JP2018173413A - リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置 - Google Patents
リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置 Download PDFInfo
- Publication number
- JP2018173413A JP2018173413A JP2018099333A JP2018099333A JP2018173413A JP 2018173413 A JP2018173413 A JP 2018173413A JP 2018099333 A JP2018099333 A JP 2018099333A JP 2018099333 A JP2018099333 A JP 2018099333A JP 2018173413 A JP2018173413 A JP 2018173413A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- wavelength
- sensitivity
- acid
- reagent composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 *C([C@@](C1F)N2)=C(C(F)=C3F)N=C3C(*)=C(C(F)=C3F)NC3=C(*)C(C(F)=C3F)=NC3=C(*)C2=C1F Chemical compound *C([C@@](C1F)N2)=C(C(F)=C3F)N=C3C(*)=C(C(F)=C3F)NC3=C(*)C(C(F)=C3F)=NC3=C(*)C2=C1F 0.000 description 1
- SXPRVMIZFRCAGC-UHFFFAOYSA-N Cc(c(F)c(c(F)c1F)F)c1F Chemical compound Cc(c(F)c(c(F)c1F)F)c1F SXPRVMIZFRCAGC-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
Description
液体中のリチウムの定量測定に用いるリチウム試薬組成物として、一般的には、双極性障害(躁うつ病)の治療薬、或いは抗うつ薬とともに気分安定薬として炭酸リチウム錠(経口投与)が広く処方されている。炭酸リチウム(Li2CO3)はリチウム中毒となる血中濃度近辺まで処方しないと投与効果が現れないという特徴を有しており、治療域と中毒域とが極めて近いため、薬物血中濃度モニタリングが必要項目(TDM)に指定されている。
このように、リチウム塩の抗うつ薬は鬱病患者の治療等に効果があるものの、過剰投与の場合には重大な障害が生じるので、リチウム含有の抗うつ薬を投与する場合は、常に血清中のリチウム濃度を0.6〜1.2 mEq/Lになるように監視することが必須事項である。
この先行技術として、特許文献1には原色体クリプタンドイノフォアを用いた生物学的検体中のリチウムの濃度を測定する試薬組成物が開示されている。
また、特許文献2には、ピロール環を持つ大環状化合物であって、ピロール環のβ位に8個の臭素(Br)原子を結合させ、リチウムイオンと反応する分析試薬である。
なお、非特許文献1として、テトラフェニルポルフィリンの炭素に結合している水素を全部フッ素原子に置き換えた化合物で、リチウムイオンの検出・分離できることが開示されている。
これらを克服したとされる特許文献2に開示された技術は、発色法を可能としているが、発色感度が大きすぎるため検体の希釈処理が必要であり、試薬組成物の仕様がpH11以上であるため空気中のCO2により変質しやすく、測定データが不安定で、更に、pH11以上となると、もはや水酸化ナトリウムや水酸化カリウムのような濃厚な水酸化物溶液しか使えないのでpHを一定に維持していくことができず、また、これらは劇物であるので使用者にとっても忌避的なもので取り扱いが厄介であることや、実際の保存には汎用ではなく専用容器が必要であり、これらの欠陥を補うため機械的設備が大型かつ専用機器が必要で汎用性に欠くといった問題点があった。このため、オンサイトモニタリング、POCT(Point Of Care Testing)に適用させることが困難であるといった問題点もあった。
また、非特許文献1である小柳らの論文は、F28テトラフェニルポルフィリンを用いてリチウムイオンの分離・検出ができることが開示されているが、油性、且つ毒劇物であるクロロホルムを用いた溶媒抽出を行わなければ、リチウムの検出・分離はできなかった。何よりも、水溶液中のリチウムを煩雑な前処理なしに直接定量することはできず、特に、血清中のリチウムイオンを迅速、且つ定量的に測定することはできないといった問題点があった。このように、F28テトラフェニルポルフィリンを用いて水溶液中のリチウムイオンの検出は難しく、定量的に濃度を測定することは困難で今までに実現されていなかった。
そこで、本発明者らは、特許文献3の特許第5222432号明細書に示すように、テトラフェニルポルフィリンの炭素に結合している水素を全部フッ素原子に置き換えた構造式
本発明の課題は、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)等の有機溶媒を使用せずに、テトラフェニルポルフィリンの炭素に結合している水素の全部をフッ素原子に置き換えた構造式の化合物をキレート剤として、生体試料や環境試料等の水溶液中のリチウムを簡便な比色計や紫外-可視分光光度計により即座に定量測定でき、かつ目視判定を可能にさせるリチウム濃度定量のためのリチウム試薬組成物や、それを用いたリチウムイオン測定方法及び測定装置を提供しようとするものである。
生体試料や環境試料等の水溶液中のリチウムが前記リチウム試薬組成物、特にテトラフェニルポルフィリンの炭素に結合している水素を全部フッ素原子に置き換えた化合物がキレート剤(発色剤)となって発色する。
F28テトラフェニルポルフィリン化合物とリチウムイオンとの発色反応である黄色から赤色への呈色変化を得るのは難しいが、血清のリチウム濃度が0.6mg/dL〜2.0mg/dL(0.9mM〜3mM)の範囲において定量値の正確さが求められているので、本発明の実施例では、上記のリチウムの濃度範囲においては、F28テトラフェニルポルフィリンの化合物の濃度を0.05〜1.0g/Lとし、好ましくは、0.5g/Lとすれば正確に測定できることも見出した。
前記pH調節剤は、水酸化ナトリウム、水酸化カリウム、アンモニアを含むアルカリ剤、酢酸、リン酸、くえん酸、炭酸、重炭酸、しゅう酸、塩酸、硝酸を含む酸剤、及び、これらの塩類から選択されるものを使用し、前記pH調節剤はpH緩衝剤でもよく、クエン酸、炭酸、重炭酸、りん酸、コハク酸、フタル酸、塩化アンモニウム、水酸化ナトリウム、水酸化カリウム、Goodの緩衝剤としてMES、Bis-Tris、ADA、PIPES、ACES、MOPSO、BES、MOPS、TES、HEPES、DIPSO、TAPSO、POPSO、HEPPSO、EPPS、Tricine、Bicine、TAPS、CHES、CAPSO、CAPS、及び、これらの塩類から選択されるものを使用する。
これらの含有によって前記リチウム試薬組成物は、pH5からpH12の範囲でリチウムに対して、特異的な発色反応が可能である。
これらの安定剤は、非イオン性界面活性剤又は陰イオン性界面活性剤であり、非イオン性界面活性剤は、ソルビタン脂肪酸エステル、ペンタエリスリトール脂肪酸部分エステル、プロピレングリコールモノ脂肪酸エステル、グリセリン脂肪酸モノエステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン脂肪酸部分エステル、ポリオキシエチレンソルビトール脂肪酸部分エステル、ポリオキシエチレン脂肪酸エステル、脂肪酸ジエタノールアミド、脂肪酸モノエタノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンオクチルフェニルエーテル(商標登録:TritonX-100 ) 、p−ノニルフェノキシポリグリシドール及び、これらの塩類から選択されるものを使用する。
好ましい非イオン性界面活性剤としては、ポリオキシエチレンオクチルフェニルエーテル(Triton X-100(登録商標)等) 、p-ノニルフェノキシポリグリシドールなどである。
これらリチウム試薬組成物に加えるマスキング剤としては、エチレンジアミン、N,N,N',N'-テトラキス(2-ピリジルメチル)エチレンジアミン(TPEN)、ピリジン、2,2-ビピリジン、プロピレンジアミン、 ジエチレントリアミン、ジエチレントリアミン−N,N,N',N",N"-五酢酸(DTPA)、トリエチレンテトラアミン、トリエチレンテトラミン-N,N,N',N",N"',N"'-六酢酸(TTHA)、1,10-フェナントロリン、エチレンジアミン四酢酸(EDTA)、O,O'-ビス(2-アミノフェニル)エチレングリコール-N,N,N',N'-四酢酸(BAPTA)、N,N-ビス(2-ハイドロキシエチル)グリシン(Bicine)、トランス-1,2-ジアミノシクロヘキサン-N,N,N',N'-四酢酸(CyDTA)、O,O'-ビス(2-アミノエチル)エチレングリコール-N,N,N',N'-四酢酸(EGTA)、N-(2-ハイドロキシル)イミノ二酢酸(HIDA)、 イミノ二酢酸(IDA)、ニトリロ三酢酸(NTA)、 ニトリロトリスメチルりん酸(NTPO)及び、これらの塩類から選択されるものを使用する。
リチウム錯体の発色、及びそのスペクトルにおいて、波長550nm、或いはその近傍の波長530nmから560nmの波長帯を測定波長としてその感度を測定し、又は、波長570nm、或いはその近傍の波長565nmから650nmの波長帯の感度を測定し、又は、波長340nm、或いはその近傍の波長310nmから350nmの波長帯の感度を測定し、又は、波長380nm、或いはその近傍の波長350nmから400nmの波長帯の感度を測定し、波長476nm、或いはその近傍の波長460nmから510nmの波長帯を測定波長としてリチウムの定量値を算出手段で算出することが好ましい。この場合の感度とは紫外可視分光光度計における吸光度、あるいは吸光度差として相違ない。
550nmの感度 = リチウム・F28テトラフェニルポルフィリン錯体の550nm感度 + ヘモグロビンの550nm感度 − ヘモグロビンの600nm感度で補正すれば、ヘモグロビンの影響を相殺ことができる。
なお、前記の相殺する補正値はヘモグロビン600nmでの感度を用いることが望ましいが、550nmを中心波長とする感度と同等の感度比となる600nmを中心とする周辺の波長を用いてもよい。
この場合も、波長550nmで測定する場合、感度は下記の式
550nmの感度 = リチウム・F28テトラフェニルポルフィリン錯体の550nm感度 + ヘモグロビンの550nm感度 − ヘモグロビンの600nm感度
で補正すれば、ヘモグロビンの影響を相殺ことができる。
一方、本発明は前記ソーレー帯波長よりも数倍感度が低い波長である550nm、或いは、その近傍の530nmから560nmの波長帯を測光波長とすることにより、検体に含まれる濃度に対して最適な感度が得られることにより、希釈操作、或いは希釈装置等の煩雑な操作、それに伴う付帯設備が不必要となる。さらに、本発明である当該波長帯はソーレー帯を測光波長とした場合よりも検量線の直線性が良好であるので、簡単な比色計、紫外可視分光光度計による測定値からの濃度の演算が容易であり、色調が鮮やかに変化するので、目視による濃度レベル判定も可能である。
また、波長550nmで測定方法では、感度は下記の式の
550nmの感度 = リチウム・F28テトラフェニルポルフィリン錯体の550nm感度 + ヘモグロビンの550nm感度 − ヘモグロビンの600nm感度
で補正すれば、ヘモグロビンの影響を相殺してより正確に測定することができる。
従って、従来のリチウム濃度の測定には大型の専用機器を必要としていたが、本発明により携帯型比色計でリチウム濃度を計測することができ、POCTキットとして構成することもできる。
実施例1(試薬1)のリチウム試薬としての組成は次の通りである。
キレート剤:F28テトラフェニルポルフィリン 0.01重量%
多機能調整剤:トリエタノールアミン 1重量%
安定剤(非イオン性界面活性剤):
Triton X-100(登録商標)
(ポリオキシエチレンオクチルフェニルエーテル) 1重量%
安定剤(陰イオン性界面活性剤):
ドデシル硫酸ナトリウム 1重量%
マスキング剤:EDTA-2K 0.04重量%
以上のように、本試薬には、有機溶剤は含まれていない。また、多機能調整剤と記載したのは、実施例1でのトリエタノールアミンが分散剤、緩衝剤、乳化剤、錯化剤等の作用があり、実施例1でもこれらのいずれかとして作用するものと考えられるからである。
なお、pH8の測定条件では若干、反応速度が遅くなり、定量的には10分〜20分ほどで安定化する。一方、pH10とした場合には10分以内に反応が完結する。よって、本発明のリチウム試薬組成物の緩衝系のpHを5〜10の範囲とすれば、pH11以上の場合のように水酸化ナトリウムや水酸化カリウムのような濃厚な水酸化物溶液を主とした緩衝系を使う必要はなく、扱いも簡便である。pHの設定は、使用者のニーズによるが、pH10であれば反応速度も速く、緩衝力が十分に維持できるGood緩衝剤、塩化アンモニウム系、炭酸系を使うことができる。
このリチウム試薬組成物240uLに既知濃度の炭酸リチウムを含む試料2uLを加え、十分に混合し、常温で10分間反応させた後、コロナ社 マイクロプレートリーダーSH-1000形を用いて550nmの吸光度を測定した。このときの各試料中のリチウム濃度に対して応答した吸光度を図1に示すようなものである。なお、図1は横軸が血清中のLi濃度(mM)で、縦軸が吸光度 (Absorbance)である(図1、図3、図4、図5、図6、及び、後述の図10、図11はスケールは同じ)。
図1のグラフから判るように、この結果、試料中のリチウム濃度に依存的に吸光度が増大し、且つ良好な近似直線を掃引することができた(直線性r=0.992)。したがって、本実施例1により得られた試薬組成物を用いてリチウム標準試料を使って、検量線を作成することができることが判る。
また、その回帰線は直線性が良好であるため、標準物質とブランクの2点で正確に濃度校正ができることができる。
[実証1]
まず、血清中のリチウム濃度を正確に定量できることを明らかにするために、(A)実施例1のトリエタノールアミンの代わりにDMSO5%を含む試薬、(B)実施例1でトリエタノールアミンもDMSOを含まない試薬、(C)DMSOを含まずトリエタノールアミンを含む実施例1と同様の組成の試薬を、実施例1の操作によりリチウム測定試薬組成物を調製した。
この試薬組成物を用いて実施例1と同様の測定条件で検量線を作成し、リチウム濃度が異なる幾つかの血清を試料として、これに含まれるリチウムの濃度を求めた。このときの各々の試薬組成物により得られた測定値と、あらかじめ原子吸光法により求めた測定値を(D)として比較した結果を図2の[表1]に示す。
この結果、この[表1]から明瞭のように、(A)、(C)は (D)と良好な相関が得られた。つまり、DMSOもトリエタノールアミンも含まない(B)は、F28テトラフェニルポルフィリンをキレート剤をふくんでも全く発色せず、本発明の実施例1である(C)の有機溶媒であるDMSOを含まない試薬でも、も正確にリチウムを定量できることが実証できた。
前記のリチウムの濃度の測定方法、及び測定装置を説明すると、実施例1の試薬240μLに試料2μLを加えたpH10.8の試験液を、常温で10分間反応後、コロナ社 マイクロプレートリーダーSH-1000形を用いて試薬ブランクを対照として、(イ)波長340nmの吸光度(図3)、(ロ)波長384nmの吸光度(図4)、(ハ)波長412nmの吸光度(図5)、(ニ)波長492nmの吸光度(図6)、先に説明したように(ホ)波長550nmの吸光度(図1:横軸が血清中のLi濃度(mM)、縦軸が吸光度Absorbance)を測定した。その結果が図1、図3、図4、図5、図6に示すグラフである。また、図7、図8にF28テトラフェニルポルフィリン-リチウム錯体生成の濃度(0.9mM〜3.5mM)毎におけるスペクトルの変化のグラフを示すが、測定対象波長の(イ:図3)主波長340nm、(ロ:図4)主波長384nm、(ハ:図5)主波長412nm、(ニ:図6)主波長492nm、(ホ:図1)主波長550nmを図7、図8で矢印で示している。なお、図7、図8で横軸が波長(wavelength)、縦軸が吸光度 (Absorbance)である。
テトラフェニルポルフィリン金属錯体に典型的なソーレー帯(380nmから460nm近傍)と呼ばれる最大感度が得られる波長ではなく、血清検体中リチウム濃度範囲に対して最適な感度が得られる波長550nm、或いは、その近傍の波長530nmから560nmの波長帯を測光波長とすることにより、希釈操作、或いは希釈装置等の煩雑な操作、それに伴う付帯設備が不必要となる。
さらに、上述した波長550nm、或いは、その近傍の波長530nmから560nmの波長帯はソーレー帯を測光波長とした場合よりも検量線の直線性が良好であるので、簡単な比色計や分光光度計での濃度の演算が容易であり、色調が鮮やかに変化するので、目視による濃度レベル判定も可能である。従って、従来のリチウム濃度の測定には大型の専用機器を必要としていたが、本発明により携帯型比色計や汎用されている紫外可視分光光度計でリチウム濃度を計測することができ、POCTキットとして構成することもできる。
溶血している血清等の検体においては妨害因子としてヘモグロビン由来の540nm付近、560nmから650nm付近の二つの吸収ピーク(各々、βバンド、αバンド)が生じることが一般的に知られているが、このようなヘモグロビンを高濃度に含む検体と本発明の試薬組成物とを接解させた場合、本発明の測光波長である550nmとヘモグロビンのβ、αバンド由来の540nmの吸収が重複するため、実際の測定値に対して正の誤差が生じることが判った。
すなわち、(リチウム・F28テトラフェニルポルフィリン錯体由来の550nmの感度)+(ヘモグロビン由来550nmの感度)= 550nmの測定感度(∴ヘモグロビン由来の正の誤差が生じる。)
ここで、本発明では、ヘモグロビンの550nmと600nmの二つの感度比がほぼ同一であることに注目した。即ち、ヘモグロビンの550nmの感度=ヘモグロビンの600nmの感度であることに注目し、ヘモグロビンの550nmの感度を600nmの感度で相殺することができることを見出した。
したがって、550nmの感度 = リチウム・F28テトラフェニルポルフィリン錯体の550nm感度 + ヘモグロビンの550nm感度 − ヘモグロビンの600nm感度 とすれば、ヘモグロビン由来の550nmの感度を相殺して、より正しい550nmの感度を得ることができる。もっとも、前記の相殺する補正値はヘモグロビン600nmでの感度を用いることが望ましいが、550nmを中心波長とする感度と同等の感度比となる600nmを中心とする周辺の波長を用いてもよい。
リチウム濃度が値付けされた管理血清としてパソノルムL(PathonormL)(SERO AS製)、パソノルムH(PathonormH)(SERO AS製)、セロノルム ヒューマン(Seronorm Human)(SERO AS製)を試料として 実施例1と同一の試薬240μLに試料2μLを加えたpH10.8の試験液を、常温で10分間反応後、コロナ社 マイクロプレートリーダーSH-1000形にて550nmを測光波長として測定し、0.86mMのリチウムイオン(炭酸リチウムとして)を含む標準試料を用いてキャリブレーションした際の測定結果を図8の[表2]に示す。
この[表2]の結果から、本実施例1の試薬を用いた測定値が、認証値に極めて近いことが実証された。
次に、実施例2を説明すれば、実施例2は、実施例1とは組成が異なるのは、主にトリエタノールアミンを増量し、マスキング剤を多少変え、下記の組成の実施例2(試薬2)のリチウム試薬であり、この実施例2の組成を検証した。
実施例2(試薬2)のリチウム試薬としての組成は次の通りである。
キレート剤:F28テトラフェニルポルフィリン 0.01重量%
多機能調整剤:トリエタノールアミン 3.7重量%
安定剤(非イオン性界面活性剤):Triton X-100(登録商標)
(ポリオキシエチレンオクチルフェニルエーテル) 1.5重量%
安定剤(陰イオン性界面活性剤):
ドデシル硫酸ナトリウム 1重量%
マスキング剤:EDTA-2K 0.045重量%
以上のように、本試薬には、有機溶剤は含まれていない。
このリチウム試薬組成物240uLに既知濃度の炭酸リチウムを含む試料2uLを加え、十分に混合し、常温で10分間反応させた後、コロナ社 マイクロプレートリーダーSH-1000形にて476nmの吸光度を測定した。
このときの各試料中のリチウム濃度に対して応答した吸光度を図9に示す。
図9から判るように、この結果、試料中のリチウム濃度に依存的に吸光度が減少し、且つ良好な近似直線を掃引することができた。したがって、実施例2により得られた試薬組成物を用いてリチウム標準試料を使って、検量線を作成することができることが判る。
また、その回帰線は直線性が良好であるため、標準物質とブランクの2点で正確に濃度校正ができることができる。
次に、実施例3を説明すれば、実施例3は、実施例1とは組成が異なるのは、トリエタノールアミンに代えてジエタノールアミンを使用したもので、下記の組成の実施例3(試薬3)のリチウム試薬であり、この実施例3の組成を検証した。
実施例3(試薬3)のリチウム試薬としての組成は次の通りである。
キレート剤:F28テトラフェニルポルフィリン 0.01重量%
多機能調整剤:ジエタノールアミン 3.7重量%
安定剤(非イオン性界面活性剤):
Triton X-100(登録商標)
(ポリオキシエチレンオクチルフェニルエーテル) 1重量%
安定剤(陰イオン性界面活性剤):
ドデシル硫酸ナトリウム 1重量%
マスキング剤:EDTA-2K 0.04重量%
以上のように、本試薬には、有機溶剤は含まれていない。また、実施例3もジエタノールアミンを多機能調整剤と記載したのは、実施例1と同様に、分散剤、緩衝剤、乳化剤、錯化剤等の作用があり、実施例3もこれらのいずれかとして作用するものと考えられるからである。
このリチウム試薬組成物240uLに既知濃度の炭酸リチウムを含む試料2uLを加え、十分に混合し、常温で10分間反応させた後、コロナ社 マイクロプレートリーダーSH-1000型にて550nmの吸光度を測定した。
このときの各試料中のリチウム濃度に対して応答した吸光度を図10に示す。
図10から判るように、この結果、試料中のリチウム濃度に依存的に吸光度が減少し、且つ良好な近似直線を掃引することができた。したがって、本実施例により得られた試薬組成物を用いてリチウム標準試料を使って、検量線を作成することができることが判る。
また、その回帰線は直線性が良好であるため、標準物質とブランクの2点で正確に濃度校正ができることができる。
本発明は、上記の実施例の試薬を基本とし、実施例1乃至3の試薬を用いた測定方法、及びその測定装置である。
なお、本発明の特徴を損なうものでなければ、上記の各実施例に限定されるものでないことは勿論である。
Claims (20)
- 前記pH調節剤は、塩酸、硝酸、水酸化ナトリウム、水酸化カリウム、アンモニアを含むアルカリ剤、酢酸、リン酸、くえん酸、炭酸、重炭酸、しゅう酸、塩酸を含む酸剤、及び、これらの塩類から選択されることを特徴とする請求項1に記載のリチウム試薬組成物。
- 前記pH調節剤は、pH緩衝剤であることを特徴とする請求項1に記載のリチウム試薬組成物。
- 前記pH緩衝剤は、クエン酸、炭酸、重炭酸、りん酸、コハク酸、フタル酸、塩化アンモニウム、水酸化ナトリウム、水酸化カリウム、Goodの緩衝剤としてMES、Bis-Tris、ADA、PIPES、ACES、MOPSO、BES、MOPS、TES、HEPES、DIPSO、TAPSO、POPSO、HEPPSO、EPPS、Tricine、Bicine、TAPS、CHES、CAPSO、CAPS、及び、これらの塩類から選択されることを特徴とする請求項3に記載のリチウム試薬組成物。
- 前記リチウム試薬組成物は、pH5からpH12の範囲でのリチウムに対して、発色可能であることを特徴とする請求項1又は2又は3又は4に記載のリチウム試薬組成物。
- 前記リチウム試薬組成物に安定剤を包含したことを特徴とする請求項1に記載のリチウム試薬組成物。
- 前記安定剤は、非イオン性界面活性剤及び/又は陰イオン性界面活性剤であることを特徴とする請求項6に記載のリチウム試薬組成物。
- 前記非イオン性界面活性剤は、ソルビタン脂肪酸エステル、ペンタエリスリトール脂肪酸部分エステル、プロピレングリコールモノ脂肪酸エステル、グリセリン脂肪酸モノエステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン脂肪酸部分エステル、ポリオキシエチレンソルビトール脂肪酸部分エステル、ポリオキシエチレン脂肪酸エステル、脂肪酸ジエタノールアミド、脂肪酸モノエタノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンオクチルフェニルエーテル(商標登録:TritonX-100 ) 、p−ノニルフェノキシポリグリシドール及び、これらの塩類から選択されることを特徴とする請求項7に記載のリチウム試薬組成物。
- 前記陰イオン性界面活性剤は、ドデシル硫酸ナトリウムを含むアルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステルナトリウムを含むポリオキシエチレンフェニルエーテル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウムを含むアルキルベンゼンスルホン酸塩、アルカンスルホン酸塩から選択されることを特徴とする請求項7に記載のリチウム試薬組成物。
- 前記リチウム試薬組成物にマスキング剤を包含したことを特徴とする請求項1に記載のリチウム試薬組成物。
- 前記マスキング剤は、エチレンジアミン、N,N,N',N'-テトラキス(2-ピリジルメチル)エチレンジアミン(TPEN)、ピリジン、2,2-ビピリジン、プロピレンジアミン、 ジエチレントリアミン、ジエチレントリアミン−N,N,N',N",N"-五酢酸(DTPA)P、トリエチレンテトラアミン、トリエチレンテトラミン-N,N,N',N",N"',N"'-六酢酸(TTHA)、1,10-フェナントロリン、エチレンジアミン四酢酸(EDTA)、O,O'-ビス(2-アミノフェニル)エチレングリコール-N,N,N',N'-四酢酸(BAPTA)、N,N-ビス(2-ハイドロキシエチル)グリシン(Bicine)、トランス-1,2-ジアミノシクロヘキサン-N,N,N',N'-四酢酸(CyDTA)、O,O'-ビス(2-アミノエチル)エチレングリコール-N,N,N',N'-四酢酸(EGTA)、N-(2-ハイドロキシル)イミノ二酢酸(HIDA)、 イミノ二酢酸(IDA)、ニトリロ三酢酸(NTA)、 ニトリロトリスメチルりん酸(NTPO)及び、これらの塩類から選択されることを特徴とする請求項10に記載のリチウム試薬組成物。
- テトラフェニルポルフィリンの炭素に結合している水素を全部フッ素原子に置き換えた構造式
- 前記リチウム錯体の発色、及びそのスペクトルにおいて、波長550nm、或いはその近傍の波長530nmから570nmの波長帯を測定波長として、その感度を測定することを特徴とする請求項12に記載のリチウムイオン測定方法。
- 前記波長550nmの感度は下記の式
550nmの感度 = リチウム・F28テトラフェニルポルフィリン錯体の550nm感度 + ヘモグロビンの550nm感度 − ヘモグロビンの600nm感度
で補正することを特徴とする請求項13に記載のリチウムイオン測定方法。 - 前記リチウム錯体の発色、及びそのスペクトルにおいて、波長570nm、或いはその近傍の波長565nmから650nmの波長帯を測定波長として、その感度を測定することを特徴とする請求項12に記載のリチウムイオン測定方法。
- 前記リチウム錯体の発色、及びそのスペクトルにおいて、波長340nm、或いはその近傍の波長310nmから350nmの波長帯を測定波長として、その感度を測定することを特徴とする請求項12に記載のリチウムイオン測定方法。
- 前記リチウム錯体の発色、及びそのスペクトルにおいて、波長380nm、或いはその近傍の波長350nmから400nmの波長帯を測定波長として、その感度を測定することを特徴とする請求項12に記載のリチウムイオン測定方法。
- 前記リチウム錯体の発色、及びそのスペクトルにおいて、波長476nm、或いはその近傍の波長470nmから510nmの波長帯を測定波長として、その感度を測定することを特徴とする請求項12に記載のリチウムイオン測定方法。
- 血清及び血漿試験試料をテトラフェニルポルフィリンの炭素に結合している水素を全部フッ素原子に置き換えた構造式
- 前記波長550nmの感度は下記の式
550nmの感度 = リチウム・F28テトラフェニルポルフィリン錯体の550nm感度 + ヘモグロビンの550nm感度 − ヘモグロビンの600nm感度
で補正することを特徴とする請求項16に記載のリチウムイオン測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018099333A JP2018173413A (ja) | 2018-05-24 | 2018-05-24 | リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018099333A JP2018173413A (ja) | 2018-05-24 | 2018-05-24 | リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013254196A Division JP6548865B2 (ja) | 2013-12-09 | 2013-12-09 | リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018173413A true JP2018173413A (ja) | 2018-11-08 |
Family
ID=64108644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018099333A Pending JP2018173413A (ja) | 2018-05-24 | 2018-05-24 | リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018173413A (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012105483A1 (ja) * | 2011-01-31 | 2012-08-09 | 国立大学法人宇都宮大学 | ポルフィリン型骨格を有する化合物の金属錯体の製造方法 |
JP5222432B1 (ja) * | 2012-11-07 | 2013-06-26 | Akjグローバルテクノロジー株式会社 | リチウム測定方法 |
WO2013150663A1 (ja) * | 2012-04-06 | 2013-10-10 | メタロジェニクス 株式会社 | リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置 |
-
2018
- 2018-05-24 JP JP2018099333A patent/JP2018173413A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012105483A1 (ja) * | 2011-01-31 | 2012-08-09 | 国立大学法人宇都宮大学 | ポルフィリン型骨格を有する化合物の金属錯体の製造方法 |
WO2013150663A1 (ja) * | 2012-04-06 | 2013-10-10 | メタロジェニクス 株式会社 | リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置 |
JP5222432B1 (ja) * | 2012-11-07 | 2013-06-26 | Akjグローバルテクノロジー株式会社 | リチウム測定方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10690648B2 (en) | Lithium reagent composition, and method and device for determining lithium ion amount using same | |
JP5222432B1 (ja) | リチウム測定方法 | |
WO2015087650A1 (ja) | リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置 | |
JP2018173413A (ja) | リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置 | |
JP6061328B2 (ja) | リチウム試薬組成物を用いたリチウムイオン測定方法及び測定装置 | |
JP6008395B2 (ja) | リチウム試薬組成物、リチウム試薬キット、及びリチウムイオン測定方法。 | |
JP6038685B2 (ja) | リチウム測定方法 | |
JP6693421B2 (ja) | フッ素置換テトラフェニルポルフィリン誘導体およびその利用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180601 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20190308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190611 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190717 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191212 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200218 |