Nothing Special   »   [go: up one dir, main page]

JP5315496B2 - Novel (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic dianhydride and use thereof - Google Patents

Novel (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic dianhydride and use thereof Download PDF

Info

Publication number
JP5315496B2
JP5315496B2 JP2008328334A JP2008328334A JP5315496B2 JP 5315496 B2 JP5315496 B2 JP 5315496B2 JP 2008328334 A JP2008328334 A JP 2008328334A JP 2008328334 A JP2008328334 A JP 2008328334A JP 5315496 B2 JP5315496 B2 JP 5315496B2
Authority
JP
Japan
Prior art keywords
polyimide
cis
cyclohexanetetracarboxylic
dianhydride
chtc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008328334A
Other languages
Japanese (ja)
Other versions
JP2009191253A (en
Inventor
進也 山口
篤 石川
栄一郎 竹沢
匡俊 長谷川
忠 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Fujifilm Wako Pure Chemical Corp filed Critical Wako Pure Chemical Industries Ltd
Priority to JP2008328334A priority Critical patent/JP5315496B2/en
Publication of JP2009191253A publication Critical patent/JP2009191253A/en
Application granted granted Critical
Publication of JP5315496B2 publication Critical patent/JP5315496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide 1,2,4,5-cyclohexane tetracarboxylic acid dianhydride having high polymerization capability as a raw material of a polyimide. <P>SOLUTION: The compound 1,2,4,5-cyclohexane tetracarboxylic acid dianhydride is subjected to selective isomerization and to anhydride formation to obtain new (1S,2S,4R,5R)-cyclohexane tetracarboxylic acid dianhydride. The anhydride makes a high-molecular weight substance of a polyimide precursor easily obtainable by being reacted with various diamines. Further, the polyimide obtained by imidization fulfills strikingly high transparency, high heat resistance, sufficient film toughness and very low permittivity. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は高透明性、十分な膜靭性、低誘電率及び高ガラス転移温度を併せ持つ、各種電子デバイスにおける電気絶縁膜及び液晶ディスプレー(LCD)用基板、有機エレクトロルミネッセンス(EL)ディスプレー用基板、電子ペーパー用基板、太陽電池用基板、半導体素子の層間絶縁膜及び保護膜、液晶配向膜、光導波路材料、特にディスプレー用基板、半導体素子の層間絶縁膜及び保護膜、液晶配向膜として有益なポリイミドとその前駆体のモノマーとなる新規の(1S,2S,4R,5R)−シクロヘキサンテトラカルボン酸二無水物、そのテトラカルボン酸、それらの製造方法、そのポリイミド前駆体、そのポリイミド及びそれらポリマーの用途に関するものである。   The present invention has high transparency, sufficient film toughness, low dielectric constant, and high glass transition temperature. Electrical insulating films, liquid crystal display (LCD) substrates, organic electroluminescence (EL) display substrates, and electronic devices in various electronic devices. Paper substrate, solar cell substrate, semiconductor element interlayer insulating film and protective film, liquid crystal alignment film, optical waveguide material, especially display substrate, semiconductor element interlayer insulating film and protective film, polyimide useful as liquid crystal alignment film The novel (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic dianhydride, its tetracarboxylic acid, its production method, its polyimide precursor, its polyimide, and the use of the polymer as its precursor monomer Is.

1,2,4,5−シクロヘキサンテトラカルボン酸及びその二無水物は高耐熱、高透明性、低誘電率、高靭性ポリイミドの原料として有用な化合物である(例えば特許文献1参照)。   1,2,4,5-Cyclohexanetetracarboxylic acid and its dianhydride are useful compounds as raw materials for high heat resistance, high transparency, low dielectric constant, and high toughness polyimide (see, for example, Patent Document 1).

従来、1,2,4,5−シクロヘキサンテトラカルボン酸の製造方法としては、ピロメリット酸エステルのベンゼン環を水素化還元する方法(例えば特許文献2、非特許文献1参照)、ピロメリット酸のベンゼン環を直接水素化還元する方法(例えば特許文献3、非特許文献2参照)等が報告されている。   Conventionally, as a method for producing 1,2,4,5-cyclohexanetetracarboxylic acid, a method of hydroreducing the benzene ring of pyromellitic acid ester (see, for example, Patent Document 2 and Non-Patent Document 1), pyromellitic acid A method for directly hydroreducing a benzene ring (for example, see Patent Document 3 and Non-Patent Document 2) has been reported.

しかしながらこれらの方法で合成された1,2,4,5−シクロヘキサンテトラカルボン酸の二無水物はジアミンとの重合反応性に劣り、十分な重合度に達しないため十分な膜靭性を示すほど高分子量体がしばしば得られない。これは1,2,4,5−シクロヘキサンテトラカルボン酸二無水物が下記式(6)及び(7)   However, the dianhydride of 1,2,4,5-cyclohexanetetracarboxylic acid synthesized by these methods is inferior in polymerization reactivity with diamine and does not reach a sufficient degree of polymerization, so that it exhibits a sufficient film toughness. Molecular weight products are often not obtained. This is because 1,2,4,5-cyclohexanetetracarboxylic dianhydride is represented by the following formulas (6) and (7):

(式(6)中、Bは4価の船型シクロヘキサン基を表し、その立体配置は下記式(7)で表される。) (In formula (6), B represents a tetravalent ship-type cyclohexane group, and the configuration thereof is represented by the following formula (7).)

で表されるシス−シス−シス体(1,2位のカルボニル基が同方向のシス体であり、4,5位も同じくシス体であり、且つ1,2位と4,5位が同方向を向くシス体であることを意味する)であり、熱力学的に最も安定な立体構造をとっているためであると考えられている(例えば非特許文献3参照)。また1,2,4,5−シクロヘキサンテトラカルボン酸二無水物では、官能基である酸無水物基が空間的に近接していることに起因して、重合反応時に立体障害が生ずる恐れがあり、これも重合反応性の低さの一因であると考えられている。 (The carbonyl group at the 1,2-position is a cis-isomer in the same direction, the 4,5-position is also a cis-isomer, and the 1,2-position and the 4,5-position are the same.) It is considered that it is a cis isomer facing in the direction) and has a thermodynamically most stable three-dimensional structure (for example, see Non-Patent Document 3). In addition, 1,2,4,5-cyclohexanetetracarboxylic dianhydride may cause steric hindrance during the polymerization reaction due to the spatial proximity of the functional acid anhydride groups. This is also considered to contribute to the low polymerization reactivity.

このように1,2,4,5−シクロヘキサンテトラカルボン酸二無水物を使用して透明で靭性のあるポリイミドフィルムを得ることは容易ではなく、フレキシブルディスプレー用プラスチック基板としての要求特性を満足する材料もまた知られていない。
特開2003−168800号公報(2003年6月13日公開) 特開平8−325196号公報(1996年12月10日公開) 特開2003−286222号公報(2003年10月10日公開) Dnaiel T. Longone, Derivatives of Pyromellitic Acid. 1,2,4,5-Tetrasubstituted Cyclohexanes, J. Org. Chem., 1963, vol.28, pp1770-1773 Morris Freifelder, Daniel A. Dunnigan, and Evelyn J. Baker, Low-Pressure Hydrogenation of Some Benzenepolycarboxylic Acids with Rhodium Catalyst, J. Org. Chem., 1966, vol.31, pp3438-3439 Higher Performace Polymers. 2007, vol. 19, p175
Thus, it is not easy to obtain a transparent and tough polyimide film using 1,2,4,5-cyclohexanetetracarboxylic dianhydride, and a material that satisfies the required characteristics as a plastic substrate for flexible displays. Is also unknown.
JP 2003-168800 A (published on June 13, 2003) JP-A-8-325196 (released on December 10, 1996) JP 2003-286222 A (released on October 10, 2003) Dnaiel T. Longone, Derivatives of Pyromellitic Acid. 1,2,4,5-Tetrasubstituted Cyclohexanes, J. Org. Chem., 1963, vol.28, pp1770-1773 Morris Freifelder, Daniel A. Dunnigan, and Evelyn J. Baker, Low-Pressure Hydrogenation of Some Benzenepolycarboxylic Acids with Rhodium Catalyst, J. Org. Chem., 1966, vol.31, pp3438-3439 Higher Performace Polymers. 2007, vol. 19, p175

従来の技術により得られる1,2,4,5−シクロヘキサンテトラカルボン酸を無水物化しても、ピロメリット酸二無水物等の芳香族化合物と比べ、ジアミンとの反応性が低いため、重合度の高いポリイミド前駆体(ポリアミド酸)を製造することが困難であった。1,2,4,5−シクロヘキサンテトラカルボン酸ブロックをもつポリイミドが高透明性、低誘電率等の優れた特性を有することは明らかになっているが、上述のように重合性が低いという問題が主因となり開発が難航していた。   Even if 1,2,4,5-cyclohexanetetracarboxylic acid obtained by conventional techniques is anhydrideized, its reactivity with diamine is low compared to aromatic compounds such as pyromellitic dianhydride. It was difficult to produce a high polyimide precursor (polyamic acid). It has been clarified that polyimides having a 1,2,4,5-cyclohexanetetracarboxylic acid block have excellent properties such as high transparency and low dielectric constant, but the problem of low polymerizability as described above. Development was difficult due to the main reason.

本発明は、このような問題を克服するためになされたものであり、その目的は、高透明性、十分な膜靭性、低誘電率及び高ガラス転移温度を併せ持ち、各種電子デバイスにおける各電気絶縁膜及び液晶ディスプレー(LCD)用基板、有機エレクトロルミネッセンス(EL)ディスプレー用基板、電子ペーパー用基板、太陽電池用基板、半導体素子の層間絶縁膜及び保護膜、液晶配向膜、光導波路材料、特にディスプレー用基板、半導体素子の層間絶縁膜及び保護膜、液晶配向膜として有益なポリイミドの原料として有用である、新規の1,2,4,5−シクロヘキサンテトラカルボン酸及びそれを利用した技術を提供することにある。   The present invention has been made to overcome such problems, and its purpose is to combine high transparency, sufficient film toughness, low dielectric constant, and high glass transition temperature, and various electric insulations in various electronic devices. Film and liquid crystal display (LCD) substrates, organic electroluminescence (EL) display substrates, electronic paper substrates, solar cell substrates, interlayer insulation films and protective films for semiconductor elements, liquid crystal alignment films, optical waveguide materials, especially displays A novel 1,2,4,5-cyclohexanetetracarboxylic acid useful as a raw material of polyimide useful as a substrate, interlayer insulating film and protective film for semiconductor elements, and liquid crystal alignment film, and a technology using the same There is.

以上の問題に鑑み、発明者らが鋭意研究を積み重ねた結果、従来の重合反応性に乏しい1,2,4,5−シクロヘキサンテトラカルボン酸無水物の立体構造を精密に制御するべく、このテトラカルボン酸を選択的に異性化し、無水物化することにより下記一般式(8)   In view of the above problems, the inventors have conducted extensive research, and as a result, in order to precisely control the three-dimensional structure of 1,2,4,5-cyclohexanetetracarboxylic acid anhydride, which has poor conventional polymerization reactivity, this tetra The following general formula (8) is obtained by selectively isomerizing the carboxylic acid and making it anhydrous.

(式(8)中、Xは4価のシクロヘキサン基を表し、その立体配置は下記式(2)で表される。) (In formula (8), X represents a tetravalent cyclohexane group, and the configuration is represented by the following formula (2).)

で表される新規な(1S,2S,4R,5R)−テトラカルボン酸二無水物(以下tt−CHTCAと称する)即ち、上記式(7)で表されるシス−シス−シス体の1,2,4,5−シクロヘキサンテトラカルボン酸二無水物の異性体を製造できる方法を見いだした。 A novel (1S, 2S, 4R, 5R) -tetracarboxylic dianhydride (hereinafter referred to as tt-CHTCA) represented by the formula (7): It has been found that a isomer of 2,4,5-cyclohexanetetracarboxylic dianhydride can be produced.

また、このtt−CHTCAを用いることで、各種ジアミンと反応させてポリイミド前駆体の高分子量体を容易に得ることが可能になり、さらにこれをイミド化して得られるポリイミドは極めて高い透明性、高い耐熱性、十分な膜靭性、及び極めて低い誘電率を達成することから、フレキシブル液晶ディスプレー用プラスチック基板、集積回路の層間絶縁膜及び液晶配向膜等としてこれまでにない有益な材料を提供し得ることを見出し、本発明を完成するに至った。   In addition, by using this tt-CHTCA, it is possible to easily obtain a high molecular weight polymer of a polyimide precursor by reacting with various diamines, and the polyimide obtained by imidizing it is extremely high in transparency and high. Because it achieves heat resistance, sufficient film toughness, and extremely low dielectric constant, it can provide unprecedented useful materials such as plastic substrates for flexible liquid crystal displays, interlayer insulating films of integrated circuits, and liquid crystal alignment films As a result, the present invention has been completed.

すなわち、本発明は以下の発明を包含する。
(1)tt−CHTCA。
(2)tt−CHTCAを50%以上含有することを特徴とする1,2,4,5−シクロヘキサンテトラカルボン酸二無水物。
(3)(1S,2S,4R,5R)−シクロヘキサンテトラカルボン酸(以下、「tt−CHTC」と称する)。
(4)1,2,4,5−シクロヘキサンテトラカルボン酸のシス−シス−シス体(以下、「cis−CHTC」と称する。また、cis−CHTCの無水化物を「cis−CHTCA」と称する)及びこれを含む異性体混合物のうち、少なくとも一方のテトラ塩を、加熱することで異性化反応させることを特徴とするtt−CHTCの製造方法。
(5)cis−CHTC及びこれを含む異性体混合物のうち、少なくとも一方のテトラエステルを加熱することで異性化反応させることを特徴とするtt−CHTCの製造方法。
That is, the present invention includes the following inventions.
(1) tt-CHTCA.
(2) 1,2,4,5-cyclohexanetetracarboxylic dianhydride characterized by containing 50% or more of tt-CHTCA.
(3) (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic acid (hereinafter referred to as “tt-CHTC”).
(4) cis-cis-cis isomer of 1,2,4,5-cyclohexanetetracarboxylic acid (hereinafter referred to as “cis-CHTC”, and the cis-CHTC anhydride is referred to as “cis-CHTCA”) And a method for producing tt-CHTC, wherein at least one of the tetra-salts in the mixture of isomers is subjected to an isomerization reaction by heating.
(5) A method for producing tt-CHTC, characterized in that at least one tetraester of cis-CHTC and an isomer mixture containing the cis-CHTC is subjected to an isomerization reaction by heating.

該製造方法によれば、熱に対して比較的不安定なcis−CHTCテトラエステルから、比較的低温でも反応が実施できることができる。触媒によりこの異性化反応を触媒により促進させてもよい。
(6)異性化反応の際、塩基性触媒を用いることを特徴とする(4)のtt−CHTCの製造方法。
(7)上記塩基性触媒として、アルカリ金属アルコキサイドを用いることを特徴とする(6)のtt−CHTCの製造方法。
(8)tt−CHTCを脱水剤存在下で加熱することで無水化反応させる工程を含むことを特徴とするtt−CHTCAテトラカルボン酸二無水物の製造方法。
(9)tt−CHTCを脱水剤存在下で加熱することで無水化反応させる工程を含むことを特徴とするテトラカルボン酸二無水物の製造方法。
(10)(9)記載の製造方法で製造されたテトラカルボン酸二無水物。
(11)一般式(1)
According to this production method, the reaction can be carried out from a cis-CHTC tetraester that is relatively unstable to heat even at a relatively low temperature. This isomerization reaction may be promoted by a catalyst.
(6) The method for producing tt-CHTC according to (4), wherein a basic catalyst is used in the isomerization reaction.
(7) The method for producing tt-CHTC according to (6), wherein an alkali metal alkoxide is used as the basic catalyst.
(8) A process for producing tt-CHTCA tetracarboxylic dianhydride, comprising a step of dehydration reaction by heating tt-CHTC in the presence of a dehydrating agent.
(9) A method for producing tetracarboxylic dianhydride, comprising a step of dehydration reaction by heating tt-CHTC in the presence of a dehydrating agent.
(10) A tetracarboxylic dianhydride produced by the production method according to (9).
(11) General formula (1)

(上記一般式(1)中、Xは4価のシクロヘキサン基を表し、Rは水素原子、トリアルキルシリル基、又は炭素数1〜12の直鎖状、分岐状若しくは環状のアルキル基若しくはアルコキシル基を表し、Aは2価の芳香族基又は脂肪族基を表し、上記Xの立体配置は、以下の式(2)で表され、 (In the above general formula (1), X represents a tetravalent cyclohexane group, and R represents a hydrogen atom, a trialkylsilyl group, or a linear, branched or cyclic alkyl group or alkoxyl group having 1 to 12 carbon atoms. A represents a divalent aromatic group or aliphatic group, and the configuration of X is represented by the following formula (2):

上記Xと、上記Xと結合している2つのアミド基及び2つのカルボキシル基と、の結合位置は下記式(3)又は(4)のいずれかで表される。 The bonding position between the X and the two amide groups and two carboxyl groups bonded to the X is represented by either the following formula (3) or (4).

(式(3)及び(4)において、Yは上記Xに結合する2つのアミド基を示し、Zは上記Xに結合する2つのカルボキシル基を表す))
で表される繰り返し単位を有するポリイミド前駆体。
(12)下記一般式(5)
(In formulas (3) and (4), Y represents two amide groups bonded to X, and Z represents two carboxyl groups bonded to X))
The polyimide precursor which has a repeating unit represented by these.
(12) The following general formula (5)

(式(5)中、Xは4価のシクロヘキサン基を表し、Aは2価の芳香族基又は脂肪族基を表し、上記Xの立体配置は下記式(2)で表される) (In formula (5), X represents a tetravalent cyclohexane group, A represents a divalent aromatic group or an aliphatic group, and the configuration of X is represented by the following formula (2)).

で表される繰り返し単位を有するポリイミド。
(13)1,2,4,5−シクロヘキサンテトラカルボン酸二無水物を合成原料として得られるポリイミド前駆体であって、上記1,2,4,5−シクロヘキサンテトラカルボン酸二無水物が(10)に記載のテトラカルボン酸二無水物を50%以上含有することを特徴とするポリイミド前駆体。
(14)1,2,4,5−シクロヘキサンテトラカルボン酸二無水物を合成原料として得られるポリイミドであって、上記1,2,4,5−シクロヘキサンテトラカルボン酸二無水物が(10)に記載のテトラカルボン酸二無水物を50%以上含有することを特徴とするポリイミド。
(15)(11)又は(13)に記載のポリイミド前駆体及び感光剤を含有する感光性樹脂組成物。
(16)(15)に記載の感光性樹脂組成物を、基材上にパターン露光して、パターン露光後に現像して、現像後に加熱硬化することにより得られるものであるパターンが形成されていることを特徴とする構造体。
(17)(12)又は(14)に記載のポリイミドを含有するものであることを特徴とするディスプレー用基板。
(18)(12)又は(14)に記載のポリイミドを含有するものであることを特徴とする集積回路の層間絶縁膜。
(19)(12)又は(14)に記載のポリイミドを含有する液晶配向膜。
The polyimide which has a repeating unit represented by these.
(13) A polyimide precursor obtained using 1,2,4,5-cyclohexanetetracarboxylic dianhydride as a synthesis raw material, wherein the 1,2,4,5-cyclohexanetetracarboxylic dianhydride is (10 50) or more of the tetracarboxylic dianhydride described in 1).
(14) A polyimide obtained using 1,2,4,5-cyclohexanetetracarboxylic dianhydride as a synthesis raw material, wherein the 1,2,4,5-cyclohexanetetracarboxylic dianhydride is converted to (10) A polyimide comprising 50% or more of the tetracarboxylic dianhydride described.
(15) A photosensitive resin composition comprising the polyimide precursor according to (11) or (13) and a photosensitive agent.
(16) The photosensitive resin composition according to (15) is subjected to pattern exposure on a substrate, developed after pattern exposure, and heat-cured after development to form a pattern. A structure characterized by that.
(17) A substrate for display comprising the polyimide according to (12) or (14).
(18) An interlayer insulating film for an integrated circuit comprising the polyimide according to (12) or (14).
(19) A liquid crystal alignment film containing the polyimide according to (12) or (14).

本発明によれば、高透明性、十分な膜靭性、低誘電率及び高ガラス転移温度を併せ持ち、各種電子デバイスにおける各電気絶縁膜及び液晶ディスプレー(LCD)用基板、有機エレクトロルミネッセンス(EL)ディスプレー用基板、電子ペーパー用基板、太陽電池用基板、半導体素子の層間絶縁膜及び保護膜、液晶配向膜、光導波路材料、特にディスプレー用基板、半導体素子の層間絶縁膜及び保護膜、液晶配向膜として有益なポリイミドの原料として有用な、新規の1,2,4,5−シクロヘキサンテトラカルボン酸を提供することができる。   According to the present invention, it has high transparency, sufficient film toughness, low dielectric constant, and high glass transition temperature, and each electric insulating film and liquid crystal display (LCD) substrate in various electronic devices, organic electroluminescence (EL) display. Substrates, electronic paper substrates, solar cell substrates, interlayer insulating films and protective films for semiconductor elements, liquid crystal alignment films, optical waveguide materials, especially display substrates, interlayer insulating films and protective films for semiconductor elements, and liquid crystal alignment films A novel 1,2,4,5-cyclohexanetetracarboxylic acid useful as a useful polyimide raw material can be provided.

即ち、本発明に係るtt−CHTCAの製造方法に従って合成された極めて高純度のtt−CHTCAをモノマーとして使用することで、従来のcis−CHTCAを用いて得ることのできなかった高分子量のポリイミド前駆体及び高分子量ポリイミドを容易に製造することが可能であり、結果としてポリイミド膜の脆弱性が大きく改善され、上述の電子デバイス等に関連する様々な産業において極めて有益な材料を提供することができる。   That is, a high-molecular-weight polyimide precursor that could not be obtained using conventional cis-CHTCA by using extremely high-purity tt-CHTCA synthesized as a monomer according to the method for producing tt-CHTCA according to the present invention. Body and high molecular weight polyimide can be easily manufactured. As a result, the brittleness of the polyimide film is greatly improved, and it is possible to provide extremely useful materials in various industries related to the above-mentioned electronic devices and the like. .

本発明の実施の形態について説明すれば以下のとおりであるが、本発明はこれに限定されるものではない。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更して実施することができる。   An embodiment of the present invention will be described as follows, but the present invention is not limited to this. The scope of the present invention is not limited by these descriptions, and other than the following examples, the scope of the present invention can be appropriately modified and implemented without departing from the scope of the present invention.

<1.tt−CHTC及びtt−CHTCA>
本発明に係るtt−CHTCは下記式(8)で示される化合物である。
<1. tt-CHTC and tt-CHTCA>
Tt-CHTC according to the present invention is a compound represented by the following formula (8).

(式(8)中、Xは4価のシクロヘキサン基を表し、その立体配置は下記式(2)で表される。つまり4価の椅子型シクロヘキサン基といってもよい。) (In formula (8), X represents a tetravalent cyclohexane group, and its steric configuration is represented by the following formula (2). In other words, it may be referred to as a tetravalent chair-type cyclohexane group.)

また、本発明に係るtt−CHTCAは下記式(9)で示される化合物であり、例えば、tt−CHTCを無水物化することで得ることができる。 Moreover, tt-CHTCA according to the present invention is a compound represented by the following formula (9), and can be obtained, for example, by anhydrating tt-CHTC.

(式(9)中、Xは式(8)のものと同一である。)
本発明に係るtt−CHTCAは、重合性が極めて高く、ポリイミドのモノマーとして極めて有用である。N,N−ジメチルアセトアミド(DMAc)又はN−メチル−2−ピロリドン(NMP)中で種々のジアミンと反応させ、得られたポリアミド酸溶液の固有粘度を測定し、重合性を評価すると、本発明に係るtt−CHTCAを用いた場合では、ポリアミド酸の固有粘度は0.65〜2.4dL/gである。これは従来使用されてきたCHTCAの重合性が通常、0.1〜0.5dL/gであることと比較すると極めて高い値であり、重合度の高いポリイミドが容易に製造できる。
(In formula (9), X is the same as that in formula (8).)
The tt-CHTCA according to the present invention has extremely high polymerizability and is extremely useful as a polyimide monomer. When reacted with various diamines in N, N-dimethylacetamide (DMAc) or N-methyl-2-pyrrolidone (NMP), the intrinsic viscosity of the resulting polyamic acid solution was measured, and the polymerizability was evaluated. In the case of using tt-CHTCA according to the above, the intrinsic viscosity of the polyamic acid is 0.65 to 2.4 dL / g. This is an extremely high value as compared with the polymerizability of CHTCA that has been conventionally used, usually 0.1 to 0.5 dL / g, and a polyimide having a high degree of polymerization can be easily produced.

また、本発明に係る1,2,4,5−シクロヘキサンテトラカルボン酸二無水物は、tt−CHTCAを50%以上含有するものである。上述のようにポリイミドのモノマーとして有用なtt−CHTCAを50%以上含有することにより、優れたポリイミド材料を提供することができる。   Moreover, the 1,2,4,5-cyclohexanetetracarboxylic dianhydride according to the present invention contains 50% or more of tt-CHTCA. By containing 50% or more of tt-CHTCA useful as a polyimide monomer as described above, an excellent polyimide material can be provided.

<2.tt−CHTCの製造方法>
本発明に係るtt−CHTCは、cis−CHTC、そのテトラ塩、又はそのテトラエステルを異性化反応させることにより製造すればよい。異性化反応については、例えば加熱することにより行なえばよく、加熱温度については原料等に応じて適宜制御すればよい。詳しくは後述する。
<2. Production method of tt-CHTC>
What is necessary is just to manufacture tt-CHTC which concerns on this invention by isomerizing cis-CHTC, its tetra salt, or its tetraester. The isomerization reaction may be performed, for example, by heating, and the heating temperature may be appropriately controlled according to the raw materials and the like. Details will be described later.

上記異性化反応に供する原料として、上述のcis−CHTC、及びcis−CHTCのテトラ塩の他に、cis−CHTCのテトラエステルでもよく、その場合使用するcis−CHTCのテトラエステルは異性体混合物であってもよい。   In addition to the cis-CHTC and cis-CHTC tetra-salts described above, the cis-CHTC tetra-ester may be used as the starting material for the isomerization reaction. In this case, the cis-CHTC tetra-ester used is an isomer mixture. There may be.

cis−CHTCを制御された温度条件で加熱して異性化反応させることにより、cis−CHTCの近接する2つの置換基同士が、立体障害の小さいトランス体構造へと次第に変換される。なお、本明細書において「異性体混合物」とはシス−シス−シス体と部分的にトランス構造を含むものとの立体異性体の混合物を意味する。   By heating cis-CHTC under controlled temperature conditions to cause an isomerization reaction, two adjacent substituents of cis-CHTC are gradually converted into a trans isomer structure with small steric hindrance. In the present specification, the “isomer mixture” means a mixture of stereoisomers of a cis-cis-cis isomer and a partially containing trans structure.

異性化反応に供するcis−CHTC等としては、市販のもの、その塩、又はそのエステル化物を用いることができ、従来公知の方法で合成したものを用いてもよい。cis−CHTCの合成方法としては、例えば、ピロメリット酸をロジウム触媒により水素化還元してもよいし、ピロメリット酸テトラエステルを水素化還元して、加水分解してもよい。いずれの原料を用いた場合でも、制御された温度条件で加熱することで同様な異性化反応挙動を示す。したがって、得られるtt−CHTCは後述の脱水環化(無水化)反応等において同様に扱うことができる。   As cis-CHTC etc. to be subjected to the isomerization reaction, commercially available products, salts thereof, or esterified products thereof can be used, and those synthesized by a conventionally known method may be used. As a synthesis method of cis-CHTC, for example, pyromellitic acid may be hydroreduced with a rhodium catalyst, or pyromellitic acid tetraester may be hydroreduced and hydrolyzed. Regardless of which raw material is used, the same isomerization reaction behavior is exhibited by heating under controlled temperature conditions. Therefore, the obtained tt-CHTC can be similarly treated in the dehydration cyclization (anhydration) reaction described later.

異性化反応では、溶剤にcis−CHTC等を溶解させて加熱する。この溶剤としては、特に限定されないが、水、触媒及び原料に対して不活性な有機溶剤等を用いればよい。原料としてcis−CHTC又はそのテトラ塩を用いるときは、溶剤として水を用いることが好ましい。これは、cis−CHTC又はそのテトラ塩が、有機溶剤に対する溶解度に比べて、熱水に対して高い溶解度を有するためである。また、原料としてcis−CHTCのテトラエステルを用いる場合、有機溶剤を使用することが好ましい。これは該テトラエステルが、水に対する溶解度に比べて、有機溶剤に対して高い溶解度を有するためである。   In the isomerization reaction, cis-CHTC or the like is dissolved in a solvent and heated. Although it does not specifically limit as this solvent, What is necessary is just to use the organic solvent etc. which are inactive with respect to water, a catalyst, and a raw material. When cis-CHTC or a tetra salt thereof is used as a raw material, it is preferable to use water as a solvent. This is because cis-CHTC or a tetra salt thereof has higher solubility in hot water than solubility in an organic solvent. Moreover, when using cis-CHTC tetraester as a raw material, it is preferable to use an organic solvent. This is because the tetraester has a higher solubility in organic solvents than in water.

以下に、tt−CHTCの製造方法の具体例として、原料としてcis−CHTCを用いる場合、cis−CHTCのテトラ塩を用いる場合、cis−CHTCのテトラエステルを用いる場合についてそれぞれ説明する。   Hereinafter, as specific examples of the production method of tt-CHTC, a case where cis-CHTC is used as a raw material, a case where a tetra salt of cis-CHTC is used, and a case where a tetra ester of cis-CHTC is used will be described.

〔2−A.cis−CHTCの異性化反応〕
まず、原料としてcis−CHTCを用いる場合の異性化反応について説明する。該異性化反応については、水、中でも熱水に対する溶解性が高いため、水中で反応を行なうことが好ましいが、これに限定されない。
[2-A. Isomerization reaction of cis-CHTC]
First, the isomerization reaction when cis-CHTC is used as a raw material will be described. The isomerization reaction is preferably carried out in water because of its high solubility in water, especially hot water, but is not limited thereto.

また、異性化反応の際には加熱するとよい。加熱の温度としては特に限定されないが、高温であることが好ましく、具体的には180〜300℃が好ましく、200〜260℃がより好ましい。180〜300℃の範囲であれば、良好な反応速度を得ることができ、容易に近接する2つの置換基同士をトランス体構造へ変換できる。また、この温度範囲であれば、特別な耐圧性能を要することがなく、従来公知の様々な加熱装置等を反応装置として用いることができるので、より容易に異性化反応させることができる。   Moreover, it is good to heat in the case of isomerization reaction. Although it does not specifically limit as temperature of a heating, It is preferable that it is high temperature, specifically 180-300 degreeC is preferable and 200-260 degreeC is more preferable. If it is the range of 180-300 degreeC, a favorable reaction rate can be obtained and two adjacent substituents can be easily converted into a trans body structure. Also, within this temperature range, no special pressure resistance performance is required, and various conventionally known heating devices and the like can be used as the reaction device, so that the isomerization reaction can be performed more easily.

原料としてcis−CHTCを用いる異性化反応では、cis−CHTC自身が酸触媒として機能する。そのため、原料としてcis−CHTCを用いる形態は、無触媒でも実施可能である点で有利である。   In the isomerization reaction using cis-CHTC as a raw material, cis-CHTC itself functions as an acid catalyst. Therefore, the form using cis-CHTC as a raw material is advantageous in that it can be carried out without a catalyst.

なお、別途、触媒を用いてもよい。別途、触媒を用いる場合、該触媒をcis−CHTCが溶解された溶剤に添加して用いればよい。また、cis−CHTC及び触媒が共に溶剤に溶解した状態で異性化反応を行なうことがより好ましい。   In addition, you may use a catalyst separately. In the case of using a catalyst separately, the catalyst may be added to a solvent in which cis-CHTC is dissolved. It is more preferable to carry out the isomerization reaction in a state where both cis-CHTC and the catalyst are dissolved in a solvent.

反応の際に使用する水の量は特に限定されず、触媒の有無、触媒の種類に応じて設定してもよい。例えば、cis−CHTCに対して100〜800重量部の水を加えて実施してもよい。   The amount of water used in the reaction is not particularly limited, and may be set according to the presence or absence of a catalyst and the type of catalyst. For example, 100 to 800 parts by weight of water may be added to cis-CHTC.

また、異性化反応の反応時間は特に限定されず、触媒の有無、触媒の種類、反応温度等に応じて適宜設定すればよい。例えば、3〜10時間であれば異性化反応を十分に行なうことができる。   In addition, the reaction time of the isomerization reaction is not particularly limited, and may be set as appropriate according to the presence or absence of a catalyst, the type of catalyst, the reaction temperature, and the like. For example, the isomerization reaction can be sufficiently performed for 3 to 10 hours.

なお、上述した別途触媒を用いる場合、該触媒の具体例としては特に限定されるものではないが、cis−CHTCよりも強い酸であることが好ましく、好適に使用される酸触媒として塩酸、硫酸、硝酸、リン酸、フッ酸等の無機酸;シュウ酸、d−酒石酸等、p−トルエンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸の有機酸;等を挙げることができる。このうち除去しやすい水溶性のものが好ましく、酸強度が強く、酸痕が残りにくい硝酸等が特に好ましい。なお、酸触媒は使用する装置の性能(酸耐性等)に応じて選定する必要がある。また、いずれの酸触媒を用いる場合でも、その使用量は限定されるものではなく、cis−CHTCに対して好ましくは0.01〜50重量部、より好ましくは0.1〜20重量部の範囲で使用される。なお、触媒の使用量は多い方が、反応が速やかに進行するという利点がある。一方、触媒の使用量が過剰になると、cis−CHTCの処理量が減る恐れがある。   In addition, when using the above-mentioned separate catalyst, the specific example of the catalyst is not particularly limited, but an acid stronger than cis-CHTC is preferable, and hydrochloric acid, sulfuric acid are preferably used as the acid catalyst. And inorganic acids such as nitric acid, phosphoric acid and hydrofluoric acid; organic acids such as oxalic acid and d-tartaric acid, p-toluenesulfonic acid, trifluoroacetic acid and trifluoromethanesulfonic acid; and the like. Of these, water-soluble ones that are easy to remove are preferable, and nitric acid and the like that have high acid strength and hardly leave acid traces are particularly preferable. In addition, it is necessary to select an acid catalyst according to the performance (acid tolerance etc.) of the apparatus to be used. Moreover, even when any acid catalyst is used, the amount used is not limited, and is preferably 0.01 to 50 parts by weight, more preferably 0.1 to 20 parts by weight with respect to cis-CHTC. Used in. In addition, there exists an advantage that reaction advances rapidly, so that the usage-amount of a catalyst is large. On the other hand, if the amount of catalyst used is excessive, the amount of cis-CHTC treated may be reduced.

また、異性化反応後の反応液を冷却するとよい。冷却の温度は特に限定されないが、0〜40℃が好ましく、さらに好ましくは0〜20℃である。また、冷却により析出したものをろ過等により回収して、乾燥してもよい。なお、必要に応じて上記反応液を濃縮してから冷却してもよい。   In addition, the reaction solution after the isomerization reaction may be cooled. Although the temperature of cooling is not specifically limited, 0-40 degreeC is preferable, More preferably, it is 0-20 degreeC. Moreover, what precipitated by cooling may be collect | recovered by filtration etc. and you may dry. In addition, you may cool, after concentrating the said reaction liquid as needed.

〔2−B.cis−CHTCのテトラ塩の異性化反応〕
次に、原料としてcis−CHTCのテトラ塩を用いる場合の異性化反応について説明する。この場合、cis−CHTC及びこれを含む異性体混合物のうち、少なくとも一方のテトラ塩を、加熱することで異性化反応させるとよい。
[2-B. Isomerization reaction of tetra salt of cis-CHTC]
Next, an isomerization reaction in the case of using a cis-CHTC tetra salt as a raw material will be described. In this case, it is good to isomerize by heating at least one tetra salt among cis-CHTC and an isomer mixture containing the cis-CHTC.

また、後述するアルカリ、及びCHTCのテトラ塩に対する良溶剤中、特に水中で異性化反応させることが好ましい。反応の際に使用する水の量としては特に限定されないが、後述する中和後の塩を溶解するための最小量は少なくとも必要である。具体的には水酸化ナトリウムを用いる場合、cis−CHTCに対して200〜800重量部の水を加える。   Moreover, it is preferable to carry out an isomerization reaction in a good solvent for the alkali and CHTC tetra salt described below, particularly in water. The amount of water used in the reaction is not particularly limited, but at least the minimum amount for dissolving the neutralized salt described later is necessary. When using sodium hydroxide specifically, 200-800 weight part water is added with respect to cis-CHTC.

cis−CHTCのテトラ塩は、アルカリ(例えばアルカリ溶液)にcis−CHTCを加えて調製してもよい。このとき、30分程度撹拌することが好ましい。使用可能なアルカリの例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属類;水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属類;等が挙げられる。この中でも、安価で入手しやすさ、及び形成される塩の安定性の観点から、水酸化ナトリウム、水酸化カリウムが特に好ましい。また、いずれのアルカリを用いる場合でも、その使用量としてはcis−CHTCに対し4〜6当量が好ましく、4〜5当量が特に好ましい。4当量以上添加すれば速やかに反応が進行するだけでなく、アルカリ塩の形成によりcis−CHTCの溶解度が増大するうえ、金属製反応容器の腐食の恐れが低減するため、効率よく異性化反応させることができる。一方アルカリの使用量が過剰になると、cis−CHTCの処理量が減る恐れがあるが、6当量以下であれば、このような恐れは無く生産効率が向上する。また、上記のアルカリとピロメリット酸を反応させて得られた塩を、公知の方法にしたがい水素化還元することでcis−CHTCのテトラ塩を合成し、そのまま異性化反応に供することもできる。   The tetra salt of cis-CHTC may be prepared by adding cis-CHTC to an alkali (for example, an alkali solution). At this time, it is preferable to stir for about 30 minutes. Examples of usable alkali include alkali metals such as lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, and potassium carbonate; alkaline earth metals such as magnesium hydroxide and calcium hydroxide; Etc. Among these, sodium hydroxide and potassium hydroxide are particularly preferable from the viewpoints of low cost and availability and stability of the formed salt. Moreover, when using any alkali, as the usage-amount, 4-6 equivalent is preferable with respect to cis-CHTC, and 4-5 equivalent is especially preferable. If 4 equivalents or more are added, not only will the reaction proceed quickly, but the solubility of cis-CHTC will increase due to the formation of alkali salts, and the risk of corrosion of the metal reaction vessel will be reduced. be able to. On the other hand, if the amount of alkali used is excessive, the amount of cis-CHTC treated may be reduced, but if it is 6 equivalents or less, there is no such fear and the production efficiency is improved. Further, a cis-CHTC tetra-salt can be synthesized by subjecting the salt obtained by reacting the above alkali and pyromellitic acid to hydrogen reduction according to a known method, and can be directly subjected to an isomerization reaction.

ここに記載する事項以外の異性化反応の条件としては、上記のcis−CHTCの異性化反応と同様に実施できるが、アルカリの影響により反応が促進されるため、より低温でも行なうことができる。具体的な温度としては、130〜250℃の範囲であれば、より良好な反応速度を得ることができ、容易にcis−CHTC塩をtt−CHTC塩に変換することができるため好ましい。   The isomerization reaction conditions other than those described here can be carried out in the same manner as the cis-CHTC isomerization reaction described above, but can be carried out even at lower temperatures because the reaction is accelerated by the influence of alkali. The specific temperature is preferably in the range of 130 to 250 ° C. because a better reaction rate can be obtained and the cis-CHTC salt can be easily converted into the tt-CHTC salt.

異性化反応の後に強酸を添加することでテトラカルボン酸のテトラ塩を中和してtt−CHTCを得てもよい。中和に用いる強酸の種類は特に限定されるものではないが、酸強度が強いものが好ましく、塩酸、硫酸、硝酸、リン酸又はフッ酸等の無機酸が、効率よく中和が進行するため、より好ましい。中でも安価で酸痕が残りにくい塩酸が特に好ましい。また、アルカリを中和するための強酸の使用量は特に限定されないが、当該アルカリに対して、1〜1.2当量使用すればよい。この量であれば、tt−CHTCの塩の残留を十分に防ぐことができる。   You may obtain tt-CHTC by neutralizing the tetra salt of tetracarboxylic acid by adding a strong acid after an isomerization reaction. The type of strong acid used for neutralization is not particularly limited, but those with strong acid strength are preferred, and neutralization proceeds efficiently with inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid or hydrofluoric acid. More preferable. Of these, hydrochloric acid is particularly preferred because it is inexpensive and hardly leaves acid traces. Moreover, although the usage-amount of the strong acid for neutralizing an alkali is not specifically limited, What is necessary is just to use 1-1.2 equivalent with respect to the said alkali. This amount can sufficiently prevent the tt-CHTC salt from remaining.

中和により、tt−CHTCの水に対する溶解度が低下し、tt−CHTCを効率よく析出させ、ろ過等により回収することができ、これを乾燥することで純度の高いtt−CHTCを得ることができる。このとき、中和で生じた塩は水に溶け込んでおり、容易に除去することができる。また、必要に応じてtt−CHTCを含む水溶液を濃縮してもよい。また、ナトリウム等の金属分を下げるために再度水で晶析させてもよい。   Neutralization reduces the solubility of tt-CHTC in water, and tt-CHTC can be efficiently precipitated and recovered by filtration or the like. By drying this, tt-CHTC having high purity can be obtained. . At this time, the salt generated by neutralization is dissolved in water and can be easily removed. Moreover, you may concentrate the aqueous solution containing tt-CHTC as needed. Further, in order to lower the metal content such as sodium, crystallization with water may be performed again.

〔2−C.cis−CHTCのテトラエステルの異性化反応〕
次に、原料としてcis−CHTCのテトラエステルを用いる異性化反応について説明する。この場合、cis−CHTC及びこれを含む異性体混合物のうち、少なくとも一方のテトラエステルを加熱することで異性化反応させるとよい。該エステルは一般に水に難溶であるため、溶媒としては有機溶剤が好ましい。
[2-C. Isomerization reaction of tetraester of cis-CHTC]
Next, an isomerization reaction using cis-CHTC tetraester as a raw material will be described. In this case, it is good to carry out an isomerization reaction by heating at least one tetraester among cis-CHTC and an isomer mixture containing the same. Since the ester is generally poorly soluble in water, an organic solvent is preferable as the solvent.

cis−CHTCのテトラエステルとしては、例えば、テトラメチルエステル、テトラエチルエステル等の、合成又は入手しやすいものを用いてもよい。例えば、市販のcis−CHTCのテトラエステル化物を用いてもよいし、公知の方法で合成したものを用いてもよい。cis−CHTCのテトラエステルの合成方法としては、特に限定されないが、例えば、ピロメリット酸テトラエチルエステルをニッケル触媒で水素化還元してもよいし、cis−CHTCとアルコールとを反応させてエステル化してもよい。   As the tetraester of cis-CHTC, for example, those that are easily synthesized or available, such as tetramethyl ester and tetraethyl ester, may be used. For example, a commercially available tetraesterified product of cis-CHTC may be used, or one synthesized by a known method may be used. The method for synthesizing the cis-CHTC tetraester is not particularly limited. For example, pyromellitic acid tetraethyl ester may be hydroreduced with a nickel catalyst, or cis-CHTC may be reacted with an alcohol to be esterified. Also good.

また、上記有機溶剤の具体例としては、アルカリと反応しない溶剤であることが好ましく、具体的には、メタノール、エタノール等のアルコール類;エチルエーテル、テトラヒドロフラン等のエーテル類;等が好ましく使用できる。上記有機溶剤の量としては特に限定されるものではないが、cis−CHTCのテトラエステル100重量部に対して、200〜1000重量部加えて行なうことができる。   Further, specific examples of the organic solvent are preferably solvents that do not react with alkali, and specifically, alcohols such as methanol and ethanol; ethers such as ethyl ether and tetrahydrofuran; and the like can be preferably used. The amount of the organic solvent is not particularly limited, but 200 to 1000 parts by weight can be added to 100 parts by weight of cis-CHTC tetraester.

また、原料としてcis−CHTCのテトラエステルを用いる場合には、熱安定性を考慮し、触媒を添加して、比較的低温で実施することが好ましい。該触媒としては、塩基性触媒が、反応促進効果が大きいため好ましく、その中でも、有機溶剤に可溶なものであることが好ましい。例えば、リチウムメトキサイド、ナトリウムメトキサイド、カリウムメトキサイド、リチウムエトキサイド、ナトリウムエトキサイド等のアルカリ金属アルコキサイド、又はジアザビシクロノネン(DBN)、ジアザビシクロウンデセン(DBU)等の有機塩基が好適に用いられる。いずれの塩基性触媒を用いる場合でも、触媒が溶剤に溶解し、互いに不活性である組み合わせであれば、特に限定されず、複数の種類を組み合わせて用いることができる。   In addition, when a cis-CHTC tetraester is used as a raw material, it is preferable to carry out at a relatively low temperature by adding a catalyst in consideration of thermal stability. As the catalyst, a basic catalyst is preferable because it has a large reaction promoting effect, and among them, a catalyst that is soluble in an organic solvent is preferable. For example, alkali metal alkoxides such as lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide and sodium ethoxide, or organic bases such as diazabicyclononene (DBN) and diazabicycloundecene (DBU) are suitable. Used for. Even when any basic catalyst is used, it is not particularly limited as long as the catalyst is a combination in which the catalyst is dissolved in a solvent and is inert to each other, and a plurality of types can be used in combination.

また、異性化反応の際に加熱する温度としては40〜120℃が好ましく、50〜800℃がより好ましい。40〜120℃の範囲であれば、良好な反応速度を得ることができ、容易にシス体をトランス体に変換することができる。   Moreover, as temperature heated in the case of an isomerization reaction, 40-120 degreeC is preferable and 50-800 degreeC is more preferable. If it is the range of 40-120 degreeC, a favorable reaction rate can be obtained and a cis-isomer can be easily converted into a trans-isomer.

cis−CHTCのテトラエステルの異性化反応は、上述のように、比較的低温での実施が好ましい。例えば、cis−CHTCのテトラメチルエステルをメタノール中で、1〜20重量%のナトリウムメトキサイドを加えて還流させることによりトランス体への変換が進行する。このとき、異性化されたcis−CHTCのエステル化物はアルコールに対する溶解度が低下し、析出するので、ろ過等により回収することもできる。   As described above, the isomerization reaction of the cis-CHTC tetraester is preferably performed at a relatively low temperature. For example, cis-CHTC tetramethyl ester is added to 1 to 20% by weight of sodium methoxide and refluxed in methanol, so that conversion to a trans form proceeds. At this time, since the esterified product of isomerized cis-CHTC has a reduced solubility in alcohol and precipitates, it can be recovered by filtration or the like.

異性化反応の後、cis−CHTCのテトラエステルは、公知の方法により加水分解できる。例えば、酸触媒又は塩基性触媒の存在下で加水分解することによりtt−CHTCとして得ることができる。   After the isomerization reaction, the cis-CHTC tetraester can be hydrolyzed by known methods. For example, it can be obtained as tt-CHTC by hydrolysis in the presence of an acid catalyst or a basic catalyst.

<3.tt−CHTCAの製造方法>
本発明に係るtt−CHTCAの製造方法は、脱水剤存在下で加熱することで無水化反応させる工程を含めばよい。これにより、高い反応性(重合性)を有する本発明に係るtt−CHTCAを得ることができる。
<3. Production method of tt-CHTCA>
The method for producing tt-CHTCA according to the present invention may include a step of dehydration reaction by heating in the presence of a dehydrating agent. Thereby, tt-CHTCA according to the present invention having high reactivity (polymerizability) can be obtained.

無水化反応に供するtt−CHTCとしては、上述の異性化反応にて得られたtt−CHTCを用いればよい。なお、上述のように異性化反応及び/又は加水分解において触媒を用いると、得られたtt−CHTCに、当該触媒を由来とする不純物が混入することがある。そのため、得られたtt−CHTCを、再結晶等の公知の方法で精製した上で、無水化反応に供することが好ましい。   As tt-CHTC to be subjected to the dehydration reaction, tt-CHTC obtained by the above isomerization reaction may be used. In addition, when a catalyst is used in the isomerization reaction and / or hydrolysis as described above, impurities derived from the catalyst may be mixed into the obtained tt-CHTC. Therefore, it is preferable to subject the obtained tt-CHTC to a dehydration reaction after purification by a known method such as recrystallization.

脱水剤については、tt−CHTCに脱水剤が接触すれば特に限定されないが、例えば、tt−CHTC及び脱水剤を溶剤中で混合するとよい。脱水剤としては無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸等の低級有機カルボン酸無水物類が好ましく、中でも無水化後の除去や経済的に有利な無水酢酸が特に好ましい。脱水剤の使用量は特に限定されないが、tt−CHTCに対して、2〜50当量が好ましく、特に好ましくは4〜20当量である。2〜50当量であれば、十分に無水化が行なわれ、かつ得られるtt−CHTCAの溶解量が増加し過ぎることなく、高い収率でtt−CHTCAを析出させることができる。なお、必ずしもtt−CHTCを完全に溶解させて無水化反応させる必要はなく、不均一系で無水化反応を実施してもよい。   The dehydrating agent is not particularly limited as long as the dehydrating agent comes into contact with tt-CHTC. For example, tt-CHTC and the dehydrating agent may be mixed in a solvent. As the dehydrating agent, lower organic carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride are preferable, and among them, acetic anhydride which is advantageous after removal and economical advantage is particularly preferable. Although the usage-amount of a dehydrating agent is not specifically limited, 2-50 equivalent is preferable with respect to tt-CHTC, Most preferably, it is 4-20 equivalent. If it is 2 to 50 equivalents, tt-CHTCA can be precipitated in a high yield without being sufficiently dehydrated and without increasing the amount of tt-CHTCA dissolved. Note that it is not always necessary to completely dissolve tt-CHTC for the dehydration reaction, and the dehydration reaction may be performed in a heterogeneous system.

加熱の温度については、40〜160℃の範囲で行なうとよい。反応温度が高いほど反応速度が向上するが、tt−CHTCAは歪みが大きく、不安定な構造であるため、温度が高すぎるとその立体構造がトランス体からシス体へと変換される恐れがあるため好ましくない。そのため、無水化反応の温度範囲としては、50〜120℃がより好ましい。また、無水化反応時間は、使用する脱水剤の種類、反応温度等の条件等に応じて適宜設定すればよいが、0.5〜20時間であることが好ましい。この時間で十分に無水化反応させることができる。   About heating temperature, it is good to carry out in the range of 40-160 degreeC. The reaction rate increases as the reaction temperature increases. However, tt-CHTCA has a large distortion and an unstable structure. If the temperature is too high, the steric structure may be converted from a trans form to a cis form. Therefore, it is not preferable. Therefore, the temperature range of the dehydration reaction is more preferably 50 to 120 ° C. The dehydration reaction time may be appropriately set according to conditions such as the type of dehydrating agent to be used, reaction temperature, etc., but is preferably 0.5 to 20 hours. The dehydration reaction can be sufficiently performed in this time.

以上の無水化反応によって、tt−CHTCAが使用した脱水剤に懸濁した懸濁液を得ることができる。無水化反応の後は、得られた懸濁液をろ過することでtt−CHTCAの粉末を回収できる。また、必要に応じて上記懸濁液を濃縮してもよい。さらに、減圧乾燥等により脱水剤を除去することで、後述のポリイミド前駆体(ポリアミド酸)の重合工程に好適に用いることができる。   By the above dehydration reaction, a suspension suspended in the dehydrating agent used by tt-CHTCA can be obtained. After the dehydration reaction, a powder of tt-CHTCA can be recovered by filtering the obtained suspension. Moreover, you may concentrate the said suspension as needed. Furthermore, by removing the dehydrating agent by drying under reduced pressure or the like, the dehydrating agent can be suitably used for the polymerization step of the polyimide precursor (polyamic acid) described later.

なお、(1S,2S,4R,5R)−シクロヘキサンテトラカルボン酸を、脱水剤存在下で加熱することにより無水化反応させる工程を含むことを特徴とするテトラカルボン酸二無水物の製造方法及びこれにより得られたテトラカルボン酸二無水物も本発明の範疇に含まれる。   In addition, the manufacturing method of tetracarboxylic dianhydride characterized by including the process of carrying out the dehydration reaction by heating (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic acid in presence of a dehydrating agent, and this The tetracarboxylic dianhydride obtained by the above is also included in the scope of the present invention.

<4.本発明に係るポリイミド前駆体>
本発明に係るポリイミド前駆体は、一般式(1)
<4. Polyimide precursor according to the present invention>
The polyimide precursor according to the present invention has the general formula (1)

(上記一般式(1)中、Xは4価のシクロヘキサン基を表し、Rは水素原子、トリアルキルシリル基、又は炭素数1〜12の直鎖状、分岐状若しくは環状のアルキル基若しくはアルコキシル基を表し、Aは2価の芳香族基又は脂肪族基を表し、上記Xの立体配置は、以下の式(2)で表され、 (In the above general formula (1), X represents a tetravalent cyclohexane group, and R represents a hydrogen atom, a trialkylsilyl group, or a linear, branched or cyclic alkyl group or alkoxyl group having 1 to 12 carbon atoms. A represents a divalent aromatic group or aliphatic group, and the configuration of X is represented by the following formula (2):

上記Xと、上記Xと結合している2つのアミド基及び2つのカルボキシル基と、の結合位置は下記式(3)又は(4)のいずれかで表される。 The bonding position between the X and the two amide groups and two carboxyl groups bonded to the X is represented by either the following formula (3) or (4).

(式(3)及び(4)において、Yは上記Xに結合する2つのアミド基を示し、Zは上記Xに結合する2つのカルボキシル基を表す))で表される繰り返し単位を有するポリイミド前駆体である。 (In formulas (3) and (4), Y represents two amide groups bonded to X and Z represents two carboxyl groups bonded to X))) Is the body.

本発明に係るポリイミド前駆体を閉環(イミド化)させることで高透明性、低誘電率のポリイミドを得ることができる。つまり、本発明に係るポリイミド前駆体は、ポリイミドの原料として優れている。   A highly transparent and low dielectric constant polyimide can be obtained by ring-closing (imidizing) the polyimide precursor according to the present invention. That is, the polyimide precursor according to the present invention is excellent as a raw material for polyimide.

ポリイミド前駆体の製造方法の一例について、以下に説明するが、これに限定されない。   Although an example of the manufacturing method of a polyimide precursor is demonstrated below, it is not limited to this.

本発明に係るポリイミド前駆体は、本発明に係るtt−CHTCAとジアミンとを重合反応させて製造するとよい。以下、tt−CHTCAとジアミンとを重合させる工程を、単に「重合工程」と表記することもある。なお、上述のように、本発明に係るtt−CHTCAの製造方法において使用した脱水剤を、完全に除去した後にジアミンと反応させることが好ましい。   The polyimide precursor according to the present invention may be produced by polymerizing the tt-CHTCA according to the present invention and a diamine. Hereinafter, the process of polymerizing tt-CHTCA and diamine may be simply referred to as “polymerization process”. In addition, as above-mentioned, it is preferable to make it react with diamine after removing the dehydrating agent used in the manufacturing method of tt-CHTCA based on this invention completely.

より具体的には、重合工程ではジアミン溶液にtt−CHTCA粉末を添加して、室温で撹拌するとよい。攪拌の時間は特に限定されず、該tt−CHTCA粉末が十分に溶解するまで行なえばよい。このように、本発明に係るポリイミド前駆体は、本発明に係るtt−CHTCA、及びジアミンを原料として容易に製造することができる。ジアミンの使用量としては特に限定されないが、tt−CHTCAに対して実質的に等モル量であることが、重合度を高めるという観点から好ましい。   More specifically, in the polymerization step, tt-CHTCA powder may be added to the diamine solution and stirred at room temperature. The stirring time is not particularly limited, and may be performed until the tt-CHTCA powder is sufficiently dissolved. Thus, the polyimide precursor which concerns on this invention can be easily manufactured by using tt-CHTCA and diamine which concern on this invention as a raw material. Although it does not specifically limit as the usage-amount of diamine, It is preferable from a viewpoint of raising a polymerization degree that it is a substantially equimolar amount with respect to tt-CHTCA.

上記ジアミン溶液を調製するために、ジアミンを溶解させる溶剤としては、モノマー(本発明に係るtt−CHTCA、及びジアミン)と、生成するポリアミド酸(本発明に係るポリイミド前駆体)とを溶解することが可能であり、且つこれらのモノマーと反応しない溶剤であれば特に限定されない。例えば、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性溶剤が特に好適に利用できる。   In order to prepare the diamine solution, as a solvent for dissolving diamine, a monomer (tt-CHTCA and diamine according to the present invention) and a produced polyamic acid (polyimide precursor according to the present invention) are dissolved. The solvent is not particularly limited as long as it is a solvent that does not react with these monomers. For example, aprotic solvents such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and the like can be particularly preferably used.

重合工程では、ピリジン等の脱酸剤の存在下、tt−CHTCAの代わりに、tt−CHTCのジアルキルエステルジクロリドを使用することで、ポリアミド酸のアルキルエステル(上記一般式(1)中、Rが炭素数1〜12の直鎖状、分岐状若しくは環状のアルキル基、又は炭素数1〜12の直鎖状、分岐状若しくは環状のアルコキシル基)が得られる。   In the polymerization step, by using a dialkyl ester dichloride of tt-CHTC instead of tt-CHTCA in the presence of a deoxidizing agent such as pyridine, an alkyl ester of polyamic acid (in the general formula (1), R is A linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, or a linear, branched or cyclic alkoxyl group having 1 to 12 carbon atoms).

また、重合工程では、ジアミンを予めジトリアルキルシリル化体に変換しておき、これにtt−CHTCAを添加することで、ポリアミド酸のトリアルキルシリルエステル(上記一般式(1)中、Rがトリアルキルシリル基であるもの)を得ることができる。ジアミンのトリアルキルシリル化の際に使用可能なトリアルキルシリル化剤として特に限定されないが、トリメチルシリルクロリド等のハロゲン化アルキルシランの他、N,O−ビス(トリメチルシリル)トリフルオロアセトアミド、N,O−ビス(トリメチルシリル)アセトアミド等が例として挙げられる。   In the polymerization step, the diamine is converted into a ditrialkylsilylated product in advance, and tt-CHTCA is added thereto to thereby add a trialkylsilyl ester of polyamic acid (in the general formula (1), R is trivalent). An alkylsilyl group). Although it does not specifically limit as a trialkyl silylating agent which can be used in the case of trialkyl silylation of diamine, N, O-bis (trimethyl silyl) trifluoroacetamide, N, O- in addition to halogenated alkyl silanes, such as a trimethyl silyl chloride. Examples include bis (trimethylsilyl) acetamide and the like.

また、本発明に係るポリイミド前駆体を製造するために用いるジアミンとしては特に限定されるものではなく、製造するポリイミド前駆体の用途等に応じて適宜選択すればよい。例えば、芳香族ジアミン、脂肪族ジアミン等が挙げられる。又はそれらを併用することもできる。   Moreover, it does not specifically limit as diamine used in order to manufacture the polyimide precursor which concerns on this invention, What is necessary is just to select suitably according to the use etc. of the polyimide precursor to manufacture. For example, aromatic diamine, aliphatic diamine, etc. are mentioned. Or they can be used in combination.

芳香族ジアミンの具体例としては、p−フェニレンジアミン、m−フェニレンジアミン、2,4−ジアミノトルエン、2,5−ジアミノトルエン、2,4−ジアミノキシレン、2,4−ジアミノデュレン、4,4’−メチレンジアニリン、4,4’−メチレンビス(3−メチルアニリン)、4,4’−メチレンビス(3−エチルアニリン)、4,4’−メチレンビス(2−メチルアニリン)、4,4’−メチレンビス(2−エチルアニリン)、4,4’−メチレンビス(3,5−ジメチルアニリン)、4,4’−メチレンビス(3,5−ジエチルアニリン)、4,4’−メチレンビス(2,6−ジメチルアニリン)、4,4’−メチレンビス(2,6−ジエチルアニリン)、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、2,4’−ジアミノジフェニルエーテル、2,2’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンズアニリド、ベンジジン、3,3’−ジヒドロキシベンジジン、3,3’−ジメトキシベンジジン、o−トリジン、m−トリジン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス(4−(3−アミノフェノキシ)フェニル)スルホン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、p−ターフェニレンジアミン、2,2’−ビス(トリフルオロメチル)ベンジジン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、2,4’−ジアミノジフェニルエーテル、2,2’−ジアミノジフェニルエーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス(4−(3−アミノフェノキシ)フェニル)スルホン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、4,4’−ジアミノジフェニルスルフォン、3,3’−ジアミノジフェニルスルフォン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、4,4’−メチレンジアニリン、4,4’−メチレンビス(3−メチルアニリン)、4,4’−メチレンビス(3−エチルアニリン)、4,4’−メチレンビス(2−メチルアニリン)、4,4’−メチレンビス(2−エチルアニリン)、4,4’−メチレンビス(3,5−ジメチルアニリン)、4,4’−メチレンビス(3,5−ジエチルアニリン)、4,4’−メチレンビス(2,6−ジメチルアニリン)、4,4’−メチレンビス(2,6−ジエチルアニリン)等を例示できる。これらは単独で用いてもよく、2種類以上を併用してもよい。   Specific examples of the aromatic diamine include p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4-diaminodurene, 4,4. '-Methylenedianiline, 4,4'-methylenebis (3-methylaniline), 4,4'-methylenebis (3-ethylaniline), 4,4'-methylenebis (2-methylaniline), 4,4'- Methylenebis (2-ethylaniline), 4,4′-methylenebis (3,5-dimethylaniline), 4,4′-methylenebis (3,5-diethylaniline), 4,4′-methylenebis (2,6-dimethyl) Aniline), 4,4'-methylenebis (2,6-diethylaniline), 4,4'-diaminodiphenyl ether, 3,4'-diaminodiph Nyl ether, 3,3′-diaminodiphenyl ether, 2,4′-diaminodiphenyl ether, 2,2′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, 4,4′-diamino Benzophenone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzanilide, benzidine, 3,3'-dihydroxybenzidine, 3,3'-dimethoxybenzidine, o-tolidine, m-tolidine, 1,4-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4 '-Bis (4-aminophenoxy) biphenyl, bis (4- (3-a Nophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, p-terphenylenediamine, 2,2′- Bis (trifluoromethyl) benzidine, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, 4,4′-diaminodiphenyl ether 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 2,4′-diaminodiphenyl ether, 2,2′-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,4- Bis (3-aminophenoxy) benzene, 1,3-bis (4-amino) Phenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- ( 4-aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 4,4 '-Diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 2,2-bis (4-aminophenyl) hexafluoropropane, 4,4'-methylenedianiline, 4,4'-methylenebis (3-methylaniline) ), 4,4′-methylenebis (3-ethylaniline), 4,4′-methylenebis (2-methylaniline) 4,4′-methylenebis (2-ethylaniline), 4,4′-methylenebis (3,5-dimethylaniline), 4,4′-methylenebis (3,5-diethylaniline), 4,4′-methylenebis (2,6-dimethylaniline), 4,4′-methylenebis (2,6-diethylaniline) and the like can be exemplified. These may be used alone or in combination of two or more.

脂肪族ジアミンの具体例としては、4,4’−メチレンビス(シクロヘキシルアミン)、4,4’−メチレンビス(3−メチルシクロヘキシルアミン)、4,4’−メチレンビス(3−エチルシクロヘキシルアミン)、4,4’−メチレンビス(3,5−ジメチルシクロヘキシルアミン)、4,4’−メチレンビス(3,5−ジエチルシクロヘキシルアミン)、イソホロンジアミン、トランス−1,4−シクロヘキサンジアミン、シス−1,4−シクロヘキサンジアミン、1,4−シクロヘキサンビス(メチルアミン)、2,5−ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、2,6−ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、3,8−ビス(アミノメチル)トリシクロ[5.2.1.0]デカン、1,3−ジアミノアダマンタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、2,2−ビス(4−アミノシクロヘキシル)ヘキサフルオロプロパン、1,3−プロパンジアミン、1,4−テトラメチレンジアミン、1,5−ペンタメチレンジアミン、1,6−ヘキサメチレンジアミン、1,7−ヘプタメチレンジアミン、1,8−オクタメチレンジアミン、1,9−ノナメチレンジアミン)等を例示できる。これらは単独で用いてもよく、2種類以上を併用してもよい。   Specific examples of the aliphatic diamine include 4,4′-methylenebis (cyclohexylamine), 4,4′-methylenebis (3-methylcyclohexylamine), 4,4′-methylenebis (3-ethylcyclohexylamine), 4, 4'-methylenebis (3,5-dimethylcyclohexylamine), 4,4'-methylenebis (3,5-diethylcyclohexylamine), isophoronediamine, trans-1,4-cyclohexanediamine, cis-1,4-cyclohexanediamine 1,4-cyclohexanebis (methylamine), 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,6-bis (aminomethyl) bicyclo [2.2.1] heptane, 3,8-bis (aminomethyl) tricyclo [5.2.1.0] decane, 1,3-diamy Adamantane, 2,2-bis (4-aminocyclohexyl) propane, 2,2-bis (4-aminocyclohexyl) hexafluoropropane, 1,3-propanediamine, 1,4-tetramethylenediamine, 1,5-penta Methylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine) and the like. These may be used alone or in combination of two or more.

また、本発明に係るtt−CHTCAに併せて、芳香族テトラカルボン酸二無水物成分、脂肪族テトラカルボン酸二無水物等のtt−CHTCA以外のテトラカルボン酸二無水物を用いてもよい。このようなテトラカルボン酸二無水物としては、ポリアミド前駆体の重合反応性、ポリイミドの要求特性を著しく損なわない範囲で選択すればよく、上記ジアミンと重合可能なものである限り限定されない。共重合可能な芳香族テトラカルボン酸二無水物としては特に限定されないが、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)プロパン酸二無水物、ハイドロキノンビス(トリメリテートアンハイドライド)、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物等が挙げられる。共重合成分としてこれらを単独あるいは2種類以上用いてもよい。   In addition to tt-CHTCA according to the present invention, tetracarboxylic dianhydrides other than tt-CHTCA such as aromatic tetracarboxylic dianhydride components and aliphatic tetracarboxylic dianhydrides may be used. Such a tetracarboxylic dianhydride may be selected within a range that does not significantly impair the polymerization reactivity of the polyamide precursor and the required characteristics of the polyimide, and is not limited as long as it can be polymerized with the diamine. The copolymerizable aromatic tetracarboxylic dianhydride is not particularly limited, but pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4 , 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenylsulfone tetracarboxylic dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) hexafluoropropanoic dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) propanoic dianhydride, hydroquinone bis (trimellitate) Anhydride), 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride and the like. These may be used alone or in combination of two or more as copolymerization components.

本発明に係るポリイミド前駆体を製造する際の重合反応性、ポリイミドの要求特性を著しく損なわない範囲で、部分的に使用可能な脂肪族テトラカルボン酸二無水物としては特に限定されないが、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン−2,3,5,6−テトラカルボン酸二無水物、ビシクロ[2.2.2]ヘプタンテトラカルボン酸二無水物、5−(ジオキソテトラヒドロフリル−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−テトラリン−1,2−ジカルボン酸無水物、テトラヒドロフラン−2,3,4,5−テトラカルボン酸二無水物、ビシクロ−3,3’,4,4’−テトラカルボン酸二無水物、3c−カルボキシメチルシクロペンタンー1r,2c,4c−トリカルボン酸1,4:2,3−二無水物、シス、シス、シス、シス−1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物等が挙げられる。また、これらを2種類以上併用することもできる。   The aliphatic tetracarboxylic dianhydride that can be partially used is not particularly limited as long as it does not significantly impair the polymerization reactivity and the required characteristics of the polyimide when producing the polyimide precursor according to the present invention. 2.2.2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic dianhydride Bicyclo [2.2.2] heptanetetracarboxylic dianhydride, 5- (dioxotetrahydrofuryl-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 4- (2,5- Dioxotetrahydrofuran-3-yl) -tetralin-1,2-dicarboxylic anhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride, bicyclo-3,3 ', 4,4' Tetracarboxylic dianhydride, 3c-carboxymethylcyclopentane-1r, 2c, 4c-tricarboxylic acid 1,4: 2,3-dianhydride, cis, cis, cis, cis-1,2,4,5- Examples include cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, etc. More than one type can be used in combination.

従来、CHTCAブロック(CHTCA構造)を持つポリイミドが高透明性、低誘電率等の優れた特性を有することは明らかであったが、従来の技術により得られるシス、シス、シス−1,2,4,5−シクロヘキサンテトラカルボン酸二無水物は、ジアミンとの反応性が低いため、重合度の高いポリイミド前駆体(ポリアミド酸)を製造することが困難であった。しかし、ポリイミド前駆体の合成原料を用いる際に、本発明の製造方法により製造されたテトラカルボン酸二無水物をCHTCA中20重量%、好ましくは50重量%以上含有することで、高重合度のポリイミド前駆体を製造することができ、従来から知られている、優れた特性を維持したCHTCAブロックを有するポリイミドを、高い重合度にて容易に得ることができる。   Conventionally, it has been clear that polyimides having a CHTCA block (CHTCA structure) have excellent characteristics such as high transparency and low dielectric constant, but cis, cis, cis-1,2, Since 4,5-cyclohexanetetracarboxylic dianhydride has low reactivity with diamine, it was difficult to produce a polyimide precursor (polyamic acid) having a high degree of polymerization. However, when the raw material for synthesis of the polyimide precursor is used, the tetracarboxylic dianhydride produced by the production method of the present invention is contained in CHTCA at 20% by weight, preferably 50% by weight or more. A polyimide precursor can be produced, and a polyimide having a CHTCA block that has been known and maintains excellent characteristics can be easily obtained at a high degree of polymerization.

重合反応の際に使用される溶媒としてはN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホオキシド等の非プロトン性溶媒が好ましいが、原料モノマーと生成するポリイミド前駆体が溶解し、且つモノマーと反応しなければ問題はなく特に限定されない。具体的に例示するならば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m−クレゾール、p−クレゾール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシド等が好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o−クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、プチルセロソルブ、2−メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒等も添加して使用できる。   The solvent used in the polymerization reaction is preferably an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc. If the polyimide precursor to be dissolved does not react with the monomer, there is no problem and there is no particular limitation. Specifically, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε -Cyclic ester solvents such as caprolactone, α-methyl-γ-butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4- Phenol solvents such as chlorophenol, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like are preferably used. Furthermore, other common organic solvents, such as phenol, o-cresol, butyl acetate, ethyl acetate, isobutyl acetate, propylene glycol methyl acetate, ethyl cellosolve, ptyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, Tetrahydrofuran, dimethoxyethane, diethoxyethane, dibutyl ether, diethylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, methyl ethyl ketone, acetone, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, petroleum naphtha solvent Etc. can also be added and used.

本発明に係るポリイミド前駆体はその重合溶液を、水、メタノール等の貧溶媒中に滴下・濾過・乾燥し、粉末として単離することもできる。溶媒の量は、滴下等が十分に行なえる量であれば限定されない。   The polyimide precursor according to the present invention can be isolated as a powder by dropping, filtering and drying the polymerization solution in a poor solvent such as water or methanol. The amount of the solvent is not limited as long as dripping or the like can be performed sufficiently.

本発明に係るポリイミド前駆体の固有粘度は高いほどよいが、少なくとも0.5dL/g以上であることが好ましく、1.0dL/g以上であることがより好ましい。0.5dL/gを下回ると、製膜性が著しく悪くなり、キャスト膜がひび割れる等の深刻な問題が生じる恐れがある。   The higher the intrinsic viscosity of the polyimide precursor according to the present invention, the better. However, it is preferably at least 0.5 dL / g or more, more preferably 1.0 dL / g or more. When it is less than 0.5 dL / g, the film forming property is remarkably deteriorated, and a serious problem such as cracking of the cast film may occur.

ポリアミド等の重合の際しばしば添加される高分子溶解促進剤即ちリチウムブロマイド、リチウムクロライド等の金属塩類は、本発明におけるポリイミド前駆体重合反応には一切使用しなくてもよい。これらの金属塩類はポリイミド膜中に金属イオンが痕跡量でも残留すると、電子デバイスとしての信頼性を著しく低下させる。本発明に係るポリイミド前駆体は、このような金属塩類を使用しなくてよいので、極めて有益である。   A polymer dissolution accelerator, that is, a metal salt such as lithium bromide or lithium chloride, which is often added during polymerization of polyamide or the like may not be used at all for the polyimide precursor polymerization reaction in the present invention. When these metal salts remain in the polyimide film even if there is a trace amount of metal ions, the reliability as an electronic device is remarkably lowered. The polyimide precursor according to the present invention is extremely useful because it is not necessary to use such metal salts.

<5.本発明に係るポリイミド>
本発明に係るポリイミドは、一般式(5)
<5. Polyimide according to the present invention>
The polyimide according to the present invention has the general formula (5)

(式(5)中、Xは4価のシクロヘキサン基を表し、Aは2価の芳香族基又は脂肪族基を表し、上記Xの立体配置は下記式(2)で表される。) (In formula (5), X represents a tetravalent cyclohexane group, A represents a divalent aromatic group or aliphatic group, and the configuration of X is represented by the following formula (2).)

で表される繰り返し単位を有するポリイミドである。 It is a polyimide which has a repeating unit represented by these.

本発明に係るポリイミドは、例えば、上記の方法で得られたポリイミド前駆体を脱水閉環反応(イミド化反応)することで製造することができる。この際、ポリイミドの使用可能な形態は、フィルム、金属基板/ポリイミドフィルム積層体、粉末、成型体及び溶液等が挙げられる。   The polyimide according to the present invention can be produced, for example, by subjecting the polyimide precursor obtained by the above method to a dehydration ring-closing reaction (imidation reaction). At this time, examples of the usable form of polyimide include a film, a metal substrate / polyimide film laminate, a powder, a molded body, and a solution.

一例として、本発明に係るポリイミドのフィルムを製造する方法について述べる。ポリイミド前駆体の重合溶液(ワニス)をガラス、銅、アルミニウム、ステンレス、シリコン等の基板上に流延し、オーブン等を用いて乾燥する。乾燥の温度は40〜180℃が好ましく、より好ましくは50〜150℃である。得られたポリイミド前駆体フィルムを基板上で、真空中、窒素等の不活性ガス中、又は空気中において、加熱することで本発明に係るポリイミドのフィルムを製造することができる。加熱温度はイミド化の閉環反応を十分に行なうという観点から200℃以上、生成したポリイミドフィルムの熱安定性の観点から400℃以下が好ましい。より好ましくは250〜350℃である。またイミド化は、真空中又は不活性ガス中で行なうことが望ましいが、イミド化温度が高すぎなければ空気中で行なってもよい。   As an example, a method for producing a polyimide film according to the present invention will be described. A polyimide precursor polymerization solution (varnish) is cast on a substrate of glass, copper, aluminum, stainless steel, silicon or the like and dried using an oven or the like. The drying temperature is preferably 40 to 180 ° C, more preferably 50 to 150 ° C. The polyimide film according to the present invention can be produced by heating the obtained polyimide precursor film in a vacuum, in an inert gas such as nitrogen, or in the air. The heating temperature is preferably 200 ° C. or higher from the viewpoint of sufficiently carrying out the imidization ring-closing reaction, and 400 ° C. or lower from the viewpoint of the thermal stability of the produced polyimide film. More preferably, it is 250-350 degreeC. The imidation is desirably performed in a vacuum or in an inert gas, but may be performed in air if the imidization temperature is not too high.

また、イミド化反応は、熱処理に代えて、ポリイミド前駆体フィルムをピリジン、トリエチルアミン等の3級アミン存在下、無水酢酸等の脱水環化試薬を含有する溶液に浸漬することによって行なうことも可能である。また、これらの脱水環化試薬をあらかじめポリイミド前駆体ワニス中に投入・攪拌し、それを上記基板上に流延・乾燥することで、部分的あるいは完全にイミド化したポリイミド前駆体フィルムを作製することもできる。これを更に上記のような温度範囲で熱処理しても差し支えない。   Also, the imidization reaction can be performed by immersing the polyimide precursor film in a solution containing a dehydrating cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine instead of heat treatment. is there. In addition, a polyimide precursor film partially or completely imidized is prepared by previously charging and stirring these dehydrating cyclization reagents in a polyimide precursor varnish, and casting and drying them on the substrate. You can also. This may be further heat-treated in the above temperature range.

なお、製造されるポリイミド自体がイミド化反応に用いた溶媒に溶解する場合、ポリイミド前駆体の重合溶液をそのまま又は同一の溶媒で希釈した後150〜200℃に加熱することで、本発明に係るポリイミドの溶液(ワニス)を容易に製造することができる。溶媒に不溶な場合は、結晶性のポリイミド粉末を沈殿物として得てもよい。この際、イミド化反応の副生成物である水等を共沸留去するために、トルエン、キシレン等の有機溶媒を添加しても差し支えない。また触媒としてγ―ピコリン等の塩基を添加することができる。イミド化後この反応溶液を大量の水、メタノール等の貧溶媒中に滴下・濾過しポリイミドを粉末として単離することもできる。またポリイミド粉末を上記重合溶媒に再溶解してポリイミドワニスとすることもできる。   In addition, when the polyimide itself to be produced is dissolved in the solvent used in the imidization reaction, the polyimide precursor polymerization solution is directly or diluted with the same solvent, and then heated to 150 to 200 ° C., according to the present invention. A polyimide solution (varnish) can be easily produced. When insoluble in a solvent, crystalline polyimide powder may be obtained as a precipitate. At this time, an organic solvent such as toluene or xylene may be added to azeotropically distill off water or the like, which is a by-product of the imidization reaction. Further, a base such as γ-picoline can be added as a catalyst. After imidation, this reaction solution can be dropped and filtered in a large amount of poor solvent such as water or methanol to isolate the polyimide as a powder. Alternatively, the polyimide powder can be redissolved in the polymerization solvent to obtain a polyimide varnish.

本発明に係るポリイミドは、ジアミンと本発明に係るtt−CHTCAを溶媒中高温で反応させることにより、ポリイミド前駆体を単離することなく、一段階で重合することもできる。この際、反応溶液は反応促進の観点から、例えば130〜250℃、好ましくは150〜200℃の範囲に保持するとよい。またポリイミドが、イミド化反応に用いた溶媒に不溶な場合、ポリイミドは沈殿として得られ、可溶な場合はポリイミドのワニスとして得られる。重合溶媒は特に限定さないが、使用可能な溶媒として、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン(NMP)、ジメチルスルホキシド等の非プロトン性溶媒が例として挙げられが、より好ましくはm−クレゾール等のフェノール系溶媒、又はNMP等のアミド系溶媒が用いられる。これらの溶媒にイミド化反応の副生成物である水を共沸留去するために、トルエン、キシレン等の有機溶媒を添加することができる。またイミド化触媒としてγ−ピコリン等の塩基を添加することができる。反応後、溶液を大量の水、メタノール等の貧溶媒中に滴下・濾過しポリイミドを粉末として単離することができる。またポリイミドが溶媒に可溶である場合はその粉末を上記溶媒に再溶解してポリイミドワニスとすることができる。   The polyimide according to the present invention can be polymerized in one step without isolating the polyimide precursor by reacting the diamine and tt-CHTCA according to the present invention at a high temperature in a solvent. At this time, the reaction solution may be maintained in a range of 130 to 250 ° C., preferably 150 to 200 ° C., from the viewpoint of promoting the reaction. Moreover, when a polyimide is insoluble in the solvent used for imidation reaction, a polyimide is obtained as a precipitate, and when soluble, it is obtained as a varnish of polyimide. The polymerization solvent is not particularly limited. Examples of usable solvents include aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), and dimethyl sulfoxide. More preferably, a phenol solvent such as m-cresol or an amide solvent such as NMP is used. In order to azeotropically distill off water, which is a by-product of the imidization reaction, to these solvents, an organic solvent such as toluene or xylene can be added. A base such as γ-picoline can be added as an imidization catalyst. After the reaction, the solution can be dropped and filtered into a large amount of poor solvent such as water or methanol to isolate the polyimide as a powder. When the polyimide is soluble in a solvent, the powder can be redissolved in the above solvent to obtain a polyimide varnish.

上記ポリイミドワニスを基板上に塗布して乾燥させることで脂環式ポリイミドフィルムを形成してもよい。乾燥の温度は特に限定されないが、例えば40〜400℃、好ましくは100〜350℃である。   You may form an alicyclic polyimide film by apply | coating the said polyimide varnish on a board | substrate, and making it dry. Although the temperature of drying is not specifically limited, For example, it is 40-400 degreeC, Preferably it is 100-350 degreeC.

また、得られたポリイミド粉末を加熱圧縮することでポリイミドの成型体を作製してもよい。加熱圧縮時の温度としては特に限定されないが、例えば200〜450℃、好ましくは250〜430℃である。   Moreover, you may produce the molded object of a polyimide by heat-compressing the obtained polyimide powder. Although it does not specifically limit as temperature at the time of heat compression, For example, it is 200-450 degreeC, Preferably it is 250-430 degreeC.

ポリイミド前駆体溶液中にN,N−ジシクロヘキシルカルボジイミド、トリフルオロ無水酢酸等の脱水試薬を添加・撹拌して0〜100℃、好ましくは0〜60℃で反応させることにより、ポリイミドの異性体であるポリイソイミドが生成する。イソイミド化反応は上記脱水試薬を含有する溶液中にポリイミド前駆体フィルムを浸漬することによっても可能である。ポリイソイミドワニスを上記と同様な手順で製膜した後、250〜450℃、好ましくは270〜400℃で熱処理することにより、ポリイミドへ容易に変換することができる。   It is an isomer of polyimide by adding and stirring a dehydrating reagent such as N, N-dicyclohexylcarbodiimide or trifluoroacetic anhydride in the polyimide precursor solution and reacting at 0 to 100 ° C., preferably 0 to 60 ° C. Polyisoimide is formed. The isoimidization reaction can also be performed by immersing the polyimide precursor film in a solution containing the dehydrating reagent. After polyisoimide varnish is formed in the same procedure as above, it can be easily converted to polyimide by heat treatment at 250 to 450 ° C., preferably 270 to 400 ° C.

本発明に係るポリイミド前駆体、本発明に係るポリイミドには、必要に応じて酸化安定剤、フィラー、接着促進剤、シランカップリング剤、感光剤、光重合開始剤、増感剤、末端封止剤、架橋剤等の添加物を加えてもよい。   The polyimide precursor according to the present invention and the polyimide according to the present invention include an oxidation stabilizer, a filler, an adhesion promoter, a silane coupling agent, a photosensitizer, a photopolymerization initiator, a sensitizer, and end-capping as necessary. You may add additives, such as an agent and a crosslinking agent.

<6.本発明に係るポリイミド前駆体、ポリイミドの利用>
〔本発明に係る感光性樹脂組成物〕
本発明に係る感光性樹脂組成物(以下、「感光性ポリイミド前駆体」と称することもある)は、本発明に係るポリイミド前駆体及び感光剤を含有してなるものである。即ち、本発明に係るポリイミド前駆体から感光性ポリイミド前駆体を得ることもできる。
<6. Utilization of polyimide precursor and polyimide according to the present invention>
[Photosensitive resin composition according to the present invention]
The photosensitive resin composition according to the present invention (hereinafter sometimes referred to as “photosensitive polyimide precursor”) contains the polyimide precursor according to the present invention and a photosensitive agent. That is, a photosensitive polyimide precursor can also be obtained from the polyimide precursor according to the present invention.

感光剤としては特に限定されないが、後述するジアゾナフトキノン系感光剤が好ましい。なお、感光剤の量としては特に限定されないが、ポリイミド前駆体に対して、10〜40重量%が好ましく、15〜30重量%であることがより好ましい。   Although it does not specifically limit as a photosensitive agent, The diazo naphthoquinone type photosensitive agent mentioned later is preferable. In addition, although it does not specifically limit as a quantity of a photosensitizer, 10 to 40 weight% is preferable with respect to a polyimide precursor, and it is more preferable that it is 15 to 30 weight%.

また、本発明に係る感光性樹脂組成物において、本発明に係るポリイミド前駆体及び感光剤は、溶媒に溶解されていてもよい。この溶媒としては、当該ポリイミド前駆体及び感光剤を溶解可能であれば限定されず、種々の有機溶媒を使用してもよい。   In the photosensitive resin composition according to the present invention, the polyimide precursor and the photosensitive agent according to the present invention may be dissolved in a solvent. The solvent is not limited as long as the polyimide precursor and the photosensitizer can be dissolved, and various organic solvents may be used.

次に、本発明に係る感光性樹脂組成物を得る方法の一例を説明する。まず、本発明に係るポリイミド前駆体が溶解された有機溶媒溶液にジアゾナフトキノン系感光剤を添加・溶解する。これにより感光性樹脂組成物を得ることができる。   Next, an example of a method for obtaining the photosensitive resin composition according to the present invention will be described. First, a diazonaphthoquinone photosensitizer is added and dissolved in an organic solvent solution in which the polyimide precursor according to the present invention is dissolved. Thereby, the photosensitive resin composition can be obtained.

次に、本発明に係る感光性樹脂組成物を用いて得られるパターンを備える構造体について説明する。即ち、本発明に係る感光性樹脂組成物を、基材上にパターン露光して、パターン露光後に現像して、現像後に加熱硬化することにより得られるものであるパターンが形成されている構造体も本発明の範疇である。なお、半導体素子において、ポリイミドをバッファーコート膜として使用した際に、外部回路との接続するための穴あけ加工する必要があるが、半導体素子の用途に応じて約3〜20μmのスルーホール又はビアホールをあける加工を行なう。本発明に係る感光性樹脂組成物に由来するポリイミドは、このようなバッファーコート膜を形成する材料として適している。   Next, a structure provided with a pattern obtained using the photosensitive resin composition according to the present invention will be described. That is, the structure in which the photosensitive resin composition according to the present invention is subjected to pattern exposure on a substrate, developed after pattern exposure, and heat-cured after development is also formed on the structure. This is within the scope of the present invention. In addition, when using polyimide as a buffer coat film in a semiconductor element, it is necessary to make a hole for connecting to an external circuit. Depending on the use of the semiconductor element, a through hole or via hole of about 3 to 20 μm is required. Perform drilling. Polyimide derived from the photosensitive resin composition according to the present invention is suitable as a material for forming such a buffer coat film.

まず、本発明に係る感光性樹脂組成物をパターン露光する。パターン露光では、感光性樹脂組成物を基材上に塗布して、目的のパターンを有するフォトマスクを介して紫外線を露光するとよい。   First, the photosensitive resin composition according to the present invention is subjected to pattern exposure. In pattern exposure, a photosensitive resin composition may be applied on a substrate and exposed to ultraviolet rays through a photomask having a target pattern.

例えば、スピンコーター又はバーコーターを用いて、銅、シリコン又はガラス等の基材上に塗布する。次に、遮光下40〜120℃で0.1〜3時間温風乾燥することで、例えば膜厚1〜10μmの感光性ポリイミド前駆体の膜を得ることができる。温風乾燥の際の温度及び時間は適宜変更できる。   For example, a spin coater or a bar coater is used to apply on a substrate such as copper, silicon, or glass. Next, a film of a photosensitive polyimide precursor having a film thickness of 1 to 10 μm, for example, can be obtained by drying with warm air at 40 to 120 ° C. for 0.1 to 3 hours under light shielding. The temperature and time for hot air drying can be changed as appropriate.

本発明に係るポリイミド前駆体は、上記一般式(1)におけるRが水素原子である場合、元来アルカリに可溶であるが、ジアゾナフトキノン系感光剤が分散された状態で製膜されたものは、ジアゾナフトキノン(DNQ)系感光剤が溶解抑制剤として作用するので、得られた膜自体はアルカリ不溶性となる。一方、この膜にフォトマスクを介して紫外線を照射すると露光部におけるジアゾナフトキノン系感光剤が光反応によりアルカリ可溶なインデンカルボン酸に変化するので、露光部のみがアルカリ水溶液に可溶となる。よって、ポジ型パターン形成が可能となる。また、DNQを添加しても、アルカリ溶解性が高すぎてパターン形成が困難な場合は、部分的にアルキルエステル化、アルコキシエステル化、又はトリメチルシリル化してアルカリ溶解性を制御することでより鮮明なポジ型パターン形成が可能となる。   The polyimide precursor according to the present invention is originally soluble in alkali when R in the general formula (1) is a hydrogen atom, but is formed in a state where a diazonaphthoquinone photosensitizer is dispersed. Since the diazonaphthoquinone (DNQ) photosensitizer acts as a dissolution inhibitor, the obtained film itself becomes alkali-insoluble. On the other hand, when this film is irradiated with ultraviolet rays through a photomask, the diazonaphthoquinone photosensitizer in the exposed portion is changed to alkali-soluble indenecarboxylic acid by a photoreaction, so that only the exposed portion is soluble in the aqueous alkali solution. Therefore, a positive pattern can be formed. In addition, even if DNQ is added, if the alkali solubility is too high and pattern formation is difficult, it is clearer by partially controlling the alkali solubility by alkyl esterification, alkoxy esterification, or trimethylsilylation. A positive pattern can be formed.

ジアゾナフトキノン系感光剤の具体例としては、1,2−ナフトキノン−2−ジアジド−5−スルホン酸、1,2−ナフトキノン−2−ジアジド−4−スルホン酸の低分子ヒドロキシ化合物、例えば2,3,4−トリヒドロキシベンゾフェノン、1,3,5−トリヒドロキシベンゼン、2−及び4−メチル−フェノール、4,4’−ヒドロキシープロパンのエステル等を挙げることができるがこれらに限定されない。   Specific examples of the diazonaphthoquinone photosensitizer include 1,2-naphthoquinone-2-diazide-5-sulfonic acid and 1,2-naphthoquinone-2-diazide-4-sulfonic acid low molecular hydroxy compounds such as 2,3 , 4-trihydroxybenzophenone, 1,3,5-trihydroxybenzene, 2- and 4-methyl-phenol, esters of 4,4′-hydroxy-propane, and the like, but are not limited thereto.

このポジ型の感光性樹脂組成物におけるジアゾナフトキノン系感光剤の配合割合は、少なすぎる場合には、露光部と未露光部の溶解度差が小さすぎて、現像によりパターン形成不能となり、多すぎる場合にはポリイミドの膜物性(靭性、ガラス転移温度等)に悪影響を及ぼす恐れがある他、イミド化後の膜減が大きいといった問題が生じる虞があるので、ポリイミド前駆体に対し重量基準で好ましくは10〜40%、より好ましくは15〜30%である。   When the blending ratio of the diazonaphthoquinone photosensitizer in this positive photosensitive resin composition is too small, the difference in solubility between the exposed and unexposed areas is too small, and pattern formation cannot be achieved by development, and there are too many In addition to the possibility of adversely affecting the film physical properties (toughness, glass transition temperature, etc.) of polyimide, there is a risk that the film loss after imidization will be large. It is 10 to 40%, more preferably 15 to 30%.

上述の感光性ポリイミド前駆体の膜を得る工程は120℃以下で行なわれることが好ましい。この温度以上ではジアゾナフトキノン系感光剤が熱分解し始める虞がある。また、60℃で製膜した場合、塗膜は多量の溶媒が残留している。その場合露光操作に先立ち80〜120℃で1〜30分間プリベイクしてもよいが、塗膜を1〜5分間水中に浸漬することも効果的である。残留溶媒は現像時の膜の膨潤及び/又はパターンの崩れを招く恐れがあり、鮮明なパターンを得るためには残留溶媒を十分除去しておくことが好ましい。   The step of obtaining the photosensitive polyimide precursor film is preferably performed at 120 ° C. or lower. Above this temperature, the diazonaphthoquinone photosensitizer may start to thermally decompose. When the film is formed at 60 ° C., a large amount of solvent remains in the coating film. In that case, prebaking may be performed at 80 to 120 ° C. for 1 to 30 minutes prior to the exposure operation, but it is also effective to immerse the coating film in water for 1 to 5 minutes. The residual solvent may cause swelling of the film and / or pattern collapse during development, and it is preferable to sufficiently remove the residual solvent in order to obtain a clear pattern.

上記感光性樹脂組成物膜にフォトマスクを介して高圧水銀灯のi線を室温で10秒〜1時間照射し、0.05〜10重量%、好ましくは0.1〜5重量%のテトラメチルアンモニウムヒドロキシド水溶液を用いて室温で10秒〜10分間現像し、さらに純水でリンスすることにより鮮明なポジ型パターンを得ることができる。   The photosensitive resin composition film is irradiated with i-line of a high-pressure mercury lamp at room temperature for 10 seconds to 1 hour through a photomask, and 0.05 to 10% by weight, preferably 0.1 to 5% by weight of tetramethylammonium. By developing with an aqueous hydroxide solution at room temperature for 10 seconds to 10 minutes and further rinsing with pure water, a clear positive pattern can be obtained.

現像については、従来公知の方法で行なえばよく、例えばアルカリ水溶液を用いてもよいがこれに限定されない。アルカリ水溶液を用いて現像を行なう際、露光部と未露光部の溶解度差が不十分な場合、鮮明なレリーフパターンが得られにくいことがある。この場合、適当なモノマーを用いて本発明に係るポリイミド前駆体を主成分とする共重合体を合成することで、アルカリ水溶液に対する溶解度を制御することが可能である。この際使用可能な共重合成分として特に限定されないが、フッ素基を含有するモノマーが好適に用いられる。   The development may be performed by a conventionally known method. For example, an alkaline aqueous solution may be used, but is not limited thereto. When developing with an aqueous alkali solution, if the difference in solubility between the exposed and unexposed areas is insufficient, a clear relief pattern may be difficult to obtain. In this case, it is possible to control the solubility in an alkaline aqueous solution by synthesizing a copolymer mainly composed of the polyimide precursor according to the present invention using an appropriate monomer. Although it does not specifically limit as a copolymerization component which can be used in this case, The monomer containing a fluorine group is used suitably.

基材上に形成されたポリイミド前駆体の微細パターンを空気中、窒素等の不活性ガス雰囲気中あるいは真空中、200℃〜430℃、好ましくは250℃〜400℃の温度で加熱硬化することで鮮明なポリイミド膜のパターンが得られる。この際、イミド化は脱水環化試薬を用いて化学的に行なうこともできる。即ち、ピリジン、トリエチルアミン等の塩基性触媒を含む無水酢酸中に、基材上に形成されたポリイミド前駆体膜を室温で1分〜数時間浸漬する方法によってもポリイミド膜のパターンを得ることができる。本発明に係る感光性樹脂組成物であって、感光剤としてDNQ系剤を含有するものは、特に微細パターン形成能、高いi線透過率、耐熱性、電気絶縁性を併せ持つため、バッファーコートの材料として好適に使用することができる。   By heating and curing a fine pattern of a polyimide precursor formed on a substrate in air, in an inert gas atmosphere such as nitrogen or in vacuum, at a temperature of 200 ° C. to 430 ° C., preferably 250 ° C. to 400 ° C. A clear polyimide film pattern is obtained. In this case, imidization can also be performed chemically using a dehydrating cyclization reagent. That is, the pattern of the polyimide film can also be obtained by a method of immersing the polyimide precursor film formed on the substrate in acetic anhydride containing a basic catalyst such as pyridine and triethylamine at room temperature for 1 minute to several hours. . The photosensitive resin composition according to the present invention, which contains a DNQ-based agent as a photosensitive agent, particularly has a fine pattern forming ability, high i-line transmittance, heat resistance, and electrical insulation. It can be suitably used as a material.

〔本発明に係るディスプレー用基板〕
本発明に係るディスプレー用基板は本発明に係るポリイミドを含有するものであればよい。本発明に係るディスプレー用基板は、透明性、柔軟性に優れているので、液晶ディスプレー、有機エレクトロルミネッセンスディスプレー等の種々のディスプレーに適用できる。これらはフレキシブルなディスプレーであってもよい。つまり、本発明に係るディスプレー用基板は、例えば、液晶ディスプレー用基板、有機エレクトロルミネッセンスディスプレー用基板、これらがフレキシブルに構成されたフレキシブルディスプレー用基板を包含し得る。
[Display Substrate According to the Present Invention]
The display substrate according to the present invention only needs to contain the polyimide according to the present invention. Since the display substrate according to the present invention is excellent in transparency and flexibility, it can be applied to various displays such as a liquid crystal display and an organic electroluminescence display. These may be flexible displays. That is, the display substrate according to the present invention can include, for example, a liquid crystal display substrate, an organic electroluminescence display substrate, and a flexible display substrate in which these are configured flexibly.

本発明に係るポリイミドをフレキシブル液晶ディスプレー用プラスチック基板に適用するために要求される特性として、ポリイミドのガラス転移温度は、230℃以上であることが好ましく、250℃以上であることがより好ましい。また透明性の指標である波長400nmにおける光透過率は好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%である。またポリイミド膜は膜靭性の指標として180°折曲試験により破断しなければ上記産業分野に適用可能であるが、引張試験において破断伸びが好ましくは10%以上、より好ましくは20%以上、更に好ましくは30%以上である。複屈折は0.01以下であれば上記ディスプレー等の光学材料に適用するのに重大な問題はないが、0.005以下であることがより好ましい。   As a characteristic required for applying the polyimide according to the present invention to a plastic substrate for a flexible liquid crystal display, the glass transition temperature of the polyimide is preferably 230 ° C. or higher, and more preferably 250 ° C. or higher. The light transmittance at a wavelength of 400 nm, which is an index of transparency, is preferably 60% or more, more preferably 70% or more, and still more preferably 80%. In addition, the polyimide film can be applied to the industrial field as long as it is not broken by a 180 ° bending test as an index of film toughness. However, the elongation at break in the tensile test is preferably 10% or more, more preferably 20% or more, and still more preferably. Is 30% or more. If the birefringence is 0.01 or less, there is no serious problem in applying to an optical material such as the above-mentioned display, but it is more preferably 0.005 or less.

〔本発明に係る集積回路の層間絶縁膜〕
本発明に係る集積回路の層間絶縁膜は、本発明に係るポリイミドを含有するものであればよい。
[Interlayer Insulating Film of Integrated Circuit According to the Present Invention]
The interlayer insulating film of the integrated circuit according to the present invention only needs to contain the polyimide according to the present invention.

本発明に係るポリイミドを集積回路の層間絶縁膜に適用するために要求される特性として、ポリイミドのガラス転移温度は、250℃以上であることが好ましく、300℃以上であることがより好ましい。またポリイミド膜は膜靭性の指標として180°折曲試験により破断しなければ、集積回路を使用する種々の産業分野に十分適用可能である。また誘電率は2.8以下であることが好ましく、2.7以下であることが更に好ましい。本発明に係るポリイミドは、集積回路のバッファーコートとしても利用可能である。   As a characteristic required for applying the polyimide according to the present invention to an interlayer insulating film of an integrated circuit, the glass transition temperature of the polyimide is preferably 250 ° C. or higher, and more preferably 300 ° C. or higher. In addition, the polyimide film is sufficiently applicable to various industrial fields using an integrated circuit unless it is broken by a 180 ° bending test as an index of film toughness. The dielectric constant is preferably 2.8 or less, and more preferably 2.7 or less. The polyimide according to the present invention can also be used as a buffer coat for integrated circuits.

〔本発明に係る液晶配向膜〕
本発明に係る液晶配向膜はポリイミドを含有するものであればよい。つまり、本発明に係るポリイミド前駆体又は本発明に係るポリイミドは、液晶配向膜材料に適用することが可能である。本発明に係るポリイミドは、ジアミン成分にフッ素基、スルホン基等を含むものを使用することで有機溶媒に対する溶解性を高めることができ、ポリイミドワニスを塗布・乾燥・ラビング処理することで、液晶配向膜とすることができる。
[Liquid crystal alignment film according to the present invention]
The liquid crystal alignment film according to the present invention only needs to contain polyimide. That is, the polyimide precursor according to the present invention or the polyimide according to the present invention can be applied to a liquid crystal alignment film material. The polyimide according to the present invention can improve solubility in organic solvents by using a diamine component containing a fluorine group, a sulfone group, etc., and by applying, drying and rubbing a polyimide varnish, liquid crystal alignment It can be a membrane.

本発明に係るポリイミドは脂環構造を有するため、ガラス転移温度は250℃以上であり、TFT型液晶ディスプレー、半導体チップの作製時に要求される短期耐熱性は充分高く、ディスプレー、半導体等に関連する産業分野への応用には全く問題がない。   Since the polyimide according to the present invention has an alicyclic structure, the glass transition temperature is 250 ° C. or higher, and the short-term heat resistance required for the production of TFT type liquid crystal displays and semiconductor chips is sufficiently high. There is no problem in industrial applications.

また、本発明に係るtt−CHTCAは、様々な産業分野において使用される各種ポリイミドの物性を大きく犠牲にすることなく分子量を高める目的で、共重合成分として使用することができる。   Moreover, the tt-CHTCA according to the present invention can be used as a copolymerization component for the purpose of increasing the molecular weight without greatly sacrificing the physical properties of various polyimides used in various industrial fields.

以下、本発明を実施例により具体的に説明するが、これら実施例に限定されるものではない。なお、以下の実施例及び比較例における物性値は、次の方法により測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, it is not limited to these Examples. In addition, the physical-property value in the following examples and comparative examples was measured with the following method.

<赤外吸収スペクトル>
フーリエ変換赤外分光光度計(島津製作所製FTIR−8400S、日本分光社製FT−IR5300又はFT−IR350)を用い、透過法にて本発明に係るtt−CHTCA、ポリイミド前駆体及びポリイミド薄膜の赤外吸収スペクトルを測定した。また、本発明に係るtt−CHTC及びtt−CHTCAの分子構造を確認するためにKBr法により赤外吸収スペクトルを測定した。
<Infrared absorption spectrum>
Using a Fourier transform infrared spectrophotometer (FTIR-8400S manufactured by Shimadzu Corporation, FT-IR5300 or FT-IR350 manufactured by JASCO Corporation), red of the tt-CHTCA, polyimide precursor and polyimide thin film according to the present invention by the transmission method The external absorption spectrum was measured. Moreover, in order to confirm the molecular structure of tt-CHTC and tt-CHTCA according to the present invention, an infrared absorption spectrum was measured by the KBr method.

<示差走査熱量分析(融点及び融解曲線)>
本発明に係るtt−CHTC及びtt−CHTCAの融点及び融解曲線は、ブルカーエイエックス社製示差走査熱量分析装置(DSC3100)を用いて、窒素雰囲気中、昇温速度2℃/分で測定した。
<Differential scanning calorimetry (melting point and melting curve)>
The melting points and melting curves of tt-CHTC and tt-CHTCA according to the present invention were measured using a differential scanning calorimeter (DSC3100) manufactured by Bruker Ax in a nitrogen atmosphere at a heating rate of 2 ° C./min.

<単結晶X線構造解析>
単結晶X線構造解析については、ブルカー・ジャパン社製、単結晶X線構造解析装置(SMART APEXII)を用い、測定温度294K、X線源CuKα線、管電圧50kV、管電流30mAで測定した。
<Single crystal X-ray structural analysis>
For single crystal X-ray structure analysis, measurement was performed at a measurement temperature of 294 K, an X-ray source CuKα ray, a tube voltage of 50 kV, and a tube current of 30 mA using a single crystal X-ray structure analyzer (SMART APEXII) manufactured by Bruker Japan.

<粉末X線回折パターン>
粉末X線回折パターンについてはブルカーエイエックスエス社製、粉末X線回折装置(M03XHF22)を用い、測定温度294K、X線源CuKα線、管電圧45kV、管電流40mA、サンプリングステップ0.02°、スキャン速度4°/分、測定範囲2θ=5〜60°で測定した。
<Powder X-ray diffraction pattern>
For the powder X-ray diffraction pattern, a powder X-ray diffractometer (M03XHF22) manufactured by Bruker AXS Co., Ltd. was used, measurement temperature 294K, X-ray source CuKα ray, tube voltage 45 kV, tube current 40 mA, sampling step 0.02 °, Measurement was performed at a scanning speed of 4 ° / min and a measurement range 2θ = 5 to 60 °.

<固有粘度>
0.5重量%のポリイミド前駆体溶液(溶媒:N,N−ジメチルアセトアミド又はNMP)について、オストワルド粘度計を用いて30℃で測定した。
<Intrinsic viscosity>
A 0.5 wt% polyimide precursor solution (solvent: N, N-dimethylacetamide or NMP) was measured at 30 ° C. using an Ostwald viscometer.

<ガラス転移温度:Tg>
ブルカーエイエックスエス社製熱機械分析装置(TMA4000)を用いて動的粘弾性測定により、周波数0.1Hz、昇温速度5℃/分における損失ピークからポリイミド膜のガラス転移温度を求めた。
<Glass transition temperature: Tg>
The glass transition temperature of the polyimide film was determined from the loss peak at a frequency of 0.1 Hz and a heating rate of 5 ° C./minute by dynamic viscoelasticity measurement using a thermomechanical analyzer (TMA4000) manufactured by Bruker AXS.

<線熱膨張係数:CTE>
ブルカーエイエックスエス社製熱機械分析装置(TMA4000)を用いて、熱機械分析により、荷重0.5g/膜厚1μm、昇温速度5℃/分における試験片の伸びより、100〜200℃の範囲での平均値としてポリイミド膜の線熱膨張係数を求めた。
<Linear thermal expansion coefficient: CTE>
By using a thermomechanical analyzer (TMA4000) manufactured by Bruker AXS Co., Ltd., the elongation of the test piece at a load of 0.5 g / film thickness of 1 μm and a heating rate of 5 ° C./min is 100 to 200 ° C. The linear thermal expansion coefficient of the polyimide film was determined as an average value in the range.

<5%重量減少温度:Td
ブルカーエイエックスエス社製熱重量分析装置(TG−DTA2000)を用いて、窒素中又は空気中、昇温速度10℃/分での昇温過程において、ポリイミド膜の初期重量が5%減少した時の温度を測定した。これらの値が高いほど、熱安定性が高いことを表す。
<5% weight loss temperature: Td 5 >
When the initial weight of the polyimide film is reduced by 5% in the temperature rising process at a heating rate of 10 ° C./min in nitrogen or air using a thermogravimetric analyzer (TG-DTA2000) manufactured by Bruker AXS The temperature of was measured. Higher values indicate higher thermal stability.

<カットオフ波長(透明性)>
日本分光社製紫外可視分光光度計(V−530)を用いて、200nmから900nmの可視・紫外線透過率を測定した。透過率が0.5%以下となる波長(カットオフ波長)を透明性の指標とした。カットオフ波長が短い程、ポリイミド膜の透明性が良好であることを意味する。
<Cutoff wavelength (transparency)>
Using a UV-visible spectrophotometer (V-530) manufactured by JASCO Corporation, the visible / ultraviolet transmittance from 200 nm to 900 nm was measured. The wavelength (cutoff wavelength) at which the transmittance was 0.5% or less was used as an index of transparency. The shorter the cutoff wavelength, the better the transparency of the polyimide film.

<光透過率(透明性)>
日本分光社製紫外可視分光光度計(V−530)を用いて、400nmにおける光透過率を測定した。透過率が高い程、ポリイミド膜の透明性が良好であることを意味する。
<Light transmittance (transparency)>
The light transmittance at 400 nm was measured using an ultraviolet-visible spectrophotometer (V-530) manufactured by JASCO Corporation. The higher the transmittance, the better the transparency of the polyimide film.

<複屈折>
アタゴ社製アッベ屈折計(4T)を用いて、ポリイミド膜に平行な方向(nin)と垂直な方向(nout)の屈折率をアッベ屈折計(ナトリウムランプ使用、波長589nm)で測定し、これらの屈折率の差から複屈折(Δn=nin−nout)を求めた。
<Birefringence>
Using an Abbe refractometer (4T) manufactured by Atago Co., Ltd., the refractive index in the direction parallel to the polyimide film (n in ) and the direction perpendicular to the polyimide film (n out ) is measured with an Abbe refractometer (using a sodium lamp, wavelength 589 nm) Birefringence (Δn = n in −n out ) was determined from the difference in refractive index.

<誘電率及び誘電損失>
アタゴ社製アッベ屈折計(4T)を用いて、ポリイミド膜の平均屈折率〔nav=(2nin+nout)/3〕に基づいて次式:εcal=1.1×navにより1MHzにおけるポリイミド膜の誘電率(εcal)を算出した。
<Dielectric constant and dielectric loss>
Using an Abbe refractometer (4T) manufactured by Atago Co., based on the average refractive index [nav = (2n in + n out ) / 3] of the polyimide film, a polyimide film at 1 MHz according to the following formula: εcal = 1.1 × nav 2 The dielectric constant (εcal) of was calculated.

<弾性率、破断強度、破断伸び>
東洋ボールドウィン社製引張試験機(テンシロンUTM−2)を用いて、ポリイミド膜の試験片(3mm×30mm)について引張試験(延伸速度:8mm/分)を実施し、応力―歪曲線の初期の勾配から弾性率を、膜が破断した時の伸び率から破断伸び(%)を求めた。破断伸びが高いほど膜の靭性が高いことを意味する。
<Elastic modulus, breaking strength, breaking elongation>
Using a tensile tester (Tensilon UTM-2) manufactured by Toyo Baldwin Co., Ltd., a tensile test (stretching speed: 8 mm / min) was performed on a polyimide film test piece (3 mm × 30 mm), and the initial slope of the stress-strain curve From the elongation, the elongation at break (%) was determined from the elongation at the time when the membrane was broken. Higher elongation at break means higher film toughness.

〔実施例1〕
本実施例1及び次の実施例2では、以下の合成経路(10)
[Example 1]
In this Example 1 and the following Example 2, the following synthesis route (10)

により本発明に係るtt−CHTCAを合成した。具体的には次の通りである。 Thus, tt-CHTCA according to the present invention was synthesized. Specifically, it is as follows.

まず、非特許文献2の記載にしたがい(1S,2R,4S,5R)−シクロヘキサンテトラカルボン酸を合成した。ピロメリット酸二無水物 465g、5%ロジウム/カーボン触媒 175gと蒸留水 2940gを容積5Lの撹拌機つきSUS316製オートクレーブに入れ、反応温度60℃、水素圧5MPaで水素化を行なった。1.5時間後、反応液を抜き出し、ろ過により触媒を除去した後、エバポレーターにより乾固し、(1S,2R,4S,5R)−シクロヘキサンテトラカルボン酸(式10(a))449gを得た。   First, (1S, 2R, 4S, 5R) -cyclohexanetetracarboxylic acid was synthesized according to the description in Non-Patent Document 2. 465 g of pyromellitic dianhydride, 175 g of 5% rhodium / carbon catalyst and 2940 g of distilled water were placed in a 5 L volume SUS316 autoclave with a stirrer, and hydrogenated at a reaction temperature of 60 ° C. and a hydrogen pressure of 5 MPa. After 1.5 hours, the reaction solution was taken out and the catalyst was removed by filtration, followed by drying with an evaporator to obtain 449 g of (1S, 2R, 4S, 5R) -cyclohexanetetracarboxylic acid (formula 10 (a)). .

次に、上記の(1S,2R,4S,5R)−シクロヘキサンテトラカルボン酸 38g(0.146モル)、水酸化ナトリウム 24g(0.600モル)及び蒸留水 108gを容積200mLの撹拌機つきSUS316製オートクレーブに入れ、窒素雰囲気下、230℃で5時間異性化反応を行なった。   Next, 38 g (0.146 mol) of (1S, 2R, 4S, 5R) -cyclohexanetetracarboxylic acid, 24 g (0.600 mol) of sodium hydroxide and 108 g of distilled water were made of SUS316 with a 200 mL capacity stirrer. The mixture was placed in an autoclave and subjected to isomerization reaction at 230 ° C. for 5 hours under a nitrogen atmosphere.

次に、異性化反応後の反応液を30℃まで冷却した後、当該反応液を容積500mLの三つ口フラスコに移して、撹拌しながら35%塩酸 63g(0.605モル)をゆっくりと滴下したところ、白色の析出物が生じた。さらにそのまま1時間撹拌を続けた。   Next, after cooling the reaction liquid after the isomerization reaction to 30 ° C., the reaction liquid is transferred to a three-necked flask having a volume of 500 mL, and 63 g (0.605 mol) of 35% hydrochloric acid is slowly added dropwise with stirring. As a result, a white precipitate was formed. Further, stirring was continued for 1 hour.

次に、攪拌後の反応液を吸引ろ過して、白色の析出物を回収した後、80℃で5時間減圧乾燥した。その結果、32.3gの白色粉末を得た。得られた白色粉末を0.5Nメタノール性塩酸中で加熱して、テトラメチルエステル化し、ガスクロマトグラフィにより分析した結果、(1S,2R,4S,5R)−シクロヘキサンテトラカルボン酸テトラメチルに相当するピークが完全に消失し、異なる位置に単一のピークが検出された。さらに、この白色粉末を水から再結晶し、単結晶X線構造解析を行った結果、tt−CHTCであることが確認された。その立体構造を図1に示す。また、図2及び3にNMRスペクトルを示す。図1は本実施例で得られたtt−CHTCの立体構造を示す図である。図2は本実施例で得られたtt−CHTCのH−NMRスペクトルを示す図、図3は本実施例で得られたtt−CHTCの13C−NMRスペクトルを示す図である。 Next, the reaction solution after stirring was subjected to suction filtration to collect a white precipitate, and then dried under reduced pressure at 80 ° C. for 5 hours. As a result, 32.3 g of white powder was obtained. The obtained white powder was heated in 0.5N methanolic hydrochloric acid to be converted into tetramethyl ester and analyzed by gas chromatography. As a result, a peak corresponding to tetramethyl (1S, 2R, 4S, 5R) -cyclohexanetetracarboxylate was obtained. Disappeared completely, and a single peak was detected at different positions. Furthermore, as a result of recrystallizing this white powder from water and performing single crystal X-ray structural analysis, it was confirmed to be tt-CHTC. The three-dimensional structure is shown in FIG. 2 and 3 show NMR spectra. FIG. 1 is a diagram showing the three-dimensional structure of tt-CHTC obtained in this example. FIG. 2 is a diagram showing a 1 H-NMR spectrum of tt-CHTC obtained in this example, and FIG. 3 is a diagram showing a 13 C-NMR spectrum of tt-CHTC obtained in this example.

また、上記異性化反応のモル収率は85%であった。   The molar yield of the isomerization reaction was 85%.

〔実施例2〕
実施例1で得られたtt−CHTC 25g(0.096モル)と無水酢酸 75g(0.735モル)とを容積200mLのフラスコに入れて混合することで懸濁液を得た。当該懸濁液を80℃のオイルバスで7時間加熱、撹拌した。
[Example 2]
A suspension was obtained by mixing 25 g (0.096 mol) of tt-CHTC obtained in Example 1 and 75 g (0.735 mol) of acetic anhydride in a 200-mL flask. The suspension was heated and stirred in an oil bath at 80 ° C. for 7 hours.

次に、攪拌後の懸濁液を30℃まで冷却した後、ろ過して、ろ別した白色粉末を80℃で5時間減圧乾燥させた。その結果、18.1gの白色粉末が得られた。   Next, after the suspension after stirring was cooled to 30 ° C., it was filtered and the filtered white powder was dried under reduced pressure at 80 ° C. for 5 hours. As a result, 18.1 g of white powder was obtained.

得られた白色粉末の赤外吸収スペクトル測定の結果、カルボキシル基由来の3000cm−1付近のO−H伸縮振動が消え、1869cm−1と1790cm−1に吸収帯が見られた。これらは五員環構造の酸無水物C=O伸縮振動に特徴的な吸収帯であり、上記反応により、五員環構造の酸無水物が合成されたことを示している。また、当該白色粉末は有機溶剤への溶解度、熱安定性が低く、結晶性が悪いため、単結晶X線構造解析に好適な結晶を得ることができなかった。そこで、当該白色粉末5g、蒸留水55gと4−ジメチルアミノピリジン0.05gを100mLナス型フラスコに入れ、80℃で24時間加熱し、加水分解物(テトラカルボン酸)を合成した。こうして得られた均一水溶液を30℃まで冷却した後、析出した結晶を分取し、粉末X線解析を行った結果、実施例1で得られた白色粉末と同じ回折パターンを示し、この加水分解生成物(テトラカルボン酸)と実施例1に記載のテトラカルボン酸の立体構造は同一であることが確認された。即ち、実施例1の立体構造は無水化反応後も保持されていることを示している。つまり、無水化反応により得られた白色粉末はtt−CHTCAである。上記の無水化反応のモル収率は84%であった。次に、tt−CHTCAの赤外吸収スペクトル及びNMRスペクトルを測定した。結果を図4〜6に示す。図4は本実施例で得られたtt−CHTCAの赤外吸収スペクトルを示す図であり、図5はH−NMRスペクトルを示す図であり、図6は13C−NMRスペクトルを示す図である。また、実施例1で得たtt−CHTCと、これを無水化後加水分解して得られたテトラカルボン酸の粉末X線回折パターンをそれぞれ測定した。結果を図7、図8に示す。図7は無水化前のtt−CHTCの粉末X線回折パターンを示す図であり、図8はtt−CHTCAの加水分解物のX線回折パターンを示す図である。 As a result of measuring the infrared absorption spectrum of the obtained white powder, the O—H stretching vibration near 3000 cm −1 derived from the carboxyl group disappeared, and absorption bands were observed at 1869 cm −1 and 1790 cm −1 . These are absorption bands characteristic of five-membered ring acid anhydrides C = O stretching vibrations, and indicate that five-membered ring acid anhydrides were synthesized by the above reaction. In addition, the white powder has low solubility in organic solvents, low thermal stability, and poor crystallinity, so that a crystal suitable for single crystal X-ray structural analysis could not be obtained. Therefore, 5 g of the white powder, 55 g of distilled water and 0.05 g of 4-dimethylaminopyridine were placed in a 100 mL eggplant type flask and heated at 80 ° C. for 24 hours to synthesize a hydrolyzate (tetracarboxylic acid). The homogeneous aqueous solution thus obtained was cooled to 30 ° C., and the precipitated crystals were collected and subjected to powder X-ray analysis. As a result, this hydrolysis pattern showed the same diffraction pattern as that of the white powder obtained in Example 1. It was confirmed that the stereostructure of the product (tetracarboxylic acid) and the tetracarboxylic acid described in Example 1 were the same. That is, the three-dimensional structure of Example 1 is retained after the dehydration reaction. That is, the white powder obtained by the dehydration reaction is tt-CHTCA. The molar yield of the above dehydration reaction was 84%. Next, the infrared absorption spectrum and NMR spectrum of tt-CHTCA were measured. The results are shown in FIGS. 4 is a diagram showing an infrared absorption spectrum of tt-CHTCA obtained in this example, FIG. 5 is a diagram showing a 1 H-NMR spectrum, and FIG. 6 is a diagram showing a 13 C-NMR spectrum. is there. Moreover, the powder X-ray-diffraction pattern of tt-CHTC obtained in Example 1 and the tetracarboxylic acid obtained by dehydrating and hydrolyzing this was measured, respectively. The results are shown in FIGS. FIG. 7 is a diagram showing a powder X-ray diffraction pattern of tt-CHTC before dehydration, and FIG. 8 is a diagram showing an X-ray diffraction pattern of a hydrolyzate of tt-CHTCA.

〔実施例3〕
容積5Lの撹拌機つきSUS316製オートクレーブに、水酸化ナトリウム 530g(13.25モル)と蒸留水 2500gを入れ、撹拌した。得られた水酸化ナトリウム水溶液に、ピロメリット酸二無水物 715g(3.28モル)、5%ルテニウム/カーボン触媒 28.6gを入れ、反応温度160℃、水素圧8MPaで水素化を行った。水素吸収は3時間で停止した。次に、水素化反応液を220℃まで昇温し、さらに4時間反応を続け、30℃まで冷却した後、反応液を抜き出した。
Example 3
530 g (13.25 mol) of sodium hydroxide and 2500 g of distilled water were placed in a 5 L SUS316 autoclave equipped with a stirrer and stirred. To the obtained aqueous sodium hydroxide solution, 715 g (3.28 mol) of pyromellitic dianhydride and 28.6 g of 5% ruthenium / carbon catalyst were added, and hydrogenated at a reaction temperature of 160 ° C. and a hydrogen pressure of 8 MPa. Hydrogen absorption stopped after 3 hours. Next, the temperature of the hydrogenation reaction solution was raised to 220 ° C., and the reaction was continued for another 4 hours.

ろ過により触媒を除去した後、得られた反応液を容積10Lの三つ口フラスコに移して、撹拌しながら35%塩酸 1400g(13.44モル)をゆっくりと滴下したところ、白色の析出物が生じた。さらにそのまま1時間撹拌を続けた。   After removing the catalyst by filtration, the obtained reaction solution was transferred to a three-necked flask with a volume of 10 L, and 1400 g (13.44 mol) of 35% hydrochloric acid was slowly added dropwise with stirring. occured. Further, stirring was continued for 1 hour.

次に、攪拌後の反応液を吸引ろ過して、白色の析出物を回収した後、80℃で5時間減圧乾燥した。その結果、676gの白色粉末を得た。得られた白色粉末を0.5Nメタノール性塩酸中で加熱して、テトラメチルエステル化し、ガスクロマトグラフィにより分析した結果、得られた白色粉末はtt−CHTCであることが確認された。上記異性化反応のモル収率は81%であった。また、得られた白色粉末はナトリウムを1991ppm含んでいた。   Next, the reaction solution after stirring was subjected to suction filtration to collect a white precipitate, and then dried under reduced pressure at 80 ° C. for 5 hours. As a result, 676 g of white powder was obtained. The obtained white powder was heated in 0.5N methanolic hydrochloric acid to be converted into tetramethyl ester and analyzed by gas chromatography. As a result, it was confirmed that the obtained white powder was tt-CHTC. The molar yield of the isomerization reaction was 81%. The obtained white powder contained 1991 ppm of sodium.

次に、得られたtt−CHTC 300gと蒸留水 1500gとを容積2Lのフラスコに入れ、100℃で2時間撹拌した。得られた均一溶液を撹拌しながら、ゆっくりと30℃まで冷却した後、析出した結晶をろ過した。得られた結晶を80℃で5時間減圧乾燥した結果、227.7gの白色結晶が得られた。上記の再結晶の収率は76%、ナトリウム含有量は5ppmであった。   Next, 300 g of the obtained tt-CHTC and 1500 g of distilled water were put into a 2 L flask and stirred at 100 ° C. for 2 hours. The obtained homogeneous solution was slowly cooled to 30 ° C. while stirring, and then the precipitated crystals were filtered. The obtained crystals were dried under reduced pressure at 80 ° C. for 5 hours. As a result, 227.7 g of white crystals were obtained. The yield of the above recrystallization was 76%, and the sodium content was 5 ppm.

得られた二無水物の結晶 200g(0.77モル)と無水酢酸 800g(7.84モル)とを容積2Lのフラスコに入れ、80℃のオイルバスで7時間加熱、撹拌した。得られた懸濁液を30℃まで冷却した後、ろ過して、ろ別した白色粉末を80℃で5時間減圧乾燥させた。その結果、148.2gのtt−CHTCAが得られた。上記の無水化反応のモル収率は87%であった。また、ICP質量分析により金属含有量を測定した結果、鉄:810ppb、ニッケル:検出せず、クロム:560ppb、ルテニウム:検出せず、ナトリウム:320ppbであった。   200 g (0.77 mol) of the obtained dianhydride crystals and 800 g (7.84 mol) of acetic anhydride were placed in a 2 L flask, heated and stirred in an oil bath at 80 ° C. for 7 hours. The obtained suspension was cooled to 30 ° C., filtered, and the filtered white powder was dried under reduced pressure at 80 ° C. for 5 hours. As a result, 148.2 g of tt-CHTCA was obtained. The molar yield of the above dehydration reaction was 87%. As a result of measuring the metal content by ICP mass spectrometry, iron: 810 ppb, nickel: not detected, chromium: 560 ppb, ruthenium: not detected, and sodium: 320 ppb.

〔実施例4〕
実施例1で合成した(1S,2R,4S,5R)−シクロヘキサンテトラカルボン酸 2.0gと蒸留水 8.0gを容積50mLの撹拌機つきハステロイ製オートクレーブに入れ、窒素雰囲気下、230℃で7時間異性化反応を行なった。
Example 4
(1S, 2R, 4S, 5R) -cyclohexanetetracarboxylic acid (2.0 g) synthesized in Example 1 and distilled water (8.0 g) were placed in a 50 mL capacity Hastelloy autoclave with a stirrer, and the reaction was performed at 230 ° C. under a nitrogen atmosphere. A time isomerization reaction was performed.

さらに、20℃まで冷却した後、析出した結晶をろ過した。回収したろ物を100℃で5時間減圧乾燥した結果、1.4gの淡褐色粉末が得られた。得られた淡褐色粉末をメチルエステル化し、ガスクロマトグラフィにより分析した結果、当該粉末はtt−CHTCであり、純度は87%であることがわかった。このときのモル収率は67%であった。   Furthermore, after cooling to 20 ° C., the precipitated crystals were filtered. The collected filtrate was dried under reduced pressure at 100 ° C. for 5 hours. As a result, 1.4 g of a light brown powder was obtained. The obtained light brown powder was methyl esterified and analyzed by gas chromatography. As a result, it was found that the powder was tt-CHTC and the purity was 87%. The molar yield at this time was 67%.

〔実施例5〕
まず、特許文献2(実施例4)を参考に(1S,2R,4S,5R)−シクロヘキサンテトラカルボン酸テトラメチルを次のように合成した。ピロメリット酸二無水物 15gとメタノール 50gを容積200mLの撹拌機つきSUS316製オートクレーブに入れ、220℃で1時間エステル化を行なった。この溶液に5%ルテニウム/カーボン 0.3gを入れ、温度130℃、水素圧10MPaで3時間水素化を行った。次に、ろ過により触媒を除去し、得られた溶液をエバポレーターで乾固し、白色固体を得た。得られた固体を冷メタノールで洗い、減圧乾燥することで、(1S,2R,4S,5R)−シクロヘキサンテトラカルボン酸テトラメチル 15.8gを得た。
Example 5
First, tetramethyl (1S, 2R, 4S, 5R) -cyclohexanetetracarboxylate was synthesized as follows with reference to Patent Document 2 (Example 4). Pyromellitic dianhydride (15 g) and methanol (50 g) were placed in a 200 mL volume SUS316 autoclave with a stirrer and esterified at 220 ° C. for 1 hour. This solution was charged with 0.3 g of 5% ruthenium / carbon and hydrogenated at a temperature of 130 ° C. and a hydrogen pressure of 10 MPa for 3 hours. Next, the catalyst was removed by filtration, and the resulting solution was dried with an evaporator to obtain a white solid. The obtained solid was washed with cold methanol and dried under reduced pressure to obtain 15.8 g of tetramethyl (1S, 2R, 4S, 5R) -cyclohexanetetracarboxylate.

次に、得られた(1S,2R,4S,5R)−シクロヘキサンテトラカルボン酸テトラメチル 10g(0.032モル)、ナトリウムメトキサイド 1g(0.019モル)、及び脱水メタノール 50gを容積200mLのフラスコに入れ、当該懸濁液を80℃のオイルバスで4時間還流させた。   Next, 10 g (0.032 mol) of tetramethyl (1S, 2R, 4S, 5R) -cyclohexanetetracarboxylate, 1 g (0.019 mol) of sodium methoxide, and 50 g of dehydrated methanol were added to a flask having a volume of 200 mL. The suspension was refluxed in an oil bath at 80 ° C. for 4 hours.

さらに、20℃まで冷却した後、当該懸濁液をろ過し、白色粉末を回収した後、50℃で5時間減圧乾燥した結果、2.5gの白色結晶が得られた。ガスクロマトグラフィにより分析した結果、当該粉末はtt−CHTCテトラメチルであり、純度は98%であることがわかった。このときのモル収率は25%であった。   Furthermore, after cooling to 20 ° C., the suspension was filtered to collect a white powder, and then dried under reduced pressure at 50 ° C. for 5 hours. As a result, 2.5 g of white crystals were obtained. As a result of analysis by gas chromatography, it was found that the powder was tt-CHTC tetramethyl and the purity was 98%. The molar yield at this time was 25%.

〔実施例6〕
よく乾燥した攪拌機付密閉反応容器中にp−フェニレンジアミン(以下「PDA」と称する)5mmolをNMPに溶解し、この溶液に実施例2で得たtt−CHTCAの粉末5mmolを徐々に加え、室温で72時間攪拌することで均一・透明で粘稠なポリイミド前駆体溶液が得られた。この際の溶質濃度は12.2重量%である。このポリイミド前駆体溶液は室温及び−20℃で一ヶ月間放置しても沈澱、ゲル化は全く起こらず、極めて高い溶液貯蔵安定を示した。NMP中、30℃で測定したポリイミド前駆体の固有粘度は1.60/gであり、高重合体であった。
Example 6
In a well-dried sealed reaction vessel with a stirrer, 5 mmol of p-phenylenediamine (hereinafter referred to as “PDA”) was dissolved in NMP, and 5 mmol of the tt-CHTCA powder obtained in Example 2 was gradually added to the solution. The mixture was stirred for 72 hours to obtain a uniform, transparent and viscous polyimide precursor solution. The solute concentration at this time is 12.2% by weight. This polyimide precursor solution did not precipitate or gel at all even when left at room temperature and at -20 ° C for one month, and showed extremely high solution storage stability. The intrinsic viscosity of the polyimide precursor measured in NMP at 30 ° C. was 1.60 / g, which was a high polymer.

このポリイミド前駆体溶液をガラス基板に塗布し、80℃、2時間で温風乾燥して得たポリイミド前駆体膜を真空中200℃で20分、250℃で30分、続いて320℃又は350℃で1時間熱処理することでイミド化した。これにより膜厚約20μmの透明で強靭なポリイミド膜を得た。イミド化の完結は赤外吸収スペクトルから確認した。180°折り曲げ試験によりこのポリイミド膜は破断せず、可撓性を示した。表1にポリイミドフィルムの物性値を示す。ガラス転移温度407℃、カットオフ波長292nm、400nmでの透過率64.6%、破断伸び30.8%、複屈折Δn=0.0056、誘電率は2.82であり優れた特性を示した。その他の物性も表1に示す。   The polyimide precursor solution obtained by applying this polyimide precursor solution to a glass substrate and drying with hot air at 80 ° C. for 2 hours is 20 minutes at 200 ° C. in vacuum, 30 minutes at 250 ° C., and then 320 ° C. or 350 ° C. It imidized by heat-processing at 1 degreeC for 1 hour. As a result, a transparent and tough polyimide film having a film thickness of about 20 μm was obtained. The completion of imidization was confirmed from the infrared absorption spectrum. The polyimide film was not broken by a 180 ° bending test and showed flexibility. Table 1 shows the physical property values of the polyimide film. Glass transition temperature of 407 ° C., cutoff wavelength of 292 nm, transmittance at 400 nm of 64.6%, elongation at break of 30.8%, birefringence Δn = 0.0006, dielectric constant of 2.82 and excellent characteristics . Other physical properties are also shown in Table 1.

また、ポリイミド前駆体及びポリイミド薄膜の赤外吸収スペクトルを測定した。結果を図9及び図10に示す。図9は本実施例で得たポリイミド前駆体(tt−CHTCA+PDA)の赤外吸収スペクトルを示す図であり、図10は本実施例で得たポリイミド薄膜(tt−CHTCA+PDA)の赤外吸収スペクトルを示す図である。 Moreover, the infrared absorption spectrum of the polyimide precursor and the polyimide thin film was measured. The results are shown in FIGS. FIG. 9 is a diagram showing the infrared absorption spectrum of the polyimide precursor (tt-CHTCA + PDA) obtained in this example, and FIG. 10 shows the infrared absorption spectrum of the polyimide thin film (tt-CHTCA + PDA) obtained in this example. FIG.

〔実施例7〕
ジアミンとしてPDAの代わりに、4,4’−オキシジアニリン(以下、「ODA」と称する)を用いた以外は、実施例6に記載した方法に準じて重合を行い高い固有粘度値(1.52dL/g)のポリイミド前駆体を得た。これを実施例6に記載した方法と同様にキャスト・イミド化してポリイミド膜を作製し、物性を評価した。物性値を表1に示す。高いTg、高い透明性、十分な膜靭性、低い複屈折を示した。
Example 7
Polymerization was carried out according to the method described in Example 6 except that 4,4′-oxydianiline (hereinafter referred to as “ODA”) was used as the diamine instead of PDA, and a high intrinsic viscosity value (1. A polyimide precursor of 52 dL / g) was obtained. This was cast and imidized in the same manner as described in Example 6 to produce a polyimide film, and the physical properties were evaluated. The physical property values are shown in Table 1. It exhibited high Tg, high transparency, sufficient film toughness, and low birefringence.

また、ポリイミド前駆体及びポリイミド薄膜の赤外吸収スペクトルを測定した。結果を図11及び図12に示す。図11は本実施例で得たポリイミド前駆体(tt−CHTCA+ODA)の赤外吸収スペクトルを示す図であり、図12は本実施例で得たポリイミド薄膜(tt−CHTCA+ODA)の赤外吸収スペクトルを示す図である。   Moreover, the infrared absorption spectrum of the polyimide precursor and the polyimide thin film was measured. The results are shown in FIG. 11 and FIG. FIG. 11 is a diagram showing an infrared absorption spectrum of the polyimide precursor (tt-CHTCA + ODA) obtained in this example, and FIG. 12 shows an infrared absorption spectrum of the polyimide thin film (tt-CHTCA + ODA) obtained in this example. FIG.

〔実施例8〕
ジアミンとしてPDAの代わりに、2,2’−ビス(トリフルオロメチル)ベンジジン(以下、「TFMB」と称する)を用いた以外は、実施例6に記載した方法に準じて重合を行い、極めて高い固有粘度値(2.43dL/g)のポリイミド前駆体を得た。このポリイミド前駆体溶液に化学イミド化試薬(無水酢酸/ピリジン混合溶液、体積比7/3)を滴下し、室温で24時間攪拌してイミド化を行った。このポリイミド溶液を大量の水中に滴下して沈殿させ、洗浄・濾過・乾燥してポリイミドを粉末として単離した。イミド化の完結は赤外吸収スペクトルから確認した。このポリイミド粉末をシクロペンタノンに溶解してワニスとし、実施例6に記載した方法と同様な条件でキャスト・イミド化してポリイミド膜を作製し、物性を評価した。物性値を表1に示す。非常に高いTg,極めて高い透明性、非常に高い膜靭性、極めて低い誘電率を示した。このポリイミドはトリフルオロメチル基を有しているため、有機溶媒性即ち溶液加工性が高く、NMP、DMAc、DMF、DMSO、シクロペンタノン、シクロヘキサノン等に室温で高い溶解性を示した。また、ポリイミド前駆体及びポリイミド薄膜の赤外吸収スペクトルを測定した。結果を図13及び図14に示す。図13は本実施例で得たポリイミド前駆体(tt−CHTCA+TFMB)の赤外吸収スペクトルを示す図であり、図14は本実施例で得たポリイミド薄膜(tt−CHTCA+TFMB)の赤外吸収スペクトルを示す図である。
Example 8
Polymerization was carried out according to the method described in Example 6 except that 2,2′-bis (trifluoromethyl) benzidine (hereinafter referred to as “TFMB”) was used as the diamine instead of PDA. A polyimide precursor having an intrinsic viscosity value (2.43 dL / g) was obtained. A chemical imidization reagent (acetic anhydride / pyridine mixed solution, volume ratio 7/3) was dropped into the polyimide precursor solution, and the mixture was stirred at room temperature for 24 hours for imidization. This polyimide solution was dropped into a large amount of water to precipitate, washed, filtered and dried to isolate the polyimide as a powder. The completion of imidization was confirmed from the infrared absorption spectrum. This polyimide powder was dissolved in cyclopentanone to form a varnish, and cast and imidized under the same conditions as described in Example 6 to produce a polyimide film, and the physical properties were evaluated. The physical property values are shown in Table 1. It showed very high Tg, very high transparency, very high film toughness and very low dielectric constant. Since this polyimide has a trifluoromethyl group, it has high organic solvent properties, that is, solution processability, and showed high solubility at room temperature in NMP, DMAc, DMF, DMSO, cyclopentanone, cyclohexanone, and the like. Moreover, the infrared absorption spectrum of the polyimide precursor and the polyimide thin film was measured. The results are shown in FIGS. FIG. 13 is a diagram showing an infrared absorption spectrum of the polyimide precursor (tt-CHTCA + TFMB) obtained in this example, and FIG. 14 shows an infrared absorption spectrum of the polyimide thin film (tt-CHTCA + TFMB) obtained in this example. FIG.

〔実施例9〕
ジアミンとしてPDAの代わりに、1,4−ビス(4−アミノフェノキシ)ベンゼン (以下BAPBと称する)を用いた以外は、実施例6に記載した方法に準じて重合を行い、非常に高い固有粘度値(1.84dL/g)のポリイミド前駆体を得た。これを実施例6に記載した方法と同様にキャスト・イミド化してポリイミド膜を作製し、物性を評価した。物性値を表1に示す。高いTg,高い透明性、十分な膜靭性、極めて低い複屈折を示した。また、ポリイミド前駆体及びポリイミド薄膜の赤外吸収スペクトルを測定した。結果を図15及び図16に示す。図15は本実施例で得たポリイミド前駆体(tt−CHTCA+BAPB)の赤外吸収スペクトルを示す図であり、図16は本実施例で得たポリイミド薄膜(tt−CHTCA+BAPB)の赤外吸収スペクトルを示す図である。
Example 9
Except for using 1,4-bis (4-aminophenoxy) benzene (hereinafter referred to as BAPB) in place of PDA as the diamine, polymerization was performed according to the method described in Example 6 and very high intrinsic viscosity was obtained. A polyimide precursor having a value (1.84 dL / g) was obtained. This was cast and imidized in the same manner as described in Example 6 to produce a polyimide film, and the physical properties were evaluated. The physical property values are shown in Table 1. It exhibited high Tg, high transparency, sufficient film toughness, and extremely low birefringence. Moreover, the infrared absorption spectrum of the polyimide precursor and the polyimide thin film was measured. The results are shown in FIGS. FIG. 15 is a diagram showing an infrared absorption spectrum of the polyimide precursor (tt-CHTCA + BAPB) obtained in this example, and FIG. 16 shows an infrared absorption spectrum of the polyimide thin film (tt-CHTCA + BAPB) obtained in this example. FIG.

〔実施例10〕
ジアミンとしてPDAの代わりに、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン(以下、「BAPP」と称する)を用いた以外は、実施例6に記載した方法に準じて重合を行い、非常に高い固有粘度値(1.84dL/g)のポリイミド前駆体を得た。これを実施例6に記載した方法と同様にキャスト・イミド化してポリイミド膜を作製し、物性を評価した。物性値を表1に示す。高いTg、高い透明性、極めて高い膜靭性(破断伸び:114%)、極めて低い複屈折を示した。また、ポリイミド前駆体及びポリイミド薄膜の赤外吸収スペクトルを測定した。結果を図17及び図18に示す。図17は本実施例で得たポリイミド前駆体(tt−CHTCA+BAPP)の赤外吸収スペクトルを示す図であり、図18は本実施例で得たポリイミド薄膜(tt−CHTCA+BAPP)の赤外吸収スペクトルを示す図である。
Example 10
Polymerization was carried out according to the method described in Example 6 except that 2,2-bis (4- (4-aminophenoxy) phenyl) propane (hereinafter referred to as “BAPP”) was used as the diamine instead of PDA. And a polyimide precursor having a very high intrinsic viscosity value (1.84 dL / g) was obtained. This was cast and imidized in the same manner as described in Example 6 to produce a polyimide film, and the physical properties were evaluated. The physical property values are shown in Table 1. It exhibited high Tg, high transparency, extremely high film toughness (elongation at break: 114%), and extremely low birefringence. Moreover, the infrared absorption spectrum of the polyimide precursor and the polyimide thin film was measured. The results are shown in FIGS. FIG. 17 is a diagram showing an infrared absorption spectrum of the polyimide precursor (tt-CHTCA + BAPP) obtained in this example, and FIG. 18 shows an infrared absorption spectrum of the polyimide thin film (tt-CHTCA + BAPP) obtained in this example. FIG.

〔実施例11〕
ジアミンとしてPDAの代わりに、ビス(4−(4−アミノフェノキシ)フェニル)スルホン(以下、「BAPS」と称する)を用いた以外は、実施例6に記載した方法に準じて重合を行ない、高い固有粘度値(1.44dL/g)のポリイミド前駆体を得た。これを実施例6に記載した方法と同様にキャスト・イミド化してポリイミド膜を作製し、物性を評価した。物性値を表1に示す。高いTg,非常に高い透明性、高い膜靭性、極めて低い複屈折を示した。このポリイミドは極性の高いスルホン基を有しているため、有機溶媒性即ち溶液加工性が高く、NMP等に室温で高い溶解性を示した。また、ポリイミド前駆体及びポリイミド薄膜の赤外吸収スペクトルを測定した。結果を図19及び図20に示す。図19は本実施例で得たポリイミド前駆体(tt−CHTCA+BAPS)の赤外吸収スペクトルを示す図であり、図20は本実施例で得たポリイミド薄膜(tt−CHTCA+BAPS)の赤外吸収スペクトルを示す図である。
Example 11
Polymerization was carried out according to the method described in Example 6 except that bis (4- (4-aminophenoxy) phenyl) sulfone (hereinafter referred to as “BAPS”) was used instead of PDA as the diamine. A polyimide precursor having an intrinsic viscosity value (1.44 dL / g) was obtained. This was cast and imidized in the same manner as described in Example 6 to produce a polyimide film, and the physical properties were evaluated. The physical property values are shown in Table 1. It exhibited high Tg, very high transparency, high film toughness, and extremely low birefringence. Since this polyimide has a highly polar sulfone group, it has high organic solvent properties, that is, solution processability, and showed high solubility in NMP and the like at room temperature. Moreover, the infrared absorption spectrum of the polyimide precursor and the polyimide thin film was measured. The results are shown in FIGS. FIG. 19 is a diagram showing an infrared absorption spectrum of the polyimide precursor (tt-CHTCA + BAPS) obtained in this example, and FIG. 20 shows an infrared absorption spectrum of the polyimide thin film (tt-CHTCA + BAPS) obtained in this example. FIG.

〔実施例12〕
ジアミンとしてPDAの代わりに、4,4’−メチレンビス(シクロヘキシルアミン)(以下、「MBCHA」と称する)を用いた以外は、実施例6に記載した方法に準じて重合を行なった。重合初期に塩形成が見られたが、室温で攪拌することで徐々に塩が溶解して固有粘度値(0.669dL/g)の均一なポリイミド前駆体を得た。これを実施例6に記載した方法と同様にキャスト・イミド化してポリイミド膜を作製し、物性を評価した。物性値を表1に示す。非常に高いTg,非常に高い透明性、十分な膜靭性、極めて低い複屈折を示した。また、ポリイミド前駆体及びポリイミド薄膜の赤外吸収スペクトルを測定した。結果を図21及び図22に示す。図21は本実施例で得たポリイミド前駆体(tt−CHTCA+MBCHA)の赤外吸収スペクトルを示す図であり、図22は本実施例で得たポリイミド薄膜(tt−CHTCA+MBCHA)の赤外吸収スペクトルを示す図である。
Example 12
Polymerization was carried out according to the method described in Example 6 except that 4,4′-methylenebis (cyclohexylamine) (hereinafter referred to as “MBCHA”) was used as the diamine instead of PDA. Although salt formation was observed at the initial stage of polymerization, the salt was gradually dissolved by stirring at room temperature to obtain a polyimide precursor having a uniform intrinsic viscosity (0.669 dL / g). This was cast and imidized in the same manner as described in Example 6 to produce a polyimide film, and the physical properties were evaluated. The physical property values are shown in Table 1. It exhibited very high Tg, very high transparency, sufficient film toughness and very low birefringence. Moreover, the infrared absorption spectrum of the polyimide precursor and the polyimide thin film was measured. The results are shown in FIG. 21 and FIG. FIG. 21 is a diagram showing an infrared absorption spectrum of the polyimide precursor (tt-CHTCA + MBCHA) obtained in this example, and FIG. 22 shows an infrared absorption spectrum of the polyimide thin film (tt-CHTCA + MBCHA) obtained in this example. FIG.

〔実施例13〕
十分に乾燥させた攪拌機付密閉反応容器中に4,4’−オキシジアニリン(以下、「ODA」と称する)5mmolをDMAcに溶解し、反応溶液を調製した。この反応溶液に実施例2で得たtt‐CHTCAの粉末2.5mmolと、非特許文献2に従い製造した(1S,2R,4S,5R)−シクロヘキサンテトラカルボン酸を無水化して得られたcc−CHTCA2.5mmolとの混合物を徐々に加え、室温で72時間攪拌することによって、均一かつ透明であり、粘稠なポリイミド前駆体溶液が得られた。DMAc中、30℃で測定したポリイミド前駆体の固有粘度は0.512dL/gであった。
Example 13
In a fully dried sealed reaction vessel with a stirrer, 5 mmol of 4,4′-oxydianiline (hereinafter referred to as “ODA”) was dissolved in DMAc to prepare a reaction solution. In this reaction solution, cc-obtained by dehydrating 2.5 mmol of tt-CHTCA powder obtained in Example 2 and (1S, 2R, 4S, 5R) -cyclohexanetetracarboxylic acid prepared according to Non-Patent Document 2. By gradually adding a mixture with 2.5 mmol of CHTCA and stirring at room temperature for 72 hours, a uniform, transparent and viscous polyimide precursor solution was obtained. The intrinsic viscosity of the polyimide precursor measured at 30 ° C. in DMAc was 0.512 dL / g.

このポリイミド前駆体溶液をガラス基板に塗布し、60℃、2時間で温風乾燥して得たポリイミド前駆体膜を真空中200℃で30分、続いて250℃で30分、さらに320℃で1時間熱処理することによってイミド化した。これにより透明で強靭なポリイミドフィルムを得た。イミド化の完結は赤外吸収スペクトルから確認した。各物性としては、ガラス転移温度336℃、線熱膨張係数CTE=53ppm/K、5%重量減少温度454℃(窒素中)及び434℃(空気中)、カットオフ波長294nm、400nmでの透過率80.8%、複屈折Δn=0.0005、誘電率は2.87calであった。   The polyimide precursor solution obtained by applying this polyimide precursor solution to a glass substrate and drying it with warm air at 60 ° C. for 2 hours was vacuum-treated at 200 ° C. for 30 minutes, followed by 250 ° C. for 30 minutes, and further at 320 ° C. Imidization was performed by heat treatment for 1 hour. As a result, a transparent and tough polyimide film was obtained. The completion of imidization was confirmed from the infrared absorption spectrum. Each physical property includes a glass transition temperature of 336 ° C., a linear thermal expansion coefficient CTE = 53 ppm / K, a 5% weight loss temperature of 454 ° C. (in nitrogen) and 434 ° C. (in air), a transmittance at a cutoff wavelength of 294 nm and 400 nm. The refractive index was 80.8%, birefringence Δn = 0.0005, and the dielectric constant was 2.87 cal.

このように、種々の異性体を有するCHTCA中にtt−CHTCAを含有していれば、従来知られていたCHTCAを用いたポリイミドの優れた物性を損なうことなく、高分子量のポリイミドを得ることができることが示された。   Thus, if tt-CHTCA is contained in CHTCA having various isomers, a high molecular weight polyimide can be obtained without impairing the excellent physical properties of the polyimide using CHTCA which has been conventionally known. It was shown that it can be done.

〔比較例1〕
実施例1で得られた(1S,2R,4S,5R)−シクロヘキサンテトラカルボン酸を無水酢酸中130℃で無水化し、(1S,2R,4S,5R)−シクロヘキサンテトラカルボン酸二無水物を得た。
[Comparative Example 1]
The (1S, 2R, 4S, 5R) -cyclohexanetetracarboxylic acid obtained in Example 1 was dehydrated in acetic anhydride at 130 ° C. to obtain (1S, 2R, 4S, 5R) -cyclohexanetetracarboxylic dianhydride. It was.

tt−CHTCAの代わりに、上記の(1S,2R,4S,5R)−シクロヘキサンテトラカルボン酸二無水物を用い、ジアミン成分としてTFMBを用いて、実施例8に記載した方法と同様にポリイミド前駆体の重合を行った。しかしながら得られたポリイミド前駆体の固有粘度値は0.101dL/gと非常に低く、このワニスを用いてガラス基板上に製膜を試みたが、フィルムに無数の亀裂が入り、製膜不能であった。これはtt−CHTCAを使用しなかったため、ポリイミド前駆体の分子量が十分に上がらなかったためである。また実施例6に記載した方法と同様にキャストして、イミド化を行い、ポリイミド粉末をシクロペンタノンに溶解してワニスとし、製膜を試みたがやはり無数の亀裂が入り、製膜不能であった。   In place of tt-CHTCA, (1S, 2R, 4S, 5R) -cyclohexanetetracarboxylic dianhydride was used, and TFMB was used as the diamine component, and the polyimide precursor was used in the same manner as described in Example 8. Was polymerized. However, the intrinsic viscosity value of the obtained polyimide precursor was as extremely low as 0.101 dL / g, and an attempt was made to form a film on a glass substrate using this varnish, but the film had numerous cracks and could not be formed. there were. This is because the molecular weight of the polyimide precursor was not sufficiently increased because tt-CHTCA was not used. In addition, casting was performed in the same manner as described in Example 6, imidization was performed, polyimide powder was dissolved in cyclopentanone to form a varnish, and an attempt was made to form a film. there were.

〔比較例2〕
ジアミン成分としてTFMBの代わりにPDAを使用した以外は比較例1に記載した方法に従ってポリイミド前駆体を重合した。しかしながら固有粘度値は0.33dL/gと非常に低く、製膜を試みたが比較例1と同様製膜不能であった。これはtt−CHTCAを使用しなかったため、ポリイミド前駆体の分子量が十分に上がらなかったためである。
[Comparative Example 2]
A polyimide precursor was polymerized according to the method described in Comparative Example 1 except that PDA was used instead of TFMB as the diamine component. However, the intrinsic viscosity was as low as 0.33 dL / g, and although film formation was attempted, film formation was impossible as in Comparative Example 1. This is because the molecular weight of the polyimide precursor was not sufficiently increased because tt-CHTCA was not used.

〔比較例3〕
ジアミン成分としてTFMBの代わりにODAを使用した以外は比較例1に記載した方法に従ってポリイミド前駆体を重合した。しかしながら固有粘度値は0.41dL/gと低い値であった。これはtt−CHTCAを使用しなかったため、ポリイミド前駆体の分子量が十分に上がらなかったためである。
[Comparative Example 3]
A polyimide precursor was polymerized according to the method described in Comparative Example 1 except that ODA was used instead of TFMB as the diamine component. However, the intrinsic viscosity value was a low value of 0.41 dL / g. This is because the molecular weight of the polyimide precursor was not sufficiently increased because tt-CHTCA was not used.

本発明に係るtt−CHTCAは、ポリイミドの原料として優れているので、化学品、繊維、試薬等に関する化学分野に広く応用することが可能である。   Since tt-CHTCA according to the present invention is excellent as a raw material for polyimide, it can be widely applied in the chemical field concerning chemicals, fibers, reagents and the like.

実施例1で得たtt−CHTCの立体構造を示す図である。2 is a diagram showing a three-dimensional structure of tt-CHTC obtained in Example 1. FIG. 実施例1で得たtt−CHTCのH−NMRスペクトルを示す図である。1 is a diagram showing a 1 H-NMR spectrum of tt-CHTC obtained in Example 1. FIG. 実施例1で得たtt−CHTCの13C−NMRスペクトルを示す図である。2 is a diagram showing a 13 C-NMR spectrum of tt-CHTC obtained in Example 1. FIG. 実施例2で得たtt−CHTCAの赤外吸収スペクトルを示す図である。2 is a graph showing an infrared absorption spectrum of tt-CHTCA obtained in Example 2. FIG. 実施例2で得たtt−CHTCAのH−NMRスペクトルを示す図である。2 is a diagram showing a 1 H-NMR spectrum of tt-CHTCA obtained in Example 2. FIG. 実施例2で得たtt−CHTCAの13C−NMRスペクトルを示す図である。4 is a diagram showing a 13 C-NMR spectrum of tt-CHTCA obtained in Example 2. FIG. 実施例2で得た無水化前のtt−CHTCの粉末X線回折パターンを示す図である。4 is a diagram showing a powder X-ray diffraction pattern of tt-CHTC obtained in Example 2 before dehydration. FIG. 実施例2で得たtt−CHTCAの加水分解物のX線回折パターンを示す図である。2 is a diagram showing an X-ray diffraction pattern of a tt-CHTCA hydrolyzate obtained in Example 2. FIG. 実施例6で得たポリイミド前駆体(tt−CHTCA+PDA)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide precursor (tt-CHTCA + PDA) obtained in Example 6. FIG. 実施例6で得たポリイミド薄膜(tt−CHTCA+PDA)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide thin film (tt-CHTCA + PDA) obtained in Example 6. 実施例7で得たポリイミド前駆体(tt−CHTCA+ODA)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide precursor (tt-CHTCA + ODA) obtained in Example 7. 実施例7で得たポリイミド薄膜(tt−CHTCA+ODA)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide thin film (tt-CHTCA + ODA) obtained in Example 7. 実施例8で得たポリイミド前駆体(tt−CHTCA+TFMB)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide precursor (tt-CHTCA + TFMB) obtained in Example 8. 実施例8で得たポリイミド薄膜(tt−CHTCA+TFMB)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide thin film (tt-CHTCA + TFMB) obtained in Example 8. 実施例9で得たポリイミド前駆体(tt−CHTCA+BAPB)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide precursor (tt-CHTCA + BAPB) obtained in Example 9. 実施例9で得たポリイミド薄膜(tt−CHTCA+BAPB)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide thin film (tt-CHTCA + BAPB) obtained in Example 9. 実施例10で得たポリイミド前駆体(tt−CHTCA+BAPP)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide precursor (tt-CHTCA + BAPP) obtained in Example 10. 実施例10で得たポリイミド薄膜(tt−CHTCA+BAPP)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide thin film (tt-CHTCA + BAPP) obtained in Example 10. 実施例11で得たポリイミド前駆体(tt−CHTCA+BAPS)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide precursor (tt-CHTCA + BAPS) obtained in Example 11. 実施例11で得たポリイミド薄膜(tt−CHTCA+BAPS)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide thin film (tt-CHTCA + BAPS) obtained in Example 11. 実施例12で得たポリイミド前駆体(tt−CHTCA+MBCHA)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide precursor (tt-CHTCA + MBCHA) obtained in Example 12. 実施例12で得たポリイミド薄膜(tt−CHTCA+MBCHA)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polyimide thin film (tt-CHTCA + MBCHA) obtained in Example 12.

Claims (19)

(1S,2S,4R,5R)−シクロヘキサンテトラカルボン酸二無水物。   (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic dianhydride. (1S,2S,4R,5R)−シクロヘキサンテトラカルボン酸二無水物を50%以上含有することを特徴とする1,2,4,5−シクロヘキサンテトラカルボン酸二無水物。   1,2,4,5-cyclohexanetetracarboxylic dianhydride characterized by containing 50% or more of (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic dianhydride. (1S,2S,4R,5R)−シクロヘキサンテトラカルボン酸。   (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic acid. 1,2,4,5−シクロヘキサンテトラカルボン酸のシス−シス−シス体及びこれを含む異性体混合物のうち、少なくとも一方のテトラ塩を、加熱することで異性化反応させることを特徴とする(1S,2S,4R,5R)−シクロヘキサンテトラカルボン酸の製造方法。   Of the cis-cis-cis isomers of 1,2,4,5-cyclohexanetetracarboxylic acid and the isomer mixture containing the cis-cis-cis isomer, at least one tetra salt is subjected to an isomerization reaction by heating (characterized in that 1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic acid production method. 1,2,4,5−シクロヘキサンテトラカルボン酸のシス−シス−シス体及びこれを含む異性体混合物のうち、少なくとも一方のテトラエステルを加熱することで異性化反応させることを特徴とする(1S,2S,4R,5R)−シクロヘキサンテトラカルボン酸の製造方法。   Among the cis-cis-cis isomers of 1,2,4,5-cyclohexanetetracarboxylic acid and the isomer mixture containing the isomer, the isomerization reaction is performed by heating at least one tetraester (1S). , 2S, 4R, 5R) -cyclohexanetetracarboxylic acid production method. 異性化反応の際、塩基性触媒を用いることを特徴とする請求項4に記載の(1S,2S,4R,5R)−シクロヘキサンテトラカルボン酸の製造方法。   The method for producing (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic acid according to claim 4, wherein a basic catalyst is used in the isomerization reaction. 上記塩基性触媒として、アルカリ金属アルコキサイドを用いることを特徴とする請求項6に記載の(1S,2S,4R,5R)−シクロヘキサンテトラカルボン酸の製造方法。   7. The method for producing (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic acid according to claim 6, wherein an alkali metal alkoxide is used as the basic catalyst. (1S,2S,4R,5R)−シクロヘキサンテトラカルボン酸を、脱水剤存在下で加熱することで無水化反応させる工程を含むことを特徴とする(1S,2S,4R,5R)−シクロヘキサンテトラカルボン酸二無水物の製造方法。   (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic acid comprising a step of dehydration reaction by heating in the presence of a dehydrating agent. Method for producing acid dianhydride. (1S,2S,4R,5R)−シクロヘキサンテトラカルボン酸を、脱水剤存在下で加熱することにより無水化反応させる工程を含むことを特徴とするテトラカルボン酸二無水物の製造方法。   A method for producing a tetracarboxylic dianhydride, comprising a step of dehydrating a (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic acid by heating in the presence of a dehydrating agent. 請求項9に記載の製造方法で製造されたテトラカルボン酸二無水物。   The tetracarboxylic dianhydride manufactured with the manufacturing method of Claim 9. 一般式(1)
(上記一般式(1)中、Xは4価のシクロヘキサン基を表し、Rは水素原子、トリアルキルシリル基、又は炭素数1〜12の直鎖状、分岐状若しくは環状のアルキル基若しくはアルコキシル基を表し、Aは2価の芳香族基又は脂肪族基を表し、上記Xの立体配置は、以下の式(2)で表され、
上記Xと、上記Xと結合している2つのアミド基及び2つのカルボキシル基と、の結合位置は下記式(3)又は(4)のいずれかで表される
(式(3)及び(4)において、Yは上記Xに結合する2つのアミド基を示し、Zは上記Xに結合する2つのカルボキシル基を表す))
で表される繰り返し単位を有するポリイミド前駆体。
General formula (1)
(In the above general formula (1), X represents a tetravalent cyclohexane group, and R represents a hydrogen atom, a trialkylsilyl group, or a linear, branched or cyclic alkyl group or alkoxyl group having 1 to 12 carbon atoms. A represents a divalent aromatic group or aliphatic group, and the configuration of X is represented by the following formula (2):
The bonding position between the X and the two amide groups and two carboxyl groups bonded to the X is represented by either the following formula (3) or (4).
(In formulas (3) and (4), Y represents two amide groups bonded to X, and Z represents two carboxyl groups bonded to X))
The polyimide precursor which has a repeating unit represented by these.
一般式(5)
(式(5)中、Xは4価のシクロヘキサン基を表し、Aは2価の芳香族基又は脂肪族基を表し、上記Xの立体配置は下記式(2)で表される。)
で表される繰り返し単位を有するポリイミド。
General formula (5)
(In formula (5), X represents a tetravalent cyclohexane group, A represents a divalent aromatic group or aliphatic group, and the configuration of X is represented by the following formula (2).)
The polyimide which has a repeating unit represented by these.
1,2,4,5−シクロヘキサンテトラカルボン酸二無水物を合成原料として得られるポリイミド前駆体であって、上記1,2,4,5−シクロヘキサンテトラカルボン酸二無水物が請求項10に記載のテトラカルボン酸二無水物を50%以上含有することを特徴とするポリイミド前駆体。   A polyimide precursor obtained by using 1,2,4,5-cyclohexanetetracarboxylic dianhydride as a synthesis raw material, wherein the 1,2,4,5-cyclohexanetetracarboxylic dianhydride is the claim 10. A polyimide precursor containing 50% or more of the above tetracarboxylic dianhydride. 1,2,4,5−シクロヘキサンテトラカルボン酸二無水物を合成原料として得られるポリイミドであって、上記1,2,4,5−シクロヘキサンテトラカルボン酸二無水物が請求項10に記載のテトラカルボン酸二無水物を50%以上含有することを特徴とするポリイミド。   A polyimide obtained using 1,2,4,5-cyclohexanetetracarboxylic dianhydride as a synthesis raw material, wherein the 1,2,4,5-cyclohexanetetracarboxylic dianhydride is a tetramer according to claim 10. A polyimide containing 50% or more of carboxylic dianhydride. 請求項11又は13に記載のポリイミド前駆体及び感光剤を含有することを特徴とする感光性樹脂組成物。   A photosensitive resin composition comprising the polyimide precursor according to claim 11 or 13 and a photosensitive agent. 請求項15に記載の感光性樹脂組成物を、基材上にパターン露光して、パターン露光後に現像して、現像後に加熱硬化することにより得られるものであるパターンが形成されていることを特徴とする構造体。   The photosensitive resin composition according to claim 15 is patterned on a substrate, developed after pattern exposure, and a pattern obtained by heating and curing after development is formed. A structure 請求項12又は14に記載のポリイミドを含有するものであることを特徴とするディスプレー用基板。   A display substrate comprising the polyimide according to claim 12 or 14. 請求項12又は14に記載のポリイミドを含有するものであることを特徴とする集積回路の層間絶縁膜。   An interlayer insulating film for an integrated circuit, comprising the polyimide according to claim 12. 請求項12又は14に記載のポリイミドを含有するものであることを特徴とする液晶配向膜。   15. A liquid crystal alignment film comprising the polyimide according to claim 12 or 14.
JP2008328334A 2008-01-18 2008-12-24 Novel (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic dianhydride and use thereof Active JP5315496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328334A JP5315496B2 (en) 2008-01-18 2008-12-24 Novel (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic dianhydride and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008009732 2008-01-18
JP2008009732 2008-01-18
JP2008328334A JP5315496B2 (en) 2008-01-18 2008-12-24 Novel (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic dianhydride and use thereof

Publications (2)

Publication Number Publication Date
JP2009191253A JP2009191253A (en) 2009-08-27
JP5315496B2 true JP5315496B2 (en) 2013-10-16

Family

ID=41073552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328334A Active JP5315496B2 (en) 2008-01-18 2008-12-24 Novel (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic dianhydride and use thereof

Country Status (1)

Country Link
JP (1) JP5315496B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5325460B2 (en) * 2008-05-27 2013-10-23 和光純薬工業株式会社 Novel (1R, 2S, 4S, 5R) -cyclohexanetetracarboxylic dianhydride and use thereof
JP5015070B2 (en) * 2008-06-06 2012-08-29 株式会社カネカ Novel coating type optical compensation film and method for producing the same
JP5325491B2 (en) * 2008-08-01 2013-10-23 株式会社カネカ Novel coating type optical compensation film and method for producing the same
JP2010085992A (en) * 2008-09-08 2010-04-15 Toyobo Co Ltd Optical transmission material and optical waveguide using the same
JP5287692B2 (en) * 2008-12-26 2013-09-11 Jsr株式会社 Polyimide material, composition and film, and method for producing the same
JP5630139B2 (en) * 2009-08-18 2014-11-26 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5428643B2 (en) * 2009-08-24 2014-02-26 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2011046877A (en) * 2009-08-28 2011-03-10 Mitsubishi Chemicals Corp Dicyclohexyl-3, 3', 4, 4'-tetracarboxylic acid dianhydride-containing composition, and polyamic acid and polyimide resin obtained from the same
JP5849391B2 (en) 2010-01-19 2016-01-27 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP2012224755A (en) * 2011-04-20 2012-11-15 Hitachi Chemical Dupont Microsystems Ltd Highly transparent polyimide precursor and resin composition using the same, polyimide molded article and method for producing the molding, plastic substrate, protective film, and electronic component and display device having the film
JP2013067718A (en) * 2011-09-22 2013-04-18 Mitsubishi Gas Chemical Co Inc Optical laminated film
JP2015013908A (en) * 2011-11-09 2015-01-22 日産化学工業株式会社 4,4'-sulfonyl diphenyl ester acid dianhydride, method for producing the same and polyimide
KR101545666B1 (en) * 2012-02-16 2015-08-19 가부시키가이샤 가네카 Diamine, polyimide, and polyimide film and utilization thereof
JP5884979B2 (en) * 2012-03-09 2016-03-15 Jsr株式会社 (1R, 2S, 4S, 5R) Method for producing cyclohexanetetracarboxylic dianhydride
JP6580808B2 (en) * 2012-06-19 2019-09-25 日鉄ケミカル&マテリアル株式会社 Display device and manufacturing method thereof
KR101777443B1 (en) 2014-02-13 2017-09-26 주식회사 엘지화학 Polyimide and substrate for display prepared by using same
KR101838333B1 (en) * 2014-02-13 2018-03-13 주식회사 엘지화학 Polyimide-based film and mehtod for preparing same
KR101787807B1 (en) * 2014-02-13 2017-10-18 주식회사 엘지화학 Polyimide-based film and mehtod for preparing same
KR101813310B1 (en) 2014-06-09 2017-12-28 주식회사 엘지화학 Composition for forming polyimide-based film and polyimide-based film prepared by using same
JP6693676B2 (en) * 2016-05-09 2020-05-13 三菱瓦斯化学株式会社 Polyimide and polyimide film
JP7400678B2 (en) * 2020-09-25 2023-12-19 東洋インキScホールディングス株式会社 Thermosetting compositions, thermosetting sheets, cured products, cured sheets and printed wiring boards
CN115894512A (en) * 2022-12-21 2023-04-04 大连奇凯医药科技有限公司 Synthesis and detection method of 1,2,4,5-cyclohexanetetracarboxylic dianhydride

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824540A (en) * 1981-08-06 1983-02-14 Dai Ichi Seiyaku Co Ltd Preparation of trans-hexyhydroterephthalic acid
JP3747493B2 (en) * 1995-05-31 2006-02-22 新日本理化株式会社 Process for producing alicyclic polycarboxylic acid and acid anhydride thereof
JP2001228481A (en) * 1999-12-09 2001-08-24 Jsr Corp Liquid crystal alignment film and liquid crystal display device
JP4815690B2 (en) * 2001-04-26 2011-11-16 新日本理化株式会社 Polyimide, polyimide precursor and method for producing them
JP4513256B2 (en) * 2001-12-04 2010-07-28 三菱化学株式会社 Process for producing trans-1,4-cyclohexanedicarboxylic acid
JP4639697B2 (en) * 2004-08-31 2011-02-23 新日本理化株式会社 Imide group-containing diamine, imide group-containing polyimide precursor, positive photosensitive resin composition containing the precursor, method for producing positive pattern, and electronic component
JP4490217B2 (en) * 2004-09-14 2010-06-23 富士フイルム株式会社 Optical film and image display device

Also Published As

Publication number Publication date
JP2009191253A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5315496B2 (en) Novel (1S, 2S, 4R, 5R) -cyclohexanetetracarboxylic dianhydride and use thereof
JP5325460B2 (en) Novel (1R, 2S, 4S, 5R) -cyclohexanetetracarboxylic dianhydride and use thereof
KR102062939B1 (en) Polyimide and molded body thereof
US9023974B2 (en) Ester group-containing tetracarboxylic acid dianhydride, novel polyesterimide precursor derived therefrom, and polyesterimide
JP4868183B2 (en) Novel fluorinated tetracarboxylic dianhydride, polyimide precursor obtained therefrom, polyimide and its use
JP2008231327A (en) Polyimide having high transparency and its manufacturing method
JP5320668B2 (en) Tetracarboxylic acid compound, polyimide thereof, and production method thereof
JP2007169585A (en) Polyesterimide having low liner thermal expansion coefficient and precursor thereof, and method for producing them
JP2008297231A (en) Hydroxyamide group-containing alicyclic polyimide, precursor of the same, positive type photosensitive resin composition by using them and their cured materials
TWI788288B (en) Polyimide resin
JP5666076B2 (en) Bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic dianhydride, its production method, said bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic Polyimide obtained from acid dianhydride and use thereof
JP2009286854A (en) Polyesterimide precursor and polyesterimide
JP2007091701A (en) Tetracarboxylic acid containing fluorenyl group and ester group, polyester imide precursor containing fluorenyl group, polyester imide containing fluorenyl group and method for producing the same
JP2008101187A (en) Polyesterimide and method for producing the same
CN111902457A (en) Polyimide resin, polyimide varnish, and polyimide film
JP4699321B2 (en) Ester group-containing polyimide, precursor thereof, and production method thereof
JP7384170B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP4961726B2 (en) Polyimide precursor and polyimide, and polyimide-based plastic substrate and method for producing the same.
JP2008280261A (en) Polyimide having hydroxyamide group, precursor thereof, photosensitive resin composition using them, and cured product thereof
TWI708769B (en) Novel tetracarboxylic dianhydride, polyimide derived from the same and compact constructed by the polyimide
JP4858678B2 (en) Ester group-containing poly (imide-azomethine) copolymer, ester group-containing poly (amide acid-azomethine) copolymer, and positive photosensitive resin composition
CN111989353A (en) Polyamide-imide resin, polyamide-imide varnish, and polyamide-imide film
JP2008163088A (en) Ester group-containing alicyclic tetracarboxylic acid anhydride and method for producing the same
JP2009286853A (en) Polyesterimide precursor and polyesterimide
JP7359602B2 (en) Diamine compound and its manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5315496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250