Nothing Special   »   [go: up one dir, main page]

JP6038685B2 - リチウム測定方法 - Google Patents

リチウム測定方法 Download PDF

Info

Publication number
JP6038685B2
JP6038685B2 JP2013038289A JP2013038289A JP6038685B2 JP 6038685 B2 JP6038685 B2 JP 6038685B2 JP 2013038289 A JP2013038289 A JP 2013038289A JP 2013038289 A JP2013038289 A JP 2013038289A JP 6038685 B2 JP6038685 B2 JP 6038685B2
Authority
JP
Japan
Prior art keywords
lithium
sensitivity
tetraphenylporphyrin
concentration
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013038289A
Other languages
English (en)
Other versions
JP2014095684A (ja
Inventor
鈴木 裕子
裕子 鈴木
拓也 岩渕
拓也 岩渕
小田嶋 次勝
次勝 小田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
METALLOGENICS Co.,Ltd.
Original Assignee
METALLOGENICS Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by METALLOGENICS Co.,Ltd. filed Critical METALLOGENICS Co.,Ltd.
Priority to JP2013038289A priority Critical patent/JP6038685B2/ja
Publication of JP2014095684A publication Critical patent/JP2014095684A/ja
Application granted granted Critical
Publication of JP6038685B2 publication Critical patent/JP6038685B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

本発明は、尿、血清、血漿、血液試験試料を含む生体試料や、飲料水を含む環境試料等の水溶液中のリチウム測定方法に関する。
従来よりリチウム含有の気分安定薬は、躁うつ病、てんかん、双極性障害の治療に有効であるため多用されているが、投与に際しては血清中のリチウム濃度を適正な範囲にコントロールする必要がある。
一般的には、双極性障害(躁うつ病)の治療薬、或いは抗うつ薬とともに気分安定薬として炭酸リチウム錠(経口投与)が広く処方されている。炭酸リチウム(Li2CO3)はリチウム中毒となる血中濃度近辺まで処方しないと投与効果が現れないという特徴を有しており、治療域と中毒域とが極めて近いため、薬物血中濃度モニタリングが必要項目(TDM)に指定されている。
さらに詳しくは、常時、投薬患者の試料血漿内のリチウム濃度が0.6〜1.2 mEq/Lとなるように調節しなければ成らないが、これは血清中のリチウム濃度が0.6mEq以下で余り少なすぎると気分安定効果がなく、逆に、これが必要以上に投与され、その濃度が1.5 mEq/Lを超え、さらに過剰に投与されるとリチウム中毒を引き起こし、振戦、構語障害、眼振、腎障害、痙攣を含む重篤な副作用が現れる。もし潜在的にこれらの兆候が見られた際には、治療を中止し、血漿あるいは血清中のリチウム濃度を再測定し、リチウム中毒を緩和する措置を行わなければならない。
このように、リチウム塩の気分安定薬は鬱病、双極性障害、てんかん等の患者の治療等に効果があるものの、過剰投与の場合には重大な障害が生じるので、これを投与する場合は、常に血清中のリチウム濃度を0.6〜1.2 mEq/Lになるように監視することが必須事項である。
このことから、従来、血清中のリチウムの定量測定が必要とされ、リチウムの比色測定を可能にさせる臨床検査用の液状試薬組成物の開発が進められている。
この先行技術として、特許文献1にはクリプタンドイノフォアを用いた生物学的検体中のリチウムの濃度を測定する試薬組成物が開示されている。
また、特許文献2には、ピロール環を持つ大環状化合物であって、ピロール環のβ位に8個の臭素(Br)原子を結合させたリチウムイオンと反応する分析試薬が開示されている。
なお、非特許文献1として、テトラフェニルポルフィリンの炭素に結合している水素を全部フッ素に置き換えた化合物で、リチウムイオンの検出・分離ができることが開示されている。
特開平7−113807号公報 欧州特許1283986号公報(B1) 特許第5100903号公報 分析化学 Vol.51,No.9,PP.803-807(2002)[F28テトラフェニルポルフィリンの合成とリチウムイオンの分離・検出への応用]小柳健治・田端正明
従来のリチウム試薬組成物がいくつか知られているが、その組成が毒劇物であったり、原薬が供給不安定で高価であり、ほとんどの原薬が水に溶解しないか、或いは水に溶解すると失活し発色せず、発色反応が遅い。
これらを克服したとされる特許文献2に開示された技術は、発色法を可能としているが、発色感度が大きすぎるため検体の希釈処理が必要であり、試薬組成物の仕様がpH11以上であるため空気中のCO2により変質しやすく、測定データが不安定で、更に、pH11以上となると、もはや水酸化ナトリウムや水酸化カリウムのような濃厚な水酸化物溶液しか使えないのでpHを一定に維持していくことができず、また、これらは劇物であるので使用者にとっても忌避的なもので取り扱いが厄介であることや、実際の保存には汎用ではなく専用容器が必要であり、これらの欠陥を補うため機械的設備が大型かつ専用機器が必要で汎用性に欠くといった問題点があった。このため、オンサイトモニタリング、POCT(Point Of Care Testing)に適用させることが困難であるといった問題点もあった。
ところで、前述の特許文献1のリチウムの定量を目的とする試薬組成物は、本発明とは全く異なった化合物を使用しており、pH12でしか使用できず、前述したように、pH11以上となると、もはや水酸化ナトリウムや水酸化カリウムのような濃厚な水酸化物溶液しか使えず、これらは劇物であるので使用者にとっても取り扱いが厄介であり、更に、これらを補うために大型の専用機器が必要で、汎用性に欠くといった問題点があった。
また、非特許文献1である小柳らの論文は、F28テトラフェニルポルフィリンを用いてリチウムイオンの分離・検出ができることが開示されているが、油性、且つ毒劇物であるクロロホルムを用いた溶媒抽出を行わなければ、リチウムの検出・分離はできなかった。何よりも、水溶液中のリチウムを煩雑な前処理なしに直接定量することはできず、特に、血清中のリチウムを迅速、且つ定量的に測定することはできないといった問題点があった。このように、F28テトラフェニルポルフィリンを用いて水溶液中のリチウムの検出は難しく、定量的に濃度を測定することは困難で今までに実現されていなかった。
そこで、本発明者らは、血清及び血漿試験試料をテトラフェニルポルフィリンの炭素に結合している水素の全部を28個のフッ素に置き換えた構造式
Figure 0006038685
で表される化合物と、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)から選択される水に混合し得る有機溶剤と、pH5からpH12の範囲でのリチウムに対して発色可能とするpH調節剤とを包含した水溶液とするリチウム試薬組成物と接解し、該水溶液中のリチウム錯体の発色、及びそのスペクトルを測定して、リチウムの定量値を算出する血清試験試料中のリチウムイオンを測定方法を、前掲の特許文献3の特許第5100903号公報として提案している。
この特許におけるリチウムイオンを測定方法は、スペクトルを測定において、テトラフェニルポルフィリン金属錯体に典型的なソーレー帯(380nmから460nm近傍)と呼ばれる最大感度が得られる波長ではなく、血清検体中リチウム濃度範囲に対して最適な感度が得られる波長550nm、或いは、その近傍の波長530nmから560nmの波長帯を測光波長とすることにより、希釈操作、或いは希釈装置等の煩雑な操作、それに伴う付帯設備が不必要となるようにしている。
しかしながら、溶血している血清等の検体においては妨害因子としてヘモグロビン由来の540nm付近、560nmから650nm付近の二つの吸収ピーク(各々、βバンド、αバンド)が生じることが一般的に知られているが、このようなヘモグロビンを高濃度に含む検体と本発明の試薬組成物とを接解させた場合、本発明の測光波長である550nmとヘモグロビンのβ、αバンド由来の540nmの吸収が重複するため、実際の測定値に対して正の誤差が生じることが判った。
すなわち、(リチウム・F28テトラフェニルポルフィリン錯体由来の550nmの感度)+(ヘモグロビン由来550nmの感度)= 550nmの測定感度(∴ヘモグロビン由来の正の誤差が生じる。)である。
上記課題を解決するために、請求項1の発明は、血清及び血漿試験試料をテトラフェニルポルフィリンの炭素に結合している水素の全部を28個のフッ素に置き換えた構造式
Figure 0006038685
で表される化合物と、水に混合し得る有機溶剤と、pH5からpH12の範囲でのリチウムに対して発色可能とするpH調節剤とを包含した水溶液とするリチウム試薬組成物と接解し、該水溶液中のリチウム・F28テトラフェニルポルフィリン錯体のスペクトルを測定して、リチウムの定量値を算出する血清試験試料中のリチウムイオンを測定方法において、
前記リチウム・F28テトラフェニルポルフィリン錯体のスペクトルの波長550nm又はその近傍の波長530nmから560nmの波長帯を測定波長とし、別途ヘモグロビンの600nmの感度を測定して、測定波長に含まれるヘモグロビンの550nmの感度を600nmの感度で相殺するように次の算出式を用い、
(算出式)550nmの感度=リチウム・F28テトラフェニルポルフィリン錯体の550nm感度 + ヘモグロビンの550nm感度 − ヘモグロビンの600nm感度、
リチウム・F28テトラフェニルポルフィリン錯体の本来の550nm感度を算出するようにしたことを特徴とするリチウムイオン測定方法である。
本発明のリチウム測定方法によれば、血清試験試料中のリチウム濃度をより正確に検出することができる。
すなわち、溶血している血清等の検体においては妨害因子としてヘモグロビン由来の540nm付近、560nmから650nm付近の二つの吸収ピーク(各々、βバンド、αバンド)が生じることが一般的に知られているが、このようなヘモグロビンを高濃度に含む検体と本発明の試薬組成物とを接解させた場合、本発明の測光波長である550nmとヘモグロビンのβ、αバンド由来の540nmの吸収が重複するため、実際の測定値に対して正の誤差が生じるため、ヘモグロビンの550nmと600nmの二つの感度比がほぼ同一であること、つまり、ヘモグロビンの550nmの感度=ヘモグロビンの600nmの感度であることに注目し、ヘモグロビンの550nmの感度を600nmの感度で相殺することができることに着目した。
ここで、550nmの感度 = リチウム・F28テトラフェニルポルフィリン錯体の550nm感度 + ヘモグロビンの550nm感度 − ヘモグロビンの600nm感度、とすれば、ヘモグロビン由来の550nmの感度を相殺してより正しい550nmの感度、即ち、血清試験試料中のリチウム濃度をより正確に検出することができる。
本発明のF28テトラフェニルポルフィリンの適量濃度の参考計算表の図である。 本発明に実施例1の紫外−可視分光光度計での実験結果のグラフ、 本発明に実施例1での測光波長別のリチウム濃度検量線のグラフの図、 本発明に実施例1でのF28テトラフェニルポルフィリン−リチウム錯体生成のスペクトル変化(発色反応)のグラフ、 本発明に実施例1の血清試料測定値と原子吸光法(従来法)測定値との相関試験結果のグラフ、 本発明に管理血清を試料とした自動分析装置による測定値の比較の[表1]、 本発明での副波長補正による容血ヘモグロビンによる測定値への影響を表す[表2] 先行技術での目視によるリチウム濃度判定の[表3]、 本発明での目視によるリチウム濃度判定の[表4]、 本発明での検体に白色光を照射する装置の概略図、 本発明の光化学互変異性化反応の完結時間における照度の影響のグラフ、 F28テトラフェニルポルフィリン由来の光化学互変異性体の電子吸収スペクトルのグラフ、 F28テトラフェニルポルフィリン錯体への光照射後の電子吸収スペクトルのグラフである。
本発明者らは、血清及び血漿中のリチウム濃度をより簡単に定量測定できるリチウム試薬組成物を鋭意研究し、前掲の非特許文献1で製法が開示された、ピロール環を持つ大環状化合物を用い、テトラフェニルポルフィリンの炭素に結合している水素を全部フッ素に置き換えてフッ素を28個とした下記の構造式(以下、F28テトラフェニルポルフィリンと称す)に着目して、本発明の測定方法に使用するリチウム試薬組成物に想到した。
Figure 0006038685
ピロール環を持つ大環状化合物を利用したリチウム試薬組成物として前掲特許文献2に、ピロール環を持つ大環状化合物であってピロール環のβ位に8個の臭素(Br)原子を結合させ、リチウムイオンと反応する分析試薬が開発されているが、pH11以上のアルカリ性でなければリチウムイオンと反応しづらい。一方、前掲特許文献3にあるF28テトラフェニルポルフィリンであれば、pH5からpH12でも反応するので、本発明の測定方法で使用するリチウム試薬組成物は、このF28テトラフェニルポルフィリンをキレート剤として、水溶液系でのリチウムイオンの定量測定に使用でき、また、目視でも明確に判定できるようにしたものであり、先ず、このリチウム定量測定試薬組成物について説明する。
生体試料や環境試料等の水溶液中のリチウムイオンが前記リチウム試薬組成物、特にテトラフェニルポルフィリンの炭素に結合している水素を全部フッ素に置き換えた化合物がキレート剤(発色剤)となってリチウムキレート発色錯体を形成し、所定の輝度の白色光を照射、または露光させることにより、未反応のキレート配位子のみを光化学互変異性体としての構造異性体に変化せしめる。この結果、被検体中のリチウム濃度において、0.5 mEq/L(= mol/L)以下では緑色、0.5 mEq/Lから1.5 meq/Lでは黄色、1.5 mEq/L以上では赤色を呈した。この呈色変化は管理域、中毒域における閾値レベルに都合よく合致しており、目視並びに比色により明瞭に検出できる。
本発明で使用する検体では、上記のリチウム試薬組成物中の、F28テトラフェニルポルフィリンの濃度を0.1〜1.0g/Lとし、好ましくは、0.5g/Lとすれば管理域と中毒域に相当するリチウム濃度を判別する場合に最適であることも見出した。
本発明のpH調節剤について、それが、pH5.0未満の酸性側では、本発明の発色剤(キレート剤)であるF28テトラフェニルポルフィリン化合物とリチウムイオンは結合しないため、呈色変化が起こらず、リチウムの定量は困難である。また、pHが5〜7の間では前記発色剤とリチウムイオンは特異的に反応するが、発色速度が緩やかである。
一方、pH8〜11では前記発色剤とリチウムイオンは速やかに反応し、且つ安定な発色錯体を得られる。pH11を越えるアルカリ性側では、前記キレート剤、生成した発色錯体の色調の経時的な安定性が悪い。これは、空気中の二酸化炭素を吸収することによるpHの変動が生じやすいことに起因する。したがって、リチウム試薬組成物のpH調節剤としてはpHを7から12の範囲とするpH調節剤、或いはpH調節剤としてのpH緩衝剤が必要であり、より好ましくは、pH8〜11となるようなpH調節剤、pH緩衝剤の使用が必要である。
前記pH調節剤は、水酸化ナトリウム、水酸化カリウム、アンモニアを含むアルカリ剤、酢酸、リン酸、くえん酸、炭酸、重炭酸、しゅう酸、塩酸、硝酸を含む酸剤、及び、これらの塩類から選択されるものを使用し、前記pH調節剤はpH緩衝剤でもよく、クエン酸、炭酸、重炭酸、りん酸、コハク酸、フタル酸、塩化アンモニウム、水酸化ナトリウム、水酸化カリウム、Goodの緩衝剤としてMES、Bis-Tris、ADA、PIPES、ACES、MOPSO、BES、MOPS、TES、HEPES、DIPSO、TAPSO、POPSO、HEPPSO、EPPS、Tricine、Bicine、TAPS、CHES、CAPSO、CAPS、及び、これらの塩類から選択されるものを使用する。
これらの含有によって前記リチウム試薬組成物は、pH5からpH12の範囲でリチウムに対して、特異的な発色反応が可能である。
本発明のリチウム試薬組成物に包含させる溶剤は、水に混合し得る有機溶剤(極性溶媒)であることが必須であるが、被検体である血清、血漿、または細胞由来の溶出液等の水溶液と均一に混合できれば、有機溶媒を主とした溶液であっても、或いは、有機溶媒が添加された水溶液であってもよい。これは、汎用型の自動分析装置、紫外可視分光光度計により検体中のリチウム濃度を測定する場合はその被検体が水溶液であるため、その試薬組成物も同様に水溶液であることが望ましいからである。
前記有機溶剤は、水に混合し得る有機溶剤(極性溶媒)であればよく、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)等から選択される。
本発明で使用する試薬組成物において、実際の製品では安定剤を混入させるが、本発明では安定剤として界面活性剤を使用している。この界面活性剤はF28テトラフェニルポルフィリンの分散性を高め、さらに、発色反応時における試料由来の懸濁を防止させる作用があるので、これらの作用を得るために安定剤を混入することが必要である。
これらの安定剤は、非イオン性界面活性剤又は陰イオン性界面活性剤であり、非イオン性界面活性剤は、ソルビタン脂肪酸エステル、ペンタエリスリトール脂肪酸部分エステル、プロピレングリコールモノ脂肪酸エステル、グリセリン脂肪酸モノエステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン脂肪酸部分エステル、ポリオキシエチレンソルビトール脂肪酸部分エステル、ポリオキシエチレン脂肪酸エステル、脂肪酸ジエタノールアミド、脂肪酸モノエタノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンオクチルフェニルエーテル(商標登録:TritonX-100 ) 、p−ノニルフェノキシポリグリシドール及び、これらの塩類から選択されるものを使用する。
好ましい非イオン性界面活性剤としては、ポリオキシエチレンオクチルフェニルエーテル(Triton X-100(登録商標)等) 、p-ノニルフェノキシポリグリシドールなどである。
また、安定剤としての陰イオン性界面活性剤は、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンフェニルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルカンスルホン酸塩等がある。代表的なものとして、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸エステルナトリウム及び、これらの塩類から選択されるものを使用する。
本発明のリチウム試薬組成物は、試料中に共存するリチウムイオン以外のイオンによりリチウム濃度の測定が妨害されるのを回避し、或いは試薬組成物の酸化を抑制し、その保存安定性を付与するためにマスキング剤を1種類、あるいは複数の種類を含有させてもよい。もっとも、リチウム以外のイオンが少ないのであれば、必ずしも包含する必要がない。
これらリチウム試薬組成物に加えるマスキング剤としては、トリエタノールアミン、エチレンジアミン、N,N,N',N'-テトラキス(2-ピリジルメチル)エチレンジアミン(TPEN)、ピリジン、2,2-ビピリジン、プロピレンジアミン、 ジエチレントリアミン、ジエチレントリアミン−N,N,N',N",N"-五酢酸(DTPA)、トリエチレンテトラアミン、トリエチレンテトラミン-N,N,N',N",N"',N"'-六酢酸(TTHA)、1,10-フェナントロリン、エチレンジアミン四酢酸(EDTA)、O,O'-ビス(2-アミノフェニル)エチレングリコール-N,N,N',N'-四酢酸(BAPTA)、N,N-ビス(2-ハイドロキシエチル)グリシン(Glycine)、トランス-1,2-ジアミノシクロヘキサン-N,N,N',N'-四酢酸(CyDTA)、O,O'-ビス(2-アミノエチル)エチレングリコール-N,N,N',N'-四酢酸(EGTA)、N-(2-ハイドロキシル)イミノ二酢酸(HIDA)、イミノ二酢酸(IDA)、ニトリロ三酢酸(NTA)、 ニトリロトリスメチルりん酸(NTPO)及び、これらの塩類から選択されるものを使用する。好ましくは、トリエタノールアミンが最適である。
本発明のリチウム試薬組成物は、微生物による劣化を防ぐために防腐剤を包含しても良い。防腐剤は特に限定されず、例えばアジ化ナトリウム、Procline(登録商標)等を使用することができる。防腐剤の濃度も特に限定されず、アジ化ナトリウムを使用する場合、一般的に防腐剤として用いられる濃度、例えば反応溶液に対し0.1重量%程度でよい。もっとも、長期保存を目的とした製品とする場合は、防腐剤が処方されるのが普通である。
また、リチウム試薬組成物の機能を長期保存可能にするために、本発明のリチウム試薬組成物の組成のうち、前記pH調節剤と、前記マスキング剤を第一試薬とし、
前記テトラフェニルポルフィリンの炭素に結合している水素を全部フッ素に置き換えた構造式
Figure 0006038685
で表される化合物と、前記水に混合し得る有機溶剤と前記pH調節剤と、前記マスキング剤を第二試薬とし、これら両試薬をセパレートにして保存し、測定直前に両試薬を混合してリチウム試薬組成物として使用するリチウム測定試薬キットとすることができる。
本発明の測定方法に使用するリチウム試薬組成物はテトラフェニルポルフィリンの炭素に結合している水素を全部フッ素に置き換えた前記構造式で表される化合物をキレート剤とし、水に混合し得る有機溶剤と、pH調節剤とを包含した水溶液であり、血清及び血漿試験試料のリチウムイオンと接触せしめることによって生成したリチウム錯体による色調の変化が出現するが、これに所定の光量の光を照射すると、更に、リチウムイオンとは未反応のF28テトラフェニルポルフィリンが鮮やかな緑色に変化し、一方、F28ポルフィリンとリチウムイオンとの発色錯体は赤色のまま変化しない。その結果、リチウム濃度が0.0mMから4.5mMの範囲では鮮やかな緑色から黄色を経て赤へと呈色変化が生じることの発見を原理するもので、このときの明瞭な色調変化を目視による検出、又は比色計で簡便に検出し、血清及び血漿試験試料を混入した水溶液を被検体とすることを特徴とするリチウム測定方法である。
なお、目視によるリチウム測定方法によらず、リチウム試薬組成物によるリチウム錯体の吸光度、及びそのスペクトルを測定してもよく、同様に濃度既知のリチウム標準試料のそれを基準濃度として未知試料の定量値を算出することも可能で、特に、リチウム錯体の発色、及びそのスペクトルにおいて、波長550nm、或いはその近傍の波長530nmから560nmの波長帯を測定波長としてその感度を測定し、又は、波長570nm、或いはその近傍の波長565nmから650nmの波長帯の感度を測定してリチウムの濃度を算出することも可能である。
上記の先行技術の波長の測定方法では、血清及び血漿試験試料を前述したリチウム試薬組成物と接解し、リチウム錯体の発色、及びその吸光度、或いはそのスペクトルを測定して、そのスペクトルにおいて波長550nm、或いはその近傍の波長530nmから560nmの波長帯を測定波長としてその感度を測定し、又は、波長570nm、或いはその近傍の波長565nmから650nmの波長帯の感度を測定してリチウムの定量値を算出することが好ましい。
上述した波長550nm、或いは、その近傍の波長530nmから560nmの波長帯はソーレー帯(波長400nmから500nmの極大吸収を生じる波長帯)を測光波長とした場合よりも検量線の直線性が良好であるので、簡単な比色計や分光光度計での濃度の演算が容易であり、色調が黄色から赤色に鮮やかに変化するので、目視による濃度レベル判定も可能である。従って、従来のリチウム濃度の測定には大型の専用機器を必要としていたが、携帯型比色計や汎用されている紫外可視分光光度計でリチウム濃度を計測することができ、POCT(Point Of Care Testing)キットとして構成することもできる。
次に、実際に本発明に使用するリチウム試薬組成物の実施例1を説明する。
[ 実施例1(リチウム試薬組成試料1)]
本発明の使用するリチウム試薬組成物は、pH緩衝液としての第1試薬を作製し、発色試液として第2試薬を作製し、測定直前に両液を混合してリチウム試薬組成物を作製した。これは、両液を最初から作製しておいても良いが、長時間の保存により試薬が劣化することを避けるためである。
ここで、試薬組成物の作製方法を説明する。
先ず、主に、pH緩衝液としての第1試薬を作製するが、その組成は次のとおりである。
[ 実施例1(リチウム試薬組成試料1)]
(1)第一試薬(安定剤・緩衝液として)
キレート剤:なし
有機溶剤:なし
安定剤(分散剤:非イオン性界面活性剤):
TritonX-100(登録商標)
(ポリオキシエチレンオクチルフェニルエーテル) 1.0 重量%
マスキング剤:トリエタノールアミン 10 mM
以上に、7重量%の塩化アンモニウムを加えてpH10に調節し精製水で1Lとして汎用の保存容器に保管した。
なお、TritonX-100(登録商標)(ポリオキシエチレンオクチルフェニルエーテル)を1.0重量%としたが、少なすぎると測定時に希に濁りが発生したり、多すぎると、反応容器内で泡が発生したり、両因とも再現性に影響する可能性があるため0.1〜5.0重量%の範囲がよく、好ましくは、1.0 重量%である。
また、マスキング剤はトリエタノールアミンを10mM)としたが、少なすぎるとリチウムイオン以外の夾雑イオンが過剰に含まれた試料においてそのマスキング効果が低下したり、多すぎるとリチウムイオン自体をマスキングしてしまったり、測定誤差の原因になり得るため、1.0〜100mMの範囲が良く、好ましくは、10mMである
次に、主に、発色試液としての第2試薬を作製するが、その組成は次のとおりである。
(2)第二試薬(発色試液として)
キレート剤:F28テトラフェニルポルフィリン 0.5 g/L
有機溶剤:ジメチルスルホキシド(DMSO) 20 重量%
安定剤(分散剤:非イオン性界面活性剤):TritonX-100(登録商標)
(ポリオキシエチレンオクチルフェニルエーテル) 1.0 重量%
マスキング剤:トリエタノールアミン 10mM
これに、0.05M(mol/L)になるようにMOPS(Good緩衝剤)を加えpH7.0に調節し、精製水で1Lとして汎用の保存容器に保管した。
ところで、臨床検査での血清中のリチウム定量において、その濃度が広くは0.6 mM〜3 mMの範囲での正確さが求められている。本発明の実施例1では、上記のリチウムの濃度範囲においては、F28テトラフェニルポルフィリンの化合物の濃度を、0.1〜1.0g/Lとすれば、好ましくは、0.5g/Lとすれば正確に測定できることも見出した。
リチウム濃度が0.6mM〜3mMの範囲では、F28テトラフェニルポルフィリンを最終的な試薬組成物での濃度を1L当たり0.1〜1.0g/Lの範囲で測定可能で、好ましくは0.5 g/Lが良い。少なすぎるとF28テトラフェニルポルフィリンとリチウムイオンとの反応が十分に起こらず、多すぎると、F28テトラフェニルポルフィリン由来のブランクの吸光度が増加してしまうといった不都合が生じるため、好ましくは0.5 g/Lである。
この点を、更に詳しく説明すると、F28テトラフェニルポルフィリンとリチウムイオンはモル比で1:1のキレート錯体を形成する反応である。ここで、検体中のリチウム濃度が3mM含まれた検体を、本試薬組成物を用いた実施例1の条件で反応させる場合は、その反応系でのリチウム濃度は約0.02 mMとなる。従って、1:1で反応するF28テトラフェニルポルフィリン濃度も反応系内で0.02mM 以上存在していないと、検体中のリチウムを過不足なく反応させることができない。
一般に、キレート剤と金属イオンとの錯体形成反応(発色反応)は被反応物質(リチウム)に対して等倍〜10倍のモル濃度のキレート剤(F28テトラフェニルポルフィリン)が必要とされており、図1のF28テトラフェニルポルフィリンの適量濃度の参考計算表の図に示すように、反応時のF28テトラフェニルポルフィリンの濃度を等倍から10倍となるように試薬組成物を構成することになるが、現実的に試薬組成物の添加量、検体量のいわゆる測定反応時の用量におけるパラメータは、その測光機種や目的とする閾値により若干の差があるため、その試薬組成物でのキレート剤濃度は等倍である0.1g/Lよりも5倍量である0.5g/Lの方がより広い測定条件に耐えうる。例えば、検体量の微量化技術が低い機種での測定の場合、検体量を実施例1のそれらに対して2倍〜5倍程度増量することが予想されるので、あらかじめ5倍量としての試薬組成物を0.5g/Lとしておけば不足はない。一方、キレート剤をモル比で10倍以上仕込んでも発色反応に与える速度論的な有意性はなく、試薬ブランク値の増大が懸念されるのみであり、これを採用する利点はない。
以上のように、キレート剤とリチウムとの反応モル比の条件さえ達成できればよいので、例えば、第二試薬のキレート剤(F28テトラフェニルポルフィリン)の濃度を1.0 g/Lとした場合は反応時の第二試薬添加量を半量にすることができる。あるいは、その検体量を半減させた場合は同様にキレート剤濃度を半分量とすることもできる。
このように、本実施例1では、F28テトラフェニルポルフィリンを0.5 g/Lとしたが、反応モル量を満たし、且つ試薬ブランク値を最小限にすることを考慮した結果、0.1〜1.0 g/Lの範囲が最適である。
また、ジメチルスルホキシド(DMSO)は5〜30重量%としたが、少なすぎるとF28テトラフェニルポルフィリンの溶液中での分散性が低下し、多すぎると試薬組成物中における有機溶媒の割合が増加してしまうため、好ましくは、20 重量%である。ただし、溶剤としてのDMSO濃度を低減させたい場合は10重量%以下としても全く差支えない。
ここで、本実施例1でのF28テトラフェニルポルフィリンは、テトラフェニルポルフィリンの炭素に結合している水素を全部フッ素に置き換えた下記に示すような構造式である。
Figure 0006038685
(3)上記の第一試薬と第二試薬を混合したリチウム試薬でのリチウム濃度既知試料を用いた検量線の作成を説明する。
実施例1では、試料6μLに第一試薬(緩衝液)720μL、第二試薬(発色試液)240μLを加えた。この場合に第一試薬はpH10における緩衝能があり、試験時の第一試薬、第二試薬、試料を混合した時の試験液のpHはほぼpH=10となる。
このように、キレート剤としてF28テトラフェニルポルフィリンを使用することにより、pH5〜10の範囲で発色反応を達成することができるため、pH12以下の強いpH緩衝作用をもつリチウム測定試薬を構成するので、空気中のCO2の吸収によるpH変動を減らすことができ、結果として測定値への悪影響を回避することができる。また、これにより汎用の容器に保存可能となった。
なお、第一試薬と第二試薬は使用直前に同じ割合で混合し、混合液を試料に同様の容量で添加してもよく、この場合は、試料6μLに混合液940μLを加えて測定対象の試験液としてもよい。
この混合試薬に試料を加えたpH10の試験液を、常温で10分間反応後、紫外−可視分光光度計(日立U-3900形)を用いて試薬ブランクを対照として550nmの吸光度を測定した。その結果を図2のLi濃度mg/dLと吸光度のグラフ、及び、図4のF28テトラフェニルポルフィリン−リチウム錯体生成における可視部のスペクトル変化のグラフである。
テトラフェニルポルフィリン金属錯体に典型的なソーレー帯(380nmから460nm近傍)と呼ばれる最大感度が得られる波長ではなく、血清検体中リチウム濃度範囲に対して最適な感度が得られる波長550nm、或いは、その近傍の波長530nmから560nmの波長帯を測光波長とすることにより、希釈操作、或いは希釈装置等の煩雑な操作、それに伴う付帯設備が不必要となる。
さらに、図3のLi濃度mg/dLと吸光度のグラフ(光波長*405nm,×415nm,●550nm)に示すように、上述した波長550nm、或いは、その近傍の波長530nmから560nmの波長帯はソーレー帯を測光波長とした場合よりも検量線の直線性が良好であるので、簡単な比色計や分光光度計での濃度の演算が容易であり、色調が黄色から赤色に鮮やかに変化するので、目視による濃度レベル判定も可能である。従って、従来のリチウム濃度の測定には大型の専用機器を必要としていたが、本発明により携帯型比色計や汎用されている紫外可視分光光度計でリチウム濃度を計測することができ、POCTキットとして構成することもできる。
ただし、図3のグラフでは、波長●550nmは実施例1そのもの、ソーレー帯の測光波長である*405nm,×415nmは、実施例1と同様に第1試薬、第2試薬を添加したが、感度が高すぎるため、試料を5倍に希釈して測定反応を実施し、405nmと415nmの波長を使用した。図3のグラフから判るように、405nmと415nmの波長の検量線は直線にはならないが、本実施例の550nmを測光波長とした場合は、直線性が良好な検量線が得られる。
また、図4に示すF28テトラフェニルポルフィリン−リチウム錯体生成のスペクトル変化のグラフのように、リチウムの濃度0.6mg/dL、1.2mg/dL、1.8mg/dL、2.4mg/dL、3.0mg/dLと吸光度が直線的に増加していることが、かなり明瞭に確認できる。リチウム濃度に比例して、ポルフィリン-金属錯体に典型的な415nm(ソーレー帯)のピークと、図中に示される550nmの吸収ピークが増大し、570nmの吸収ピークが減少するので、いずれも測光波長として吸光度差を求めることが可能であるが、上述したように直線性が良好な検量線が得られることから550nmを測光波長とすることが好ましい。
もっとも、本実施例1では550nmの吸光度としたが、波長540nmから560nmの波長帯を測光範囲としても良い。これは、測定機器によっては550nmの測光フィルターがない場合があり、この場合はその近傍として感度が生じている540nmとか560nmとかを測光波長に設定すればよい。図4の実施例1でのリチウム濃度による吸光度のグラフに示すように、570nmの感度の減少もリチウム濃度に対して定量的なので、これも試薬ブランクを対照として吸光度差(ΔAbs)を求めることが可能で、測光波長として利用できる。
更に、稀に患者検体の試料によっては、波長550nmに干渉する夾雑物質が生じ、550nm波長ではデータに誤差を生じてしまう場合は、それを回避するため波長570nm、或いはその近傍の565nmから650nmの範囲から測光波長を選択し、感度の減少を吸光度差として用いてリチウム濃度を算出してもよい。
また、上記のリチウム濃度測定方法による誤差の補正、及び修正方法の1つを説明する。
溶血している血清等の検体においては妨害因子としてヘモグロビン由来の540nm付近、560nmから650nm付近の二つの吸収ピーク(各々、βバンド、αバンド)が生じることが一般的に知られているが、このようなヘモグロビンを高濃度に含む検体と本発明の試薬組成物とを接解させた場合、本発明の測光波長である550nmとヘモグロビンのβ、αバンド由来の540nmの吸収が重複するため、実際の測定値に対して正の誤差が生じることが判った。
すなわち、(リチウム・F28テトラフェニルポルフィリン錯体由来の550nmの感度)+(ヘモグロビン由来550nmの感度)= 550nmの測定感度(∴ヘモグロビン由来の正の誤差が生じる。)
ここで、本発明では、ヘモグロビンの550nmと600nmの二つの感度比がほぼ同一であることに注目した。即ち、ヘモグロビンの550nmの感度=ヘモグロビンの600nmの感度であることに注目し、ヘモグロビンの550nmの感度を600nmの感度で相殺することができることに想到した。
したがって、550nmの感度 = リチウム・F28テトラフェニルポルフィリン錯体の550nm感度 + ヘモグロビンの550nm感度 − ヘモグロビンの600nm感度 とすれば、ヘモグロビン由来の550nmの感度を相殺して、より正しい550nmの感度を得ることができる。
以下の実験結果から、本発明の実施例1のリチウム試薬でほぼ正確にリチウム濃度を測定できることを説明する。
[紫外-可視分光光度計(日立U-3900形)での実験結果]
図2のグラフは、紫外-可視分光光度計(日立U-3900形)での測定試験結果である。横軸Xに予め調剤した既知のリチウム濃度(Li濃度mg/dL)、縦軸Yは紫外可視分光光度計による550nmの吸光度差をプロットし、直線回帰した結果である。
この図2のグラフから判ることは、得られた吸光度はリチウム濃度に比例し、直線性良好な検量線が描かれることである。
[血清を試料とした場合の原子吸光法(従来法)と本発明による方法との相関試験結果]
図5のグラフは、図2に説明した実施例1での測定法、同じ血清を試料とした従来の原子吸光法(従来法)でのリチウム濃度測定値との相関試験結果である。縦軸Yは本発明によるリチウム濃度測定値で、横軸Xは原子吸光法(従来法)によるリチウム濃度測定値であるが、図2に示す回帰線から両測定値は95%以上の良好な相関を示した。従って、同じ血清試料に対し本発明の試薬組成物による紫外−可視吸光光度定量法でも、正しく血清試料中のリチウムを定量できていることが示された。
[管理血清を試料とした自動分析による測定値の比較]
リチウム濃度が値付けされた管理血清としてプレチノルムU(PrecinormU)(ロシュ製)、プレチパスU(PrecipathU)(ロシュ製)、パソノルムH(PathonormH)(SERO AS製)、オートノルム(Auto norm)(SERO AS製)を試料として生化学自動分析装置(日立H-7700形)にて546nm(550nmに近い波長で本機に実装されている波長)を測光波長として1ポイントエンド法により測定した。

(装置パラメータ)
試薬:0.24 mL
試料:0.005 mL
測光波長(主/副):546 nm / 700 nm
測光時間:10 分
温度:37℃
1ポイントエンド・増加法

上記の設定条件での実験結果を図6の[表1]に示すが、本発明の実施例での測定値が、保証値に対して良好に一致しており、臨床検査用自動分析装置でも血清中リチウムを十分に測定できることが判る。

以上は、第一試薬と第二試薬を混合したリチウム試薬の2液型の実施例で説明したが、後述するマイクロプレートリーダーによるリチウム測定方法と、目視によるリチウム検出法においては、両者とも96穴ウエルを試料容器として用いるため、実施例1を基本とした組成の1液型試料として、実施例2(リチウム試薬組成試料2)を調製して実験した。
なお、念のため実施例1のリチウム試薬組成試料1においても、被検体の分量を調製し、後述する実施例2と同じ目視によるリチウム検出方法を実験したが、白色光を照射すると、被検体中のリチウム濃度において、0.5 mEq/L(= mol/L)以下では緑色、0.5 meq/Lから1.5 mEq/Lでは黄色、1.5 mEq/L以上では赤色を呈した。この呈色変化は管理域、中毒域における閾値レベルに都合よく合致しており、目視又は比色計により明瞭に検出でき、ほぼ同じ結果が得られた。詳細は実施例2と同じであるで説明は省略する。
[ 実施例2(リチウム試薬組成試料2)]
ここで、実施例2を説明するが、本実施例2の組成は実施例1と実質的に同じであるが、実施例2は、実施例1の2液型ではなく、発色液を1液型として構成しているが、これは以下の理由による。
マイクロプレートリーダー用の96穴ウエルに分注する場合に、1液の場合では、試料と発色液のみの操作で容易に済むが、2液の場合では、試料、第1試薬、第2試薬の3種を容量の小さいウエル上で混合する操作が必要である。実施例1のような容量の大きな1mLサイズの分光光度計用のキュベット容器を使用する場合は、この操作は容易であるが、96穴ウエルの場合はこの操作が煩雑になりやすいため、本実施例2では操作がより簡便な1液型を採用した。また、このときの試薬組成はウエルの材質であるポリスチレン樹脂に悪影響を与えないようにするため、界面活性剤、pH緩衝剤を前述のように選択したものである。

図7の[表2]には、前述したように、リチウム濃度測定方法による誤差の補正、及び修正方法を採用し、実際にマイクロプレートリーダー(CORONA SH1200形)による、溶血における干渉試験の結果を示す。使用した試薬組成物、試験方法は以下の通りである。
[ 実施例2(リチウム試薬組成試料2)]
(1)発色試薬 (リチウム試薬組成物2)
キレート剤: F28テトラフェニルポルフィリン 0.17g/L
有機溶剤:ジメチルスルホキシド(DMSO) 5重量%
安定剤(分散剤): ドデシル硫酸ナトリウム 1 重量%
Triton X-100 1重量%
マスキング剤:トリエタノールアミン 10 g/L
エチレンジアミン四酢酸二カリウム 0.5 g/L
これに所定のpH10になるようにpH緩衝剤、及びpH調節剤を加え、精製水で1Lとして汎用の保存容器に保管した。

(2)試 料
1.5 mMのリチウムを含むベース血清に所定濃度の溶血ヘモグロビンとして干渉チェックA+(登録商標, シスメックス製)を添加し、溶血試料を調製した。

上記の試料4μLに発色試薬240μLを加え、5分間反応させ、主波長550 nm、副波長600 nmとし、その吸光度をマイクロプレートリーダー(CORONA SH-1200形)で観測し標準物質の吸光度を基準にリチウム濃度を算出した。

上述したように、測光波長を550nmのみで測定した場合、溶血検体ではヘモグロビンの550nmが測定値に正の妨害を与えることから、補正方法として、550nmと600nmの二波長を測定し、550nm−600 nm として演算すると、互いに相殺され、溶血の影響がない。自動分析法の場合は、主波長550nm、副波長600 nmとパラメーターを入力すれば良い。
この図7の[表2]から判ることは、ヘモグロビンが1000mg/dLでは、補正したものが102%と僅か2%の誤差であるものが、補正しないと125%と25%の誤差が生じており、この本発明に開示したリチウム濃度測定方法の補正手段が極めて有効な補正方法である。
[目視によるリチウム検出方法」
ここで、本発明の目視によるリチウム濃度の測定方法及び検査方法について説明する。
まず、本発明者らによる前掲の特許文献3に開示した先行技術である試験液を目視により観察した結果を図8の[表3]に示す。
前記リチウム試薬組成試料2を発色試薬として、試料4μLに発色試薬240μLを加え、5分間反応させ、常温で5分間反応後、その呈色を目視により観測した。試料は色調見本として所定濃度のリチウム標準液、濃度レベル別の管理血清を用いて比較した。
各、濃度域において黄色から赤へ呈色変化が確認され、管理血清の呈色は色調見本とも良い一致を示す。特別な装置を用いなくても迅速かつ簡便に血清中のリチウム濃度を判定できることが判る。
ただし、黄色から赤への呈色変化なので、管理域であるオートノルム1mMの黄色、及び、危険域である模擬血清3.5mMの赤色では、25人による判定者の正解率は100%であるが、準中毒域のパソノルムHの1.6mM、及び、中毒域のプレチノルムUの2.5mMでの正解率は52%と若干劣る。
そこで、本発明者らは、改良を重ねて本発明に想到した。
この発明の実施例は、前記先行技術で得た被検体(:試薬組成物と試料を混合した測定検体)に所定の輝度の白色光を照射、または露光させることにより、リチウムイオンと未反応のF28テトラフェニルポルフィリンのみを光化学互変異性体として構造異性体に変化せしめ、この結果、被検体中のリチウム濃度において、0.5 mEq/L(= mol/L)以下では緑色、0.5 meq/Lから1.5 mEq/Lでは黄色、1.5 mEq/L以上では赤色を呈した。この呈色変化は管理域、中毒域における閾値レベルに都合よく合致しており、目視又は比色計により明瞭に検出できることを見出した。
本発明の目視検出により試験液中のリチウム濃度レベルを判定した結果を図9の[表4]に示す。この試験結果は、管理域であるオートノルム1mMの緑色、及び、危険域である模擬血清3.5mMの赤色では、25人による判定者の正解率は100%であり、準中毒域のパソノルムHの1.6mM、及び、中毒域のプレチノルムUの2.5mMでの正解率は96%と良好であった。
つまり、リチウムと未反応のF28テトラフェニルポルフィリンのみが白色光の照射により光化学互変異体が生成し緑色に変色するが、リチウム濃度が4.3mMの場合は、F28テトラフェニルポルフィリンのほとんどがリチウムイオンと反応したため、未反応化学種(生成する光化学互変異体)は僅かであり、赤色のままである。その中間のリチウムの濃度では、同様の原理で緑と赤の中間色として黄色を呈する。
このように、目視や比色計においては、呈色濃淡による濃淡検出は一般的であるが、色調自体が緑色から黄色、橙色、赤色に変化し、この色調を明瞭に検出できることは、極めて希で高性能である。
この方法を、試料調製から詳細に説明すると、図10は、透明容器に入れた被検体を所定の輝度の白色光を照射、または露光させることにより、リチウムイオンと未反応のF28テトラフェニルポルフィリンのみを光化学互変異性体としての構造異性体に変化させる装置の概略図である。
図10の被検液の照射装置において、実施例2のリチウム試薬組成試料2は前述の実施例1とほぼ同じ試薬組成物を調製し、これを分光用キュベットの透明容器の反応部1に1mLを添加し、LED光源2により白色光を当て、図11に示すように、光異性化反応が完了するまでに要する時間(:反応完結時間)を測定した。
LED光源の強さは分光キュベットの近位に設置された照度計により測定し、光異性化反応の終点(:反応完結時間)については電子吸収スペクトルの測定における400nmから600nm(:反応前のスペクトル)が、600nmから800nm(:光異性化後のスペクトル)の波長帯へのスペクトルシフトを観測することで決定した。
この結果を図10に示すが、420ルクスの照度においては反応に3分程度を要するが、1430ルクス以上の照度においては40秒以内に光異性化が完了することが判った。一般的なオフィス、病院の診察室、検査室の照度は300ルクスから750ルクスであることから、特殊な光源がなくても、通常の施設における通常の室内照明下で迅速に本発明の測定方法を適用することが可能であることが判る。
さらに、より速やかに反応を完結させる場合として、1430ルクス以上の照度を得るにはLED光源との距離を被検液に近接させる程度でも十分に達することが可能である。
このようにして、光異性化反応に要する時間、即ち色相変化(光異性化)に要する時間における、光源の定量的指標である照度(Lux)が与える影響を検討したのが図11のグラフである。
なお、図10で光源部2の反応部2(透明容器)への照射角度θを任意としているのは、容器が透明であれば光が容器自体を経て透過でき、その透過光が被検体まで達することができるので、照射角度θ自体があまり影響しないことや、また、反応完了時間が次の図11に示すように、例えば500ルクスでも150secと比較的短時間でも、速やかに光化学互変異性体としての構造異性体に変換させることが可能である特徴を有するからである。また、この光化学互変異性体は暗闇に放置すると緩やかな時間を経てもとの状態に戻る。
図10の被検液の照射装置では、リチウムイオンと未反応のF28テトラフェニルポルフィリンのみを光化学互変異性体としての構造異性体に変化せしめ、この結果、図12に示すように、被検体中のリチウム濃度において、0.5 mEq/L(= mol/L)以下では緑色に変化した。これを図10のグラフに示して説明するが、照射前の波長に対する400nmから800nmの可視光線範囲での吸収スペクトルは実線であるが、上記の白色光を3分程度照射すると破線の吸収スペクトルに変化した。この変化を目視により観測すると各々、黄橙色から緑色に変化した。
また、図13の拡大図に示すように、リチウムイオン濃度において、0.5 mEq/L(= mol/L)以下での500nmから600nmの可視光線範囲での吸収スペクトルは太い破線に変わるが、1.5 mEq/L以上での吸収スペクトルは細かい点線で示され、目視により観測すると赤色である。
この原理により管理血清中のリチウム濃度を目視判定された結果が、図8の[表3]であるが、簡便且つ迅速な目視検出より、被検体中のリチウム濃度を明瞭に判定することができる。
ここで、本発明の使用するリチウム試薬組成物としては実施例1及び実施例2を説明したが、これは特許文献3で開示されるものあり、以下に示す実施例3でも前述した実施例1や実施例2と同様の結果が得られ、被検体の色の濃淡や色調を目視することにより、被検体中のリチウム濃度が測定できることを追試によって確認した。
[ 実施例3(リチウム試薬組成試料3)]
(1)第一試薬(安定剤・緩衝液として)
キレート剤:なし
有機溶剤:なし
安定剤(分散剤:非イオン性界面活性剤):TritonX-100(商標登録)
(ポリオキシエチレンオクチルフェニルエーテル) 1.0 重量%
マスキング剤:トリエタノールアミン 10mM
以上に、0.1MとなるようにMOPSを加えてpH8に調節し精製水で1Lとして汎用の保存容器に保管した。
(2)第二試薬(発色試液として)
キレート剤:F28テトラフェニルポルフィリン 0.5 g/L
有機溶剤:ジメチルスルホキシド(DMSO) 20 重量%
安定剤(分散剤:非イオン性界面活性剤):TritonX-100
(登録商標)(ポリオキシエチレンオクチルフェニルエーテル)1.0 重量%
マスキング剤:トリエタノールアミン 10 mM
これに、0.05MになるようにMOPS(緩衝剤)を加え、pH7.0に調節し、精製水で1Lとして汎用の保存容器に保管した。
リチウム濃度の測定には、実施例1と同様に試料 6μLに第一試薬(緩衝液)720 μL、第二試薬(発色試液)240μLを加えて、所定時間、発色反応させた。
ここで実施例1や実施例2と同様に、前記チウム試薬組成物に被検体を混合して、所定の輝度の白色光で照射、または露光させることにより、リチウムと未反応のF28テトラフェニルポルフィリンのみを光化学互変異性体としての構造異性体に変化せしめ、この結果、被検体中のリチウム濃度において、0.5 mEq/L(= mol/L)以下では緑色、0.5 mEq/Lから1.5 mEq/Lでは黄色、1.5 mEq/L以上では赤色を呈した。この呈色変化は管理域、中毒域における閾値レベルに合致しており、目視又は比色計により明瞭に検出できた。勿論、実施例1と実施例2の関係と同様に、1液型としてもよい。
以上、本発明の各実施例では、被検体は血清試験試料で説明したが、これ以外の被検体として尿、血液、血漿試験試料を含む生体試料でもよく、勿論、工業用水、飲料水、環境試料等でも良く、水溶液中のリチウム濃度を、補正又は修正してより正確な550nmの感度、即ち、血清試験試料中のリチウム濃度を検出することができるものである。。

Claims (1)

  1. テトラフェニルポルフィリンの炭素に結合している水素を全部フッ素に置き換えた構造式
    Figure 0006038685
    で表される化合物と、水に混合し得る有機溶剤としてジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)から選択される有機溶剤と、pH5からpH12の範囲でのリチウムに対して発色可能とするpH調節剤とを包含した水溶液とするリチウム試薬組成物と接解し、該水溶液中のリチウム・F28テトラフェニルポルフィリン錯体のスペクトルを測定して、リチウムの定量値を算出する血清試験試料中のリチウムイオンを測定方法において、
    前記リチウム・F28テトラフェニルポルフィリン錯体のスペクトルの波長550nm又はその近傍の波長530nmから560nmの波長帯を測定波長とし、別途ヘモグロビンの600nmの感度を測定して、測定波長に含まれるヘモグロビンの550nmの感度を600nmの感度で相殺するように次の算出式を用い、
    (算出式)550nmの感度=リチウム・F28テトラフェニルポルフィリン錯体の550nm感度 + ヘモグロビンの550nm感度 − ヘモグロビンの600nm感度、
    リチウム・F28テトラフェニルポルフィリン錯体の本来の550nm感度を算出するようにしたことを特徴とするリチウムイオン測定方法。
JP2013038289A 2013-02-28 2013-02-28 リチウム測定方法 Active JP6038685B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013038289A JP6038685B2 (ja) 2013-02-28 2013-02-28 リチウム測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013038289A JP6038685B2 (ja) 2013-02-28 2013-02-28 リチウム測定方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012245766A Division JP5222432B1 (ja) 2012-11-07 2012-11-07 リチウム測定方法

Publications (2)

Publication Number Publication Date
JP2014095684A JP2014095684A (ja) 2014-05-22
JP6038685B2 true JP6038685B2 (ja) 2016-12-07

Family

ID=50938851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038289A Active JP6038685B2 (ja) 2013-02-28 2013-02-28 リチウム測定方法

Country Status (1)

Country Link
JP (1) JP6038685B2 (ja)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037896B2 (ja) * 1975-09-30 1985-08-29 東一工業株式会社 黄疽計

Also Published As

Publication number Publication date
JP2014095684A (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5222432B1 (ja) リチウム測定方法
JP5082850B2 (ja) 鉄濃度測定法
US10690648B2 (en) Lithium reagent composition, and method and device for determining lithium ion amount using same
CA2806491A1 (en) Simultaneous determination of multiple analytes in industrial water system
JP6038685B2 (ja) リチウム測定方法
JP6548865B2 (ja) リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置
JP6061328B2 (ja) リチウム試薬組成物を用いたリチウムイオン測定方法及び測定装置
JP6008395B2 (ja) リチウム試薬組成物、リチウム試薬キット、及びリチウムイオン測定方法。
JP2018173413A (ja) リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置
US20150276585A1 (en) Reducing Power Analysis Method and Reducing Power Analysis Reagent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161102

R150 Certificate of patent or registration of utility model

Ref document number: 6038685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250