geなど、又はこれらの合金を用いることができる。あるいは、これら
の元素(合金も含む)の積層を用いることができる。
成されていてもよい。
クを用いて、第1の半導体層及び第2の半導体層を形成することができる。具体的には、
第1の半導体層と第2の半導体層とは連続して成膜される。そして、第1の半導体層及び
第2の半導体層は、同じマスクを用いて形成される。
を用いることなく、トランジスタのチャネル領域を形成することができる。具体的には、
第2の導電層が形成された後で、第2の導電層をマスクとして用いて第2の半導体層の一
部を除去する。あるいは、第2の導電層と同じマスクを用いて第2の半導体層の一部を除
去する。そして、除去された第2の半導体層の下部に形成されている第1の半導体層がト
ランジスタのチャネル領域となる。
構造を示す。特に、図52に示すトランジスタは、チャネル保護型(チャネルストップ型
)と呼ばれる構造である。
膜は、基板側からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してし
まうことを防ぐ機能を有する。つまり、第1の絶縁膜は下地膜としての機能を有する。し
たがって、信頼性の高いトランジスタを作製することができる。なお、第1の絶縁膜とし
ては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの
単層、又はこれらの積層を用いることができる。
とができる。製造コストの削減を図ることができる。構造を簡単にできるので、歩留まり
の向上を図ることができる。
る。導電層4403は、トランジスタ4420のゲート電極として機能する部分を含む。
導電層4404は、容量素子4421の第1の電極として機能する部分を含む。なお、第
1の導電層としては、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、Ag、Au、P
t、Si、Zn、Fe、Ba、Geなど、又はこれらの合金を用いることができる。ある
いは、これらの元素(合金も含む)の積層を用いることができる。
る。第2の絶縁膜は、ゲート絶縁膜としての機能を有する。なお、第2の絶縁膜としては
、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの単層
、又はこれらの積層を用いることができる。
ましい。なぜなら、半導体層と第2の絶縁膜とが接する界面におけるトラップ準位が少な
くなるからである。
シリコン膜を用いることが望ましい。なぜなら、酸化シリコン膜はMoを酸化させないか
らである。
グラフィ法、インクジェット法又は印刷法などによって、第1の半導体層(半導体層44
06)が形成されている。そして、半導体層4406の一部は、第2の絶縁膜上のうち第
1の導電層と重なって形成されていない部分まで延長されている。半導体層4406は、
トランジスタ4420のチャネル領域として機能する部分を含む。なお、半導体層440
6としては、アモルファスシリコン(C−Si:H)等の非結晶性を有する半導体層、又
は微結晶半導体(μ−Si:H)等の半導体層などを用いることができる。
4412は、トランジスタ4420のチャネル領域がエッチングによって除去されること
を防止する機能を有する。つまり、絶縁膜4412は、チャネル保護膜(チャネルストッ
プ膜)として機能する。なお、第3の絶縁膜としては、酸化シリコン膜、窒化シリコン膜
又は酸化窒化シリコン膜(SiOxNy)などの単層、又はこれらの積層を用いることが
できる。
7及び半導体層4408)が形成されている。半導体層4407は、ソ−ス領域とドレイ
ン領域の一方の電極として機能する部分を含む。半導体層4408は、ソ−ス領域とドレ
イン領域の他方の電極として機能する部分を含む。なお、第2の導体層としては、リン等
を含んだシリコン等を用いることができる。
1)が形成されている。導電層4409は、トランジスタ4420のソ−ス電極とドレイ
ン電極の一方として機能する部分を含む。導電層4410は、トランジスタ4420のソ
−スとドレイン電極の他方として機能する部分を含む。導電層4411は、容量素子44
21の第2の電極として機能する部分を含む。なお、第2の導電層としては、Ti、Mo
、Ta、Cr、W、Al、Nd、Cu、Ag、Au、Pt、Si、Zn、Fe、Ba、G
eなど、又はこれらの合金を用いることができる。あるいは、これらの元素(合金も含む
)の積層を用いることができる。
成されていてもよい。
を用いて、第1の半導体層、第2の半導体層及び第2の導電層を形成することができる。
同時に、チャネル領域を形成することができる。具体的には、第1の半導体層を成膜し、
次に第3の絶縁膜(チャネル保護膜、チャネルストップ膜)を、マスクを用いて形成し、
次に第2の半導体層と第2の導電層とを連続して成膜する。そして、第2の導電層が成膜
された後で、第1の半導体層、第2の半導体層及び第2の導電層が同じマスクを用いて形
成される。ただし、第3の絶縁膜の下部の第1の半導体層は、第3の絶縁膜によって保護
されるのでエッチングによって除去されない。この部分(第1の半導体層のうち上部に第
3の絶縁膜が形成された部分)がチャネル領域となる。
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
び実施例の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換え
などを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関し
て、別の実施の形態および実施例の部分を組み合わせることにより、さらに多くの図を構
成させることが出来る。
具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した
場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての
一例などを示している。したがって、他の実施の形態および実施例で述べた内容は、本実
施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
本実施形態においては、本発明に係る電子機器の例について説明する。
ルの一形態を示している。
及び信号線駆動回路4505を有している。回路基板4502には、例えば、コントロー
ル回路4506や信号分割回路4507などが形成されている。なお、表示パネル450
1と回路基板4502は接続配線4508によって接続されている。接続配線4508に
はFPC等を用いることができる。
数の低い駆動回路)をトランジスタを用いて基板上に一体形成し、他の周辺駆動回路(複
数の駆動回路のうち動作周波数の高い駆動回路)をICチップ上に形成し、そのICチッ
プをCOG(Chip On Glass)で表示パネル3410に実装しても良い。あ
るいは、そのICチップをTAB(Tape Auto Bonding)やプリント基
板を用いてガラス基板と接続してもよい。また、全ての周辺駆動回路をICチップ上に形
成し、そのICチップをCOGなどで表示パネルに実装しても良い。
を向上させることができる。また、画素部を構成するトランジスタに同一導電型のトラン
ジスタやトランジスタの半導体層に非晶質半導体を用いることで低コスト化を図ることも
できる。
テレビ受像機の主要な構成を示すブロック図である。チューナ4601は映像信号と音声
信号を受信する。映像信号は、映像信号増幅回路4602と、そこから出力される信号を
赤、緑、青の各色に対応した色信号に変換する映像信号処理回路4603と、その映像信
号を駆動回路の入力仕様に変換するためのコントロール回路4506により処理される。
コントロール回路4506は、走査線側と信号線側にそれぞれ信号を出力する。デジタル
駆動する場合には、信号線側に信号分割回路4507を設け、入力デジタル信号をm個(
mは正の整数)に分割して供給する構成としても良い。
れ、その出力は音声信号処理回路4605を経てスピーカー4606に供給される。制御
回路4607は受信局(受信周波数)や音量の制御情報を入力部4608から受け、チュ
ーナ4601や音声信号処理回路4605に信号を送出する。
A)に示す。図55(A)において、筐体4701内に収められた表示画面4702は、
表示パネルモジュールで形成される。なお、スピーカー4703、操作スイッチ4704
などが適宜備えられていてもよい。
筐体4712にはバッテリー及び信号受信器が内蔵されており、そのバッテリーで表示部
4713又はスピーカー部4717を駆動させる。バッテリーは充電器4710で繰り返
し充電が可能となっている。充電器4710は映像信号を送受信することが可能で、その
映像信号をディスプレイの信号受信器に送信することができる。筐体4712は操作キー
4716によって制御する。あるいは、図55(B)に示す装置は、操作キー4716を
操作することによって、筐体4712から充電器4710に信号を送ることが可能である
、映像音声双方向通信装置であってもよい。あるいは、操作キー4716を操作すること
によって、筐体4712から充電器4710に信号を送り、さらに充電器4710が送信
できる信号を他の電子機器に受信させることによって、他の電子機器の通信制御も可能で
ある、汎用遠隔制御装置であってもよい。本発明を表示部4713に適用することができ
る。
ールを示している。表示パネル4801は、複数の画素が設けられた画素部4803と、
第1の走査線駆動回路4804、第2の走査線駆動回路4805と、選択された画素にビ
デオ信号を供給する信号線駆動回路4806とを有する。
8、メモリ4809、電源回路4810、音声処理回路4811及び送受信回路4812
などが備えられている。プリント配線基板4802と表示パネル4801は、フレキシブ
ル配線基板(FPC)4813により接続されている。フレキシブル配線基板(FPC)
4813には、保持容量、バッファ回路などを設け、電源電圧又は信号にノイズの発生、
及び信号の立ち上がり時間の増大を防ぐ構成としても良い。なお、コントローラ4807
、音声処理回路4811、メモリ4809、中央処理装置(CPU)4808、電源回路
4810などは、COG(Chip On Glass)方式を用いて表示パネル480
1に実装することもできる。COG方式により、プリント配線基板4802の規模を縮小
することができる。
、各種制御信号の入出力が行われる。そして、アンテナとの間の信号の送受信を行うため
のアンテナ用ポート4815が、プリント配線基板4802に設けられている。
は、メモリ4809としてVRAM4816、DRAM4817、フラッシュメモリ48
18などが含まれている。VRAM4816にはパネルに表示する画像のデータが、DR
AM4817には画像データ又は音声データが、フラッシュメモリには各種プログラムが
記憶されている。
U)4808、音声処理回路4811、メモリ4809、送受信回路4812を動作させ
る電力を供給する。ただし、パネルの仕様によっては、電源回路4810に電流源が備え
られている場合もある。
ジスタ4822、演算回路4823、RAM4824、中央処理装置(CPU)4808
用のインターフェース(I/F)部4819などを有している。インターフェース(I/
F)部4819を介して中央処理装置(CPU)4808に入力された各種信号は、一旦
レジスタ4822に保持された後、演算回路4823、デコーダ4821などに入力され
る。演算回路4823では、入力された信号に基づき演算を行い、各種命令を送る場所を
指定する。一方デコーダ4821に入力された信号はデコードされ、制御信号生成回路4
820に入力される。制御信号生成回路4820は入力された信号に基づき、各種命令を
含む信号を生成し、演算回路4823において指定された場所、具体的にはメモリ480
9、送受信回路4812、音声処理回路4811、コントローラ4807などに送る。
、それぞれ受けた命令に従って動作する。以下その動作について簡単に説明する。
てプリント配線基板4802に実装された中央処理装置(CPU)4808に送られる。
制御信号生成回路4820は、ポインティングデバイス又はキーボードなどの入力手段4
825から送られてきた信号に従い、VRAM4816に格納してある画像データを所定
のフォーマットに変換し、コントローラ4807に送付する。
送られてきた画像データを含む信号にデータ処理を施し、表示パネル4801に供給する
。コントローラ4807は、電源回路4810から入力された電源電圧、又は中央処理装
置(CPU)4808から入力された各種信号をもとに、Hsync信号、Vsync信
号、クロック信号CLK、交流電圧(AC Cont)、切り替え信号L/Rを生成し、
表示パネル4801に供給する。
されており、具体的にはアイソレータ、バンドパスフィルタ、VCO(Voltage
Controlled Oscillator)、LPF(Low Pass Filt
er)、カプラ、バランなどの高周波回路を含んでいてもよい。送受信回路4812にお
いて送受信される信号のうち音声情報を含む信号が、中央処理装置(CPU)4808か
らの命令に従って、音声処理回路4811に送られる。
声処理回路4811において音声信号に復調され、スピーカー4827に送られる。マイ
ク4826から送られてきた音声信号は、音声処理回路4811において変調され、中央
処理装置(CPU)4808からの命令に従って、送受信回路4812に送られる。
回路4811、メモリ4809を、本実施形態のパッケージとして実装することができる
。
じめ、鉄道の駅又は空港などにおける情報表示盤、街頭における広告表示盤など特に大面
積の表示媒体として様々な用途に適用することができる。
0は表示パネル4901のサイズに合わせて、形状又は寸法を適宜変更することができる
。表示パネル4901を固定したハウジング4930はプリント基板4931に嵌入され
モジュールとして組み立てられる。
ント基板4931には、スピーカー4932、マイクロフォン4933、送受信回路49
34、CPU及びコントローラなどを含む信号処理回路4935が形成されている。この
ようなモジュールと、入力手段4936、バッテリー4937を組み合わせ、筐体493
9に収納する。表示パネル4901の画素部は筐体4939に形成された開口窓から視認
できように配置する。
の低い駆動回路)を基板上にトランジスタを用いて一体形成し、一部の周辺駆動回路(複
数の駆動回路のうち動作周波数の高い駆動回路)をICチップ上に形成し、そのICチッ
プをCOG(Chip On Glass)で表示パネル4901に実装しても良い。あ
るいは、そのICチップをTAB(Tape Auto Bonding)又はプリント
基板を用いてガラス基板と接続してもよい。このような構成とすることで、表示装置の低
消費電力化を図り、携帯電話機の一回の充電による使用時間を長くすることができる。携
帯電話機の低コスト化を図ることができる。
機能を有する。カレンダー、日付又は時刻などを表示部に表示する機能を有する。表示部
に表示した情報を操作又は編集する機能を有する。様々なソフトウェア(プログラム)に
よって処理を制御する機能を有する。無線通信機能を有する。無線通信機能を用いて他の
携帯電話、固定電話又は音声通信機器と通話する機能を有する。無線通信機能を用いて様
々なコンピュータネットワークに接続する機能を有する。無線通信機能を用いて様々なデ
ータの送信又は受信を行う機能を有する。着信、データの受信、又はアラームに応じてバ
イブレータが動作する機能を有する。着信、データの受信、又はアラームに応じて音が発
生する機能を有する。なお、図57に示した携帯電話が有する機能はこれに限定されず、
様々な機能を有することができる。
えられた本体(A)5001と、表示パネル(A)5008、表示パネル(B)5009
、スピーカー5006などが備えられた本体(B)5002とが、蝶番5010で開閉可
能に連結されている。表示パネル(A)5008と表示パネル(B)5009は、回路基
板5007と共に本体(B)5002の筐体5003の中に収納される。表示パネル(A
)5008及び表示パネル(B)5009の画素部は筐体5003に形成された開口窓か
ら視認できるように配置される。
能に応じて画素数などの仕様を適宜設定することができる。例えば、表示パネル(A)5
008を主画面とし、表示パネル(B)5009を副画面として組み合わせることができ
る。
。例えば、蝶番5010の部位に撮像素子を組み込んで、カメラ付きの携帯電話機として
も良い。操作スイッチ類5004、表示パネル(A)5008、表示パネル(B)500
9を一つの筐体内に納めた構成としても、上記した作用効果を奏することができる。表示
部を複数個そなえた情報表示端末に本実施形態の構成を適用しても、同様な効果を得るこ
とができる。
機能を有する。カレンダー、日付又は時刻などを表示部に表示する機能を有する。表示部
に表示した情報を操作又は編集する機能を有する。様々なソフトウェア(プログラム)に
よって処理を制御する機能を有する。無線通信機能を有する。無線通信機能を用いて他の
携帯電話、固定電話又は音声通信機器と通話する機能を有する。無線通信機能を用いて様
々なコンピュータネットワークに接続する機能を有する。無線通信機能を用いて様々なデ
ータの送信又は受信を行う機能を有する。着信、データの受信、又はアラームに応じてバ
イブレータが動作する機能を有する。着信、データの受信、又はアラームに応じて音が発
生する機能を有する。なお、図58に示した携帯電話が有する機能はこれに限定されず、
様々な機能を有することができる。
することができる。そのような電子機器として、ビデオカメラ、デジタルカメラ、ゴーグ
ル型ディスプレイ、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディ
オコンポ等)、コンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯
電話、携帯型ゲーム機又は電子書籍等)、記録媒体を備えた画像再生装置(具体的にはD
igital Versatile Disc(DVD)等の記録媒体を再生し、その画
像を表示しうるディスプレイを備えた装置)などが挙げられる。
を含む。図59(A)に示すディスプレイは、様々な情報(静止画、動画、テキスト画像
など)を表示部に表示する機能を有する。なお、図59(A)に示すディスプレイが有す
る機能はこれに限定されず、様々な機能を有することができる。
ー5124、外部接続ポート5125、シャッターボタン5126等を含む。図59(B
)に示すカメラは、静止画を撮影する機能を有する。動画を撮影する機能を有する。撮影
した画像(静止画、動画)を自動で補正する機能を有する。撮影した画像を記録媒体(外
部又はデジタルカメラに内臓)に保存する機能を有する。撮影した画像を表示部に表示す
る機能を有する。なお、図59(B)に示すカメラが有する機能はこれに限定されず、様
々な機能を有することができる。
ーボード5134、外部接続ポート5135、ポインティングデバイス5136等を含む
。図59(C)に示すコンピュータは、様々な情報(静止画、動画、テキスト画像など)
を表示部に表示する機能を有する。様々なソフトウェア(プログラム)によって処理を制
御する機能を有する。無線通信又は有線通信などの通信機能を有する。通信機能を用いて
様々なコンピュータネットワークに接続する機能を有する。通信機能を用いて様々なデー
タの送信又は受信を行う機能を有する。なお、図59(C)に示すコンピュータが有する
機能はこれに限定されず、様々な機能を有することができる。
5143、操作キー5144、赤外線ポート5145等を含む。図59(D)に示すモバ
イルコンピュータは、様々な情報(静止画、動画、テキスト画像など)を表示部に表示す
る機能を有する。表示部にタッチパネルの機能を有する。カレンダー、日付又は時刻など
を表示する機能を表示部に有する。様々なソフトウェア(プログラム)によって処理を制
御する機能を有する。無線通信機能を有する。無線通信機能を用いて様々なコンピュータ
ネットワークに接続する機能を有する。無線通信機能を用いて様々なデータの送信又は受
信を行う機能を有する。なお、図59(D)に示すモバイルコンピュータが有する機能は
これに限定されず、様々な機能を有することができる。
あり、本体5151、筐体5152、表示部A5153、表示部B5154、記録媒体(
DVD等)読み込み部5155、操作キー5156、スピーカー部5157等を含む。表
示部A5153は主として画像情報を表示し、表示部B5154は主として文字情報を表
示することができる。
ン5163、支持部5164を含む。図59(F)に示すゴーグル型ディスプレイは、外
部から取得した画像(静止画、動画、テキスト画像など)を表示部に表示する機能を有す
る。なお、図59(F)に示すゴーグル型ディスプレイが有する機能はこれに限定されず
、様々な機能を有することができる。
73、操作キー5174、記憶媒体挿入部5175等を含む。本発明の表示装置を表示部
5172に用いた携帯型遊技機は、鮮やかな色彩を表現することができる。図59(G)
に示す携帯型遊技機は、記録媒体に記録されているプログラム又はデータを読み出して表
示部に表示する機能を有する。他の携帯型遊技機と無線通信を行って情報を共有する機能
を有する。なお、図59(G)に示す携帯型遊技機が有する機能はこれに限定されず、様
々な機能を有することができる。
2、操作キー5183、スピーカー5184、シャッターボタン5185、受像部518
6、アンテナ5187等を含む。図59(H)に示すテレビ受像機付きデジタルカメラは
、静止画を撮影する機能を有する。動画を撮影する機能を有する。撮影した画像を自動で
補正する機能を有する。アンテナから様々な情報を取得する機能を有する。撮影した画像
、又はアンテナから取得した情報を保存する機能を有する。撮影した画像、又はアンテナ
から取得した情報を表示部に表示する機能を有する。なお、図59(H)に示すテレビ受
像機付きデジタルカメラが有する機能はこれに限定されず、様々な機能を有することがで
きる。
するための表示部を有することを特徴とする。本発明に係る電子機器は、データが重複し
ている場合に該データをメモリに格納することで回路の動作頻度を減少させることができ
るので、消費電力が小さく、長時間の電池駆動が可能である。
次に、本発明に係る表示装置の応用例について説明する。
は、筐体5200、表示パネル5201、スピーカー部5202等を含む建造物を示して
いる。なお、5203は、表示パネル5201を操作するためのリモコン装置である。
り視野角特性に優れた表示品位の高い表示パネルを得ることができる。なお、また、画素
部を構成するトランジスタに同一導電型のトランジスタやトランジスタの半導体層に非晶
質半導体を用いることで低コスト化を図ることもできる。
要とすることなく設置することができる。
示パネル5301は、ユニットバス5302と一体にして取り付けられており、入浴者は
入浴しながら表示パネル5301の視聴が可能となる。表示パネル5301には入浴者が
操作することで情報を表示することができる。そのため、広告や娯楽手段として利用でき
る機能を有する。
り視野角特性に優れた表示品位の高い表示パネルを得ることができる。なお、また、画素
部を構成するトランジスタに同一導電型のトランジスタやトランジスタの半導体層に非晶
質半導体を用いることで低コスト化を図ることもできる。
なく、様々な場所と一体に設けることができる。たとえば、鏡面の一部や浴槽自体と一体
に設けられていても良い。また、表示装置の形状は、鏡面や浴槽の形状に合わせたものと
なっていてもよい。
図62において、表示パネル5402は柱状体5401の曲面に合わせて湾曲されている
。ここでは、柱状体5401を電柱として説明する。
のように屋外で繰り返し林立している建造物に表示パネル5402を設置することで、不
特定多数の視認者に対し表示パネル5402を介して情報を提供することができる。その
ため、表示パネルを広告として利用することが適している。また、表示パネル5402は
、外部からの制御により同じ画像を表示させること、また瞬時に画像を切替えることが容
易であるため、極めて効率的な情報表示及び広告効果が期待できる。また、表示パネル5
402に自発光型の表示素子を設けることで、夜間であっても視認性の高い表示媒体とし
て有用であるといえる。また、表示パネル5402を電柱に設置することで表示パネル5
402の電力供給手段の確保が容易である。また、災害発生時などの非常事態の際には、
被災者に素早く正確な情報を伝達する手段ともなり得る。
り視野角特性に優れた表示品位の高い表示パネルを得ることができる。なお、また、画素
部を構成するトランジスタに同一導電型のトランジスタやトランジスタの半導体層に非晶
質半導体を用いることで低コスト化を図ることもできる。また、フィルム状の基板に設け
られた有機トランジスタを用いても良い。
柱状体を例示したが、他の様々な建造物にも設けることが可能である。
る。表示パネル5502は、自動車の車体5501と一体にして設けられており、車体の
動作や車体内外から入力される情報をオンデマンドに表示することができる。また、表示
パネル5502はナビゲーション機能を有していてもよい。
り視野角特性に優れた表示品位の高い表示パネルを得ることができる。なお、また、画素
部を構成するトランジスタに同一導電型のトランジスタやトランジスタの半導体層に非晶
質半導体を用いることで低コスト化を図ることもできる。
所に設けることができる。たとえば、ガラス窓、ドア、ハンドル、シフトレバー、座席シ
ート、ルームミラー等と一体にして設けてもよい。このとき、表示パネル5502の形状
は、設置するものの形状に合わせたものとなっていてよい。
ある。
ついて示した図である。従来の紙による広告に比べて、広告切替えの際に必要となる人件
費がかからないという利点がある。また、表示パネル5602は、外部からの信号により
表示部で表示される画像の切り替えを瞬時に行なうことが可能であるため、たとえば電車
の乗降客の客層が入れ替わる時間帯ごとに表示パネルの画像を切り替えることができる。
このように画像の切り替えを瞬時に行うことで、より効果的な広告効果が期待できる。
5604に表示パネル5602を設けた例について示した図である。このように、本発明
に係る表示装置は、従来では設置が困難であった場所に容易に設けることが可能であるた
め、効果的な広告効果を得ることができる。また、本発明に係る表示装置は、外部からの
信号により表示部で表示される画像の切り替えを瞬時に行なうことが可能であるため、広
告切替え時に生じていたコストや時間を削減でき、より柔軟な広告の運用および情報伝達
が可能となる。
ている。本発明により視野角特性に優れた表示品位の高い表示パネルを得ることができる
。なお、また、画素部を構成するトランジスタに同一導電型のトランジスタやトランジス
タの半導体層に非晶質半導体を用いることで低コスト化を図ることもできる。
とえば、つり革、座席シート、てすり、床等と本発明に係る表示装置を一体にして設けて
もよい。このとき、表示パネル5602の形状は、設置するものの形状に合わせたものと
なっていてもよい。
た図である。
たときの使用時の形状について示した図である。表示パネル5702は、ヒンジ部570
3を介して天井5701と一体にして設けられており、ヒンジ部5703の伸縮により乗
客は所望の位置での表示パネル5702の視聴が可能となる。表示パネル5702は乗客
が操作することで情報を表示することができる。そのため、広告や娯楽手段として利用で
きる機能を有する。また、図65(b)に示すように、ヒンジ部を折り曲げて天井570
1に格納することにより、離着陸時の安全に配慮することができる。なお、緊急時に表示
パネル5702の表示素子を点灯させることで、情報伝達手段および誘導灯としても利用
可能である。
ている。本発明により視野角特性に優れた表示品位の高い表示パネルを得ることができる
。なお、また、画素部を構成するトランジスタに同一導電型のトランジスタやトランジス
タの半導体層に非晶質半導体を用いることで低コスト化を図ることもできる。
所と一体に設けることができる。たとえば、座席シート、座席テーブル、肘掛、窓等と一
体にして設けてもよい。また、多数の人が同時に視聴できる大型の表示パネルを、機体の
壁に設置してもよい。このとき、表示パネル5702の形状は、設置するものの形状に合
わせたものとなっていてよい。
いて例示したがこれらに限定されず、自動二輪車、自動四輪車(自動車、バス等を含む)
、電車(モノレール、鉄道等を含む)、船舶等の様々なものを適用することができる。本
発明に係る表示装置は、外部からの信号により、移動体内における表示パネルの表示を瞬
時に切り替えることが可能であるため、移動体に本発明に係る表示装置を設置することに
より移動体を不特定多数の顧客を対象とした広告表示板、災害発生時の情報表示板等の用
途に用いることが可能となる。
一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、
又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各
々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させるこ
とが出来る。
び実施例の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換え
などを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関し
て、別の実施の形態および実施例の部分を組み合わせることにより、さらに多くの図を構
成させることが出来る。
具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した
場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての
一例などを示している。したがって、他の実施の形態および実施例で述べた内容は、本実
施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
30 TFT
3a 走査線
63 スイッチ
6a データ線(信号線)
111 第1のスイッチ
112 第2のスイッチ
113 第3のスイッチ
114 第1の抵抗
115 第2の抵抗
116 信号線
117 第1の走査線
118 共通電極
119 Cs線
120 第2の走査線
121 第1の液晶素子
122 第2の液晶素子
131 第1の保持容量
132 第2の保持容量
141 ノード
142 ノード
201 第3の走査線
212 第2のトランジスタ
311 信号線駆動回路
312 走査線駆動回路
313 画素部
314 画素
500 画素
517 第1の走査線
612 第2のトランジスタ
613 第3のトランジスタ
620 トランジスタ
621 トランジスタ
821 トランジスタ
920 トランジスタ
1014 トランジスタ
1114 トランジスタ
1200 ノード
1201 ユニット
1214 トランジスタ
1223 液晶素子
1233 保持容量
1414 トランジスタ
1601 第3の保持容量
1712 第2のスイッチ
1722 第2のトランジスタ
1733 第3のスイッチ
1743 第3のトランジスタ
1750 トランジスタ
1751 液晶素子
1752 保持容量
1901 第3の保持容量
1911 第3の保持容量
1921 第3の保持容量
1922 ノード
1923 ノード
1924 トランジスタ
1931 第3の保持容量
1932 ノード
8300 配線
8411 第1のトランジスタ
1300a サブ画素
1300b サブ画素
1400a サブ画素
1400b サブ画素
1500a サブ画素
1500b サブ画素
1600a サブ画素
1600b サブ画素
Claims (2)
- 第1のサブピクセルと、第2のサブピクセルと、を有し、
前記第1のサブピクセルは、第1のトランジスタ、第1の画素電極と、第1の容量と、第3の画素電極と、第3の容量と、を有し
前記第2のサブピクセルは、第2のトランジスタ、第2の画素電極と、第2の容量と、を有し
前記第1のトランジスタは、ゲートが第1の配線に電気的に接続され、ソース又はドレインの一方が、スイッチを介して第2の配線に電気的に接続され、
前記第1の画素電極は、前記第1のトランジスタのソース又はドレインの他方に電気的に接続され、
前記第1の容量の第1の電極は、前記第1の画素電極に電気的に接続され、
前記第3の画素電極は、前記第1のトランジスタのソース又はドレインの一方に電気的に接続され、
前記第3の容量の第1の電極は、第3の画素電極に電気的に接続され、
前記第1の容量の第2の電極と、前記第3の容量の第2の電極とは、それぞれ、第3の配線に電気的に接続され、
第2のトランジスタは、ゲートが前記第1の配線に電気的に接続され、ソース又はドレインの一方が前記第2の配線に電気的に接続され、
前記第2の画素電極は、前記第2のトランジスタのソース又はドレインの他方に電気的に接続され、
前記第2の容量の第1の電極は、前記第2の画素電極に電気的に接続され、
前記第2の容量の第2の電極は、第4の配線に電気的に接続され、
前記第3の配線に供給される電位は、前記第4の配線に供給される電位とは異なり、
前記第1のサブピクセルは前記第1の配線の一方の側に位置し、前記第2のサブピクセルは前記第1の配線の他方の側に位置し、
前記第1のトランジスタは、チャネル部分に酸化物半導体を有し、
前記第2のトランジスタは、チャネル部分に酸化物半導体を有することを特徴とする半導体装置。 - 請求項1に記載の半導体装置は、表示装置であることを特徴とする半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016154190A JP6298116B2 (ja) | 2016-08-05 | 2016-08-05 | 半導体装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016154190A JP6298116B2 (ja) | 2016-08-05 | 2016-08-05 | 半導体装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015076539A Division JP5986660B2 (ja) | 2015-04-03 | 2015-04-03 | 液晶表示装置、モジュール、電子機器 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017132447A Division JP6359732B2 (ja) | 2017-07-06 | 2017-07-06 | 液晶表示装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016218466A JP2016218466A (ja) | 2016-12-22 |
JP6298116B2 true JP6298116B2 (ja) | 2018-03-20 |
Family
ID=57581070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016154190A Active JP6298116B2 (ja) | 2016-08-05 | 2016-08-05 | 半導体装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6298116B2 (ja) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63309924A (ja) * | 1987-06-10 | 1988-12-19 | Fujitsu Ltd | アクティブマトリクス型液晶表示装置 |
US5204659A (en) * | 1987-11-13 | 1993-04-20 | Honeywell Inc. | Apparatus and method for providing a gray scale in liquid crystal flat panel displays |
JP3343160B2 (ja) * | 1992-09-25 | 2002-11-11 | ソニー株式会社 | 液晶表示装置 |
JPH0713191A (ja) * | 1993-06-28 | 1995-01-17 | Casio Comput Co Ltd | アクティブマトリックス液晶表示素子 |
JP3918147B2 (ja) * | 2001-06-22 | 2007-05-23 | 株式会社日立製作所 | 液晶表示装置および携帯情報機器 |
US7782346B2 (en) * | 2004-09-30 | 2010-08-24 | Sharp Kabushiki Kaisha | Liquid crystal display |
TWI338796B (en) * | 2004-10-29 | 2011-03-11 | Chimei Innolux Corp | Multi-domain vertically alignmentliquid crystal display panel |
CN101053009B (zh) * | 2004-11-05 | 2010-06-16 | 夏普株式会社 | 液晶显示装置及其驱动方法 |
JP4571845B2 (ja) * | 2004-11-08 | 2010-10-27 | シャープ株式会社 | 液晶表示装置用基板及びそれを備えた液晶表示装置及びその駆動方法 |
JP5126729B2 (ja) * | 2004-11-10 | 2013-01-23 | キヤノン株式会社 | 画像表示装置 |
JP5078246B2 (ja) * | 2005-09-29 | 2012-11-21 | 株式会社半導体エネルギー研究所 | 半導体装置、及び半導体装置の作製方法 |
-
2016
- 2016-08-05 JP JP2016154190A patent/JP6298116B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016218466A (ja) | 2016-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5542297B2 (ja) | 液晶表示装置、表示モジュール及び電子機器 | |
JP5542296B2 (ja) | 液晶表示装置、表示モジュール及び電子機器 | |
JP6242991B2 (ja) | 液晶表示装置 | |
JP6990264B2 (ja) | 透過型液晶表示装置 | |
JP6563991B2 (ja) | 透過型液晶表示装置 | |
JP6563987B2 (ja) | 透過型液晶表示装置 | |
JP6523532B2 (ja) | 表示装置 | |
JP5986660B2 (ja) | 液晶表示装置、モジュール、電子機器 | |
JP7308341B2 (ja) | 透過型液晶表示装置 | |
JP7185747B2 (ja) | 透過型液晶表示装置 | |
JP7155452B2 (ja) | 透過型液晶表示装置、電子機器 | |
JP6831491B2 (ja) | 透過型液晶表示装置 | |
JP7237439B1 (ja) | 透過型液晶表示装置、電子機器 | |
JP6359732B2 (ja) | 液晶表示装置 | |
JP7508657B2 (ja) | 透過型液晶表示装置 | |
JP6563990B2 (ja) | 透過型液晶表示装置 | |
JP6669919B2 (ja) | 表示装置 | |
JP6298116B2 (ja) | 半導体装置 | |
JP6842527B2 (ja) | 液晶表示装置 | |
JP6251312B2 (ja) | 液晶表示装置、モジュール、電子機器 | |
JP2023123683A (ja) | 液晶表示装置 | |
JP2014197202A (ja) | 液晶表示装置 | |
JP2015146034A (ja) | 液晶表示装置、モジュール、電子機器 | |
JP2014197201A (ja) | 液晶表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6298116 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |