Nothing Special   »   [go: up one dir, main page]

JP5609051B2 - 三相交流モータの駆動制御装置 - Google Patents

三相交流モータの駆動制御装置 Download PDF

Info

Publication number
JP5609051B2
JP5609051B2 JP2009217743A JP2009217743A JP5609051B2 JP 5609051 B2 JP5609051 B2 JP 5609051B2 JP 2009217743 A JP2009217743 A JP 2009217743A JP 2009217743 A JP2009217743 A JP 2009217743A JP 5609051 B2 JP5609051 B2 JP 5609051B2
Authority
JP
Japan
Prior art keywords
phase
motor
command
drive control
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009217743A
Other languages
English (en)
Other versions
JP2011067073A (ja
Inventor
鎮男 眞鍋
鎮男 眞鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009217743A priority Critical patent/JP5609051B2/ja
Priority to DE112010003686T priority patent/DE112010003686T5/de
Priority to PCT/JP2010/065987 priority patent/WO2011034109A1/ja
Priority to CN201080041116.XA priority patent/CN102498659B/zh
Priority to US13/395,720 priority patent/US8476856B2/en
Publication of JP2011067073A publication Critical patent/JP2011067073A/ja
Application granted granted Critical
Publication of JP5609051B2 publication Critical patent/JP5609051B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、三相交流モータの駆動制御装置に関し、特に矩形波電圧位相制御によって三相交流モータを駆動制御する三相交流モータの駆動制御装置に関する。
従来、この種の三相交流モータの駆動制御装置としては、例えば特許文献1に記載の駆動制御装置がある。図7に、この特許文献1に記載の三相交流モータの駆動制御装置についてその概要を示す。
この駆動制御装置は、例えばハイブリッド自動車等に搭載されている。そしてこの駆動制御装置では、三相交流モータを高い効率のもとに駆動させるためPWM(パルス幅変調)電流制御モード及びPWM電圧位相制御モード、そして三相交流モータ出力を向上させるための矩形波電圧位相制御モードといった3種の三相交流モータ駆動制御モードの切り替えを通じてインバータの駆動制御が行なわれる。
ここで、PWM電流制御モードは、図7においてスイッチ26、28が共に上側に切替えられている場合の制御モードである。このPWM電流制御モードでは、三相交流モータ38に供給される電流と電流指令値とが一致するように電圧振幅|V|及び電圧位相Ψが設定され、これら電圧振幅|V|及び電圧位相Ψに応じて生成された交番パルス電圧が三相交流モータ38に印加される。
また、PWM電圧位相制御モードでは、電圧振幅|V|の経時的な変化に応じて設定された電圧位相Ψに応じて交番パルス電圧が生成され、この交番パルス電圧が図7においてスイッチ26が下側に切替えられるとともにスイッチ28が上側に切替えられることによって三相交流モータ38に印加される。
そして、矩形波電圧位相制御モードでは、直流のバッテリ電圧Vdcにより決定された電圧振幅|V|とトルク指令値に応じて設定された電圧位相Ψとに基づき矩形波電圧が生成され、この矩形波電圧が図7においてスイッチ28が下側に切替えられることによって三相交流モータ38に印加される。
また、この駆動制御装置では、図示しない車両制御装置にてアクセル開度やブレーキ踏み角に応じてトルク指令値が生成され、このトルク指令値が電流指令生成部12及び加算器13に入力される。このうち電流指令生成部12では、入力されたトルク指令値に基づき電流指令値Iq、Idが生成され、それら生成された電流指令値Iq、Idが電流制御器14に出力される。こうした各電流指令値Iq、Idが入力される電流制御器14では、それら電流指令値Iq、Idと電流センサ40によって検出される電流値とに基づいて比例積分制御が実行され、電圧指令値となる電圧振幅|V|及び電圧位相Ψが生成される。そして、この電流制御器14によって生成された電圧位相Ψ及び電圧振幅|V|は、スイッチ26による選択的な切り替えを通じてPWM回路30に入力される。また、これら電圧振幅|V|及び電圧位相Ψが入力されるPWM回路30では、それら電圧振幅|V|及び電圧位相Ψに基づき生成される正弦波と予め設定された三角波との比較を通じてスイッチング指令が生成され、このスイッチング指令がスイッチ28を介してインバータ36に入力される。そして、このインバータ36では、PWM回路30から入力されたスイッチング指令に応じた交番パルス電圧が生成され、こうした交番パルス電圧が駆動電圧として三相交流モータ38に印加される。
一方、この駆動電圧の印加によって三相交流モータ38に流れる電流は電流センサ40によって検出され、その検出された電流値が加算器24に入力されている。この加算器24には、電流センサ40によって検出された電流値とともに電流指令生成部12にて生成された電流指令値が入力されている。すなわちこの加算器24では、各々入力された検出電流値と電流指令値との電流偏差ΔIが生成され、この電流偏差ΔIが電流一致判定部22に出力される。こうして電流偏差ΔIが入力される電流一致判定部22では、電流センサ40によって検出された電流値と電流指令生成部12とで生成される電流指令値とが一致した場合にスイッチ26の切り替えを実行する。
また一方、上記トルク指令値が入力される加算器13には、同トルク指令値とともにトルク検出手段20で検出されたその都度のトルク値が入力されており、それら各値のトルク偏差ΔTが生成される。こうして加算器13で生成されたトルク偏差ΔTは、電圧位相制御器18に供給され、この電圧位相制御器18によってトルク偏差ΔTに応じた電圧位相Ψが生成される。この電圧位相制御器18では、上記矩形波電圧位相制御モード時には矩形波の電圧位相Ψの生成が行なわれ、上記PWM電圧位相制御モード時には交番パルス電圧の電圧位相Ψの生成が行なわれる。
また、電圧振幅制御器16から出力される電圧振幅|V|は、電圧振幅判定部34にも供給されており、ここで電圧振幅制御器16にて生成される電圧振幅|V|と矩形波電圧に相当する電圧振幅とが比較され、それらの比較結果に基づきスイッチ28の切り替えが行なわれる。
そして、矩形波発生部32では、電圧位相制御器18から入力される電圧位相Ψに基づいて矩形波電圧の生成が行なわれ、この生成された矩形波電圧がインバータ36のスイッチング指令となる。こうしたスイッチング指令がスイッチ28を介してインバータ36に伝達されると、矩形波電圧に基づきスイッチングされた交番(交流)電圧が三相交流モータ38に印加されるようになり、三相交流モータ38が駆動される。
このように、上記駆動制御装置によれば、PWM電流制御モード、PWM電圧位相制御モード、そして矩形波電圧位相制御モードのいずれかが選択的に切り替えられることによって、自動車の走行環境に応じた三相交流モータ38の適切な駆動制御が行われるようになる。
特許3533091号公報
ところで、上記矩形波電圧位相制御モードは通常、三相交流モータ38の高回転領域で用いられることが多い。したがって、矩形波電圧位相制御モードでの制御応答性を確保するためには、その制御演算を短時間のうちに完了する必要がある。そして従来、この演算は次のような処理を通じて実行されている。
すなわち、図8に示すように、この矩形波電圧位相制御モードにおいては、上記インバータ36のU相、V相、W相の各相電圧である矩形波電圧(スイッチングされた交番(交流)電圧)が、三相交流モータ38の回転子位置(回転子角度)に同期する態様で各相毎に180°周期で順次切り替えられる。
こうしたスイッチング制御では、まず、V相の出力がオフされた時点t1とU相の出力
がオンとされる時点t2との中間点t3、すなわち三相交流モータ38の回転子位置が角度θ1に到達した時点で三相交流モータ38に流れる電流が検出される。そして、この検出された電流に基づく上記トルクフィードバック演算を通じてそのときのトルク偏差ΔTに応じた電圧位相Ψが算出される。次いで、こうして算出された電圧位相Ψに基づいて次回の各相の出力切替角度が決定され、この決定された出力切替角度で次回の割り込み設定が行なわれることによって、三相交流モータ38の駆動制御が実行されるようになる。このように、三相出力を生成するためのスイッチング指令は、同図8に期間t3−t2として示すように、回転子の位置角度が割り込み角度θ1から割り込み終了角度θ2に移行するまでの間(約30°)に算出されている。
しかし、こうしたスイッチング指令の算出には、通常、「70μsec」の時間を要するものの、上述のように回転子位置に同期する態様で三相出力の切り替えを行なう必要があることから、三相交流モータ38の回転速度が上昇するにつれて各割り込み角度間の時間、すなわち次回の一周期のスイッチング指令を算出するために許容される時間は短くなる。そして、例えば4極対の三相交流モータの回転数が「20,000rpm」となった場合には、上記割り込み角度間の時間(t3−t2)は「60μsec」以下となり、上記演算に要する時間よりも短くなってしまう。そしてこのように、演算が間に合わなかった場合には、次回の矩形波の生成を行なうことができなくなり、スイッチング素子が一周期分動作されないこととなる。こうしたことから、矩形波電圧位相制御においては、各割り込み角度間にスイッチング指令の演算を完了できない場合には、矩形波電圧の抜けが生じることとなり、例えば三相交流モータの脱調を招くなど、インバータ装置としての適切な制御を行なうことができなくなってしまう。
本発明は、こうした実情に鑑みてなされたものであり、その目的は、三相交流モータの高速回転領域においても、高い信頼性のもとに矩形波電圧制御を行なうことのできる三相交流モータの駆動制御装置を提供することにある。
以下、上記課題を解決するための手段及びその作用効果について記載する。
請求項1に記載の発明は、三相交流モータの回転子回転位置から求まる電気角の一周期に対応して設定出力されるスイッチング指令に基づき電力変換される三相の交番矩形波電圧によって三相交流モータを駆動するに際し、該三相交流モータに対するトルク指令値と同三相交流モータの実際のトルク値との偏差に基づいて前記三相の交番矩形波電圧の電圧位相をフィードバック制御する三相交流モータの駆動制御装置であって、前記三相交流モータに対するトルク指令値と三相交流モータの実際のトルク値との偏差に基づくトルクフィードバック演算を行って補正すべき位相の進角量/遅角量である位相指令を求めるとともに、この求めた位相指令を逐次記憶更新する位相指令演算部と、前記三相交流モータの電気角の一周期に対して一意に定まる前記三相の交番矩形波電圧の基本位相に対応して、同三相の交番矩形波電圧に電力変換するスイッチング指令生成のために三相分のパルス波形を含んで予め設定された固定のパルスパターンを出力する部分であって、前記三相交流モータの回転子回転位置をモニタしつつ、常時、前記固定のパルスパターンを前記位相指令演算部に記憶更新されている位相指令の前記基本位相からの偏差分だけ位相シフトして出力するパルスパターン出力部とを備えることを要旨とする。
上記構成によれば、トルクフィードバック演算を行って補正すべき位相の進角量/遅角量である位相指令を逐次記憶更新する位相指令演算部と、この位相指令演算部に記憶更新されている位相指令に基づき基本位相からの偏差分だけ固定のパルスパターンを位相シフトして出力するパルスパターン出力部とが各々独立して構成される。すなわち、位相指令演算部では、トルク偏差を算出するためのトルクフィードバック演算を行いつつ求めた上
記位相指令をメモリ等に逐次記憶更新する処理を繰り返し実行することとなり、一方、パルスパターン出力部では、この記憶更新される位相指令に基づいてその基本位相からの偏差分に応じたパルスパターンを生成する処理を繰り返し実行することができるようになる。このように、これらの処理が各々独立して実行されることにより、三相交流モータの回転子位置がたとえ上記三相の交番矩形波電圧のオンオフ態様の組み合わせが変化する角度間で位相指令演算部によるトルクフィードバック演算や位相指令の算出が完了されず、それらのタイミングにずれが生じたとしても、パルスパターン出力部からは位相指令演算部に記憶更新されているその都度最新の位相指令に基づいて位相シフトされたパルスパターンが無理なく出力されるようになる。このため、こうしたパルスパターンが生成されるスイッチング指令に基づき電力変換される三相の交番矩形波電圧も途切れることなく三相交流モータに印加されるようになり、ひいては、三相交流モータの高速回転領域においてもインバータを介しての信頼性の高い駆動制御を行なうことができるようになる。
また、こうしたパルスパターン出力部によるパルスパターンの位相シフトは、常時実行される。この結果、三相の交番矩形波電圧のオンオフ態様の組み合わせが変化する角度間(三相交流モータでは60°間隔)でトルク偏差が生じたとしても、そのときの各相の交番矩形波電圧のオンオフ態様を変化させる角度の進角/遅角としてトルク偏差に応じた位相シフトが逐次実行されるようになる。これにより、三相交流モータに対するトルク指令値と同三相交流モータの実際のトルク値との偏差に応じたパルスパターンを高い即応性のもとに逐次出力することができるようになり、トルク偏差に基づいて三相の交番矩形波電圧の電圧位相をフィードバック制御する上でその即応性が好適に高められるようになる。
請求項2に記載の発明は、請求項1に記載の三相交流モータの駆動制御装置において、前記パルスパターン出力部は、前記基本位相に対応する固定のパルスパターンからなるそれぞれ三相分のパルス波形のグループが前記位相指令の前記基本位相からの偏差に対応する分解能でその最大の進角量/遅角量に対応する数だけ予め記憶された不揮発性の波形メモリを有し、前記モニタする回転子位置が前記位相指令の前記基本位相からの偏差に対応する三相分のパルス波形のグループをこの波形メモリから常時選択出力することを要旨とする。
上記構成によるように、基本位相に対応する固定のパルスパターンが三相分のパルス波形として予め記憶された不揮発性の波形メモリをパルスパターン出力部が有することとすれば、位相指令に応じたパルスパターンの出力をいわゆるハードウェアによる処理として実行することができるようになり、ひいては、パルスパターン(三相分のパルス波形)を出力するためのマイクロコンピュータとしての演算負荷も更に軽減されるようになる。これにより、上記スイッチング指令をより高速に生成することができるようになり、ひいては、上記トルクフィードバック演算から求まる位相指令に対するスイッチング指令の生成にかかる即応性がより高められるようになる。
請求項3に記載の発明は、請求項1または2に記載の三相交流モータの駆動制御装置において、前記基本位相が設定された基本位相設定部と、この設定された基本位相と前記位相指令演算部に記憶更新されている位相指令とを加算する加算器とを備え、前記パルスパターン出力部には、この加算器によって加算された位相の進角量/遅角量が前記位相指令演算部に記憶更新されている位相指令の前記基本位相からの偏差分として読み込まれることを要旨とする。
上記構成によるように、基本位相が設定された基本位相設定部を備えることとすれば、こうした基本位相設定部による基本位相の設定の自由度が高められるようになる。これにより、たとえ駆動制御の対象となる三相交流モータの仕様が変更されるなどした場合であれ、こうした仕様の変更に柔軟に対応することができるようになり、ひいては、駆動制御
装置としての汎用性がより高められるようになる。
請求項4に記載の発明は、請求項1または2に記載の三相交流モータの駆動制御装置において、前記位相指令演算部は、前記基本位相を固定値として保持しており、前記記憶更新する位相指令として、前記求めた位相指令の前記基本位相からの偏差分を逐次記憶更新することを要旨とする。
上記構成によるように、位相指令演算部に基本位相を固定値として保持させることとすれば、上記パルスパターン出力部での位相シフトに必要とされる情報、すなわち位相指令の前記基本位相からの偏差分が位相指令演算部の内部で求まるため、マイクロコンピュータにて演算処理する場合の演算アルゴリズムの簡略化が図られるようになる。
請求項5に記載の発明は、請求項1〜4のいずれか一項に記載の三相交流モータの駆動制御装置において、前記パルスパターン出力部においてモニタされる前記三相交流モータの回転子回転位置が、同三相交流モータに設けられた回転位置センサを通じて検出されることを要旨とする。
上記構成によるように、三相交流モータに設けられた回転位置センサによって三相交流モータの回転子回転位置を検出することとすれば、三相交流モータの回転子回転位置の検出、ひいては、パルスパターン出力部による三相交流モータの回転子回転位置のモニタも容易なものとなる。
請求項6に記載の発明は、請求項5に記載の三相交流モータの駆動制御装置において、前記検出される三相交流モータの回転子回転位置は、前記回転位置センサの軸倍角と前記三相交流モータの極対数との比に基づき補正されることを要旨とする。
上記回転位置センサの軸倍角と三相交流モータの極対数とは相関する関係にあり、回転位置センサによって検出される三相交流モータの回転子回転位置の値もそれら軸倍角と極対数との比に応じて変化することから、三相交流モータの回転子回転位置の検出に際しては回転位置センサの軸倍角と三相交流モータの極対数との比が「1:1」となるように構成されるのが普通である。この点、上記構成によるように、回転位置センサの軸倍角と三相交流モータの極対数との比に基づきトルク指令値を補正することとすれば、それら軸倍角と極対数との比の相違に起因する誤差が補正されるようになり、回転位置センサや三相交流モータの仕様に依存することなく三相交流モータの回転子回転位置を正確にモニタすることができるようになる。
請求項7に記載の発明は、請求項1〜6のいずれか一項に記載の三相交流モータの駆動制御装置において、前記駆動制御の対象となる三相交流モータは車両の原動機となるモータであって、前記三相交流モータの駆動制御にはパルス幅変調されたスイッチング指令に基づいて電力変換された三相交流による駆動制御が含まれ、この三相交流による駆動制御と前記三相の交番矩形波電圧による駆動制御とが切替実行されることを要旨とする。
先に例示した文献にもあるように、通常、車両の原動機となるモータの駆動制御に際しては、モータの低回転領域ではパルス幅変調されたスイッチング指令に基づいて電力変換された三相交流による駆動制御が実行され、モータの高回転領域では三相の交番矩形波電圧による駆動制御が実行される。この点、上記構成によれば、モータの回転数の上昇に伴ってパルス幅変調されたスイッチング指令に基づく駆動制御から上記交番矩形波電圧による駆動制御に切り替えられたとしても、こうした交番矩形波電圧による駆動制御を高い信頼性のもとに実行することが可能となり、ひいては、車両の原動機となるモータの駆動制御にかかる信頼性がより高められるようになる。
本発明にかかる三相交流モータの駆動制御装置の一実施の形態についてその構成を示すブロック図。 同実施の形態の装置による位相指令算出処理についてその処理手順を示すフローチャート。 同実施の形態の装置による位相シフト処理についてその処理手順を示すフローチャート。 (a)は、位相指令メモリに記憶更新される位相指令の推移の一例を示すタイミングチャート。(b)は、位相指令に基づいて更新される基本位相からの位相シフト量の推移の一例を示すタイミングチャート。(c)は、三相交流モータの回転子位置に対応する電気角の推移例を示すタイミングチャート。(d)は、位相指令Ψ*に応じて逐次更新される基本位相Ψに対する位相の偏差分(Ψ+Ψ*)が反映(合成)された三相分のパルスパターンの推移例を示すタイミングチャート。 (a)は、三相交流モータの回転子位置に対応する電気角の推移例を示すタイミングチャート。(b)は、基準となる三相のパルスパターンと位相指令に応じて位相シフトされた三相のパルスパターンとの推移例を示すタイミングチャート。 本発明にかかる三相交流モータの駆動制御装置の変形例についてその構成を示すブロック図。 従来の三相交流モータの駆動制御装置についてその構成を示すブロック図。 (a)は、三相交流モータの回転子位置に対応する電気角の推移例を示すタイミングチャート。(b)は、三相矩形波電圧の推移例を示すタイミングチャート。
以下、本発明にかかる三相交流モータの駆動制御装置を具現化した一実施の形態について説明する。なお、本実施の形態の三相交流モータの駆動制御装置は、先の図7の駆動制御装置と同様、例えばハイブリッド自動車等に搭載されてその原動機となる三相交流モータの駆動を制御するものである。図1に、本発明にかかる三相交流モータの駆動制御装置を具現化した一実施の形態についてその構成を示す。
図1に示されるように、この三相交流モータの駆動制御装置は、駆動対象としての三相交流モータMを駆動制御するマイクロコンピュータ100を備えている。このマイクロコンピュータ100は、三相交流モータMの仕様に応じてその電気角の一周期に対して一意に定まる三相の交番矩形波電圧の基本位相Ψが設定された基本位相設定部110を有しており、この基本位相設定部110にて設定された基本位相Ψが加算器120に入力されている。
また、こうしたマイクロコンピュータ100を構成する位相指令演算部130には、図示しない車両制御装置にてアクセル開度やブレーキ踏み角に応じて生成されるトルク指令値と、トルクセンサ等によって検出される三相交流モータMの実際のトルク値とが入力されている。この位相指令演算部130では、各々入力されるトルク指令値と実際のトルク値との偏差に基づくトルクフィードバック演算が実行され、その演算結果に基づいて補正すべき位相の進角量/遅角量である位相指令Ψ*が求められる。こうして求められた位相指令Ψ*は、位相指令メモリ131に逐次記憶更新されるとともに、その記憶更新された値が加算器120に逐次読み出される。これら基本位相Ψ及び位相指令Ψ*が入力される加算器120では、それら基本位相Ψと位相指令Ψ*との加算処理を通じて基本位相Ψに対する偏差分としての位相の進角量/遅角量(Ψ+Ψ*)が算出される。
そして、こうした位相の進角量/遅角量(Ψ+Ψ*)は、上記基本位相Ψに対応して三相の交番矩形波電圧に電力変換するスイッチング指令生成のための固定のパルスパターン
を出力する三相パルスパターン出力部200に入力される。この三相パルスパターン出力部200は、マイクロコンピュータ100内にあって上記進角量/遅角量(Ψ+Ψ*)が入力されるメモリ制御部140と、このメモリ制御部140によるアクセスに応じてパルスパターンを出力する波形メモリ210とによって構成されている。このうち、メモリ制御部140は、例えばレゾルバ等からなる回転子位置検出部240の出力に基づき三相交流モータMの回転子回転位置(電気角)をモニタしつつ、基本位相Ψに対する位相の進角量/遅角量(Ψ+Ψ*)を位相指令メモリ131(正確には加算器120)から常時読み込んで波形メモリ210をアクセスする部分である。なお、本実施の形態では、それら三相交流モータMの極対数とレゾルバの軸倍角との比が「1:1」となる仕様でレゾルバ及び三相交流モータMが構成されているとする。また、波形メモリ210には、上記基本位相Ψに対応する固定のパルスパターンからなるそれぞれ三相分のパルス波形のグループが、上記位相指令Ψ*の基本位相Ψからの偏差に対応する分解能でその最大の進角量/遅角量に対応する数だけ記憶されている。すなわち、基本位相Ψとの偏差に対応して位相シフト可能な数の三相分のパルス波形のグループが波形メモリ210に記憶されている。そして、メモリ制御部140では上記進角量/遅角量を常時読み込み、この読み込んだ進角量/遅角量(Ψ+Ψ*)に対応する三相分のパルス波形のグループが選択されるように波形メモリ210をアクセスする。なお、本実施の形態では、常時上記進角量/遅角量を読み込むこととしたが、それら進角量/遅角量を、上記位相指令Ψ*が変更される度に読み込むようにしてもよい。そして、こうしたアクセスにより波形メモリ210から読み出された三相分のパルス波形のグループは、上記フィードバック演算に基づき算出された位相指令Ψ*の上記基本位相Ψからの偏差分だけ位相シフトされたパルスパターンとして三相パルスパターン出力部200から三相スイッチング指令出力部220に出力される。
このように本実施の形態では、トルクフィードバック演算を通じて補正すべき進角量/遅角量となる位相指令Ψ*を算出する位相指令演算部130と、この位相指令演算部130により算出された位相指令Ψ*に応じて固定のパルスパターンを生成する三相パルスパターン出力部200とが各々独立した部分として構成されている。このため、位相指令演算部130では、トルク偏差を算出するためのトルクフィードバック演算を行いつつ求めた上記位相指令Ψ*を位相指令メモリ131に逐次記憶更新する処理を繰り返し実行することとなる。一方、三相パルスパターン出力部200では、この記憶更新される位相指令Ψ*に基づいてその基本位相Ψからの偏差分に応じたパルスパターンを生成する処理を繰り返し実行することとなる。そしてこのように、これらの処理が各々独立して実行されることにより、三相パルスパターン出力部200からは位相指令メモリ131に記憶更新されているその都度最新の位相指令Ψ*に基づいて位相シフトされたパルスパターンが無理なく出力されるようになる。しかも、三相パルスパターン出力部200では、波形メモリ210に記憶された三相分のパルス波形のグループの選択として上記進角量/遅角量に対応するパルスパターンが生成されることから、スイッチング指令を生成するためのパルスパターンの生成がより簡易かつ的確に行なわれるようになる。これにより、上記フィードバック制御に基づきパルスパターンを生成する上で、上記マイクロコンピュータ100としての演算負荷が軽減されるようにもなる。
このような処理を経て生成されたパルスパターンが三相スイッチング指令出力部220に入力されると、三相スイッチング指令出力部220では、この入力された三相のパルスパターンに応じたインバータ230に対するスイッチング指令を生成出力する。インバータ230は、例えばIGBT(絶縁・ゲート・バイポーラトランジスタ)等からなるスイッチング素子のペアが三相分(6個)設けられた周知のインバータであり、こうして三相スイッチング指令出力部220により生成出力されたスイッチング指令がインバータ230に入力されることにより、インバータ230からはこのスイッチング指令に応じて電力変換された三相の交番矩形波電圧が出力されて三相交流モータMに印加されるようになる。
こうして、三相交流モータMは、三相の交番矩形波電圧に基づき駆動され、そのトルク偏差に応じたフィードバック制御が行なわれるようになる。
なお、本実施の形態にかかる三相交流モータの駆動制御装置でも、実際には先の図7に示した駆動制御装置と同様、パルス幅変調されたスイッチング指令に基づいて電力変換された三相交流による駆動制御(図示省略)と、上記三相パルスパターン出力部200により設定出力されるパルスパターンに基づき電力変換される三相の交番矩形波電圧による駆動制御との切替が行なわれる。そして、これら各駆動制御の切替が、三相交流モータの低回転領域ではパルス幅変調されたスイッチング指令に基づいて電力変換された三相交流による駆動制御が行なわれ、三相交流モータMの高回転領域では三相の交番矩形波電圧による駆動制御が行なわれることも前述の通りである。
次に、上記位相指令演算部130によって実行される位相指令演算処理(トルクフィードバック処理)についてその詳細を図2を参照して説明する。なお、この処理は、所定の時間間隔をもって周期的に実行される。
この図2に示すように、この処理ではまず、車両制御装置にてアクセル開度やブレーキ踏み角に応じて生成されたトルク指令値と、このトルク指令値に応じて駆動される三相交流モータMの実際の検出トルク値とがそれぞれ読み込まれる(ステップS100、S101)。次いで、それら読み込まれたトルク指令値及び検出トルク値に基づきトルクフィードバック演算されたトルク偏差に応じて補正すべき位相の進角量/遅角量である位相指令Ψ*が例えばマップ演算等を通じて算出される(ステップS102)。こうして位相指令Ψ*が算出されると、この算出された位相指令Ψ*の値が上記位相指令メモリ131に記憶更新される(ステップS103)。こうした位相指令算出処理が繰り返し実行されることによって、その都度のトルク指令値及び検出トルク値に応じた位相指令Ψ*が逐次算出され、この算出された位相指令Ψ*によって位相指令メモリ131に記憶されている位相指令Ψ*が順次更新されるようになる。
次に、上記三相パルスパターン出力部200によって実行される位相シフト処理について、その詳細を図3及び図4を参照して説明する。なお、図4において、図4(a)は、位相指令メモリ131に記憶更新されている位相指令Ψ*の推移の一例を、また図4(b)は、この位相指令Ψ*に応じて逐次更新される基本位相Ψに対する位相の偏差分(Ψ+Ψ*)と三相の交番矩形波電圧の切替角度との関係の推移例をそれぞれ示している。そして、図4(c)は、三相交流モータMの回転子回転位置に対応する電気角の推移の一例を示しており、図4(d)は、上記位相指令Ψ*に応じて逐次更新される基本位相Ψに対する位相の偏差分(Ψ+Ψ*)が反映された三相分のパルスパターンを示している。
この位相シフト処理では、三相交流モータMの回転子回転位置のモニタを通じて図4(c)に示す三相交流モータMの電気角が逐次求められている。そしてまず、図4(a)に示す位相指令、すなわち位相指令メモリ131に記憶更新されている位相指令Ψ*が上記基本位相Ψとの加算値として読み込まれる(ステップS201)。次いで、この読み込まれた位相指令Ψ*(正確には基本位相Ψとの加算値)に基づき図4(b)に示す基本位相Ψに対する進角量/遅角量、すなわち位相シフト量(Ψ+Ψ*)が決定される(ステップS202)。ちなみに、この位相シフト量の決定に際しては、正トルク発生時においては、トルク不足時には電圧位相を進めるとともにトルク過剰時には電圧位相を遅らせる態様で位相シフト量が算出される。また、負トルク発生時においては、トルク不足時には電圧位相を遅らせるとともにトルク過剰時には電圧位相を進める態様で位相シフト量が算出される。こうして、基本位相Ψに対して電圧位相が進角/遅角された分だけ三相交流モータMのトルクが増減されるようになり、トルクフィードバック演算を通じて算出されたトルク偏差、すなわち、トルク指令値と実際のトルク値との乖離が解消されるようになる。そ
して図3に示すように、上記位相シフト量(Ψ+Ψ*)が更新された場合には、この決定された位相シフト量に対応する三相のパルスパターンのグループが波形メモリ210から選択され、そのパルスパターンのグループが位相指令Ψ*に応じて位相シフトされたパルスパターンとして出力される(ステップS203:YES、S204)。これにより、まず、図4(a)に示すように、上記トルク偏差に応じた位相指令Ψ*が「Ψ*(n−1)」→「Ψ*(n)」→「Ψ*(n+1)」として逐次更新される。こうして位相指令Ψ*が逐次更新されると、図4(b)に矢印として示すように、それら各位相指令Ψ*(n−1)、Ψ*(n)、Ψ*(n+1)に応じて位相シフト量(Ψ+Ψ*)が「Ψ+Ψ*(n−1)」→「Ψ+Ψ*(n)」→「Ψ+Ψ*(n+1)」として逐次決定される。そして、こうして位相シフト量(Ψ+Ψ*)が逐次決定されると、図4(b)及び図4(d)に破線の矢印として示すように、逐次更新された位相シフト量「Ψ+Ψ*(n−1)」、「Ψ+Ψ*(n)」、「Ψ+Ψ*(n+1)」に応じた三相分のパルスパターンが上記波形メモリ210から常時選択出力されるようになる。これにより、図4(d)に示すように、逐次更新された位相指令Ψ*が反映された三相分のパルスパターンが生成されるようになる。一方、上記位相シフト量(Ψ+Ψ*)が更新されていない場合、すなわち、上記トルク偏差が一定である場合には、現在出力されている三相のパルスパターンのグループが継続して出力される(ステップS203:NO)。そしてこれにより、トルク指令値と実際のトルク値との乖離が生じた場合には、この乖離を解消すべく算出された位相指令Ψに応じて固定のパルスパターンの位相シフトが逐次実行されるようになり、三相交流モータMに対するトルク指令値と同モータMの実際の検出トルク値との乖離が解消される態様で三相交流モータMの駆動制御が実行されるようになる。
このような位相シフト処理によれば、三相交流モータMの回転数の上昇に起因して、その電気角が三相の交番矩形波電圧のオンオフ態様の組み合わせを変化させる角度(60°間隔)に順次到達するまでの間にたとえ上記トルクフィードバック処理にかかる位相指令Ψ*の算出が完了しなかったとしても、位相指令メモリ131に記憶更新されている位相指令Ψ*に応じた位相シフト量(Ψ+Ψ*(n))が継続して求められる(読み込まれる)ようになる。このため、こうした位相シフト量(Ψ+Ψ*(n))に応じた三相のパルスパターンも途切れることなく生成出力されるようになる。これにより、三相交流モータMの回転数の上昇等による影響を受けることなく三相のパルスパターンの生成、ひいては、三相交流モータMに印加される交番矩形波電圧の生成が可能となり、三相交流モータMの駆動制御を高い信頼性のもとに行なうことができるようになる。
次に、このような駆動制御装置を通じてモニタされる三相交流モータMの回転子回転位置とこの回転子回転位置に対応して生成される三相の交番矩形波電圧を生成するためのパルスパターンとの関係を、図5を参照して説明する。なお、この図5において、図5(a)は三相交流モータMの回転子回転位置に対応する電気角の推移の一例を、図5(b)は同モータMの電気角に対応して設定出力されるスイッチング指令の基本位相Ψと同基本位相Ψに対する位相シフト量(Ψ+Ψ*)との関係をそれぞれ示している。
すなわち、この図5(b)に破線で示すように、三相交流モータMの電気角の一周期(0°〜360°)毎に対応して設定される基本パルスパターンLu0〜Lw0の基本位相Ψは、まず、上記インバータ230のU相に対応する基本パルスパターンLu0については三相交流モータMの回転子回転位置が「0°」から「180°」に推移するまでの間がオン期間となるように設定されている。また、上記インバータ230のV相に対応する基本パルスパターンLv0については、基本パルスパターンLu0から「120°」遅れて追従する態様で三相交流モータMの回転子回転位置が「120°」から「300°」に推移するまでの間がオン期間となるように設定されている。また一方、上記インバータ230のW相に対応する基本パルスパターンLw0については、基本パルスパターンLu0から「240°」遅れて追従する態様で三相交流モータMの回転子回転位置が「240°」
から次期電気角周期の「60°」に推移するまでの間がオン期間となるように設定されている。このように、本実施の形態では、上記位相シフトを実行する上で基準となる各基本パルスパターンLu0〜Lw0の基本位相Ψが三相交流モータMの電気角の一周期に対応して一意に定められている。
ここで、上記フィードバック演算を通じて補正すべき位相指令Ψ*が求められたとすると、図5(b)に示すように、各基本パルスパターンLu0〜Lw0が位相指令Ψ*の基本位相Ψからの偏差分だけ位相シフトされたパルスパターンLu1〜Lw1が出力される。このように本実施の形態では、予め定められた各基本パルスパターンLu0〜Lw0の位相シフトを上記モニタされる三相交流モータMの電気角との常時比較に基づいて逐次実行することによって、上記パルスパターンが途切れることなくトルクフィードバックが実行される。
以上説明したように、本実施の形態にかかる三相交流モータの駆動制御装置によれば、以下の効果が得られるようになる。
(1)上記トルクフィードバック演算を行って補正すべき位相の進角量/遅角量である位相指令を逐次記憶更新する位相指令演算部130と、この位相指令演算部130に記憶更新されている位相指令Ψ*に応じて位相シフトされたパルスパターンを生成する三相パルスパターン出力部200とを各々独立した部分として構成することとした。このため、位相指令演算部130では、トルク偏差を算出するためのトルクフィードバック演算を行いつつ求めた上記位相指令Ψ*を位相指令メモリ131に逐次記憶更新する処理を繰り返し実行することとなる一方、三相パルスパターン出力部200では、この記憶更新される位相指令Ψ*に基づいてその基本位相Ψからの偏差分に応じたパルスパターンを生成する処理を繰り返し実行することとなる。これにより、トルクフィードバック演算の完了の有無に拘わらずスイッチング指令を生成するためのパルスパターンを継続して生成することが可能となり、ひいては、三相交流モータMのトルクフィードバック制御を高い信頼性のもとに行なうことができるようになる。
(2)上記トルクフィードバック演算に基づく位相の進角量/遅角量の補正を、位相指令Ψ*の基本位相Ψからの偏差分の位相シフトとして行なうこととした。これにより、こうした位相の進角量/遅角量の補正をより的確かつ簡易に実現することができるようになり、ひいては、マイクロコンピュータ100による演算負荷が好適に軽減されるようになる。
(3)上記位相シフト量(Ψ+Ψ*)を常時算出するとともに、三相交流モータMの回転子回転位置の常時モニタを通じて三相交流モータMの電気角に対応した上記三相の交番矩形波電圧のオンオフ態様の組み合わせを変化させる角度を判断することとした。これにより、トルクフィードバック演算を通じて求まる位相指令Ψ*を確実にスイッチング指令に反映させることができるようになる。また、こうした位相シフト処理は、常時実行されることから、トルクフィードバック演算に基づき位相指令Ψ*が更新された時点で、この更新された位相指令に応じた位相シフトが実行されるようになる。これにより、トルク指令と実際のトルクとの偏差が生じたとしても、この偏差に応じて更新された位相指令Ψ*、位相シフト量(Ψ+Ψ*)が上記パルスパターンに高い即応性のもとに反映されるようになり、ひいては、より高精度なトルクフィードバック制御が実現されるようになる。
(4)スイッチング指令を生成する三相の出力パターンLu1〜Lw1の生成を、波形メモリ210に記憶されている三相分のパルス波形のグループの選択出力として行なうこととした。これにより、上記位相指令Ψ*に応じた三相の出力パターンLu1〜Lw1の生成を、マイクロコンピュータ100とは別途に設けられたハードウェア側の処理として実現することができるようになり、ひいては、マイクロコンピュータ100による演算負
荷の軽減を通じた上記位相シフト処理の高速化が図られるようにもなる。
(5)マイクロコンピュータ100内の機能的な構成として、基本位相Ψが設定された基本位相設定部110を備えることとした。このため、こうした基本位相設定部110による基本位相Ψの設定の自由度が高められるようになる。これにより、たとえ駆動制御の対象となる三相交流モータMの仕様が変更されるなどした場合であれ、こうした仕様の変更に柔軟に対応することができるようになり、ひいては、上記駆動制御装置としての汎用性がより高められるようになる。
(6)三相交流モータMの回転子回転位置を、レゾルバ等からなる回転子位置検出部240によって検出することとした。これにより、三相交流モータMの回転子回転位置の検出、ひいては、三相パルスパターン出力部200による三相交流モータMの回転子回転位置のモニタも容易なものとなる。
なお、上記実施の形態は、以下のような形態をもって実施することもできる。
・上記位相シフト量(Ψ+Ψ*)を算出するためのマイクロコンピュータ100内の機能的な構成として、基本位相設定部110、加算器120、及び位相指令演算部130をそれぞれ各別に設けることとした。これに限らず、先の図1に対応する図として例えば図6に示すように、基本位相Ψが固定値として記憶された基本位相メモリ151と、この基本位相Ψとトルク指令値及び検出トルク値のトルク偏差に応じた位相指令Ψ*との加算値が記憶更新される位相シフト量メモリ152とを併せて備える位相指令演算部150を採用するようにしてもよい。これにより上記三相パルスパターン出力部200での位相シフトに必要とされる情報、すなわち位相指令Ψ*の基本位相Ψからの偏差分が位相指令演算部150の内部で求まるため、マイクロコンピュータ100にて演算処理する場合の演算アルゴリズムの簡略化が図られるようになる。
・上記実施の形態では、三相交流モータMの極対数と回転子位置検出部240を構成するレゾルバの軸倍角との比が「1:1」であることを条件に三相交流モータM及び回転子位置検出部240を構成することとした。これに限らず、それら極対数と軸倍角との比に基づき上記三相のパルスパターンを補正する場合には、極対数と軸倍角との比が異なる三相交流モータM及びレゾルバを用いることも可能である。すなわち、三相交流モータMの極対数が「4」、レゾルバの軸倍角が「2」である場合には、実際の三相交流モータMの電気角が「1/2」とされた値が三相交流モータMの回転子回転位置としてレゾルバによって検出される。そこで、三相交流モータMの極対数とレゾルバとの比に基づき回転子位置検出部240の検出値を補正し、この補正された値に基づき上記三相のパルスパターンLu1〜Lw1を生成するようにしてもよい。こうした構成によれば、上記駆動制御装置によって三相交流モータMのフィードバック制御を行なう上で、その汎用性がより高められるようになる。
・上記回転子位置検出部240をレゾルバによって構成することとしたが、この他、エンコーダによって回転子位置検出部240を構成するようにしてもよい。要は、三相交流モータMの回転子回転位置をモニタ可能なものであればよく、その他の回転位置センサを用いるようにしてもよい。
・上記三相パルスパターン出力部200を、マイクロコンピュータ100内のメモリ制御部140と波形メモリ210とによって構成することとしたが、波形メモリ210を割愛し、位相指令Ψ*に応じた三相のパルスパターンLu1〜Lw1をマイクロコンピュータ100内で行なうようにしてもよい。この場合であれ、位相指令演算部130と三相パルスパターン出力部200とを各々独立に構成したことで、位相指令演算部130では、トルク偏差を算出するためのトルクフィードバック演算を行いつつ求めた上記位相指令Ψ
*を位相指令メモリ131に逐次記憶更新する処理を繰り返し実行することとなる一方、三相パルスパターン出力部200では、この記憶更新される位相指令Ψ*に基づいてその基本位相Ψからの偏差分に応じたパルスパターンを生成する処理を繰り返し実行することとなる。これにより、同構成によっても、上記各処理が各々独立して実行されることにより、三相交流モータMの回転子位置がたとえ上記三相の交番矩形波電圧のオンオフ態様の組み合わせが変化する角度間で位相指令演算部130によるトルクフィードバック演算や位相指令Ψ*の算出が完了されず、それらのタイミングにずれが生じたとしても、三相パルスパターン出力部200からは位相指令メモリ131に記憶更新されているその都度最新の位相指令Ψ*に基づいて位相シフトされたパルスパターンが無理なく出力されるようになる。
・上記三相交流モータの駆動制御装置では、図示は割愛したが、パルス幅変調されたスイッチング指令に基づいて電力変換された三相交流による駆動制御と、上記三相パルスパターン出力部200により設定出力されるパルスパターンに基づき電力変換される三相の交番矩形波電圧による駆動制御とが切替実行されることとした。これに限らず、本発明の三相交流モータの駆動制御装置は、三相の交番矩形波電圧による駆動制御のみを行なう駆動制御装置にも適用可能であることは勿論である。
100…マイクロコンピュータ、110…基本位相設定部、120…加算器、130…位相指令演算部、131…位相指令メモリ、140…メモリ制御部、150…位相指令演算部、151…基本位相メモリ、152…位相シフト量メモリ、200…三相パルスパターン出力部、210…波形メモリ、220…三相スイッチング指令出力部、230…インバータ、240…回転子位置検出部、M…三相交流モータ。

Claims (7)

  1. 三相交流モータの回転子回転位置から求まる電気角の一周期に対応して設定出力されるスイッチング指令に基づき電力変換される三相の交番矩形波電圧によって三相交流モータを駆動するに際し、該三相交流モータに対するトルク指令値と同三相交流モータの実際のトルク値との偏差に基づいて前記三相の交番矩形波電圧の電圧位相をフィードバック制御する三相交流モータの駆動制御装置であって、
    前記三相交流モータに対するトルク指令値と三相交流モータの実際のトルク値との偏差に基づくトルクフィードバック演算を行って補正すべき位相の進角量/遅角量である位相指令を求めるとともに、この求めた位相指令を逐次記憶更新する位相指令演算部と、
    前記三相交流モータの電気角の一周期に対して一意に定まる前記三相の交番矩形波電圧の基本位相に対応して、同三相の交番矩形波電圧に電力変換するスイッチング指令生成のために三相分のパルス波形を含んで予め設定された固定のパルスパターンを出力する部分であって、前記三相交流モータの回転子回転位置をモニタしつつ、常時、前記固定のパルスパターンを前記位相指令演算部に記憶更新されている位相指令の前記基本位相からの偏差分だけ位相シフトして出力するパルスパターン出力部とを備える
    ことを特徴とする三相交流モータの駆動制御装置。
  2. 前記パルスパターン出力部は、前記基本位相に対応する固定のパルスパターンからなるそれぞれ三相分のパルス波形のグループが前記位相指令の前記基本位相からの偏差に対応する分解能でその最大の進角量/遅角量に対応する数だけ予め記憶された不揮発性の波形メモリを有し、前記モニタする回転子位置が前記位相指令の前記基本位相からの偏差に対応する三相分のパルス波形のグループをこの波形メモリから常時選択出力するものである
    請求項1に記載の三相交流モータの駆動制御装置。
  3. 前記基本位相が設定された基本位相設定部と、この設定された基本位相と前記位相指令演算部に記憶更新されている位相指令とを加算する加算器とを備え、前記パルスパターン出力部には、この加算器によって加算された位相の進角量/遅角量が前記位相指令演算部に記憶更新されている位相指令の前記基本位相からの偏差分として読み込まれる
    請求項1または2に記載の三相交流モータの駆動制御装置。
  4. 前記位相指令演算部は、前記基本位相を固定値として保持しており、前記記憶更新する位相指令として、前記求めた位相指令の前記基本位相からの偏差分を逐次記憶更新する
    請求項1または2に記載の三相交流モータの駆動制御装置。
  5. 前記パルスパターン出力部においてモニタされる前記三相交流モータの回転子回転位置が、同三相交流モータに設けられた回転位置センサを通じて検出される
    請求項1〜4のいずれか一項に記載の三相交流モータの駆動制御装置。
  6. 前記検出される三相交流モータの回転子回転位置は、前記回転位置センサの軸倍角と前記三相交流モータの極対数との比に基づき補正される
    請求項5に記載の三相交流モータの駆動制御装置。
  7. 前記駆動制御の対象となる三相交流モータは車両の原動機となるモータであって、前記三相交流モータの駆動制御にはパルス幅変調されたスイッチング指令に基づいて電力変換された三相交流による駆動制御が含まれ、この三相交流による駆動制御と前記三相の交番矩形波電圧による駆動制御とが切替実行される
    請求項1〜6のいずれか一項に記載の三相交流モータの駆動制御装置。
JP2009217743A 2009-09-18 2009-09-18 三相交流モータの駆動制御装置 Active JP5609051B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009217743A JP5609051B2 (ja) 2009-09-18 2009-09-18 三相交流モータの駆動制御装置
DE112010003686T DE112010003686T5 (de) 2009-09-18 2010-09-15 Antriebssteuervorrichtung für einen dreiphasigen Wechselstrommotor
PCT/JP2010/065987 WO2011034109A1 (ja) 2009-09-18 2010-09-15 三相交流モータの駆動制御装置
CN201080041116.XA CN102498659B (zh) 2009-09-18 2010-09-15 三相交流电动机的驱动控制装置
US13/395,720 US8476856B2 (en) 2009-09-18 2010-09-15 Three-phase AC motor drive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009217743A JP5609051B2 (ja) 2009-09-18 2009-09-18 三相交流モータの駆動制御装置

Publications (2)

Publication Number Publication Date
JP2011067073A JP2011067073A (ja) 2011-03-31
JP5609051B2 true JP5609051B2 (ja) 2014-10-22

Family

ID=43758710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009217743A Active JP5609051B2 (ja) 2009-09-18 2009-09-18 三相交流モータの駆動制御装置

Country Status (5)

Country Link
US (1) US8476856B2 (ja)
JP (1) JP5609051B2 (ja)
CN (1) CN102498659B (ja)
DE (1) DE112010003686T5 (ja)
WO (1) WO2011034109A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5795859B2 (ja) 2010-10-27 2015-10-14 理想科学工業株式会社 非水系インク
FR2969867B1 (fr) * 2010-12-28 2015-03-20 Renault Sa Systeme de commande d'un ondulateur de tension alimentant un moteur electrique multiphase de vehicule automobile.
ES2857585T3 (es) * 2016-08-22 2021-09-29 Sew Eurodrive Gmbh & Co Procedimiento de funcionamiento de un sistema con accionamientos acoplados mecánicamente y un ordenador de nivel superior y un sistema
CN106655958B (zh) * 2016-11-22 2018-12-28 珠海格力电器股份有限公司 永磁电机转矩补偿方法及装置
JP2018107996A (ja) * 2016-12-28 2018-07-05 ルネサスエレクトロニクス株式会社 半導体装置および電力変換装置
CN110679077B (zh) * 2017-04-05 2022-11-25 Tvs电机股份有限公司 用于车辆的控制系统
JP6967470B2 (ja) * 2018-02-26 2021-11-17 日立Astemo株式会社 制御装置
CN117394830B (zh) * 2023-11-01 2024-08-16 南京汽轮电力控制有限公司 一种脉冲相位矫正方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268789A (ja) * 1992-03-18 1993-10-15 Okuma Mach Works Ltd モータの電流制御装置
ES2211441T3 (es) * 1994-07-25 2004-07-16 Daikin Industries, Limited Motor capaz de producir un rendimietno elevado y procedimiento de control de dicho motor.
JP3470422B2 (ja) * 1994-10-28 2003-11-25 株式会社安川電機 サーボ制御装置の指令処理方法
WO1999065138A1 (fr) * 1998-06-09 1999-12-16 Nsk Ltd. Dispositif de commande d'un moteur
JP3746377B2 (ja) * 1998-07-24 2006-02-15 トヨタ自動車株式会社 交流電動機の駆動制御装置
JP3533091B2 (ja) 1998-07-29 2004-05-31 トヨタ自動車株式会社 交流電動機の駆動制御装置
JP4404790B2 (ja) * 1999-07-08 2010-01-27 トヨタ自動車株式会社 交流電動機の駆動制御装置
JP3630410B2 (ja) * 2001-05-22 2005-03-16 三菱電機株式会社 位置検出装置および異常検出装置
JP3755424B2 (ja) * 2001-05-31 2006-03-15 トヨタ自動車株式会社 交流電動機の駆動制御装置
JP4067949B2 (ja) * 2002-12-03 2008-03-26 サンデン株式会社 モータ制御装置
JP3965395B2 (ja) * 2004-05-18 2007-08-29 松下電器産業株式会社 モータ駆動装置
JP4037392B2 (ja) * 2004-08-12 2008-01-23 三菱電機株式会社 異常検出装置
JP4897521B2 (ja) * 2007-03-12 2012-03-14 トヨタ自動車株式会社 交流電動機の駆動制御装置
JP4329855B2 (ja) * 2007-10-09 2009-09-09 トヨタ自動車株式会社 交流モータの制御装置および交流モータの制御方法
JP5210822B2 (ja) * 2008-11-18 2013-06-12 トヨタ自動車株式会社 交流電動機の制御装置およびそれを搭載した電動車両
JP4710963B2 (ja) * 2008-11-28 2011-06-29 株式会社デンソー 回転機の制御装置及び制御システム

Also Published As

Publication number Publication date
WO2011034109A1 (ja) 2011-03-24
CN102498659B (zh) 2014-09-17
US20120176071A1 (en) 2012-07-12
JP2011067073A (ja) 2011-03-31
DE112010003686T5 (de) 2013-01-10
CN102498659A (zh) 2012-06-13
US8476856B2 (en) 2013-07-02

Similar Documents

Publication Publication Date Title
JP5609051B2 (ja) 三相交流モータの駆動制御装置
JP4497235B2 (ja) 交流電動機の制御装置および制御方法
JP5353867B2 (ja) 回転機の制御装置
JP4379427B2 (ja) 多相回転電機の制御装置
US9407181B2 (en) Vehicle and method for controlling vehicle
JP6658554B2 (ja) 交流電動機の制御装置
JP2010252434A (ja) 回転機の制御装置
JP2017163789A (ja) モータ駆動装置及びモータ駆動装置における相電流検出方法
JP2010110067A (ja) モータ制御装置
JP5910583B2 (ja) 交流電動機の制御装置
JP4450102B1 (ja) モータ駆動制御装置
CN104682786A (zh) 用于确定电机的转子的位置数据的方法和装置
JP6635059B2 (ja) 交流電動機の制御装置
US8248007B2 (en) Control apparatus and control method for AC motor
JP2011087395A (ja) 車両のモータ制御装置
JP5482041B2 (ja) 電動機の制御装置
JP7318392B2 (ja) モータ制御装置
JP5584794B1 (ja) 電動機の駆動制御装置
JP2007159348A (ja) 電動機の制御装置
JP5640336B2 (ja) 電動機制御システム
JP2012090429A (ja) モータ駆動装置
JP7042568B2 (ja) モータ制御装置及びモータ制御方法
JP6951945B2 (ja) モータ制御装置及びモータ制御方法
JP5910582B2 (ja) 交流電動機の制御装置
JP7367628B2 (ja) インバータの制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R151 Written notification of patent or utility model registration

Ref document number: 5609051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250