WO2011034109A1 - 三相交流モータの駆動制御装置 - Google Patents
三相交流モータの駆動制御装置 Download PDFInfo
- Publication number
- WO2011034109A1 WO2011034109A1 PCT/JP2010/065987 JP2010065987W WO2011034109A1 WO 2011034109 A1 WO2011034109 A1 WO 2011034109A1 JP 2010065987 W JP2010065987 W JP 2010065987W WO 2011034109 A1 WO2011034109 A1 WO 2011034109A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- command
- motor
- drive control
- basic
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/08—Arrangements for controlling the speed or torque of a single motor
- H02P6/085—Arrangements for controlling the speed or torque of a single motor in a bridge configuration
Definitions
- the present invention relates to a drive control device for a three-phase AC motor, and more particularly to a drive control device for a three-phase AC motor that drives and controls a three-phase AC motor by rectangular wave voltage phase control.
- FIG. 7 shows an outline of a drive control device for a three-phase AC motor described in Patent Document 1.
- This drive control device is mounted on, for example, a hybrid vehicle.
- This drive control device includes a PWM (pulse width modulation) current control mode and a PWM voltage phase control mode for driving a three-phase AC motor with high efficiency, and a rectangular wave for improving the three-phase AC motor output.
- the drive of the inverter is controlled by switching the control mode between the three control modes including the voltage phase control mode.
- the PWM current control mode is a control mode when both the switches 26 and 28 are switched to the upper side in FIG.
- and the voltage phase ⁇ are set so that the current value supplied to the three-phase AC motor 38 matches the command current value, and the voltage amplitude
- An alternating pulse voltage is generated according to the phase ⁇ , and this alternating pulse voltage is applied to the three-phase AC motor 38.
- the voltage phase ⁇ is set according to the change over time of the voltage amplitude
- An alternating pulse voltage is generated according to the set voltage phase ⁇ , and this alternating pulse voltage is applied to the three-phase AC motor 38 by switching the switch 26 to the lower side and switching the switch 28 to the upper side in FIG. Applied.
- is determined by the DC battery voltage Vdc, and the voltage phase ⁇ is set according to the command torque value.
- a rectangular wave voltage is generated based on the set voltage amplitude
- the command torque value generated according to the accelerator operation amount and the brake depression amount by the vehicle control device is input to the current command generation unit 12 and the adder 13.
- the current command generator 12 generates command current values Iq and Id based on the input command torque value, and outputs the generated command current values Iq and Id to the current controller 14.
- the current controller 14 executes proportional-integral control based on the input command current values Iq and Id and the current value detected by the current sensor 40, and the voltage amplitude
- the switch 26 selectively switches whether or not to input the voltage amplitude
- the PWM circuit 30 When the voltage amplitude
- the inverter 36 generates an alternating pulse voltage according to the switching command output from the PWM circuit 30 and applies the alternating pulse voltage to the three-phase AC motor 38 as a drive voltage.
- the current sensor 40 detects the current flowing through the three-phase AC motor 38 by applying the drive voltage, and outputs the detected current value to the adder 24.
- the adder 24 receives the current value detected by the current sensor 40 and the command current value generated by the current command generator 12.
- the adder 24 generates a difference between the input command current value and the detected current value, that is, a current deviation ⁇ I, and outputs the current deviation ⁇ I to the current coincidence determination unit 22.
- the current match determination unit 22 switches the switch 26 when the detected current value matches the command current value.
- the adder 13 generates a difference between these torque values, that is, a torque deviation ⁇ T, and supplies the generated torque deviation ⁇ T to the voltage phase controller 18.
- the voltage phase controller 18 generates a voltage phase ⁇ according to the torque deviation ⁇ T.
- the voltage phase controller 18 generates a rectangular wave voltage phase ⁇ in the rectangular wave voltage phase control mode, and generates a voltage phase ⁇ of an alternating pulse voltage in the PWM voltage phase control mode.
- the voltage amplitude controller 16 also supplies the voltage amplitude
- the voltage amplitude determination unit 34 compares the supplied voltage amplitude
- the rectangular wave generator 32 generates a rectangular wave voltage that is a switching command for the inverter 36 based on the voltage phase ⁇ input from the voltage phase controller 18.
- a switching command is transmitted to the inverter 36 via the switch 28, the inverter 36 applies an alternating (AC) voltage switched based on the rectangular wave voltage to the three-phase AC motor 38.
- AC alternating
- the drive control device selectively switches the control mode among the PWM current control mode, the PWM voltage phase control mode, and the rectangular wave voltage phase control mode.
- the drive of the phase AC motor 38 is appropriately controlled.
- the rectangular wave voltage phase control mode is normally used in the high rotation region of the three-phase AC motor 38. Therefore, in order to ensure control responsiveness in the rectangular wave voltage phase control mode, the control calculation needs to be completed within a short time. Conventionally, this calculation is executed through the following processing.
- a rectangular wave voltage (switched alternating (alternating current) voltage) that is an output of each phase of the U phase, V phase, and W phase of the inverter 36.
- it is sequentially switched at a cycle of 180 ° for each phase in a manner synchronized with the rotor position (rotor angle) of the three-phase AC motor 38.
- the time point t3 between the time point t1 when the V-phase output is turned off and the time point t2 when the U-phase output is turned on, that is, the rotor position of the three-phase AC motor 38 is at the angle ⁇ 1.
- the current reaches the current, the current flowing through the three-phase AC motor 38 is detected.
- a voltage phase ⁇ corresponding to the torque deviation ⁇ T at that time is calculated through a torque feedback calculation based on the detected current.
- the next output switching angle of each phase is determined based on the voltage phase ⁇ thus calculated, and the next interrupt setting is performed at the determined output switching angle, so that the drive control of the three-phase AC motor 38 is executed. Is done.
- the switching command for generating the three-phase output is generated until the angular position of the rotor shifts from the interrupt angle ⁇ 1 to the interrupt end angle ⁇ 2, as indicated by a period t3-t2 in FIG. About 30 °).
- An object of the present invention is to provide a drive control device for a three-phase AC motor that can perform rectangular wave voltage control with high reliability even in a high-speed rotation region of the three-phase AC motor.
- a drive control device for a three-phase AC motor which is set corresponding to one cycle of the electrical angle obtained from the rotational position of the rotor of the three-phase AC motor.
- the apparatus performs a torque feedback calculation based on the torque deviation, obtains a phase command that is a phase advance / delay amount to be corrected based on the computation result, and stores the obtained phase command sequentially and A phase command calculation unit to be updated and a phase shift by the phase command with respect to the basic phase of the three-phase alternating rectangular wave voltage uniquely determined for one period of the electrical angle for generating the switching command And a pulse pattern output unit that constantly outputs the pulse pattern while monitoring the rotational position.
- the block diagram which shows the drive control apparatus of the three-phase alternating current motor concerning one Embodiment of this invention.
- the flowchart which shows the phase command calculation processing procedure by the apparatus of FIG.
- the flowchart which shows the phase shift process sequence by the apparatus of FIG.
- C The timing chart which shows an example of transition of the electrical angle corresponding to the rotation position of the rotor of a three-phase alternating current motor, and the pulse pattern for three phases in which (d) phase ⁇ + ⁇ * after a shift was reflected.
- FIG. 1 shows a drive control apparatus for a three-phase AC motor according to an embodiment of the present invention.
- this three-phase AC motor drive control device includes a microcomputer 100 that controls the drive of the three-phase AC motor M.
- the microcomputer 100 includes a basic phase setting unit 110 that sets a basic phase ⁇ of a three-phase alternating rectangular wave voltage.
- the basic phase ⁇ is uniquely determined for one period of the electrical angle according to the specification of the three-phase AC motor M.
- the basic phase ⁇ set by the basic phase setting unit 110 is input to the adder 120.
- the phase command calculation unit 130 provided in the microcomputer 100 includes a command torque value generated according to an accelerator operation amount and a brake depression amount by a vehicle control device (not shown), a torque sensor, and the like.
- the actual torque value of the phase AC motor M is input.
- torque feedback calculation based on the deviation between each input command torque value and actual torque value is executed, and based on the calculation result, the phase advance amount / retard angle to be corrected
- the phase command ⁇ * thus obtained is sequentially stored and updated in the phase command memory 131, and the stored or updated value is sequentially read out to the adder 120.
- the adder 120 calculates the phase after being shifted by the phase command ⁇ * with respect to the basic phase ⁇ , that is, the shifted phase ⁇ + ⁇ *, through the addition process of the input basic phase ⁇ and the phase command ⁇ *.
- the post-shift phase ⁇ + ⁇ * is input to the three-phase pulse pattern output unit 200.
- the three-phase pulse pattern output unit 200 outputs a pulse pattern that is phase-shifted by the phase command ⁇ * with respect to the basic phase ⁇ to generate a switching command.
- the three-phase pulse pattern output unit 200 includes a memory control unit 140 in the microcomputer 100 to which the shifted phase ⁇ + ⁇ * is input, and a waveform memory that outputs a pulse pattern in response to access by the memory control unit 140. 210 (for example, a non-volatile memory).
- the memory control unit 140 monitors the rotational position (electrical angle) ⁇ e of the rotor of the three-phase AC motor M based on the output of the rotor position detection unit 240 such as a resolver, for example, and outputs the phase ⁇ + ⁇ * after the phase command.
- the waveform memory 210 is always read by reading from the memory 131 (more precisely, the adder 120).
- the ratio between the number of pole pairs of the three-phase AC motor M and the axial multiplier angle of the resolver is 1: 1.
- the waveform memory 210 a group of three-phase pulse waveforms derived from the fixed pulse pattern corresponding to the basic phase ⁇ is stored in the phase command ⁇ * (that is, the advance amount / delay with respect to the basic phase ⁇ ). (Number of angular amounts) and the number corresponding to the maximum amount of advance / retard for the basic phase ⁇ are stored. That is, all groups of three-phase pulse waveforms that can be generated by phase shifting according to the phase command ⁇ * are stored in the waveform memory 210.
- the memory control unit 140 always reads the shifted phase ⁇ + ⁇ *, and accesses the waveform memory 210 to select a group of three-phase pulse waveforms corresponding to the read shifted phase ⁇ + ⁇ *.
- the post-shift phase ⁇ + ⁇ * is always read.
- the post-shift phase ⁇ + ⁇ * may be read each time the phase command ⁇ * is changed.
- the selected three-phase pulse waveform group is obtained from the three-phase pulse pattern output unit 200 as a pulse pattern phase-shifted from the basic phase ⁇ by the phase command ⁇ * calculated based on the feedback calculation. It is output to the switching command output unit 220.
- the phase command calculation unit 130 that calculates the phase command ⁇ * that is the advance amount / retard amount to be corrected through the torque feedback calculation, and fixed according to the calculated phase command ⁇ *.
- the three-phase pulse pattern output unit 200 that generates the pulse pattern is independent of each other. For this reason, the phase command calculation unit 130 repeatedly executes a process of sequentially storing and updating the obtained phase command ⁇ * in the phase command memory 131 while performing a torque feedback calculation for calculating a torque deviation. On the other hand, the three-phase pulse pattern output unit 200 repeatedly executes a process of generating a pulse pattern phase-shifted from the basic phase ⁇ by the phase command ⁇ * based on the stored and updated phase command ⁇ *.
- the three-phase pulse pattern output unit 200 can store a pulse that has been phase-shifted based on the latest phase command ⁇ * stored and updated in the phase command memory 131. The pattern can be output without difficulty.
- the three-phase pulse pattern output unit 200 generates a pulse pattern corresponding to the shifted phase ⁇ + ⁇ * by selecting a group of three-phase pulse waveforms stored in the waveform memory 210. A pulse pattern for generation can be generated more easily and accurately. As a result, the computational load for the microcomputer 100 to generate a pulse pattern based on the feedback control is reduced.
- the three-phase switching command output unit 220 When the pulse pattern generated through such processing is input to the three-phase switching command output unit 220, the three-phase switching command output unit 220 generates a switching command according to the input three-phase pulse pattern. And output to the inverter 230.
- the inverter 230 is a known inverter in which pairs of switching elements made of, for example, an IGBT (Insulated Gate Bipolar Transistor) or the like are provided for three phases (six). In this way, when the switching command output from the three-phase switching command output unit 220 is input to the inverter 230, the inverter 230 outputs a three-phase alternating rectangular wave voltage that is power-converted according to the switching command, and the three-phase switching command is output. Applied to AC motor M.
- IGBT Insulated Gate Bipolar Transistor
- the three-phase AC motor M is driven based on the three-phase alternating rectangular wave voltage, and is subjected to feedback control according to the torque deviation.
- the drive control device for a three-phase AC motor according to the present embodiment is actually a three-phase AC that has been subjected to power conversion based on a pulse width-modulated switching command, similarly to the drive control device shown in FIG. Is switched between drive control (not shown) according to, and drive control using a three-phase alternating rectangular wave voltage that is converted based on the pulse pattern set and output by the three-phase pulse pattern output unit 200.
- the drive control is performed by the three-phase AC that is converted based on the pulse width-modulated switching command.
- drive control is performed using a three-phase alternating rectangular wave voltage.
- phase command calculation process (torque feedback process) executed by the phase command calculation unit 130 will be described in detail with reference to FIG. This process is periodically executed at a predetermined time interval.
- a command torque value generated according to the accelerator operation amount and the brake depression amount by the vehicle control device, and a three-phase AC motor driven according to the command torque value The actual detected torque value of M is read (steps S100 and S101).
- the phase command ⁇ * that is the advance / delay amount of the phase to be corrected is, for example, a map. It is calculated through calculation or the like (step S102).
- the calculated value of the phase command ⁇ * is stored in the phase command memory 131 and updated (step S103).
- phase command ⁇ * is sequentially calculated according to the command torque value and the detected torque value each time, and stored in the phase command memory 131 by the calculated phase command ⁇ *.
- the phase command ⁇ * being updated is sequentially updated.
- phase shift process executed by the three-phase pulse pattern output unit 200 will be described in detail with reference to FIGS.
- FIG. 4 (a) the phase command ⁇ * stored and updated in the phase command memory 131, and (b) the shifted phase ⁇ + ⁇ * sequentially updated in accordance with the phase command ⁇ * and the three phases (C) the electrical angle corresponding to the rotational position of the rotor of the three-phase AC motor M, and (d) the three-phase component reflecting the shifted phase ⁇ + ⁇ *.
- An example of the transition of the pulse pattern is shown.
- step S200 the electrical angle of the three-phase AC motor M is sequentially obtained through monitoring the rotational position of the rotor of the three-phase AC motor M (step S200). Further, (a) the phase command, that is, the phase command ⁇ * stored and updated in the phase command memory 131 is added to the basic phase ⁇ in the adder 120, and the addition result ⁇ + ⁇ * is read (step S201). Next, based on the read addition result ⁇ + ⁇ *, (b) a phase advanced or retarded with respect to the basic phase ⁇ , that is, a shifted phase ⁇ + ⁇ * is obtained (step S202).
- the post-shift phase ⁇ + ⁇ * is calculated in such a manner that when a positive torque is generated, the voltage phase is advanced when the torque is insufficient and the voltage phase is delayed when the torque is excessive. Further, the post-shift phase ⁇ + ⁇ * is calculated in such a manner that when negative torque is generated, the voltage phase is delayed when torque is insufficient and the voltage phase is advanced when torque is excessive.
- the torque of the three-phase AC motor M is increased / decreased by the amount by which the voltage phase is advanced / retarded with respect to the basic phase ⁇ , and the torque deviation calculated through torque feedback calculation, that is, the command torque value and the actual torque The deviation from the value is eliminated. As shown in FIG.
- a group of three-phase pulse patterns corresponding to the post-shift phase ⁇ + ⁇ * is selected from the waveform memory 210, and the selected pulse The group of patterns is output as a pulse pattern that is phase-shifted according to the phase command ⁇ * (step S203: YES, S204).
- the phase command ⁇ * is calculated to eliminate the discrepancy, and the phase of the fixed pulse pattern is determined according to the phase command ⁇ *.
- the shift process is sequentially executed, and the drive control of the three-phase AC motor M is executed in such a manner that the difference between the command torque value for the three-phase AC motor M and the actual detected torque value of the motor M is eliminated.
- the period until the electrical angle sequentially reaches the angle (60 ° interval) that changes the combination of the on-off mode of the three-phase alternating rectangular wave voltage is shortened.
- the calculation of the phase command ⁇ * related to the torque feedback process may not be completed during the period.
- the post-shift phase ⁇ + ⁇ * corresponding to the phase command ⁇ * currently stored in the phase command memory 131 is continuously obtained. (Read). Therefore, a three-phase pulse pattern corresponding to the post-shift phase ⁇ + ⁇ * is also generated and output without interruption.
- the drive control of the phase AC motor M can be performed with high reliability.
- the basic pulse patterns Lu0 to Lw0 are set as follows corresponding to each cycle (0 ° to 360 °) of the electrical angle of the three-phase AC motor M.
- the basic pulse pattern Lu0 corresponding to the U phase of the inverter 230 has an ON period until the rotational position changes from 0 ° to 180 °.
- the basic pulse pattern Lv0 corresponding to the V phase of the inverter 230 has an ON period until the rotational position changes from 120 ° to 300 ° in a manner of following the basic pulse pattern Lu0 with a delay of 120 °.
- the basic pulse pattern Lw0 corresponding to the W phase of the inverter 230 follows in a manner that follows the basic pulse pattern Lu0 with a delay of 240 ° until the rotation position changes from 240 ° to 60 ° of the next electrical angle cycle. Has an on period.
- the basic pulse patterns Lu0 to Lw0 (in other words, the basic phase ⁇ ) serving as the reference for the phase shift are uniquely determined corresponding to one cycle of the electrical angle of the three-phase AC motor M. It has been.
- phase command ⁇ * when the phase command ⁇ * is obtained through the feedback calculation, pulse patterns Lu1 to Lw1 obtained by shifting the phases of the basic pulse patterns Lu0 to Lw0 by the phase command ⁇ * are output as shown in FIG. .
- Torque feedback is executed without the pattern being interrupted.
- the embodiment described above has the following advantages. (1) Performing the above torque feedback calculation, and sequentially storing and updating the phase command ⁇ *, which is the advance amount / retard amount of the phase to be corrected, in accordance with the phase command ⁇ *
- the three-phase pulse pattern output unit 200 that generates a phase-shifted pulse pattern is independent of each other. For this reason, the phase command calculation unit 130 repeatedly executes a process of sequentially storing and updating the obtained phase command ⁇ * in the phase command memory 131 while performing a torque feedback calculation for calculating a torque deviation.
- the three-phase pulse pattern output unit 200 repeatedly executes a process of generating a pulse pattern phase-shifted from the basic phase ⁇ by the phase command ⁇ * based on the stored and updated phase command ⁇ *.
- the drive control of the three-phase AC motor M is highly reliable. Can be done under
- phase advance amount / retard amount correction based on the torque feedback calculation is performed as a phase shift from the basic phase ⁇ by the phase command ⁇ *.
- Three-phase pulse patterns Lu1 to Lw1 for generating a switching command are generated by selecting and outputting a group of three-phase pulse waveforms stored in the waveform memory 210.
- generation of the three-phase pulse patterns Lu1 to Lw1 output in response to the phase command ⁇ * can be realized as processing by hardware provided separately from the microcomputer 100.
- the speed of the phase shift process can be increased by reducing the calculation load of the microcomputer 100.
- the microcomputer 100 includes a basic phase setting unit 110 that sets the basic phase ⁇ as a functional component. For this reason, the freedom degree of the setting of basic phase (PSI) by such basic phase setting part 110 is raised. As a result, even if the specification of the three-phase AC motor M that is the target of drive control is changed, it becomes possible to flexibly cope with such a change in specification, and as a result, the drive control device Versatility is further improved.
- the rotational position of the rotor of the three-phase AC motor M is detected by a rotor position detector 240 made of a resolver or the like. This facilitates the detection of the rotational position, and hence the monitoring of the rotational position by the three-phase pulse pattern output unit 200.
- the said embodiment can also be changed and implemented as follows.
- the basic phase setting unit 110, the adder 120, and the phase command calculation unit 130 as functional components for calculating the post-shift phase ⁇ + ⁇ * are separately provided in the microcomputer 100.
- the microcomputer 100 stores a basic phase memory 151 that stores the basic phase ⁇ as a fixed value, and the basic phase ⁇ and the command torque value.
- the phase command calculation unit 150 may be employed which also includes a post-shift phase memory 152 that stores and updates an addition value of the phase command ⁇ * corresponding to the torque deviation of the detected torque value.
- phase command ⁇ * with respect to the basic phase ⁇
- simplification of the arithmetic algorithm when arithmetic processing is performed by the microcomputer 100 is achieved.
- the ratio between the number of pole pairs of the three-phase AC motor M and the axial multiple of the resolver constituting the rotor position detector 240 is 1: 1.
- the detection value of the rotor position detection unit 240 is corrected based on the ratio of the number of pole pairs of the three-phase AC motor M to the resolver, and the three-phase pulse patterns Lu1 to Lw1 are generated based on the corrected value. It may be. According to such a configuration, the versatility of the three-phase AC motor M is further improved when the drive control device performs the feedback control of the three-phase AC motor M.
- the rotor position detector 240 is a resolver or the like.
- the rotor position detector 240 may be composed of an encoder or other rotational position sensor. In short, it may be anything that can monitor the rotational position of the rotor of the three-phase AC motor M.
- the three-phase pulse pattern output unit 200 includes the memory control unit 140 in the microcomputer 100 and the waveform memory 210 outside the microcomputer 100. Instead, the waveform memory 210 may be omitted, and the three-phase pulse patterns Lu1 to Lw1 may be generated in the microcomputer 100 in accordance with the phase command ⁇ *. Even in this case, since the phase command calculation unit 130 and the three-phase pulse pattern output unit 200 are independent from each other, the phase command calculation unit 130 performs a torque feedback calculation for calculating a torque deviation.
- the three-phase pulse pattern output unit 200 repeats the process of sequentially storing and updating the obtained phase command ⁇ * in the phase command memory 131, while the three-phase pulse pattern output unit 200 determines the phase based on the stored and updated phase command ⁇ *.
- the process of generating a pulse pattern phase-shifted from the basic phase ⁇ by the command ⁇ * is repeatedly executed. Thereby, the torque feedback calculation and the calculation of the phase command ⁇ * are performed by the phase command calculation unit 130 between the angles at which the rotor position of the three-phase AC motor M changes the combination of the on-off mode of the three-phase alternating rectangular wave voltage. Even if the timing is not completed and the timing is shifted, the three-phase pulse pattern output unit 200 can reasonably apply the phase-shifted pulse pattern based on the phase command ⁇ * currently stored in the phase command memory 131. Can output.
- the drive control device for the three-phase AC motor is omitted from the drawing, but the drive control by the three-phase AC converted based on the pulse width modulated switching command and the three-phase pulse pattern output.
- the drive control by the three-phase alternating rectangular wave voltage that is converted into electric power based on the pulse pattern set and output by the unit 200 is switched and executed.
- the present invention is not limited to this, and it is needless to say that the present invention can be applied to a drive control apparatus that performs only drive control using a three-phase alternating rectangular wave voltage.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
この駆動制御装置は、例えばハイブリッド自動車等に搭載されている。この駆動制御装置は、三相交流モータを高い効率のもとに駆動するためのPWM(パルス幅変調)電流制御モード及びPWM電圧位相制御モードと、三相交流モータ出力を向上させるための矩形波電圧位相制御モードとを含む、3種の制御モードの間で制御モードを切り替えることによって、インバータの駆動を制御する。
なお、本実施形態にかかる三相交流モータの駆動制御装置は、実際には先の図7に示した駆動制御装置と同様、パルス幅変調されたスイッチング指令に基づいて電力変換された三相交流による駆動制御(図示省略)と、上記三相パルスパターン出力部200により設定及び出力されるパルスパターンに基づき電力変換される三相の交番矩形波電圧による駆動制御との切替を行う。これら駆動制御の切替では、前述の通り、三相交流モータMの低回転領域において、パルス幅変調されたスイッチング指令に基づいて電力変換された三相交流による駆動制御が行われ、三相交流モータMの高回転領域において三相の交番矩形波電圧による駆動制御が行われる。
(1)上記トルクフィードバック演算を行って、補正すべき位相の進角量/遅角量である位相指令Ψ*を逐次記憶し更新する位相指令演算部130と、この位相指令Ψ*に応じて位相シフトされたパルスパターンを生成する三相パルスパターン出力部200とが互いから独立している。このため、位相指令演算部130は、トルク偏差を算出するためのトルクフィードバック演算を行いつつ、求めた上記位相指令Ψ*を位相指令メモリ131に逐次記憶し更新する処理を繰り返し実行する。一方、三相パルスパターン出力部200は、この記憶及び更新される位相指令Ψ*に基づいてその位相指令Ψ*分だけ基本位相Ψから位相シフトされたパルスパターンを生成する処理を繰り返し実行する。これにより、トルクフィードバック演算が完了したか否かに拘わらず、スイッチング指令を生成するためのパルスパターンを継続して生成することが可能となり、ひいては、三相交流モータMの駆動制御を高い信頼性のもとに行うことができる。
上記実施形態では、上記シフト後位相Ψ+Ψ*を算出するための機能構成要素としての基本位相設定部110、加算器120、及び位相指令演算部130は、マイクロコンピュータ100内に別個に設けられていた。これに限らず、先の図1に対応する図として例えば図6に示すように、マイクロコンピュータ100は、基本位相Ψを固定値として記憶する基本位相メモリ151と、この基本位相Ψと指令トルク値及び検出トルク値のトルク偏差に応じた位相指令Ψ*との加算値が記憶され更新されるシフト後位相メモリ152とを併せて備える、位相指令演算部150を採用してもよい。これにより上記三相パルスパターン出力部200での位相シフトに必要とされる情報、すなわち基本位相Ψに対して位相指令Ψ*分シフトされた後の位相が位相指令演算部150の内部で求められるため、マイクロコンピュータ100にて演算処理する場合の演算アルゴリズムの簡略化が図られる。
Claims (7)
- 三相交流モータの回転子の回転位置から求められる電気角の一周期に対応して設定されるスイッチング指令に基づき電力変換される三相の交番矩形波電圧によって三相交流モータを駆動するに際し、該三相交流モータに対する指令トルク値と同三相交流モータの実際のトルク値とのトルク偏差に基づいて前記三相の交番矩形波電圧の電圧位相をフィードバック制御する、三相交流モータの駆動制御装置であって、
前記トルク偏差に基づくトルクフィードバック演算を行い、該演算結果に基づいて補正すべき位相の進角量/遅角量である位相指令を求めるとともに、この求めた位相指令を逐次記憶及び更新する位相指令演算部と、
前記スイッチング指令の生成のために、前記電気角の一周期に対して一意に定まる前記三相の交番矩形波電圧の基本位相に対して前記位相指令分だけ位相シフトしたパルスパターンを、前記回転位置をモニタしつつ、常時出力するパルスパターン出力部と、を備える三相交流モータの駆動制御装置。 - 前記パルスパターン出力部は、
前記基本位相に対応するパルスパターンに由来するそれぞれ三相分のパルス波形のグループが、前記位相指令の分解能と、前記基本位相に対する最大の進角量/遅角量とに応じた数だけ予め記憶された、不揮発性の波形メモリを有し、
前記モニタされる回転位置が前記位相指令に対応する三相分のパルス波形のグループを、前記波形メモリから常時選択及び出力する、請求項1に記載の三相交流モータの駆動制御装置。 - 前記基本位相を設定する基本位相設定部と、この設定された基本位相と前記記憶及び更新されている位相指令とを加算して加算結果を出力する加算器とをさらに備え、 前記パルスパターン出力部は、この加算結果を、前記記憶及び更新されている位相指令分だけ前記基本位相を位相シフトした後のシフト後位相として読み込む、請求項1または2に記載の三相交流モータの駆動制御装置。
- 前記位相指令演算部は、前記基本位相を固定値として保持しており、前記基本位相と前記位相指令との加算結果を逐次記憶及び更新する、請求項1または2に記載の三相交流モータの駆動制御装置。
- 前記モニタされる回転位置は、前記三相交流モータに設けられた回転位置センサを通じて検出される、請求項1~4のいずれか一項に記載の三相交流モータの駆動制御装置。
- 前記検出される回転位置は、前記回転位置センサの軸倍角と前記三相交流モータの極対数との比に基づき補正される、請求項5に記載の交流モータの駆動制御装置。
- 前記三相交流モータは車両の原動機であり、
前記三相交流モータの駆動制御は、パルス幅変調されたスイッチング指令に基づいて電力変換された三相交流による駆動制御を含み、
この三相交流による駆動制御と前記三相の交番矩形波電圧による駆動制御とが切替実行される、請求項1~6のいずれか一項に記載の三相交流モータの駆動制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112010003686T DE112010003686T5 (de) | 2009-09-18 | 2010-09-15 | Antriebssteuervorrichtung für einen dreiphasigen Wechselstrommotor |
CN201080041116.XA CN102498659B (zh) | 2009-09-18 | 2010-09-15 | 三相交流电动机的驱动控制装置 |
US13/395,720 US8476856B2 (en) | 2009-09-18 | 2010-09-15 | Three-phase AC motor drive control device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-217743 | 2009-09-18 | ||
JP2009217743A JP5609051B2 (ja) | 2009-09-18 | 2009-09-18 | 三相交流モータの駆動制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011034109A1 true WO2011034109A1 (ja) | 2011-03-24 |
Family
ID=43758710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/065987 WO2011034109A1 (ja) | 2009-09-18 | 2010-09-15 | 三相交流モータの駆動制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8476856B2 (ja) |
JP (1) | JP5609051B2 (ja) |
CN (1) | CN102498659B (ja) |
DE (1) | DE112010003686T5 (ja) |
WO (1) | WO2011034109A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9260620B2 (en) | 2010-10-27 | 2016-02-16 | Riso Kagaku Corporation | Non-aqueous ink |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2969867B1 (fr) * | 2010-12-28 | 2015-03-20 | Renault Sa | Systeme de commande d'un ondulateur de tension alimentant un moteur electrique multiphase de vehicule automobile. |
ES2857585T3 (es) * | 2016-08-22 | 2021-09-29 | Sew Eurodrive Gmbh & Co | Procedimiento de funcionamiento de un sistema con accionamientos acoplados mecánicamente y un ordenador de nivel superior y un sistema |
CN106655958B (zh) * | 2016-11-22 | 2018-12-28 | 珠海格力电器股份有限公司 | 永磁电机转矩补偿方法及装置 |
JP2018107996A (ja) * | 2016-12-28 | 2018-07-05 | ルネサスエレクトロニクス株式会社 | 半導体装置および電力変換装置 |
CN110679077B (zh) * | 2017-04-05 | 2022-11-25 | Tvs电机股份有限公司 | 用于车辆的控制系统 |
JP6967470B2 (ja) * | 2018-02-26 | 2021-11-17 | 日立Astemo株式会社 | 制御装置 |
CN117394830B (zh) * | 2023-11-01 | 2024-08-16 | 南京汽轮电力控制有限公司 | 一种脉冲相位矫正方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004347612A (ja) * | 2004-08-12 | 2004-12-09 | Mitsubishi Electric Corp | 異常検出装置 |
JP2005218299A (ja) * | 1999-07-08 | 2005-08-11 | Toyota Motor Corp | 交流電動機の駆動制御装置 |
JP2010124566A (ja) * | 2008-11-18 | 2010-06-03 | Toyota Motor Corp | 交流電動機の制御装置およびそれを搭載した電動車両 |
JP2010130809A (ja) * | 2008-11-28 | 2010-06-10 | Denso Corp | 回転機の制御装置及び制御システム |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05268789A (ja) * | 1992-03-18 | 1993-10-15 | Okuma Mach Works Ltd | モータの電流制御装置 |
ES2211441T3 (es) * | 1994-07-25 | 2004-07-16 | Daikin Industries, Limited | Motor capaz de producir un rendimietno elevado y procedimiento de control de dicho motor. |
JP3470422B2 (ja) * | 1994-10-28 | 2003-11-25 | 株式会社安川電機 | サーボ制御装置の指令処理方法 |
WO1999065138A1 (fr) * | 1998-06-09 | 1999-12-16 | Nsk Ltd. | Dispositif de commande d'un moteur |
JP3746377B2 (ja) * | 1998-07-24 | 2006-02-15 | トヨタ自動車株式会社 | 交流電動機の駆動制御装置 |
JP3533091B2 (ja) | 1998-07-29 | 2004-05-31 | トヨタ自動車株式会社 | 交流電動機の駆動制御装置 |
JP3630410B2 (ja) * | 2001-05-22 | 2005-03-16 | 三菱電機株式会社 | 位置検出装置および異常検出装置 |
JP3755424B2 (ja) * | 2001-05-31 | 2006-03-15 | トヨタ自動車株式会社 | 交流電動機の駆動制御装置 |
JP4067949B2 (ja) * | 2002-12-03 | 2008-03-26 | サンデン株式会社 | モータ制御装置 |
JP3965395B2 (ja) * | 2004-05-18 | 2007-08-29 | 松下電器産業株式会社 | モータ駆動装置 |
JP4897521B2 (ja) * | 2007-03-12 | 2012-03-14 | トヨタ自動車株式会社 | 交流電動機の駆動制御装置 |
JP4329855B2 (ja) * | 2007-10-09 | 2009-09-09 | トヨタ自動車株式会社 | 交流モータの制御装置および交流モータの制御方法 |
-
2009
- 2009-09-18 JP JP2009217743A patent/JP5609051B2/ja active Active
-
2010
- 2010-09-15 CN CN201080041116.XA patent/CN102498659B/zh active Active
- 2010-09-15 US US13/395,720 patent/US8476856B2/en active Active
- 2010-09-15 WO PCT/JP2010/065987 patent/WO2011034109A1/ja active Application Filing
- 2010-09-15 DE DE112010003686T patent/DE112010003686T5/de active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005218299A (ja) * | 1999-07-08 | 2005-08-11 | Toyota Motor Corp | 交流電動機の駆動制御装置 |
JP2004347612A (ja) * | 2004-08-12 | 2004-12-09 | Mitsubishi Electric Corp | 異常検出装置 |
JP2010124566A (ja) * | 2008-11-18 | 2010-06-03 | Toyota Motor Corp | 交流電動機の制御装置およびそれを搭載した電動車両 |
JP2010130809A (ja) * | 2008-11-28 | 2010-06-10 | Denso Corp | 回転機の制御装置及び制御システム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9260620B2 (en) | 2010-10-27 | 2016-02-16 | Riso Kagaku Corporation | Non-aqueous ink |
Also Published As
Publication number | Publication date |
---|---|
JP5609051B2 (ja) | 2014-10-22 |
CN102498659B (zh) | 2014-09-17 |
US20120176071A1 (en) | 2012-07-12 |
JP2011067073A (ja) | 2011-03-31 |
DE112010003686T5 (de) | 2013-01-10 |
CN102498659A (zh) | 2012-06-13 |
US8476856B2 (en) | 2013-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011034109A1 (ja) | 三相交流モータの駆動制御装置 | |
JP4497235B2 (ja) | 交流電動機の制御装置および制御方法 | |
JP4729526B2 (ja) | 電動機の駆動制御装置 | |
US9602040B2 (en) | Apparatus for controlling first and second rotary electric machines | |
JP4379427B2 (ja) | 多相回転電機の制御装置 | |
US9407181B2 (en) | Vehicle and method for controlling vehicle | |
JP6658554B2 (ja) | 交流電動機の制御装置 | |
JP2012120360A (ja) | 回転機の制御装置 | |
JP2009095144A (ja) | 交流モータの制御装置および交流モータの制御方法 | |
JP4450102B1 (ja) | モータ駆動制御装置 | |
CN111953265B (zh) | 用于旋转电机的控制装置 | |
JP6635059B2 (ja) | 交流電動機の制御装置 | |
JP2001078495A (ja) | 交流電動機の駆動制御装置 | |
JP2019161704A (ja) | モータ制御装置 | |
JPWO2017056258A1 (ja) | 電力制御方法、及び、電力制御装置 | |
JP2012130131A (ja) | 回転機の制御装置 | |
JP4642645B2 (ja) | 電動機の制御装置 | |
JP5556601B2 (ja) | 回転機の制御装置 | |
JP5482041B2 (ja) | 電動機の制御装置 | |
JP7318392B2 (ja) | モータ制御装置 | |
JP5584794B1 (ja) | 電動機の駆動制御装置 | |
JP7042568B2 (ja) | モータ制御装置及びモータ制御方法 | |
US11183958B2 (en) | Method for changing between block control and PWM control of an electric machine | |
JP2011155787A (ja) | 回転電機制御システム | |
JP2010252523A (ja) | 交流モータの制御装置および制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080041116.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10817222 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 13395720 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120100036861 Country of ref document: DE Ref document number: 112010003686 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10817222 Country of ref document: EP Kind code of ref document: A1 |