Nothing Special   »   [go: up one dir, main page]

JP4364054B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP4364054B2
JP4364054B2 JP2004133435A JP2004133435A JP4364054B2 JP 4364054 B2 JP4364054 B2 JP 4364054B2 JP 2004133435 A JP2004133435 A JP 2004133435A JP 2004133435 A JP2004133435 A JP 2004133435A JP 4364054 B2 JP4364054 B2 JP 4364054B2
Authority
JP
Japan
Prior art keywords
mass
positive electrode
lead
active material
electrode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004133435A
Other languages
Japanese (ja)
Other versions
JP2005317331A (en
Inventor
淳 古川
大輔 門馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2004133435A priority Critical patent/JP4364054B2/en
Publication of JP2005317331A publication Critical patent/JP2005317331A/en
Application granted granted Critical
Publication of JP4364054B2 publication Critical patent/JP4364054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、長寿命でかつ容量回復性(回復充電時の充電受け入れ性)に優れ、特にアイドルストップシステムを採用した自動車用に好適な鉛蓄電池に関する。 The present invention relates to a lead-acid battery that has a long life and is excellent in capacity recoverability (charge acceptability during recovery charge) and that is particularly suitable for automobiles employing an idle stop system.

従来、自動車用鉛蓄電池はSLIバッテリーと呼ばれるように、始動時のスターター起動、照明、イグニションに使用され、その他、高級車では100個以上が搭載されているといわれるモーターの電源にも使用されてきた。そして前記始動時のスターター起動以外はエンジンが発電機を駆動して電力を供給するため、鉛蓄電池はさほど深い放電が行われることはなかった。また、発電機からの充電により、多くの場合は満充電状態に置かれるため、過充電に強いことが求められていた。
一方、鉛蓄電池にはメンテナンスフリー(補水無用)が求められ、その対策として正極基板に、従来のPb−Sb系合金に代わって、自己放電が起き難く、電解液の減少が少ないPb−Ca系合金基板が用いられるようになった。
Conventionally, lead-acid batteries for automobiles are used for starter start-up, lighting, and ignition at the time of starting, called SLI batteries, and also used for the power supply of motors that are said to have more than 100 installed in high-end cars. It was. In addition to starting the starter at the time of starting, the engine drives the generator to supply electric power, so that the lead-acid battery was not discharged so deeply. Moreover, since charging from a generator often places the battery in a fully charged state, it has been required to be resistant to overcharging.
On the other hand, maintenance-free (no need for water replenishment) is required for lead-acid batteries. As a countermeasure, Pb-Ca-based materials are less likely to cause self-discharge and less decrease in electrolyte instead of conventional Pb-Sb-based alloys. Alloy substrates have been used.

しかし、近年、自動車には燃費改善や排出ガスの削減が強く求められ、それに応じてアイドリングストップシステムが導入された。前記アイドリングストップシステムは、信号待ちなどで停車中にエンジンを停止するシステムであり、前記のエンジン停止により発電機からの電力供給も停止するため、この間の電力は鉛蓄電池の放電によって賄われ、その結果、鉛蓄電池は深い充放電状態で使用されることになり、前記Pb−Ca系合金基板を用いた鉛蓄電池は著しく短寿命となった。 However, in recent years, automobiles are strongly required to improve fuel consumption and reduce exhaust gas, and accordingly, an idling stop system has been introduced. The idling stop system is a system that stops the engine while stopping due to a signal, etc., and the power supply from the generator is also stopped by the engine stop, so that the power during this period is covered by the discharge of the lead storage battery, As a result, the lead storage battery is used in a deep charge / discharge state, and the lead storage battery using the Pb—Ca alloy substrate has a remarkably short life.

因みに、従来のPb−Sb系合金正極基板を用いた鉛蓄電池では、基板の酸化で3価または5価のSbイオンが生成し、前記Sbイオンは基板と活物質の界面に強固なα-PbO層を形成して基板と活物質間の密着性(導電性)を良好に保ち、さらに前記Sbイオンは活物質に作用してその一部をゲル化し、活物質粒子間の結合力を高め、その結果深い充放電を繰り返しても活物質は軟化し難くなり、長寿命が実現される。 Incidentally, in a conventional lead storage battery using a Pb—Sb alloy positive electrode substrate, trivalent or pentavalent Sb ions are generated by oxidation of the substrate, and the Sb ions are strongly α-PbO at the interface between the substrate and the active material. Two layers are formed to maintain good adhesion (conductivity) between the substrate and the active material, and the Sb ions act on the active material to gel part of it and increase the bonding force between the active material particles. As a result, the active material is difficult to soften even after repeated deep charge and discharge, and a long life is realized.

これに対し、Pb−Ca系合金正極基板では、前記Sbイオンによる効果が得られないため、基板と活物質の界面が剥離し、そこへ電解液(硫酸)が侵入して硫酸鉛が生成して基板と活物質間の密着性(導電性)が低下し、そのため深い充放電を繰り返す用途では活物質粒子間の結合力が早期に低下(活物質が軟化)し、寿命がPb−Sb系合金正極基板を用いた場合の半分程度になった。また放電状態で長期間放置したときは容量回復性が低下した。 On the other hand, in the Pb—Ca-based alloy positive electrode substrate, since the effect of the Sb ions cannot be obtained, the interface between the substrate and the active material is peeled off, and the electrolytic solution (sulfuric acid) enters there to produce lead sulfate. As a result, the adhesion (conductivity) between the substrate and the active material is reduced, and therefore, in applications where deep charge / discharge is repeated, the bonding force between the active material particles is reduced early (the active material is softened), and the lifetime is Pb-Sb series. It was about half of the case where an alloy positive electrode substrate was used. Moreover, the capacity recoverability decreased when left in a discharged state for a long time.

このようなことから、Pb−Ca系合金正極基板の表面にSbを含む層を設け、或いは正極活物質にSb化合物を添加して、Pb−Sb系合金正極基板を用いた場合と同様の効果を得ようとする方法(例えば、特許文献1)、或いはSb以外の元素により前記Sbの効果を発現させる方法(例えば、特許文献2)が提案された。 For this reason, the same effect as in the case of using a Pb—Sb alloy positive electrode substrate by providing a layer containing Sb on the surface of the Pb—Ca alloy positive electrode substrate or adding an Sb compound to the positive electrode active material. A method (for example, Patent Document 1) or a method for expressing the effect of Sb by an element other than Sb has been proposed.

一方、容量回復性の低下に対しては、電解液にアルカリ金属やアルカリ土類金属イオンを添加して電解液の比重低下を抑制する方法(例えば、特許文献3)が提案された。 On the other hand, a method for suppressing a decrease in specific gravity of an electrolytic solution by adding alkali metal or alkaline earth metal ions to the electrolytic solution has been proposed (for example, Patent Document 3).

しかし、前記方法のいずれによっても、サイクル寿命と容量回復性の両方を改善することはできなかった。 However, none of the above methods has improved both cycle life and capacity recovery.

特開昭63−148556号公報JP-A 63-148556 特開2003−109595号公報JP 2003-109595 A 特開平4−206150号公報JP-A-4-206150

本発明の目的は、長寿命で且つ容量回復性に優れた、正極にPb−Ca系合金基板を用いた鉛蓄電池を提供することにある。 An object of the present invention is to provide a lead storage battery using a Pb—Ca-based alloy substrate for a positive electrode, which has a long life and excellent capacity recovery.

請求項記載発明は、鉛−カルシウム系合金からなる正極基板表面の少なくとも一部に、または/および前記正極基板に充填された活物質にアンチモンが0.005mass%以上0.5mass%以下含有され、さらに錫が0.005mass%以上1.0mass%以下含有され、且つ電解液にアルミニウムが硫酸塩換算で2mass%以上50mass%以下含有されていることを特徴とする鉛蓄電池である。 According to the first aspect of the present invention, at least a part of the surface of the positive electrode substrate made of a lead-calcium alloy and / or the active material filled in the positive electrode substrate contains 0.005 mass% to 0.5 mass% of antimony. Furthermore, it is a lead storage battery characterized in that tin is contained in an amount of 0.005 mass% to 1.0 mass% and aluminum is contained in the electrolytic solution in an amount of 2 mass% to 50 mass% in terms of sulfate.

請求項記載発明の鉛蓄電池は、正極基板表面の少なくとも一部に、または/および正極活物質に、アンチモンを適量含有させたので、前記アンチモン(Sb)は酸化して3価または5価のSbイオンとなって基板と活物質の界面に強固なα-PbO 層を形成し、また基板と活物質間の密着性つまり導電性を高め、さらに前記Sbイオンは活物質の一部をゲル化して活物質粒子間の結合力を高める。その他に、錫を適量含有させたので、前記錫(錫イオン)の作用により活物質粒子の導電性が高まり、前記鉛蓄電池のサイクル寿命が一層向上する。 In the lead storage battery according to the first aspect of the present invention, since an appropriate amount of antimony is contained in at least a part of the surface of the positive electrode substrate or / and the positive electrode active material, the antimony (Sb) is oxidized to be trivalent or pentavalent. It becomes Sb ions to form a strong α-PbO 2 layer at the interface between the substrate and the active material, and also improves the adhesion between the substrate and the active material, that is, the conductivity. Further, the Sb ions gel part of the active material. To increase the bonding force between the active material particles. In addition to its so was suitable amount of tin increases the conductivity of the active material particles by the action of the tin (tin ions), the cycle life of the lead-acid battery is further improved.

また請求項記載発明の鉛蓄電池は、正極基板に耐食性および機械的性質に優れる所定組成のPb−Ca系合金を用いることで寿命をより良好に改善することができるものである。 The lead acid battery of claim 1, wherein the invention are those which can be better improved life Rukoto with Pb-Ca system alloy having a predetermined composition which is excellent in corrosion resistance and mechanical properties to the positive electrode substrate.

前記耐食性および機械的性質に優れるPb−Ca系合金としては、カルシウムを0.02mass%以上0.05mass%未満、錫を0.4mass%以上2.5mass%以下、アルミニウムを0.005mass%以上0.04mass%以下、バリウムを0.002mass%以上0.014mass%以下含み、残部が鉛と不可避不純物からなるPb−Ca系合金、または正極基板がカルシウムを0.02mass%以上0.05mass%未満、錫を0.4mass%以上2.5mass%以下、アルミニウムを0.005mass%以上0.04mass%以下、バリウムを0.002mass%以上0.014mass%以下含み、さらに銀0.005mass%以上0.07mass%以下、ビスマス0.01mass%以上0.10mass%以下、タリウム0.001mass%以上0.05mass%以下の群から選ばれた少なくとも1種を含み、残部が鉛と不可避不純物からなるPb−Ca系合金が挙げられる(特開2003−306733号公報)。 As the Pb—Ca-based alloy having excellent corrosion resistance and mechanical properties, calcium is 0.02 mass% or more and less than 0.05 mass%, tin is 0.4 mass% or more and 2.5 mass% or less, and aluminum is 0.005 mass% or more and 0 or less. .04 mass% or less, Pb-Ca alloy containing barium in an amount of 0.002 mass% to 0.014 mass%, the balance being composed of lead and inevitable impurities, or the positive electrode substrate containing calcium in an amount of 0.02 mass% to less than 0.05 mass%, Contains 0.4 mass% to 2.5 mass% tin, 0.005 mass% to 0.04 mass% aluminum, 0.002 mass% to 0.014 mass% barium, and 0.005 mass% to 0.07 mass silver. % Or less, including at least one selected from the group of bismuth 0.01 mass% to 0.10 mass%, thallium 0.001 mass% to 0.05 mass% In addition, a Pb—Ca-based alloy whose balance is made of lead and inevitable impurities is mentioned (Japanese Patent Laid-Open No. 2003-306733).

本発明において、正極基板は、重力鋳造法、連続鋳造法、または鋳塊などを圧延加工する方法により高品質にかつ効率よく製造することができる。 In the present invention, the positive electrode substrate can be manufactured with high quality and efficiency by a gravity casting method, a continuous casting method, or a method of rolling an ingot.

本発明において、正極基板表面の少なくとも部に、または/および活物質に含有させるアンチモンは、活物質粒子間の結合力、および活物質と基板間の密着性(導電性)を高めてサイクル寿命を改善する。また錫はイオン化して活物質の導電性を高めるのでサイクル寿命を一層向上させる。一方、電解液中に含有させるアルミニウムは正負両極に生成する硫酸鉛の可逆性を高めて長期放置後の容量回復性を改善する。 In the present invention, antimony is contained in at least part of the positive electrode substrate surface, and / or the active material, the binding force between active material particles, and the active material and cycle life by increasing the adhesion (conductivity) between the substrate To improve. Moreover, since tin ionizes and raises the electroconductivity of an active material, cycle life is further improved. On the other hand, the aluminum contained in the electrolytic solution increases the reversibility of lead sulfate produced in both the positive and negative electrodes and improves the capacity recovery after standing for a long time.

請求項記載発明において、正極基板表面の少なくとも部、または/および活物質に含有させるアンチモンの量を0.005mass%以上0.5mass%以下に規定し、錫の量を0.005mass%以上1.0mass%以下に規定する理由は、いずれが下限値未満でもまたいずれが上限値を超えても各々の効果が十分に得られず、さらに上限値を超えた場合は自己放電が起き易くなるためである。 In claim 1 the invention, at least part of the positive electrode substrate surface, or / and the amount of antimony to be contained in the active material defined below 0.005 mass% or more 0.5 mass%, more 0.005 mass% the amount of tin The reason for prescribing to 1.0 mass% or less is that any of these effects is not sufficiently obtained regardless of whether it is less than the lower limit value or exceeds the upper limit value, and if it exceeds the upper limit value, self-discharge easily occurs. Because.

本発明において、アンチモンや錫を正極活物質に含有させる方法としては、例えば、アンチモンや錫の酸化物、硫酸塩などを正極鉛粉に混合する方法が挙げられる。 In the present invention, examples of the method of incorporating antimony and tin into the positive electrode active material include a method of mixing antimony, tin oxide, sulfate, etc. with the positive electrode lead powder.

アンチモン、またはアンチモンと錫を正極基板表面の少なくとも部に含有させる方法としては、例えば、前記アンチモンや錫を含有させた正極鉛粉を前記正極基板の少なくとも部に層状に塗布する方法が挙げられる。 Antimony or antimony and tin in order to incorporate at least part of the positive electrode substrate surface, may, for example, a method of applying the cited positive Namariko which contains the antimony and tin in layers in at least part of the positive electrode substrate It is done.

本発明において、電解液に含有(溶解)されるアルミニウム(イオンとして存在)は、鉛蓄電池を放電状態で長期間放置したときの電解液中における硫酸イオンの濃度低下を抑制し、さらに前記アルミニウムは正極および負極に生成する硫酸鉛の結晶の粗大化または緻密化を抑制して、容量回復性を大幅に改善する。 In the present invention, aluminum contained (dissolved) in the electrolytic solution (present as ions) suppresses a decrease in the concentration of sulfate ions in the electrolytic solution when the lead storage battery is left in a discharged state for a long period of time. Capacitance recovery is greatly improved by suppressing the coarsening or densification of the lead sulfate crystals produced on the positive and negative electrodes.

本発明において、前記電解液へのアルミニウムの含有量を、硫酸塩換算で2〜50g/リットルに規定する理由は、2g/リットル未満ではその効果が十分に得られず、50g/リットルを超えると電解液の導電率が低下して低温での急放電特性が低下するためである。 In the present invention, the reason why the content of aluminum in the electrolytic solution is regulated to 2 to 50 g / liter in terms of sulfate is that the effect cannot be sufficiently obtained if it is less than 2 g / liter, and the amount exceeds 50 g / liter. This is because the electrical conductivity of the electrolytic solution is lowered and the rapid discharge characteristics at low temperature are lowered.

本発明において、前記アルミニウムは、硫酸塩、炭酸塩、炭酸水素塩、リン酸塩、ホウ酸塩、水酸化物、アルミン酸塩などの硫酸水溶液や水に溶け易い化合物として電解液に添加し含有させる。 In the present invention, the aluminum is added to the electrolytic solution as a sulfuric acid aqueous solution such as sulfate, carbonate, bicarbonate, phosphate, borate, hydroxide, aluminate or a compound easily soluble in water. Let

本発明の鉛蓄電池は、特に、アイドリングストップシステム採用車、HEV、サイクルユースなどの、深い充放電を伴う用途において長寿命化が達成されるので、鉛蓄電池の用途拡大に貢献する。 The lead-acid battery of the present invention contributes to the expansion of the use of lead-acid batteries, in particular, because a long life is achieved in applications involving deep charge / discharge, such as cars employing an idling stop system, HEV, and cycle use.

以下に本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

カルシウムを0.04mass%、錫を1.0mass%、アルミニウムを0.015mass%、バリウムを0.008mass%含有し、残部が鉛と不可避不純物からなる鉛合金をブックモールドにより毎分15枚の速度で鋳造して正極基板を製造し、前記正極基板を120℃で3時間熱処理して時効硬化させた。 15 pieces per minute of lead alloy containing 0.04 mass% calcium, 1.0 mass% tin, 0.015 mass% aluminum, 0.008 mass% barium, the balance being lead and inevitable impurities A positive electrode substrate was manufactured by casting at a temperature of 120 ° C. for 3 hours and age-cured.

次に、正極用鉛粉に酸化アンチモンおよび硫酸錫を添加し混合して混合粉とし、この混合粉を常法によりペースト状物に調製し、このペースト状物を前記時効硬化後の正極基板に塗布充填し、次いで前記ペースト状物を塗布充填した正極基板を、温度40℃、湿度95%の雰囲気中で24時間熟成し、乾燥して正極未化成板を作製した。前記酸化アンチモンおよび硫酸錫の添加量は種々に変化させた。 Next, antimony oxide and tin sulfate are added to the positive electrode lead powder and mixed to obtain a mixed powder. This mixed powder is prepared into a paste-like material by a conventional method, and this paste-like material is applied to the age-cured positive electrode substrate. The positive electrode substrate coated and filled, and then coated and filled with the paste-like material was aged for 24 hours in an atmosphere of a temperature of 40 ° C. and a humidity of 95%, and dried to prepare a positive electrode unformed plate. The addition amounts of the antimony oxide and tin sulfate were variously changed.

次に、前記正極未化成板の複数枚と、Pb−Ca系合金からなる基板に負極活物質を塗布充填して作製した負極未化成板の複数枚とをポリエチレンセパレータを介在させて交互に積層し、この積層体の各極板をCOS方式で溶接して極板群とし、これをポリプロピレン製電槽に収容し、前記電槽内に硫酸アルミニウムを添加した電解液を注入して電槽化成を行い、5時間率容量が50Ahの12V鉛蓄電池(JISサイズD23)を製造(No.1〜8)した。前記硫酸アルミニウムの添加量は種々に変化させた。 Next, a plurality of positive electrode unformed plates and a plurality of negative electrode unformed plates prepared by applying and filling a negative electrode active material on a substrate made of a Pb—Ca alloy are alternately laminated with a polyethylene separator interposed therebetween. Then, each electrode plate of this laminate is welded by the COS method to form an electrode plate group, which is accommodated in a polypropylene battery case, and an electrolytic solution to which aluminum sulfate is added is injected into the battery case to form a battery case. Then, a 12V lead acid battery (JIS size D23) with a 5-hour rate capacity of 50 Ah was manufactured (No. 1 to 8) . The amount of aluminum sulfate added was varied.

得られた各々の鉛蓄電池について、サイクル寿命をJIS重負荷試験により調べた。また放電状態で60℃×4週間放置後における容量回復性を調べた。 About each obtained lead acid battery, the cycle life was investigated by the JIS heavy load test. Further, the capacity recoverability after leaving in a discharged state at 60 ° C. for 4 weeks was examined.

正極用鉛粉に酸化アンチモンおよび硫酸錫を添加し混合して混合粉とし、この混合粉を常法によりペースト状物に調製し、このペースト状物を前記正極基板の表面に薄く塗布し、その後、前記正極用鉛粉(アンチモンおよび錫を含まず)のペースト状物を充填した他は、実施例と同じ方法により鉛蓄電池を製造(No.9〜11)し、実施例と同じ方法によりサイクル寿命および容量回復性を調べた。 Antimony oxide and tin sulfate are added to the lead powder for the positive electrode and mixed to obtain a mixed powder. This mixed powder is prepared into a paste-like material by a conventional method, and this paste-like material is thinly applied to the surface of the positive electrode substrate. A lead-acid battery was produced by the same method as in Example 1 (Nos. 9 to 11) except that the positive electrode lead powder (not including antimony and tin) was filled, and the same method as in Example 1 Thus, cycle life and capacity recovery were examined.

比較例1として、前記Pb−Ca系合金正極基板の正極活物質にSbおよびSnを含有しない他は実施例1と同じ鉛蓄電池(No.1)、正極活物質にSbを含有しない他は実施例1と同じ鉛蓄電池(No.13)、正極活物質にSnおよび電解液にAlを含有しない他は実施例1と同じ鉛蓄電池(No.1)、正極活物質にSnを多量に含有する他は実施例1と同じ鉛蓄電池(No.15)正極活物質にSbを多量に含有し、Snを含有しない他は実施例1と同じ鉛蓄電池(No.16)、電解液にAlを多量に含有する他は実施例1と同じ鉛蓄電池(No.17)を製造し、実施例1と同じ方法によりサイクル寿命および容量回復性を調べた。 As Comparative Example 1, except that Sb and Sn are not contained in the positive electrode active material of the Pb—Ca-based alloy positive electrode substrate, the same lead storage battery (No. 12 ) as in Example 1, except that Sb is not contained in the positive electrode active material. example 1 the same lead-acid battery as (No.13), the same lead-acid battery (No.1 4) other containing no Al to Sn and the electrolyte in the positive electrode active material as in example 1, a large amount of S n in the positive electrode active material the same lead electric storage batteries other containing the example 1 (No. 15), large amounts contain Sb in the positive electrode active material, the same lead-acid battery (No.16) and other containing no Sn example 1, electrolytic The same lead storage battery (No. 17 ) as in Example 1 was produced except that the liquid contained a large amount of Al, and the cycle life and capacity recoverability were examined by the same method as in Example 1.

(1)サイクル寿命が130回以上(長寿命)、(2)容量回復性(率)が6%以上(良好)、(3)他の電池特性に問題がない、の3条件を満足するものは総合的に優れる(○)と評価し、前記3条件のうち1つでも不満足のものがあれば総合的に劣る(×)と評価した。 (1) cycle life than 130 times (long life), (2) Capacity recovery property (index) of 6 0% or higher (good), thereby satisfying the expression (3) there is no problem in other battery characteristics, three conditions The product was evaluated as overall excellent (O), and if any one of the three conditions was unsatisfactory, it was evaluated as overall inferior (x).

実施例1〜および比較例1の調査結果を表1に示した。 The investigation results of Examples 1 and 2 and Comparative Example 1 are shown in Table 1.

表1から明らかなように、本発明例(実施例1〜)の鉛蓄電池(No.1〜1)はいずれも長寿命であり、かつ容量回復性が良好で、他の電池特性に問題がなく、総合的に優れるものであった。前記長寿命の原因はPb−Ca系合金からなる正極基板表面の少なくとも一部に、または/および前記正極基板に塗布充填された活物質にアンチモン(Sb)および錫(Sn)がそれぞれ適量含有されていて、活物質粒子間の結合力が高まって活物質の軟化が防止され、また基板と活物質間の密着性(導電性)、さらに活物質の導電性が高度に維持されたためであり、容量回復性が優れた理由は電解液にアルミニウム(Al)が適量含有されていて正負両極に生成する硫酸鉛の可逆性が改善されたためである。 As is clear from Table 1, the lead storage batteries (Nos. 1 to 1 1 ) of the examples of the present invention (Examples 1 and 2 ) all have a long life, good capacity recoverability, and other battery characteristics. There was no problem and it was excellent overall. At least a portion, or / and the antimony in the active material coated filled in the positive electrode substrate (Sb) Contact Yobisuzu (Sn) is suitable amount each of the positive electrode substrate surface cause the long lifetime consisting Pb-Ca based alloy This is because the bonding force between the active material particles is increased and softening of the active material is prevented, and the adhesion (conductivity) between the substrate and the active material, and further the conductivity of the active material is maintained at a high level. The reason why the capacity recoverability is excellent is that the reversibility of lead sulfate produced in both positive and negative electrodes is improved by containing an appropriate amount of aluminum (Al) in the electrolytic solution.

これに対し、比較例1のNo.12は正極活物質にSbおよびSnが含有されていないためいずれもサイクル寿命が劣った。No.は、正極活物質にSbが含有されていないためサイクル寿命が劣った。No.1は電解液にAlが含有されていないため容量回復性が劣った。No.15はSnが多すぎたため、No.16はSbが多すぎたためいずれも自己放電が増加した。No.17は電解液にAlが多量に含有されたため急放電特性が低下した。このように比較例1の鉛蓄電池はいずれも総合的に劣るものであった。 On the other hand, No. 12 of Comparative Example 1 was inferior in cycle life because Sb and Sn were not contained in the positive electrode active material. No. 1 3, Sb is poor because cycle lifetime are not contained in the positive electrode active material. No. 1 4 was inferior in capacity recovery property because no Al is contained in the electrolytic solution. No. No. 15 has too much Sn. No. 16 had too much Sb, so the self discharge increased in any case. No. In No. 17, since the electrolytic solution contained a large amount of Al, the rapid discharge characteristics deteriorated. Thus, all the lead acid batteries of Comparative Example 1 were inferior overall.

実施例1〜では、正極基板に耐食性と機械的性質に優れるAl−Ca−Sn−Al−Ba合金を用いた例について説明したが、前記合金にさらにAg、Bi、Tlの群から選ばれた少なくとも1種を適量含有させた合金を用いた場合にも同様の効果が得られ、他のAl−Ca系合金を用いた場合にもほぼ同様の効果が得られる。 In Examples 1 and 2 , an example in which an Al—Ca—Sn—Al—Ba alloy having excellent corrosion resistance and mechanical properties was used for the positive electrode substrate was described, but the alloy was further selected from the group of Ag, Bi, and Tl. In addition, the same effect can be obtained when an alloy containing an appropriate amount of at least one kind is used, and substantially the same effect can be obtained when another Al—Ca alloy is used.

実施例1〜では、正極基板をブックモールドを用いて製造したが、本発明は正極基板を連続鋳造法や圧延加工法など他の方法により製造した場合にも同様の効果が得られる。 In Examples 1 and 2 , the positive electrode substrate was manufactured using a book mold, but the present invention can provide the same effect when the positive electrode substrate is manufactured by other methods such as a continuous casting method and a rolling method.

Claims (1)

鉛−カルシウム系合金からなる正極基板表面の少なくとも一部に、または/および前記正極基板に充填された活物質にアンチモンが0.005mass%以上0.5mass%以下含有され、さらに錫が0.005mass%以上1.0mass%以下含有され、且つ電解液にアルミニウムが硫酸塩換算で2mass%以上50mass%以下含有されていることを特徴とする鉛蓄電池。   Antimony is contained in an amount of 0.005 mass% or more and 0.5 mass% or less in at least part of the surface of the positive electrode substrate made of a lead-calcium alloy and / or in the active material filled in the positive electrode substrate, and further tin is 0.005 mass. A lead-acid battery characterized in that it is contained in an amount of not less than 1.0% and not more than 1.0 mass%, and aluminum is contained in the electrolytic solution in an amount of 2 to 50 mass% in terms of sulfate.
JP2004133435A 2004-04-28 2004-04-28 Lead acid battery Expired - Fee Related JP4364054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133435A JP4364054B2 (en) 2004-04-28 2004-04-28 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133435A JP4364054B2 (en) 2004-04-28 2004-04-28 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2005317331A JP2005317331A (en) 2005-11-10
JP4364054B2 true JP4364054B2 (en) 2009-11-11

Family

ID=35444528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133435A Expired - Fee Related JP4364054B2 (en) 2004-04-28 2004-04-28 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4364054B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243606A (en) * 2007-03-27 2008-10-09 Furukawa Battery Co Ltd:The Lead acid storage battery
CN103081211A (en) * 2010-09-29 2013-05-01 株式会社杰士汤浅国际 Lead storage battery and idling stop vehicle using same
JP5757235B2 (en) * 2011-12-28 2015-07-29 株式会社Gsユアサ Liquid lead acid battery, battery system using the same, and method of using liquid lead acid battery
JP6307043B2 (en) * 2015-05-20 2018-04-04 株式会社Gsユアサ Liquid lead-acid battery

Also Published As

Publication number Publication date
JP2005317331A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP5477288B2 (en) Lead-acid battery and method for manufacturing the same
JP4799560B2 (en) Lead-acid battery and method for producing lead-acid battery
EP2330676B1 (en) Lead acid storage battery
JP2008243487A (en) Lead acid battery
JP2008243606A (en) Lead acid storage battery
JP5787167B2 (en) Liquid lead-acid battery
EP1717896B1 (en) Lead acid battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
WO2003088385A1 (en) Lead-based alloy for lead storage battery, plate for lead storage battery and lead storage battery
JP2004349197A (en) Lead-base alloy for lead storage battery and lead storage battery using it
JP7296016B2 (en) Lead alloy foil, positive electrode for lead-acid battery, lead-acid battery, and power storage system
CN107579255A (en) A kind of positive electrode grid of lead storage battery alloy and preparation method thereof
JP4274873B2 (en) Lead-acid battery substrate and lead-acid battery using the same
JP2005302395A (en) Lead storage battery
JP4509660B2 (en) Lead acid battery
JP2003306733A (en) Lead based alloy for lead storage battery, and lead storage battery using the same
JP2006086039A (en) Lead-acid storage battery
JP4364054B2 (en) Lead acid battery
JP5116331B2 (en) Lead acid battery
JP5573785B2 (en) Lead acid battery
JP2006210059A (en) Lead acid storage battery
JP2007087700A (en) Lead-acid battery
JP4503358B2 (en) Lead acid battery
JP2005294142A (en) Lead storage battery
JP2004273305A (en) Lead-acid battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4364054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees