JP5909974B2 - Lead acid battery - Google Patents
Lead acid battery Download PDFInfo
- Publication number
- JP5909974B2 JP5909974B2 JP2011221768A JP2011221768A JP5909974B2 JP 5909974 B2 JP5909974 B2 JP 5909974B2 JP 2011221768 A JP2011221768 A JP 2011221768A JP 2011221768 A JP2011221768 A JP 2011221768A JP 5909974 B2 JP5909974 B2 JP 5909974B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- ions
- positive electrode
- life performance
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
Description
この発明は鉛蓄電池に関する。 The present invention relates to a lead storage battery.
トラック、バス等の大型車用鉛蓄電池には、正極活物質の剥離あるいは脱落を抑制し、サイクル寿命特性を向上させるため、正極格子にPb-Sb系合金が使用されている。しかしながら、蓄電池がエンジンなどの付近に置かれる一部の車種において、廃熱の影響を受けて電池温度が60℃に達する場合があり、このような使用環境ではSbの小さい水素過電圧の影響で減液速度が著しく増加して、補水の頻度が増える、あるいは水素発生反応によって硫酸鉛の充電反応が阻害されることで硫酸鉛が早期に蓄積し、短寿命となる場合があることがわかった。また、同様にPb-Sb系格子からなるクラッド式極板を使用する電気車用途においても、夏場の使用においては組電池の中央部分に配置される電池の温度が70℃を超える場合があり、同様の劣化現象が起こる。なおPb-Sb系の正極格子は電解液の減液を速めるので、メンテナンスフリー性を重視する場合は使用されない。 In lead-acid batteries for trucks, buses, etc., Pb—Sb-based alloys are used for the positive electrode lattice in order to suppress the separation or removal of the positive electrode active material and improve the cycle life characteristics. However, in some vehicle models where the storage battery is placed near the engine, etc., the battery temperature may reach 60 ° C due to the effect of waste heat. It has been found that lead sulfate accumulates early and the life may be shortened by remarkably increasing the liquid speed, increasing the frequency of replenishment, or inhibiting the charge reaction of lead sulfate by the hydrogen generation reaction. Similarly, even in electric vehicle applications that use a clad plate made of a Pb-Sb grid, the temperature of the battery placed in the center of the assembled battery may exceed 70 ° C in summer use. A similar deterioration phenomenon occurs. Note that the Pb—Sb-based positive electrode grid accelerates the decrease of the electrolyte, and is not used when importance is placed on maintenance-free properties.
硫酸鉛の蓄積への対策として、特許文献1(WO2007/036979)は電解液にAl3+イオンを含有させると、負極の充電受入性が向上し、充電時に硫酸鉛を金属鉛に還元できるとしている。また特許文献1は、正極格子の表面にPb-Sb系の表面層を設けると正極活物質と格子との密着性を改善でき、電解液にLi+イオンを含有させると鉛蓄電池の容量が増加するとしている。 As a countermeasure against the accumulation of lead sulfate, Patent Document 1 (WO2007 / 036979) states that when Al 3+ ions are included in the electrolyte, the charge acceptability of the negative electrode is improved, and lead sulfate can be reduced to metallic lead during charging. . Further, in Patent Document 1, when a Pb—Sb surface layer is provided on the surface of the positive electrode lattice, the adhesion between the positive electrode active material and the lattice can be improved, and when the electrolyte contains Li + ions, the capacity of the lead storage battery increases. If so.
この発明の課題は、少なくとも正極格子にPb-Sb系合金を備えた鉛蓄電池に対して、高温での寿命性能を向上させることにある。 The subject of this invention is improving the lifetime performance in high temperature with respect to the lead storage battery which provided the Pb-Sb type alloy at least in the positive electrode lattice.
この発明は、正極格子と正極活物質、負極格子と負極活物質、及び希硫酸から成る電解液を備えた鉛蓄電池において、少なくとも前記正極格子がPb-Sb系合金から成り、前記電解液はAl3+イオンを0.02mol/L以上0.2mol/L以下、Li+イオンを0.02mol/L以上0.2mol/L以下含有することを特徴とする。正極格子のみがPb-Sb系合金でも、正極格子と負極格子とが共にPb-Sb系合金でも、同様に高温での軽負荷寿命性能等が向上する。なおこの明細書で、高温とは蓄電池の温度が60℃以上であることをいう。 The present invention provides a lead-acid battery including an electrolyte composed of a positive electrode grid and a positive electrode active material, a negative electrode grid and a negative electrode active material, and dilute sulfuric acid, at least the positive electrode grid is made of a Pb-Sb alloy, and the electrolyte solution is made of Al. 3+ ions are contained in 0.02 mol / L or more and 0.2 mol / L or less, and Li + ions are contained in 0.02 mol / L or more and 0.2 mol / L or less. Even if only the positive electrode lattice is a Pb—Sb alloy, and both the positive electrode lattice and the negative electrode lattice are Pb—Sb alloys, the light load life performance at high temperatures and the like is improved. In this specification, high temperature means that the temperature of the storage battery is 60 ° C. or higher.
正極格子にPb-Sb系合金を用いた鉛蓄電池を高温で使用すると、格子のPb-Sb合金のために減液が促進され、電解液の硫酸濃度が増して、負極活物質中に硫酸鉛が蓄積するサルフェーションが進行しやすくなる。サルフェーションが進行すると、大電流放電が困難になり、また充電受入性も低下するので、寿命性能が低下し、これが高温での軽負荷寿命性能の低下として現れる。これに対して、電解液にAl3+イオンを0.02mol/L以上0.2mol/L以下、Li+イオンを0.02mol/L以上0.2mol/L以下含有させると、高温での軽負荷寿命性能が向上する(図1,図2)。そしてこの時、高温での軽負荷寿命性能に限らず、常温での軽負荷寿命性能も向上する(図1,図2)。また軽負荷寿命性能は、定電圧充電と大電流放電を含み、蓄電池の基本機能である充放電の性能を評価するのに適しており、軽負荷寿命性能を向上させることは蓄電池の寿命性能一般の向上につながる。 When a lead-acid battery using a Pb-Sb alloy for the positive electrode lattice is used at a high temperature, liquid reduction is promoted due to the Pb-Sb alloy of the lattice, the sulfuric acid concentration of the electrolyte increases, and lead sulfate in the negative electrode active material The sulfation that accumulates easily proceeds. As sulfation progresses, large current discharge becomes difficult and charge acceptability also decreases, resulting in a decrease in life performance, which appears as a decrease in light load life performance at high temperatures. In contrast, if the electrolyte contains Al 3+ ions in the range of 0.02 mol / L to 0.2 mol / L and Li + ions in the range of 0.02 mol / L to 0.2 mol / L, the light load life performance at high temperatures is improved. (FIGS. 1 and 2). At this time, not only the light load life performance at high temperature but also the light load life performance at normal temperature is improved (FIGS. 1 and 2). Light load life performance includes constant voltage charging and large current discharge, and is suitable for evaluating the performance of charge and discharge, which is the basic function of storage batteries. Improving light load life performance generally Leads to improvement.
なおAl3+イオンを電解液に0.02mol/L以上0.2mol/L以下の濃度で加えても、電解液が0.02mol/L以上0.2mol/L以下のLi+イオンを含有しない限り、高温での軽負荷寿命性能の向上は僅かである(図2)。また電解液にLi+イオンを0.02mol/L以上0.2mol/L以下の濃度で加えても、電解液が0.02mol/L以上0.2mol/L以下のAl3+イオンを含有しない限り、高温での軽負荷寿命性能の向上は僅かである(図1)。言い換えると、高温での軽負荷寿命性能の向上は、特定の濃度のAl3+イオンと特定の濃度のLi+イオンとの組み合わせで発現する特異な現象である。 Even if Al 3+ ions are added to the electrolyte at a concentration of 0.02 mol / L or more and 0.2 mol / L or less, as long as the electrolyte does not contain 0.02 mol / L or more and 0.2 mol / L or less of Li + ions, The improvement in light load life performance is slight (Fig. 2). Even if Li + ions are added to the electrolyte at a concentration of 0.02 mol / L or more and 0.2 mol / L or less, as long as the electrolyte does not contain 0.02 mol / L or more and 0.2 mol / L or less of Al 3+ ions, The improvement in light load life performance is slight (Fig. 1). In other words, the improvement of the light load life performance at a high temperature is a unique phenomenon that occurs in a combination of a specific concentration of Al 3+ ions and a specific concentration of Li + ions.
高温での寿命性能を充分に向上させるには、電解液が0.02mol/L以上0.2mol/L以下のAl3+イオンと0.02mol/L以上0.2mol/L以下のLi+イオンとを共に含有することが必要である(図1,図2)。即ち、高温での寿命性能の向上には、単に電解液がAl3+イオンとLi+イオンとを含むことではなく、これらのイオンを特定の濃度で含むことが必要である。 In order to sufficiently improve the life performance at high temperature, the electrolyte contains both Al 3+ ions of 0.02 mol / L or more and 0.2 mol / L or less and Li + ions of 0.02 mol / L or more and 0.2 mol / L or less. Is necessary (FIGS. 1 and 2). That is, in order to improve the life performance at high temperature, it is necessary that the electrolyte does not simply contain Al 3+ ions and Li + ions, but contains these ions at a specific concentration.
以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。 Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.
Pb-2mass%Sb-0.2mass%Asから成るPb-Sb系合金を用い、鋳造法により正極格子を作製した。Pb-Sb系合金では、Sb濃度は1mass%〜4mass%が好ましく、As濃度は0.1mass%〜0.4mass%が好ましく、Sn,Se,Ag等の他の元素を例えば合計で0.5mass%以下含んでいても良く、残部はPbである。Pb-0.1mass%Ca-0.7mass%Snから成るPb-Ca系合金シートを用い、エキスパンド法により負極格子を作製した。なお正極格子と負極格子とに共にPb-Sb系合金を用いる実施例では、前記のPb-Sb系合金により鋳造法により負極格子を作製した。 Using a Pb-Sb alloy composed of Pb-2mass% Sb-0.2mass% As, a positive grid was fabricated by a casting method. In the Pb-Sb alloy, the Sb concentration is preferably 1 mass% to 4 mass%, the As concentration is preferably 0.1 mass% to 0.4 mass%, and includes other elements such as Sn, Se, Ag, etc. in a total amount of 0.5 mass% or less. The balance is Pb. Using a Pb-Ca alloy sheet made of Pb-0.1mass% Ca-0.7mass% Sn, a negative electrode grid was prepared by the expanding method. In Examples where Pb—Sb alloys were used for both the positive and negative grids, negative grids were prepared by casting using the Pb—Sb alloys.
正極活物質としてボールミル法で作製した鉛粉に定法に従い合成樹脂繊維を加え、水と希硫酸とでペースト化し、正極格子に充填し、熟成と乾燥とを行い、未化成の正極板とした。負極活物質として同様にボールミル法で作製した鉛粉に、定法に従い合成樹脂繊維とBaSO4とリグニンとカーボンブラックとを加え、水と希硫酸とでペースト化し、負極格子に充填し、熟成と乾燥とを行い、未化成の負極板とした。鉛粉の製造方法と製造条件は任意で、鉛粉への添加物も任意である。 Synthetic resin fiber was added to lead powder produced by a ball mill method as a positive electrode active material according to a conventional method, pasted with water and dilute sulfuric acid, filled into a positive electrode lattice, aged and dried to obtain an unformed positive electrode plate. Similarly, synthetic resin fiber, BaSO 4 , lignin and carbon black are added to the lead powder produced by the ball mill method as the negative electrode active material according to a conventional method, and the mixture is pasted with water and dilute sulfuric acid, filled into the negative electrode lattice, aged and dried. To obtain an unformed negative electrode plate. The manufacturing method and manufacturing conditions of lead powder are arbitrary, and the additive to lead powder is also arbitrary.
未化成の負極板をポリエチレンの多孔質セパレータで包み、未化成の負極板と未化成の正極板とを積層した。次いで積層体の負極板の耳部をストラップで互いに接続し、正極板の耳部をストラップで互いに接続し、未化成のエレメントとした。エレメントを電槽内に直列に6組収納し、水と、Al3+イオンとLi+イオンとを含有する希硫酸とを加え、電槽化成によりJIS D 5301:2006に規定される145G51タイプの鉛蓄電池とした。Al3+イオンは硫酸アルミニウムとして加え、Li+イオンは硫酸リチウムとして加えたが、LiAlO2、LiOH、Al(OH)3等の形態で加えても良く、添加形態は任意である。また電解液は希硫酸とAl3+イオンとLi+イオンの他に、例えば0.02mol/L以下のNa+イオン、K+イオン、Mg2+イオン等を含んでいても良い。Al3+イオン濃度とLi+イオン濃度を異ならせた他は、各電池を同一の材料を同一の条件で処理して作製した。ただし負極格子はPb-Ca系合金とPb-Sb系合金の2種類である。また電槽への注入時の電解液は、Al3+イオンとLi+イオンとを無視すると、20℃で比重が1.22の希硫酸である。 The unformed negative electrode plate was wrapped with a polyethylene porous separator, and the unformed negative plate and the unformed positive plate were laminated. Next, the ears of the negative electrode plate of the laminate were connected to each other with a strap, and the ears of the positive electrode plate were connected to each other with a strap to obtain an unformed element. Six sets of elements are housed in series in a battery case, water and dilute sulfuric acid containing Al 3+ ions and Li + ions are added, and 145G51 type lead specified in JIS D 5301: 2006 by battery case formation A storage battery was used. Al 3+ ions were added as aluminum sulfate and Li + ions were added as lithium sulfate, but they may be added in the form of LiAlO 2 , LiOH, Al (OH) 3 , and the addition form is arbitrary. In addition to dilute sulfuric acid, Al 3+ ions, and Li + ions, the electrolyte solution may contain, for example, 0.02 mol / L or less Na + ions, K + ions, Mg 2+ ions, and the like. Each battery was fabricated by treating the same material under the same conditions except that the Al 3+ ion concentration and the Li + ion concentration were different. However, there are two types of negative electrode lattices, Pb-Ca alloy and Pb-Sb alloy. In addition, the electrolyte at the time of injection into the battery case is dilute sulfuric acid having a specific gravity of 1.22 at 20 ° C., ignoring Al 3+ ions and Li + ions.
電解液のAl3+イオンとLi+イオン含有量の組み合わせ毎に、鉛蓄電池を6個ずつ作製し、JIS D 5301:2006 9.5.5a)に規定する軽負荷寿命試験を40℃と60℃の2種類の温度で、鉛蓄電池を3個ずつ用いて行った。JISの規定では、軽負荷寿命試験は25Aで4分間放電し、14.8V(最大充電電流 25A)で10分充電するサイクルを、毎週480サイクル行い、480サイクル毎にCCA電流で30秒間放電し、放電末の端子電圧が7.2V以下になると寿命とする。JISでは41±3℃で試験することを要求しているが、ここでは40℃での試験と60℃での試験を行った。また寿命性能は、Al3+イオンもLi+イオンも含まない電解液の蓄電池が40℃で寿命に達するまでのサイクル数を100%とする、相対値で表す。 For each combination of Al 3+ ion and Li + ion content in the electrolyte, six lead-acid batteries were produced, and light load life tests specified in JIS D 5301: 2006 9.5.5a) were conducted at 40 ° C and 60 ° C. Three lead-acid batteries were used at different temperatures. According to the JIS regulations, the light load life test is discharged for 4 minutes at 25A and charged for 10 minutes at 14.8V (maximum charging current 25A), 480 cycles every week, and discharged for 30 seconds with CCA current every 480 cycles. The service life is reached when the terminal voltage at the end of discharge is 7.2V or less. The JIS requires that the test be performed at 41 ± 3 ° C. Here, a test at 40 ° C and a test at 60 ° C were performed. The life performance is expressed as a relative value where the number of cycles until the storage battery of the electrolyte solution containing neither Al 3+ ions nor Li + ions reaches the life at 40 ° C. is defined as 100%.
鉛蓄電池がエンジン付近におかれる車種では、蓄電池の温度が60℃程度まで昇温することがある。エンジンの付近におかれない場合でも、夏期等の季節と地域と自動車の運転条件とによっては60〜70℃程度まで蓄電池が昇温することがある。またクラッド式正極板を使用する電気車では、組電池の中央部分の蓄電池は夏期に70℃以上の温度に達することがある。そこで蓄電池の耐久性を評価するには、40℃での試験のみでは不十分で、60℃等の高温での試験が必要である。 In a vehicle type in which a lead storage battery is placed near the engine, the temperature of the storage battery may rise to about 60 ° C. Even when not in the vicinity of the engine, the storage battery may be heated up to about 60-70 ° C. depending on the season such as summer, the region, and the driving conditions of the car. In addition, in an electric vehicle using a clad positive electrode plate, the storage battery at the center of the assembled battery may reach a temperature of 70 ° C. or higher in summer. Therefore, in order to evaluate the durability of the storage battery, a test at 40 ° C alone is not sufficient, and a test at a high temperature such as 60 ° C is necessary.
図1,図2に主な結果を示し、図1はLi+イオン濃度を0.02mol/Lまたは0.2mol/Lに固定し、Al3+イオン濃度を0〜0.3mol/Lの範囲で変化させた際の結果を示す。また図2はAl3+イオン濃度を0.02mol/Lまたは0.2mol/Lに固定し、Li+イオン濃度を0〜0.3mol/Lの範囲で変化させた際の結果を示す。図1に示すように、Al3+イオン濃度が0.02mol/L未満では、40℃での寿命性能と60℃での寿命性能とに大差がある。これに対してAl3+イオン濃度が0.02mol/L以上0.2mol/L以下では高温での寿命性能が向上し、40℃と60℃とで寿命性能がほぼ等しくなる。一方、Al3+イオン濃度が0.2mol/Lを越えると、常温でも高温でも寿命性能は低下する。 1 and 2 show the main results. In FIG. 1, the Li + ion concentration was fixed at 0.02 mol / L or 0.2 mol / L, and the Al 3 + ion concentration was varied in the range of 0 to 0.3 mol / L. The result is shown. FIG. 2 shows the results when the Al 3+ ion concentration was fixed at 0.02 mol / L or 0.2 mol / L, and the Li + ion concentration was changed in the range of 0 to 0.3 mol / L. As shown in FIG. 1, when the Al 3+ ion concentration is less than 0.02 mol / L, there is a large difference between the life performance at 40 ° C. and the life performance at 60 ° C. On the other hand, when the Al 3+ ion concentration is 0.02 mol / L or more and 0.2 mol / L or less, the life performance at high temperature is improved, and the life performance is almost equal at 40 ° C. and 60 ° C. On the other hand, when the Al 3+ ion concentration exceeds 0.2 mol / L, the life performance deteriorates at normal temperature and high temperature.
図2に示すように、Li+イオン濃度が0.02mol/L未満では、40℃での寿命性能と60℃での寿命性能とに大差がある。これに対してLi+イオン濃度が0.02mol/L以上0.2mol/L以下では高温での寿命性能が向上し、40℃と60℃とで寿命性能がほぼ等しくなる。一方、Li+イオン濃度が0.2mol/Lを越えると、60℃での寿命性能が低下する。 As shown in FIG. 2, when the Li + ion concentration is less than 0.02 mol / L, there is a large difference between the life performance at 40 ° C. and the life performance at 60 ° C. On the other hand, when the Li + ion concentration is 0.02 mol / L or more and 0.2 mol / L or less, the life performance at high temperature is improved, and the life performance is almost equal at 40 ° C. and 60 ° C. On the other hand, when the Li + ion concentration exceeds 0.2 mol / L, the life performance at 60 ° C. decreases.
表1は各実施例の結果を示し、これから以下のことが分かる。
・ Al3+イオン濃度とLi+イオン濃度が共に0.02mol/L以上0.2mol/L以下の電解液でのみ、60℃での軽負荷寿命性能を100以上にでき、この時40℃での軽負荷寿命も高くなる。
・ Al3+イオン濃度とLi+イオン濃度のいずれかが0.02mol/L未満では、60℃での寿命性能を向上できない。
・ Al3+イオン濃度とLi+イオン濃度のいずれかが0.2mol/Lを越える場合、60℃での軽負荷寿命性能を大きく向上させることができない。
Table 1 shows the results of each example, from which the following can be understood.
・ Only with electrolytes with both Al 3+ ion concentration and Li + ion concentration of 0.02 mol / L or more and 0.2 mol / L or less, light load life performance at 60 ° C can be increased to 100 or more, and light load at 40 ° C at this time The service life is also increased.
-If either Al 3+ ion concentration or Li + ion concentration is less than 0.02 mol / L, the life performance at 60 ° C cannot be improved.
-If either Al 3+ ion concentration or Li + ion concentration exceeds 0.2 mol / L, the light load life performance at 60 ° C cannot be greatly improved.
なお60℃で軽負荷寿命性能が著しく低下するのは、正極格子にPb-Sb系合金を用いた蓄電池に特有の現象である。例えば特許文献1等で正極格子にPb-Ca系合金を用い、その表面にPb-Sb系合金箔を積層した鉛蓄電池が知られているが、このような電池では60℃で軽負荷寿命性能が特に低下するとの現象は見られなかった。そもそも、Pb-Ca系合金の正極格子表面にPb-Sb系合金箔を積層する技術は、メンテナンスフリー性を維持したままPb-Ca系合金に特有な格子−活物質間の結着力の悪さを改善する技術であり、Sbは少量である。また、Pb-Ca系合金の正極格子表面にPb-Sb合金箔を積層する技術は、正極格子の腐食伸びに対しては効果がないため、振動等が加わり、格子の耐久性が求められるトラック・バス等の大型車用途では現在でも耐腐食性や機械的強度に優れたPb-Sb系合金の正極格子が使用されている。本発明はこのような用途における高温での軽負荷寿命性能の改善を目的とし、特許文献1等のPb-Ca系合金の正極格子表面にPb-Sb系合金箔を積層する技術とは、電池構成、技術的な背景、目的のいずれも異なる。 In addition, the light load life performance remarkably decreases at 60 ° C. is a phenomenon peculiar to a storage battery using a Pb—Sb alloy for the positive electrode lattice. For example, Pb-Ca alloys are used in the positive electrode grid in Patent Document 1 and Pb-Sb alloy foils are laminated on the surface. Lead-type batteries with such a battery have a light load life performance at 60 ° C. There was no particular phenomenon that decreased. In the first place, the technology of laminating Pb-Sb alloy foil on the surface of the positive electrode lattice of Pb-Ca alloy has the poor binding force between the lattice and the active material peculiar to Pb-Ca alloy while maintaining maintenance-free properties. It is a technology to improve, and Sb is a small amount. In addition, the technology of laminating Pb-Sb alloy foil on the surface of the Pb-Ca alloy positive electrode lattice has no effect on the corrosion growth of the positive electrode lattice, so vibrations are added and the durability of the lattice is required.・ Pb-Sb alloy positive electrode grids with excellent corrosion resistance and mechanical strength are still used in large vehicles such as buses. The present invention aims to improve the light load life performance at high temperatures in such applications, and a technique for laminating a Pb—Sb alloy foil on the surface of a positive electrode lattice of a Pb—Ca alloy disclosed in Patent Document 1 is a battery. Structure, technical background, and purpose are all different.
実験では、電解液に適正量のAl3+イオンを含有させることにより、Pb-Sb系合金からなる正極格子を用いた際の減液速度を小さくできた。しかしその反面で、Al3+イオンを電解液に含有させると、大電流で放電した際に電解液の導電性が低下した。またAl3+イオンを含有する電解液にLi+イオンを含有させると、大電流で放電した際の電解液の導電性が回復した。これらのことから、電解液に適正量のAl3+イオンとLi+イオンとを共存させると、60℃での軽負荷寿命性能が向上することの機構を、以下のように推定できる。
・ Pb-Sb系合金では電解液の減液が問題になり、高温で減液が速くなる。
・ 電解液が減液すると、SO4 2- イオン濃度が増すため、充電受入性が低下し、PbSO4の蓄積が進んで、寿命性能が低下する。
・ ここでAl3+イオンを含有させると減液を遅らせることができるが、電解液の導電性が低下するため、大電流での放電が難しくなり、軽負荷寿命試験での寿命性能は向上しない。
・ Al3+イオンとLi+イオンとを共存させると、電解液の導電性を向上させ、高温での軽負荷寿命試験の寿命性能を向上させることができる。ただし、Li+イオンも添加量が多くなり過ぎるとかえって電解液の導電性が低下するため、いずれのイオンも0.02mol/L以上0.2mol/L以下であることが有効であると考えられる。
In the experiment, by adding an appropriate amount of Al 3+ ions to the electrolytic solution, the rate of liquid reduction when using a positive electrode lattice made of a Pb—Sb alloy could be reduced. On the other hand, when Al 3+ ions are contained in the electrolytic solution, the conductivity of the electrolytic solution is reduced when discharged with a large current. Further, when Li + ions were contained in the electrolyte containing Al 3+ ions, the conductivity of the electrolyte was restored when discharged with a large current. From these facts , the mechanism of improving the light load life performance at 60 ° C. can be estimated as follows when an appropriate amount of Al 3+ ions and Li + ions coexist in the electrolytic solution.
・ With Pb-Sb alloys, electrolyte depletion becomes a problem and dehydration becomes faster at high temperatures.
-When the electrolyte is reduced, the SO 4 2- ion concentration increases, so charge acceptability decreases, PbSO 4 accumulates, and life performance decreases.
-If Al 3+ ions are contained here, the liquid reduction can be delayed, but the conductivity of the electrolyte decreases, so it becomes difficult to discharge at a large current, and the life performance in the light load life test is not improved.
-When Al 3+ ions and Li + ions coexist, the conductivity of the electrolyte can be improved and the life performance of a light load life test at high temperature can be improved. However, if the amount of Li + ions added is too large, the conductivity of the electrolytic solution is lowered. Therefore, it is considered effective that any ion is 0.02 mol / L or more and 0.2 mol / L or less.
Pb-Sb系の正極格子に対し、Al3+イオンとLi+イオンを共に0.02mol/L以上0.2mol/L以下含有する電解液が有効であることは、正極板がペースト式である場合に限らない。従ってPb-Sb系合金を用いたクラッド式の正極板を用いても良く、この場合、負極板は例えばペースト式とする。実施例では、Pb-Sb系合金からなる正極格子を用いた鉛蓄電池に対し、高温での軽負荷寿命性能を著しく向上させ、常温での軽負荷寿命性能も向上させることができる。 The fact that an electrolyte containing both Al 3+ ions and Li + ions in the range of 0.02 mol / L to 0.2 mol / L is effective for Pb-Sb positive electrode lattices is only when the positive electrode plate is a paste type. Absent. Therefore, a clad positive electrode plate using a Pb—Sb alloy may be used. In this case, the negative electrode plate is, for example, a paste type. In the embodiment, the light load life performance at a high temperature can be remarkably improved and the light load life performance at a normal temperature can be improved with respect to a lead storage battery using a positive electrode grid made of a Pb—Sb alloy.
Claims (1)
少なくとも前記正極格子がPb-Sb系合金から成り、
前記電解液はAl3+イオンを0.02mol/L以上0.2mol/L以下、Li+イオンを0.02mol/L以上0.2mol/L以下含有することを特徴とする、鉛蓄電池。 In a lead storage battery comprising an electrolyte comprising a positive electrode grid and a positive electrode active material, a negative electrode grid and a negative electrode active material, and dilute sulfuric acid,
At least the positive electrode lattice is made of a Pb-Sb alloy,
The lead acid battery, wherein the electrolyte contains Al 3+ ions in a range of 0.02 mol / L to 0.2 mol / L and Li + ions in a range of 0.02 mol / L to 0.2 mol / L.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011221768A JP5909974B2 (en) | 2011-10-06 | 2011-10-06 | Lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011221768A JP5909974B2 (en) | 2011-10-06 | 2011-10-06 | Lead acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013084361A JP2013084361A (en) | 2013-05-09 |
JP5909974B2 true JP5909974B2 (en) | 2016-04-27 |
Family
ID=48529388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011221768A Active JP5909974B2 (en) | 2011-10-06 | 2011-10-06 | Lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5909974B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6153073B2 (en) * | 2013-08-02 | 2017-06-28 | 株式会社Gsユアサ | Lead acid battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5539141A (en) * | 1978-09-11 | 1980-03-18 | Yuasa Battery Co Ltd | Lead storage battery |
JP3047463B2 (en) * | 1990-11-27 | 2000-05-29 | 松下電器産業株式会社 | Lead storage battery |
JP2008243487A (en) * | 2007-03-26 | 2008-10-09 | Furukawa Battery Co Ltd:The | Lead acid battery |
-
2011
- 2011-10-06 JP JP2011221768A patent/JP5909974B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013084361A (en) | 2013-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522444B2 (en) | Lead acid battery | |
JP5477288B2 (en) | Lead-acid battery and method for manufacturing the same | |
CN103109412B (en) | Lead battery and be equipped with the idling stop vehicle of this lead battery | |
JP5748091B2 (en) | Lead acid battery | |
WO2014162674A1 (en) | Lead acid storage battery | |
JP5983985B2 (en) | Lead acid battery | |
JP2008130516A (en) | Liquid lead-acid storage battery | |
JP2017059480A (en) | Lead storage battery | |
JP2008243493A (en) | Lead acid storage battery | |
JP5656068B2 (en) | Liquid lead-acid battery | |
JP2013134957A (en) | Method for manufacturing lead-acid battery, and lead-acid battery | |
JP5935069B2 (en) | Lead-acid battery grid and lead-acid battery | |
JP6495862B2 (en) | Lead acid battery | |
JP5531746B2 (en) | Lead acid battery | |
JP5909974B2 (en) | Lead acid battery | |
JP5573785B2 (en) | Lead acid battery | |
JP5656116B2 (en) | Lead acid battery | |
JP2012138331A (en) | Lead storage battery and idling stop vehicle | |
JP6197426B2 (en) | Lead acid battery | |
JP5839229B2 (en) | Lead acid battery | |
JP6164502B2 (en) | Lead acid battery | |
JP2019207786A (en) | Lead acid battery | |
JP2005294142A (en) | Lead storage battery | |
JP2006079973A (en) | Lead storage battery | |
JP5754607B2 (en) | Lead acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150528 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150527 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160314 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5909974 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |