JP5787167B2 - Liquid lead-acid battery - Google Patents
Liquid lead-acid battery Download PDFInfo
- Publication number
- JP5787167B2 JP5787167B2 JP2011289519A JP2011289519A JP5787167B2 JP 5787167 B2 JP5787167 B2 JP 5787167B2 JP 2011289519 A JP2011289519 A JP 2011289519A JP 2011289519 A JP2011289519 A JP 2011289519A JP 5787167 B2 JP5787167 B2 JP 5787167B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- mass
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Description
この発明は液式鉛蓄電池に関する。 This invention relates to the liquid-type lead-acid battery.
自動車の燃費を向上させるため、アイドリングストップが提案されている。アイドリングストップでは、停車時にエンジンを停止させ、停車中の電装品等の負荷の電力を全て蓄電池から賄う。燃費をさらに向上させるため、例えば加速時及び定速走行時はオールタネータを動作させずに、減速時にオールタネータを電力回生ブレーキとして使用し、蓄電池を充電することでエネルギーを無駄なく使うことが検討されている。しかし蓄電池は充電不足の状態で使用されることになる。発明者はこのような使用モードでの液式鉛蓄電池の挙動を調査し、正極活物質の軟化によって蓄電池が寿命に達することを見出した。 An idling stop has been proposed to improve the fuel efficiency of automobiles. In the idling stop, the engine is stopped when the vehicle is stopped, and all the electric power of the electric components and the like that are stopped is supplied from the storage battery. In order to further improve fuel economy, for example, it is considered that the alternator is not operated during acceleration and constant speed, but the alternator is used as a power regenerative brake during deceleration and the storage battery is charged to use energy efficiently. Yes. However, the storage battery is used in a state of insufficient charge. The inventor investigated the behavior of the liquid lead-acid battery in such a use mode, and found that the battery reached the end of its life by softening the positive electrode active material.
ここで関連する先行技術を示す。特許文献1(特開2006-66283)は、サイクルユース用の密閉型の鉛蓄電池について、正極活物質ペーストの密度を4.4〜4.9g/cm3とし、かつ正極活物質に0.01〜0.1%のBiを含有させることを開示している。特許文献1では、Biは活物質同士及び活物質と格子の密着性を高め、また正極活物質ペーストの充填密度を最適化することにより、硫酸イオンの拡散を阻害しないようにするとしている。さらに特許文献1では、極板群を電槽に40〜100KPaの群圧で収容することにより、正極活物質の軟化脱落を防止できるとしている。
Here is related prior art. Patent Document 1 (Japanese Patent Laid-Open No. 2006-66283) describes a sealed lead-acid battery for cycle use in which the density of the positive electrode active material paste is 4.4 to 4.9 g / cm 3 and the positive electrode active material is 0.01 to 0.1% Bi. Is disclosed. In
この発明の課題は鉛蓄電池の耐久性を向上させると共に、容量の低下を防止することにある。 An object of the present invention is to improve the durability of a lead-acid battery and to prevent a decrease in capacity.
この発明は、正極活物質と正極格子とから成る正極板と、負極活物質と負極格子とから成る負極板と、正極板と負極板とを分離するセパレータと、正極板と負極板とセパレータとを浸しかつ流動性のある液体電解液、とを備えるアイドリングストップ車用の液式鉛蓄電池において、
正極活物質は化成済みの状態において、密度が4.4g/cm3以上4.8g/cm3以下で、かつSnを金属Snに換算して0.05mass%以上1.0mass%以下含有し、
負極活物質は化成済みの状態において、カーボンブラックを負極活物質中のは海綿状鉛100mass%に対し0.2mass%以上1mass%以下含有することを特徴とする。
The present invention includes a positive electrode plate composed of a positive electrode active material and a positive electrode lattice, a negative electrode plate composed of a negative electrode active material and a negative electrode lattice, a separator separating the positive electrode plate and the negative electrode plate, a positive electrode plate, a negative electrode plate, and a separator. In a liquid lead-acid battery for an idling stop vehicle comprising:
The positive electrode active material has a density of 4.4 g / cm 3 or more and 4.8 g / cm 3 or less in a converted state, and Sn is converted into metal Sn and contains 0.05 mass% or more and 1.0 mass% or less ,
The negative electrode active material is characterized by containing carbon black in an amount of 0.2 mass% or more and 1 mass% or less with respect to 100 mass% of the spongy lead in the negative electrode active material when the negative electrode active material is already formed .
この発明では、化成済みの正極活物質の密度を4.4g/cm3以上4.8g/cm3以下とすることにより、充電不足の状態で使用した際の耐久性を向上させる(図1参照)。これに伴って液式鉛蓄電池の容量が低下するので、正極活物質にSnを金属Snに換算して0.05mass%以上1.0mass%以下含有させることにより容量の低下を抑制する(図3参照)。 In the present invention, the density of the formed positive electrode active material is set to 4.4 g / cm 3 or more and 4.8 g / cm 3 or less to improve durability when used in a state of insufficient charge (see FIG. 1). As a result, the capacity of the liquid lead-acid battery decreases, so that the decrease in capacity is suppressed by adding 0.05 mass% or more and 1.0 mass% or less of Sn in the positive electrode active material in terms of metal Sn (see FIG. 3). .
好ましくは、正極活物質は化成済みの状態において、Snを金属Snに換算して0.1mass%以上1.0mass%以下含有する。この範囲で、液式鉛蓄電池の容量を特に大きくでき、かつ電解液の減液量も比較的小さくできる(図3参照)。好ましくは、液体電解液がAl 3+ イオンを含有する。 Preferably, the positive electrode active material contains 0.1 mass% or more and 1.0 mass% or less of Sn in terms of chemical conversion in terms of metal Sn. Within this range, the capacity of the liquid lead-acid battery can be particularly increased, and the amount of electrolyte can be reduced relatively (see FIG. 3). Preferably, the liquid electrolyte contains Al 3+ ions.
好ましくは、正極活物質は化成済みの状態において、Bi含有量が0.01mass%未満である。この発明では、正極活物質の密度を4.4g/cm3以上4.8g/cm3以下とすることにより、正極活物質の軟化を防止し、Biを必要としない。 Preferably, the positive electrode active material has a Bi content of less than 0.01 mass% in the already formed state. In the present invention, by setting the density of the positive electrode active material to 4.4 g / cm 3 or more and 4.8 g / cm 3 or less, softening of the positive electrode active material is prevented and Bi is not required.
好ましくは、正極格子の少なくとも一面に、Pb-Sb合金箔が被覆されている。Pb-Sb合金箔は正極活物質と正極格子との密着性を高め、正極活物質の軟化に伴う脱落を防止する。 Preferably, at least one surface of the positive electrode lattice is coated with a Pb—Sb alloy foil. The Pb-Sb alloy foil increases the adhesion between the positive electrode active material and the positive electrode lattice, and prevents the positive electrode active material from falling off due to softening.
以下に,本願発明の最適実施例を示す。本願発明の実施に際しては,当業者の常識及び先行技術の開示に従い,実施例を適宜に変更できる。実施例では正極活物質にSbを含有させることにより電解液の成層化を防止する例を示すが、Sbを含有させなくても良い。例えば正極活物質中のSn濃度を金属換算で0.5〜1.0mass%程度とすると、Snによって充電時にH2等のガスを発生させ、成層化を防止できる。さらに正極格子の両面にPb-Sb箔を積層する等によっても、H2等のガスを発生させて成層化を防止できる。 In the following, an optimum embodiment of the present invention will be shown. In carrying out the invention of the present application, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art. In the embodiment, an example is shown in which Sb is contained in the positive electrode active material to prevent stratification of the electrolytic solution, but Sb may not be contained. For example, when the Sn concentration in the positive electrode active material is about 0.5 to 1.0 mass% in terms of metal, gas such as H 2 can be generated during charging by Sn to prevent stratification. Furthermore, by stacking Pb—Sb foils on both sides of the positive grid, gas such as H 2 can be generated to prevent stratification.
図1〜図6を参照して、実施例を説明する。ボールミル法で製造した鉛粉に、Sb2O3及びSnSO4と補強剤の合成樹脂繊維とを加えて水と硫酸とにより混練し、正極活物質ペーストとした。また混練時の水と硫酸の量を調整し、正極活物質ペーストの密度を変化させた。鉛粉はバートン法等で製造したものでも良く、また鉛粉中の鉛丹含有率等は任意である。Sb2O3の代わりにSb2(SO4)3等の適宜のSb化合物を添加しても良く、同様にSnSO4の代わりにSnO2等の適宜のSn化合物を添加しても良い。さらに鉛粉原料の金属Pbに、例えばPbとSb,Snの合金を混合しても良い。 The embodiment will be described with reference to FIGS. Sb 2 O 3 and SnSO 4 and a synthetic resin fiber as a reinforcing agent were added to the lead powder produced by the ball mill method and kneaded with water and sulfuric acid to obtain a positive electrode active material paste. Moreover, the density of the positive electrode active material paste was changed by adjusting the amounts of water and sulfuric acid during kneading. The lead powder may be produced by the Barton method or the like, and the content of lead dan in the lead powder is arbitrary. An appropriate Sb compound such as Sb 2 (SO 4 ) 3 may be added instead of Sb 2 O 3 , and similarly an appropriate Sn compound such as SnO 2 may be added instead of SnSO 4 . Further, for example, an alloy of Pb, Sb, and Sn may be mixed with the metal Pb of the lead powder raw material.
一面にPb-Sb合金箔(厚さ20μm、Sb 5mass%含有,残余はPb)を積層したPb-Ca系正極格子(Pb-Sb合金箔を除く部分の組成はCa 0.07mass%,Sn 1.5mass%含有,残余はPbで、ロータリーエキスパンド加工で製造)に、前記の正極活物質ペーストを充填し、50℃で熟成と乾燥とを施し、未化成の正極板とした。なおPb-Sb合金箔は正極格子の両面に積層しても良い。Pb-Sb合金箔を正極格子の少なくとも一面に積層することにより、正極活物質と正極格子との密着性を高め、これによって正極活物質の軟化を抑制できる。ただしPb-Sb合金箔を積層しなくても良い。 Pb-Ca positive electrode grid with Pb-Sb alloy foil (thickness 20μm, Sb 5mass% contained, the rest being Pb) on one side (composition of the part excluding Pb-Sb alloy foil is Ca 0.07mass%, Sn 1.5mass % Content, the balance being Pb, manufactured by rotary expanding), the positive electrode active material paste was filled, and aged and dried at 50 ° C. to obtain an unformed positive electrode plate. The Pb—Sb alloy foil may be laminated on both sides of the positive electrode grid. By laminating the Pb—Sb alloy foil on at least one surface of the positive electrode lattice, the adhesion between the positive electrode active material and the positive electrode lattice can be improved, thereby suppressing the softening of the positive electrode active material. However, the Pb—Sb alloy foil need not be laminated.
化成済みの正極活物質の組成は以下の範囲とした。金属換算でSbが0〜0.5mass%、金属換算でSnが0〜2mass%、合成樹脂繊維が0.1mass%、残余が二酸化鉛PbO2を主成分とする鉛酸化物で、密度は4.2〜5g/cm3である。化成済みの正極活物質の質量は、化成済みの正極板から活物質を取り出し、水洗と乾燥とを施した際の質量である。正極活物質の一部が硫酸鉛に変化している場合、充電によりPbO2に戻して、正極活物質の質量を測定する。Sb及びSnの含有量は発光分光分析等により元素分析できる。正極活物質の密度は格子に充填されていても格子から取り出してもほとんど変わらないので、例えば極板から取り出し水洗と乾燥を施した正極活物質の嵩密度を、たとえば水銀圧入法による細孔分布等によって測定すればよい。なお、水銀圧入法とは、圧力を加えることで、大きい細孔から小さい細孔にまで水銀が圧入されていく現象を利用したものである。正極活物質はSb、Sn及び合成樹脂繊維以外の不純物あるいは添加物を含んでいても良いが、それらの量は合計で例えば1mass%以下とする。また鉛の不純物としてBiが混入していることがあるが、本願発明ではBiの作用を利用しないので、正極活物質中のBi含有量は例えば0.01mass%未満とする。 The composition of the formed positive electrode active material was set to the following range. Sb is 0~0.5Mass% in terms of metal, Sn is 0~2Mass% in terms of metal, synthetic resin fibers 0.1mass%, lead oxide remainder composed mainly of lead dioxide PbO 2, density 4.2~5g / cm 3 . The mass of the formed positive electrode active material is the mass when the active material is taken out from the formed positive electrode plate, washed and dried. When a part of the positive electrode active material is changed to lead sulfate, it is returned to PbO 2 by charging, and the mass of the positive electrode active material is measured. The content of Sb and Sn can be elementally analyzed by emission spectroscopic analysis or the like. The density of the positive electrode active material is almost the same regardless of whether it is filled in the grid or taken out from the grid. For example, the bulk density of the positive electrode active material taken out from the electrode plate and washed with water and dried, for example, pore distribution by mercury intrusion method What is necessary is just to measure by. The mercury intrusion method uses a phenomenon in which mercury is intruded from a large pore to a small pore by applying pressure. The positive electrode active material may contain impurities or additives other than Sb, Sn and synthetic resin fibers, but the total amount thereof is, for example, 1 mass% or less. In some cases, Bi is mixed as an impurity of lead. However, in the present invention, Bi is not used, so the Bi content in the positive electrode active material is set to less than 0.01 mass%, for example.
ボールミル法で製造した鉛粉に、ケッチェンブラックあるいはアセチレンブラック等のカーボンブラックと、BaSO4と補強剤の合成樹脂繊維とリグニンスルホン酸とを含有させ、水と硫酸とにより混練して、負極活物質ペーストとした。負極活物質ペーストをPb-Ca系負極格子(Ca 0.05mass%,Sn 0.5mass%含有,残余はPbで、ロータリーエキスパンド加工で製造)に充填し、50℃で熟成と乾燥とを施し、未化成の負極板とした。化成済みの負極活物質の組成は、海綿状鉛100mass%に対し、カーボンブラックが0.3mass%、BaSO4が0.5mass%、合成樹脂繊維が0.1mass%、リグニンスルホン酸が0.15mass%である。カーボンブラックは負極活物質のサルフェーションの防止用で、添加量は海綿状鉛100mass%に対し0.2mass%以上1mass%以下である。またBaSnO4,合成樹脂繊維,リグニンスルホン酸の量は任意である。
Lead powder produced by the ball mill method is mixed with carbon black such as ketjen black or acetylene black, BaSO 4 , synthetic resin fiber of reinforcing agent and lignin sulfonic acid, kneaded with water and sulfuric acid, and negative electrode active A material paste was obtained. The negative electrode active material paste is filled into a Pb-Ca negative electrode lattice (Ca 0.05mass%, Sn 0.5mass% contained, the remainder is Pb, manufactured by rotary expansion), and is aged and dried at 50 ° C, unformed Negative electrode plate. The composition of the chemical conversion already negative electrode active material, to spongy
負極板を微細な気孔を備えたポリエチレンセパレータで包み、負極板8枚と正極板7枚とを交互に積層して極板群とし、6個の極板群をポリプロピレンの電槽にセットし、電解液を注いで液式鉛蓄電池(以下単に鉛蓄電池)とした。なお電解液中に極板群が浸され、電解液は流動性がある。電解液は20℃で比重が1.285の硫酸で、Al3+イオンをAl2(SO4)3として0.1mol/L含有させたが、他に低温高率放電性能等を改善するためLi+イオンをLi2SO4として0.1mol/L程度含有させても良い。電解液はNa+イオン、負極活物質から溶出したリグニン、等の他の成分を含んでいても良い。化成は電槽化成により行い、正極活物質の理論容量の例えば200%の電気量で行った。 A negative electrode plate is wrapped with a polyethylene separator having fine pores, and eight negative electrode plates and seven positive electrode plates are alternately laminated to form an electrode plate group, and the six electrode plate groups are set in a polypropylene battery case, The electrolytic solution was poured into a liquid lead acid battery (hereinafter simply referred to as a lead acid battery). The electrode group is immersed in the electrolytic solution, and the electrolytic solution is fluid. With sulfuric acid having a specific gravity of 1.285 at the electrolyte 20 ° C., Al 3+ is ion was 0.1 mol / L contained as Al 2 (SO 4) 3, Li + ions to improve the low temperature high rate discharge performance and the like on the other May be contained as Li 2 SO 4 in an amount of about 0.1 mol / L. The electrolytic solution may contain other components such as Na + ions and lignin eluted from the negative electrode active material. The chemical conversion was performed by battery case chemical conversion, for example, with an electric quantity of 200% of the theoretical capacity of the positive electrode active material.
正極活物質の密度とSb含有量、及びSn含有量とを異ならせた鉛蓄電池を各3個ずつ用い、初期容量として5時間率容量(JIS D 5301 9.5.2b))を測定した。次いで図4に示す条件の耐久試験を行った。図4の耐久試験は、図5に示す電池工業会規格によるアイドリングストップ寿命試験(SBA S 0101の9.4.5)を、1サイクル当たりの充電時間を60秒から30秒へ短縮し、100サイクル毎に14.5Vで20分の補充電を行うように、変更したものである。そして放電時の電圧が7.2V未満となると寿命とし、寿命に到るまでのサイクル数を測定した。また耐久試験の途中で電解液の上部の密度を測定し、電解液の成層化の程度を評価した。ここで言う成層化とは、硫酸が電解液の下部に沈降して、電解液の上部と下部とで硫酸濃度が異なるようになる現象である。また寿命に到った蓄電池を解体し、正極活物質の状態から正極活物質の軟化の程度を、負極活物質中の硫酸鉛量からサルフェーションの程度を、それぞれ5段階で評価した。寿命の原因は全てが正極活物質の軟化によるものであった。 Three lead storage batteries each having different density, Sb content, and Sn content of the positive electrode active material were used, and the 5-hour rate capacity (JIS D 5301 9.5.2b)) was measured as the initial capacity. Next, an endurance test was performed under the conditions shown in FIG. The endurance test in Fig. 4 is the same as the idle stop life test (SBA S 0101 9.4.5) according to the battery industry association standard shown in Fig. 5, with the charge time per cycle reduced from 60 seconds to 30 seconds and every 100 cycles. In addition, it was changed to perform supplementary charging for 20 minutes at 14.5V. And when the voltage at the time of discharge became less than 7.2V, it was considered as the life, and the number of cycles until reaching the life was measured. Further, the density of the upper part of the electrolytic solution was measured during the durability test, and the degree of stratification of the electrolytic solution was evaluated. The stratification referred to here is a phenomenon in which sulfuric acid settles in the lower part of the electrolytic solution and the sulfuric acid concentration becomes different between the upper and lower parts of the electrolytic solution. Moreover, the storage battery which reached the end of its life was disassembled, and the degree of softening of the positive electrode active material was evaluated from the state of the positive electrode active material, and the degree of sulfation was evaluated from five levels of lead sulfate in the negative electrode active material, respectively. The cause of the lifetime was all due to softening of the positive electrode active material.
図1〜図3に結果を相対値で示し、結果は各3個の鉛蓄電池の平均値である。なお図1では正極活物質はSb濃度が0.1mass%、Sn濃度が0.25mass%で、図2では正極活物質はSn濃度が0.25mass%で、化成済みの段階で密度が4.6g/cm3である。図3では正極活物質はSb濃度が0.1mass%で、化成済みの段階で密度が4.6g/cm3である。 1 to 3 show the results as relative values, and the results are the average values of three lead-acid batteries. In FIG. 1, the positive electrode active material has an Sb concentration of 0.1 mass% and an Sn concentration of 0.25 mass%, and in FIG. 2, the positive electrode active material has an Sn concentration of 0.25 mass% and a density of 4.6 g / cm 3 at the stage of chemical conversion. It is. In FIG. 3, the positive electrode active material has an Sb concentration of 0.1 mass% and a density of 4.6 g / cm 3 at the stage of chemical conversion.
図1から明らかなように、既化成の正極活物質密度が増すと、図4の耐久試験での寿命が増し、この一方で5時間率容量が低下した。また正極活物質密度が4.4g/cm3以上4.8g/cm3以下の範囲では、寿命も5時間率容量も正極活物質の密度に対して緩やかに変化した。密度が4.8g/cm3を越えると容量が急激に低下し、密度が4.4g/cm3未満では寿命が急激に減少した。容量と寿命とを兼ね備えている密度は、4.4g/cm3以上4.8g/cm3以下である。試験後に蓄電池を解体すると、寿命の原因は正極活物質の軟化で、正極活物質の密度が高いほど軟化が遅いことが判明した。 As is clear from FIG. 1, as the density of the ready-made positive electrode active material increased, the life in the durability test of FIG. 4 increased, while the 5-hour rate capacity decreased. When the positive electrode active material density was in the range of 4.4 g / cm 3 to 4.8 g / cm 3 , the lifetime and the 5-hour rate capacity changed gradually with respect to the density of the positive electrode active material. When the density exceeded 4.8 g / cm 3 , the capacity decreased rapidly, and when the density was less than 4.4 g / cm 3 , the life decreased rapidly. The density having both capacity and life is 4.4 g / cm 3 or more and 4.8 g / cm 3 or less. When the storage battery was disassembled after the test, it was found that the cause of the lifetime was softening of the positive electrode active material, and the softening was slower as the density of the positive electrode active material was higher.
図2から明らかなように、寿命は正極活物質中のSbの存在により急激に立ち上がり、正極活物質中のSb濃度が0.01mass%以上で効果があり、0.03mass%では大きな効果があり、0.15mass%で効果は飽和し、0.3mass%を越えると寿命は僅かに低下した。この一方で、電解液の減液量はSb濃度が0.3mass%まではSb濃度と共に緩やかに増加し、0.3mass%を越えると急増した。これらのことからSb濃度は0.03mass%以上0.3mass%以下が好ましく、0.05mass%以上0.2mass%以下が特に好ましいことが分かった。耐久試験中の電解液の密度については、Sb濃度が0mass%及び0.01mass%では成層化が著しく、0.03mass%以上で成層化が抑制され、Sb濃度を0.3mass%以上に増しても、それ以上に成層化を抑制することはできなかった。また耐久試験後に蓄電池を解体すると、寿命の原因は正極の軟化であることが判明し、Sb濃度を0.03mass%以上に、好ましくは0.05mass%以上にすると、軟化が抑制されていた。軟化が進行している場合、正極板の上部で軟化が著しかった。 As is clear from FIG. 2, the lifetime rises sharply due to the presence of Sb in the positive electrode active material, and is effective when the Sb concentration in the positive electrode active material is 0.01 mass% or more, and has a significant effect at 0.03 mass%. The effect was saturated at mass%, and the life decreased slightly when it exceeded 0.3mass%. On the other hand, the amount of electrolyte decrease gradually increased with the Sb concentration until the Sb concentration reached 0.3 mass%, and rapidly increased when the Sb concentration exceeded 0.3 mass%. From these facts, it was found that the Sb concentration is preferably 0.03 mass% or more and 0.3 mass% or less, and particularly preferably 0.05 mass% or more and 0.2 mass% or less. Regarding the density of the electrolyte during the durability test, the stratification was remarkable when the Sb concentration was 0 mass% and 0.01 mass%, and the stratification was suppressed when the Sb concentration was 0.03 mass% or more, and even if the Sb concentration was increased to 0.3 mass% or more, Thus, stratification could not be suppressed. Further, when the storage battery was disassembled after the durability test, it was found that the cause of the life was softening of the positive electrode, and when the Sb concentration was 0.03 mass% or more, preferably 0.05 mass% or more, the softening was suppressed. When the softening has progressed, the softening was significant at the top of the positive electrode plate.
正極活物質中のSbは、正極活物質と正極格子との密着性を高めて、軟化を抑制する作用がある。また正極活物質中のSbは、一部が負極側へ移動して充電時にH2ガス等を発生させ、電解液の成層化を抑制する作用がある。なお実施例では、正極活物質に0.1mass%程度のSbを含有させると、充電時の充電状態が90%程度になるとH2ガスの発生が始まった。電解液が成層化すると、極板の上部で電解液の硫酸濃度が低下するので、大電流での放電が難しくなる。この状態で充放電を繰り返すと、特に極板の上部で正極活物質の軟化が進行しやすくなる。そこでSbを正極活物質に含有させ、H2ガス等を発生させることで、電解液の成層化が抑制され、寿命性能が向上した。 Sb in the positive electrode active material has an effect of increasing the adhesion between the positive electrode active material and the positive electrode lattice and suppressing softening. In addition, Sb in the positive electrode active material partly moves to the negative electrode side, and generates H 2 gas and the like during charging, thereby suppressing the stratification of the electrolyte. In Examples, when about 0.1 mass% of Sb was contained in the positive electrode active material, generation of H 2 gas started when the state of charge during charging reached about 90%. When the electrolytic solution is stratified, the sulfuric acid concentration of the electrolytic solution is lowered at the upper part of the electrode plate, so that it is difficult to discharge with a large current. When charging / discharging is repeated in this state, the softening of the positive electrode active material tends to proceed particularly at the upper part of the electrode plate. Therefore, by containing Sb in the positive electrode active material and generating H 2 gas or the like, the stratification of the electrolyte was suppressed and the life performance was improved.
実施例の蓄電池は充電不足の状態で動作させるため、減液は通常の鉛蓄電池に比べて深刻ではない。このためSb濃度を増すことにより、電解液の成層化と正極活物質の軟化とを防止することができた。 Since the storage battery of the example is operated in a state of insufficient charging, the liquid reduction is not as serious as that of a normal lead storage battery. For this reason, by increasing the Sb concentration, it was possible to prevent stratification of the electrolyte and softening of the positive electrode active material.
アイドリングストップ車用の鉛蓄電池では、負極活物質のサルフェーションにより寿命に達することが知られている。しかし実施例では、電解液にAl3+イオンを含有させ、負極活物質にカーボンブラックを含有させることによりサルフェーションを抑制したので、サルフェーションではなく、正極活物質の軟化により寿命に達した。 It is known that lead storage batteries for idling stop vehicles reach the end of their life due to sulfation of the negative electrode active material. However, in the examples, since sulfation was suppressed by containing Al 3+ ions in the electrolytic solution and carbon black in the negative electrode active material, the lifetime was reached by softening of the positive electrode active material instead of sulfation.
図3に示すように、正極活物質中のSnにより5時間率容量が増加した。図1に示したように、正極活物質の密度を増すと5時間率容量が低下するが、Snを正極活物質に含有させることにより、5時間率容量を許容範囲内に保つことができた。Snを正極活物質中に1mass%を越えて含有させると減液量が著しく増加し、0.05mass%未満では効果が僅かであることから、正極活物質中のSn含有量は0.05mass%以上1mass%以下、特に0.1mass%以上1mass%以下が好ましい。なおSbとSnとを同じ濃度で正極活物質に含有させた場合、減液量はSbを含有させた場合の方が著しかった。 As shown in FIG. 3, the 5-hour rate capacity increased due to Sn in the positive electrode active material. As shown in FIG. 1, when the density of the positive electrode active material is increased, the 5-hour rate capacity decreases, but by adding Sn to the positive electrode active material, the 5-hour rate capacity could be maintained within an allowable range. . When Sn is contained in the positive electrode active material in excess of 1 mass%, the amount of liquid decrease increases remarkably, and if it is less than 0.05 mass%, the effect is slight, so the Sn content in the positive electrode active material is 0.05 mass% or more and 1 mass % Or less, particularly 0.1 mass% or more and 1 mass% or less is preferable. When Sb and Sn were contained in the positive electrode active material at the same concentration, the amount of liquid reduction was more remarkable when Sb was contained.
以上のように実施例では、
・ 正極活物質の密度を増すことにより軟化を抑制し、
・ 正極活物質に含有させたSbにより正極活物質と格子との密着性を増し、また負極へ移動したSbによりH2ガス等を発生させて電解液の成層化を抑制する。
・ さらに正極活物質に含有させたSnにより容量を増加させて、正極活物質の密度を増したことによる容量の低下を補う。
そして上記の機構を組み合わせることにより、容量を従来の鉛蓄電池と同等に保ったもままで、充電不足の状態で使用される鉛蓄電池の耐久性を向上させる。
As described above, in the embodiment,
・ Suppressing softening by increasing the density of the positive electrode active material,
Positive-electrode active with a substance Sb that is contained in increasing the adhesion between the positive electrode active material and the grid, also suppresses the stratification of the electrolyte to generate H 2 gas or the like by moving the Sb to the negative electrode.
Further, the capacity is increased by Sn contained in the positive electrode active material to compensate for the decrease in capacity caused by increasing the density of the positive electrode active material.
By combining the above mechanisms, the durability of the lead storage battery used in a state of insufficient charge is improved while maintaining the capacity equivalent to that of the conventional lead storage battery.
図6に、実施例の鉛蓄電池2を組み込んだ電池システムを示す。6は自動車のエンジンで、8はオールタネータ、4は鉛蓄電池の制御装置である。10は、点火装置、スタータモータ、その他の電装品等の負荷である。12は主制御部で、エンジン6とオールタネータ8とを制御し、制御装置4へ鉛蓄電池を充電するか放電するかを指令し、制御装置4は、鉛蓄電池2の残容量が低下したことを端子電圧等により検出し、主制御部2へオールタネータ8を動作させることを要求する。制御装置4と鉛蓄電池2及び負荷10で、電池システムを構成する。
FIG. 6 shows a battery system incorporating the
図6の電池システムを組み込んだアイドリングストップ車では、停車時と加速時及び定速走行時にオールタネータ8による鉛蓄電池2への充電を停止させて、負荷10を鉛蓄電池2の電力で駆動する。そして減速時にオールタネータ8を動作させて、負荷10を動作させると共に鉛蓄電池2を充電する。また鉛蓄電池2の残容量が低下すると、例えば定速走行時にもオールタネータを動作させ、鉛蓄電池2を充電する。図4の試験条件は、図6の電池システムの動作を模したもので、実施例ではこのような電池システムでも使用できる鉛蓄電池が得られる。
In the idling stop vehicle incorporating the battery system of FIG. 6, the charging of the
2 液式鉛蓄電池
4 制御装置
6 エンジン
8 オールタネータ
10 負荷
12 主制御部
2 Liquid lead-acid battery 4 Controller 6 Engine 8
Claims (5)
正極活物質は化成済みの状態において、密度が4.4g/cm3以上4.8g/cm3以下で、かつSnを金属Snに換算して0.05mass%以上1.0mass%以下含有し、
負極活物質は化成済みの状態において、カーボンブラックを負極活物質中のは海綿状鉛100mass%に対し0.2mass%以上1mass%以下含有することを特徴とする、液式鉛蓄電池。 A positive electrode plate made of a positive electrode active material and a positive electrode lattice, a negative electrode plate made of a negative electrode active material and a negative electrode lattice, a separator separating the positive electrode plate and the negative electrode plate, and immersing and flowing the positive electrode plate, the negative electrode plate and the separator A liquid lead-acid battery for an idling stop vehicle comprising:
The positive electrode active material has a density of 4.4 g / cm 3 or more and 4.8 g / cm 3 or less in a converted state, and Sn is converted into metal Sn and contains 0.05 mass% or more and 1.0 mass% or less ,
A liquid lead-acid battery comprising carbon black in an amount of 0.2 mass% to 1 mass% with respect to 100 mass% of spongy lead in the negative electrode active material when the negative electrode active material has been converted .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011289519A JP5787167B2 (en) | 2011-12-28 | 2011-12-28 | Liquid lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011289519A JP5787167B2 (en) | 2011-12-28 | 2011-12-28 | Liquid lead-acid battery |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015141476A Division JP2015216123A (en) | 2015-07-15 | 2015-07-15 | Liquid-type lead storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013140677A JP2013140677A (en) | 2013-07-18 |
JP5787167B2 true JP5787167B2 (en) | 2015-09-30 |
Family
ID=49037961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011289519A Active JP5787167B2 (en) | 2011-12-28 | 2011-12-28 | Liquid lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5787167B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6153074B2 (en) * | 2013-08-02 | 2017-06-28 | 株式会社Gsユアサ | Liquid lead-acid battery |
JP2015216123A (en) * | 2015-07-15 | 2015-12-03 | 株式会社Gsユアサ | Liquid-type lead storage battery |
JP6551012B2 (en) * | 2015-07-30 | 2019-07-31 | 株式会社Gsユアサ | Negative electrode for lead acid battery and lead acid battery |
US20170222214A1 (en) | 2016-02-02 | 2017-08-03 | Gs Yuasa International, Ltd. | Positive electrode plate for lead-acid battery, lead-acid battery and method of manufacturing positive electrode plate for lead-acid battery |
JP7098874B2 (en) * | 2016-02-02 | 2022-07-12 | 株式会社Gsユアサ | Manufacturing method of lead-acid battery and positive electrode plate for lead-acid battery |
JP6727965B2 (en) * | 2016-03-22 | 2020-07-22 | 古河電池株式会社 | Lead acid battery |
CN109565040B (en) * | 2016-08-05 | 2022-03-01 | 株式会社杰士汤浅国际 | Lead-acid battery |
JP6677436B1 (en) * | 2019-09-26 | 2020-04-08 | 古河電池株式会社 | Lead storage battery |
JP7011023B2 (en) * | 2020-01-07 | 2022-01-26 | 古河電池株式会社 | Liquid lead-acid battery |
JP7026753B2 (en) * | 2020-01-07 | 2022-02-28 | 古河電池株式会社 | Liquid lead-acid battery |
JP7011024B2 (en) * | 2020-01-07 | 2022-01-26 | 古河電池株式会社 | Liquid lead-acid battery |
JP7011026B2 (en) * | 2020-01-07 | 2022-01-26 | 古河電池株式会社 | Liquid lead-acid battery |
JP7011025B2 (en) * | 2020-01-09 | 2022-01-26 | 古河電池株式会社 | Liquid lead-acid battery |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3013623B2 (en) * | 1992-08-28 | 2000-02-28 | 松下電器産業株式会社 | Sealed lead-acid battery |
JPH10188964A (en) * | 1996-12-19 | 1998-07-21 | Japan Storage Battery Co Ltd | Sealed lead-acid battery |
JP3728682B2 (en) * | 1996-12-19 | 2005-12-21 | 日本電池株式会社 | Sealed lead acid battery |
JP2000200598A (en) * | 1999-01-05 | 2000-07-18 | Shin Kobe Electric Mach Co Ltd | Sealed lead-acid battery |
JP2001155722A (en) * | 1999-11-25 | 2001-06-08 | Shin Kobe Electric Mach Co Ltd | Sealed lead acid storage battery and method of fabricating it |
JP4433593B2 (en) * | 2000-09-20 | 2010-03-17 | 新神戸電機株式会社 | Control valve type lead acid battery |
JP2002260671A (en) * | 2001-02-27 | 2002-09-13 | Shin Kobe Electric Mach Co Ltd | Lead-acid battery |
BRPI0519554B1 (en) * | 2005-09-27 | 2016-09-27 | Furukawa Battery Co Ltd | lead accumulator. |
JP2008243606A (en) * | 2007-03-27 | 2008-10-09 | Furukawa Battery Co Ltd:The | Lead acid storage battery |
JP5520629B2 (en) * | 2010-02-12 | 2014-06-11 | 富士重工業株式会社 | Vehicle power supply |
-
2011
- 2011-12-28 JP JP2011289519A patent/JP5787167B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013140677A (en) | 2013-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5787167B2 (en) | Liquid lead-acid battery | |
JP5757235B2 (en) | Liquid lead acid battery, battery system using the same, and method of using liquid lead acid battery | |
JP5315256B2 (en) | Optimized energy storage device | |
US9728772B2 (en) | Flooded lead-acid battery and method of making the same | |
JPWO2014097522A1 (en) | Lead acid battery | |
US20110027653A1 (en) | Negative plate for lead acid battery | |
JP6660072B2 (en) | Positive electrode plate for lead-acid battery, lead-acid battery using the positive electrode plate, and method of manufacturing positive electrode plate for lead-acid battery | |
US20110250500A1 (en) | Positive active material for a lead-acid battery | |
JP2008243493A (en) | Lead acid storage battery | |
JP2008243489A (en) | Lead acid storage battery | |
JP6307043B2 (en) | Liquid lead-acid battery | |
JP2013134957A (en) | Method for manufacturing lead-acid battery, and lead-acid battery | |
JP5531746B2 (en) | Lead acid battery | |
JP5017746B2 (en) | Control valve type lead acid battery | |
JP5573785B2 (en) | Lead acid battery | |
JP5637503B2 (en) | Lead acid battery | |
JP2015216123A (en) | Liquid-type lead storage battery | |
JP4364054B2 (en) | Lead acid battery | |
JP2006079973A (en) | Lead storage battery | |
JP5909974B2 (en) | Lead acid battery | |
JP2005268061A (en) | Lead storage cell | |
JP5754607B2 (en) | Lead acid battery | |
JP2005347155A (en) | Lead-acid storage battery | |
JP2005353302A (en) | Lead-acid storage battery | |
JP2005353516A (en) | Lead-acid storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150310 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150715 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5787167 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |