JP5270634B2 - Method for producing lithium titanate and method for producing lithium battery - Google Patents
Method for producing lithium titanate and method for producing lithium battery Download PDFInfo
- Publication number
- JP5270634B2 JP5270634B2 JP2010234224A JP2010234224A JP5270634B2 JP 5270634 B2 JP5270634 B2 JP 5270634B2 JP 2010234224 A JP2010234224 A JP 2010234224A JP 2010234224 A JP2010234224 A JP 2010234224A JP 5270634 B2 JP5270634 B2 JP 5270634B2
- Authority
- JP
- Japan
- Prior art keywords
- slurry
- lithium
- lithium titanate
- compound
- titanate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、リチウム電池の電極材料などに有用な化合物であるチタン酸リチウムを工業的有利に製造する方法、ならびにその方法で得られたチタン酸リチウムを用いてなるリチウム電池に関する。 The present invention relates to a method for industrially producing lithium titanate, which is a useful compound for an electrode material of a lithium battery, and a lithium battery using the lithium titanate obtained by the method.
リチウム二次電池は、エネルギー密度が高く、充放電サイクル特性に優れていることから、近年急速に普及している。リチウム二次電池としては、コバルト酸リチウムやマンガン酸リチウムを電極活物質に用いた4V級の高電圧型が一般的である。一方、電子機器類は回路駆動電圧の低電圧化が進みつつあり、電子機器分野のリチウム二次電池は前記の高電圧型から低電圧型への代替が検討されている。チタン酸リチウムは安定性、安全性に優れ、しかも低電圧型に適しているので、これを電極活物質に用いたリチウム二次電池の開発が期待されている。ところで、電池の電極は、電極活物質、導電材、バインダーなどを混合した後、成型する方法、電極活物質、導電材などをバインダーを溶解した媒液中で分散させた後、塗布する方法などにより製造される。いずれの方法においても、電極活物質のタップ密度が高ければ、充填性に優れ、電池の単位体積当たりの電池容量を大きくすることができ、また、一般的に、粉体はその粒子径を大きくすると、タップ密度が高くなるので、大粒子径のチタン酸リチウムが求められている。 Lithium secondary batteries have been rapidly spreading in recent years because of their high energy density and excellent charge / discharge cycle characteristics. As the lithium secondary battery, a 4V class high voltage type using lithium cobalt oxide or lithium manganate as an electrode active material is generally used. On the other hand, the circuit drive voltage of electronic devices has been decreasing, and replacement of the lithium secondary battery in the electronic device field from the high voltage type to the low voltage type has been studied. Since lithium titanate is excellent in stability and safety and is suitable for a low voltage type, development of a lithium secondary battery using this as an electrode active material is expected. By the way, the electrode of a battery is a method in which an electrode active material, a conductive material, a binder, etc. are mixed and then molded, a method in which an electrode active material, a conductive material, etc. are dispersed in a liquid medium in which the binder is dissolved, and then applied. Manufactured by. In any method, if the tap density of the electrode active material is high, the filling property is excellent and the battery capacity per unit volume of the battery can be increased. In general, the powder has a large particle size. Then, since the tap density increases, a large particle size lithium titanate is required.
大粒子径のチタン酸リチウムの製造方法としては、アナターゼ型酸化チタンとリチウム化合物とを含むスラリーを噴霧乾燥した後、加熱焼成して、二次粒子の平均粒子径が1〜50μmの範囲にある球状二次粒子を得る方法(特許文献1参照)、チタン酸化合物とリチウム化合物とを含むスラリーを噴霧乾燥する際に、塩素を添加し、その後、加熱焼成して二次粒子の平均粒子径が0.5〜100μmの範囲にある球状二次粒子を得る方法(特許文献2参照)が知られている。 As a method for producing a large particle size lithium titanate, a slurry containing anatase-type titanium oxide and a lithium compound is spray-dried and then heated and fired so that the average particle size of secondary particles is in the range of 1 to 50 μm. A method for obtaining spherical secondary particles (see Patent Document 1), when spray-drying a slurry containing a titanate compound and a lithium compound, chlorine is added, and then heated and fired to obtain an average particle size of the secondary particles. A method of obtaining spherical secondary particles in the range of 0.5 to 100 μm (see Patent Document 2) is known.
特許文献1に記載の方法では、チタン源としてアナターゼ型酸化チタンを用いており、このため、噴霧乾燥時の収縮率が小さく、中空状のチタン酸リチウムの二次粒子が生成し易いため、十分なタップ密度が得られていない。一方、特許文献2に記載の方法では、チタン源にチタン酸化合物を用いることで、所望のタップ密度を有するチタン酸リチウムの二次粒子が得られる。この方法では、濃縮、再分散等の技術的な問題や粘度の点でチタン酸化合物の濃度をあまり高くできない。また、チタン酸化合物は反応性が高いので、リチウム化合物と常温下で混合するだけでも部分的に反応が進むが、濃度を高くするとスラリーが増粘して均一な反応が阻害され、電池特性が優れたチタン酸リチウムが得られ難い、あるいはゲル化が生じて反応自体が困難になるので、希薄な濃度でリチウム化合物と反応させる必要があり大量生産には不向きであった。 In the method described in Patent Document 1, anatase-type titanium oxide is used as a titanium source. For this reason, the shrinkage rate during spray drying is small, and hollow lithium titanate secondary particles are easily generated. Tap density is not obtained. On the other hand, in the method described in Patent Literature 2, secondary particles of lithium titanate having a desired tap density can be obtained by using a titanate compound as a titanium source. In this method, the concentration of the titanate compound cannot be increased so much in terms of technical problems such as concentration and redispersion, and viscosity. In addition, since titanic acid compounds are highly reactive, the reaction proceeds partially even if they are mixed with a lithium compound at room temperature. However, if the concentration is increased, the slurry thickens and the uniform reaction is hindered, and the battery characteristics are reduced. Since excellent lithium titanate is difficult to obtain or gelation occurs and the reaction itself becomes difficult, it is necessary to react with a lithium compound at a dilute concentration, which is not suitable for mass production.
本発明者は、これらの問題点を解決すべく、鋭意研究を重ねた結果、チタン化合物とリチウム化合物とを含むスラリーを乾燥造粒した後、加熱焼成してチタン酸リチウムを製造する方法において、チタン化合物として結晶性酸化チタンとチタン酸化合物とを含むものを用い、該スラリーの調製を45℃より低い温度下で行うと、チタン源の濃度を高くでき、工業的に有利な方法であること、しかも調製したスラリーを乾燥造粒した後、加熱焼成して得られるチタン酸リチウムは、タップ密度が高く充填性が優れたものであることを見出し、本発明を完成させた。 In order to solve these problems, the present inventor has conducted extensive research and as a result, after drying and granulating a slurry containing a titanium compound and a lithium compound, the method of producing lithium titanate by heating and firing, When a slurry containing crystalline titanium oxide and a titanic acid compound is used as the titanium compound and the slurry is prepared at a temperature lower than 45 ° C., the concentration of the titanium source can be increased, and this is an industrially advantageous method. In addition, the lithium titanate obtained by drying and granulating the prepared slurry, followed by heating and firing was found to have a high tap density and excellent fillability, and the present invention was completed.
即ち、本発明は、チタン化合物とリチウム化合物とを含むスラリーを乾燥造粒した後、加熱焼成してチタン酸リチウムを製造する方法において、チタン化合物として結晶性酸化チタンとチタン酸化合物とを含むものを用い、該スラリーの調製を45℃より低い温度下で行うことを特徴とするチタン酸リチウムの製造方法である。 That is, the present invention relates to a method for producing lithium titanate by drying and granulating a slurry containing a titanium compound and a lithium compound, followed by heating and firing, and containing crystalline titanium oxide and a titanate compound as the titanium compound. And the slurry is prepared at a temperature lower than 45 ° C.
本発明は充填性が高く電池特性が優れたチタン酸リチウムを工業的に有利に製造することができ、このチタン酸リチウムを電極活物質として用いると、電池特性が優れたリチウム電池が得られる。 INDUSTRIAL APPLICABILITY The present invention can industrially advantageously produce lithium titanate having high filling properties and excellent battery characteristics. When this lithium titanate is used as an electrode active material, a lithium battery having excellent battery characteristics can be obtained.
本発明はチタン酸リチウムの製造方法であって、チタン化合物とリチウム化合物とを含むスラリーを乾燥造粒した後、加熱焼成してチタン酸リチウムを製造する方法において、チタン化合物として結晶性酸化チタンとチタン酸化合物とを含むものを用い、該スラリーの調製を45℃より低い温度下で行うことを特徴とする。本発明により、リチウム化合物が存在するスラリー中でもチタン成分の濃度を高くでき、また、チタン源として結晶性酸化チタンを用いても、タップ密度が高く充填性が優れ、電池特性に優れた二次粒子からなるチタン酸リチウムを工業的に有利に生産できる。例えば、チタン酸化合物とリチウム化合物とをスラリー中で混合する方法では、チタン成分の濃度をTiO2換算で最大でも60g/リットルにまでしかできないが、本発明ではチタン化合物として結晶性酸化チタンとチタン酸化合物とを含むものを用いることで、チタン成分の濃度の合計を、TiO2換算で70〜300g/リットルの範囲、好ましくは100〜250g/リットルの範囲にすることができる。 The present invention is a method for producing lithium titanate, in which a slurry containing a titanium compound and a lithium compound is dried and granulated and then heated and fired to produce lithium titanate. A slurry containing a titanic acid compound is used, and the slurry is prepared at a temperature lower than 45 ° C. According to the present invention, the concentration of the titanium component can be increased even in a slurry containing a lithium compound, and even when crystalline titanium oxide is used as a titanium source, secondary particles having high tap density, excellent filling properties, and excellent battery characteristics. The lithium titanate consisting of can be industrially advantageously produced. For example, in a method in which a titanic acid compound and a lithium compound are mixed in a slurry, the concentration of the titanium component can only be up to 60 g / liter in terms of TiO 2 , but in the present invention, crystalline titanium oxide and titanium are used as the titanium compound. By using one containing an acid compound, the total concentration of titanium components can be in the range of 70 to 300 g / liter, preferably 100 to 250 g / liter in terms of TiO 2 .
本発明においては、まず、チタン化合物とリチウム化合物とを含むスラリーの調製において、チタン化合物として結晶性酸化チタンとチタン酸化合物とを含むものを用い、該スラリーの調製を45℃より低い温度で行う(第1の工程)。スラリー化に用いる媒液には水またはアルコール等の有機溶媒、あるいはそれらの混合物を用いることができ、特に制限は無いが、工業的には水を用いるのが好ましい。リチウム化合物、チタン酸化合物、結晶性酸化チタンの添加順序は、リチウム化合物と結晶性酸化チタンとを含むスラリーに、チタン酸化合物を添加するか、または、リチウム化合物を含むスラリーに、並行添加したり、混合物として添加する等してチタン酸化合物と結晶性酸化チタンとを同時に添加すると、増粘やゲル化が一層生じ難く、チタン源を高濃度にし易いので好ましい。結晶性酸化チタンの添加量は、チタン酸化合物に対し重量比で同量以上にすると、工業的に有利にチタン酸リチウムを生産できる。また、その添加量が4倍量より大きいと、タップ密度の大きいチタン酸リチウムが得られ難く、また、高温で焼成しないと均一な組成のチタン酸リチウムが得られ難くなり、生成する二次粒子を焼結させる要因となるので、最大で4倍量とするのが好ましい。前記スラリーの調整は、45℃より低い温度で行うと、リチウム化合物とチタン酸化合物との反応が進み難いので、スラリー粘度が適度なものとなり室温以下に保持すると更に好ましい。 In the present invention, first, in preparing a slurry containing a titanium compound and a lithium compound, a slurry containing crystalline titanium oxide and a titanic acid compound is used as the titanium compound, and the slurry is prepared at a temperature lower than 45 ° C. (First step). Water or an organic solvent such as alcohol, or a mixture thereof can be used for the liquid medium used for slurrying, but there is no particular limitation, but it is preferable industrially to use water. The order of addition of the lithium compound, titanic acid compound and crystalline titanium oxide is such that the titanic acid compound is added to the slurry containing the lithium compound and crystalline titanium oxide, or the slurry is added in parallel to the slurry containing the lithium compound. It is preferable to add the titanic acid compound and the crystalline titanium oxide at the same time, for example, by adding them as a mixture because thickening and gelation are less likely to occur and the concentration of the titanium source is easily increased. When the amount of crystalline titanium oxide added is equal to or greater than the titanic acid compound by weight, lithium titanate can be produced industrially advantageously. If the amount added is larger than 4 times, it is difficult to obtain lithium titanate having a large tap density, and it is difficult to obtain lithium titanate having a uniform composition unless fired at a high temperature. Therefore, it is preferable to make the amount 4 times as much as possible. When the slurry is adjusted at a temperature lower than 45 ° C., the reaction between the lithium compound and the titanate compound is difficult to proceed. Therefore, it is more preferable that the slurry has an appropriate viscosity and is kept at room temperature or lower.
本発明で用いるリチウム化合物には特に制限はないが、水または水を主成分とする水性媒液を用いてスラリーを調製する場合は、水酸化リチウム、炭酸リチウム、硝酸リチウム、硫酸リチウムなどの水溶性リチウム化合物を用いることが好ましく、中でも反応性の高い水酸化リチウムを用いるのが好ましい。 The lithium compound used in the present invention is not particularly limited, but when preparing a slurry using water or an aqueous medium containing water as a main component, a water solution such as lithium hydroxide, lithium carbonate, lithium nitrate, or lithium sulfate is used. It is preferable to use a reactive lithium compound, and it is particularly preferable to use lithium hydroxide having high reactivity.
チタン酸化合物としては、TiO(OH)2またはTiO2・H2Oで表されるメタチタン酸、Ti(OH)4またはTiO2・2H2Oで表されるオルトチタン酸、あるいはそれらの混合物などを用いることができる。チタン酸化合物はチタン化合物の加熱加水分解や中和加水分解により得られ、例えば、メタチタン酸は硫酸チタニル(TiOSO4)の加熱加水分解、塩化チタンの高温下での中和加水分解等で、オルトチタン酸は硫酸チタン(Ti(SO4)2)、塩化チタンの低温下での中和加水分解で、また、メタチタン酸とオルトチタン酸の混合物は塩化チタンの中和加水分解温度を適宜制御することで得られる。中和加水分解に用いる中和剤としては、アンモニア、炭酸アンモニウム、硫酸アンモニウム、硝酸アンモニウムなどアンモニウム化合物を用いれば、焼成時に分解、揮散させることができる。チタン化合物としては前記の硫酸チタン、硫酸チタニル、塩化チタンなどの無機系のもの以外に、チタンアルコキシドのような有機系のものも用いてもよい。 The titanate compound, TiO (OH) 2 or metatitanic acid represented by TiO 2 · H 2 O, Ti (OH) 4 or orthotitanate represented by TiO 2 · 2H 2 O, or a mixture thereof Can be used. A titanic acid compound is obtained by heat hydrolysis or neutralization hydrolysis of a titanium compound. For example, metatitanic acid is obtained by heating hydrolysis of titanyl sulfate (TiOSO 4 ), neutralization hydrolysis of titanium chloride at a high temperature, etc. Titanic acid is neutralized hydrolysis of titanium sulfate (Ti (SO 4 ) 2 ) and titanium chloride at low temperatures, and a mixture of metatitanic acid and orthotitanic acid appropriately controls the neutralized hydrolysis temperature of titanium chloride. Can be obtained. If an ammonium compound such as ammonia, ammonium carbonate, ammonium sulfate, or ammonium nitrate is used as the neutralizing agent for neutralization hydrolysis, it can be decomposed and volatilized during firing. In addition to the inorganic compounds such as titanium sulfate, titanyl sulfate, and titanium chloride, organic compounds such as titanium alkoxide may be used as the titanium compound.
結晶性酸化チタンは、平均粒子径が0.01〜0.4μmのものを用いると、高濃度にしてもスラリーの粘度が高くなり難いので好ましい。尚、結晶性酸化チタンとは、TiO2で表され、アナターゼ型、ルチル型またはブルッカイト型の結晶構造を有する酸化チタンのことである。本発明においてはX線回折パターンが、単一の結晶構造からの回折ピークのみを有する結晶性酸化チタンのほか、例えばアナターゼ型の回折ピークとルチル型の回折ピークを有するもの等、複数の結晶構造からの回折ピークを有するものであってもよい。また、X線回折パターンに現れない非晶質のものを一部含んでいてもよい。 It is preferable to use crystalline titanium oxide having an average particle diameter of 0.01 to 0.4 μm because the viscosity of the slurry is hardly increased even when the concentration is high. The crystalline titanium oxide is a titanium oxide represented by TiO 2 and having an anatase type, rutile type or brookite type crystal structure. In the present invention, the X-ray diffraction pattern has a plurality of crystal structures such as a crystalline titanium oxide having only a diffraction peak from a single crystal structure, as well as an anatase type diffraction peak and a rutile type diffraction peak. It may have a diffraction peak from. Moreover, a part of the amorphous material that does not appear in the X-ray diffraction pattern may be included.
第1の工程で得られたスラリーを乾燥造粒した後、加熱焼成してチタン酸リチウムを得る。乾燥造粒の方法には制限は無く、例えば、前記スラリーから固形分を固液分離、乾燥後、粉砕して、所望の大きさの二次粒子に造粒する方法、前記スラリーを噴霧乾燥し、二次粒子に造粒する方法等が挙げられる。特に、噴霧乾燥を用いる方法は、粒子径の制御が容易であり、球状二次粒子が得られ易いので好ましい。噴霧乾燥を適用する場合、用いる噴霧乾燥機の能力に応じ、希釈してスラリーの粘度を調整してもよい。本発明においては、第1の工程で得られたスラリーを湿式加熱処理すると、再度、室温まで冷却しても粘度が低減され、高い濃度で噴霧乾燥できるので好ましい。湿式加熱温度は、低くとも50℃であるとスラリー粘度が適度なものとなり、本発明の効果が得られ易いので好ましく、100℃以下であると耐圧容器等の特殊な機器を要しないので、50〜100℃の範囲とするのがより好ましい。 The slurry obtained in the first step is dried and granulated and then heated and fired to obtain lithium titanate. There is no limitation on the method of dry granulation. For example, the solid content is separated from the slurry by solid-liquid separation, dried, pulverized, and granulated into secondary particles of a desired size, and the slurry is spray-dried. And a method of granulating into secondary particles. In particular, a method using spray drying is preferable because the particle diameter can be easily controlled and spherical secondary particles can be easily obtained. When spray drying is applied, the viscosity of the slurry may be adjusted by dilution depending on the ability of the spray dryer used. In the present invention, when the slurry obtained in the first step is wet-heat treated, it is preferable because the viscosity is reduced and spray drying can be performed at a high concentration even after cooling to room temperature. When the wet heating temperature is at least 50 ° C., the slurry viscosity becomes moderate and the effect of the present invention is easily obtained, and is preferably 100 ° C. or less because special equipment such as a pressure vessel is not required. More preferably, the temperature is in the range of -100 ° C.
噴霧乾燥に用いる噴霧乾燥機はディスク式、圧力ノズル式、二流体ノズル式など、スラリーの性状や処理能力に応じて適宜選択することができる。二次粒子径の制御は、例えば上記のディスク式ならディスクの回転数を、圧力ノズル式や二流体ノズル式などならば噴霧圧やノズル径を調整して、噴霧される液滴の大きさを制御することにより行える。より粒子径を制御し易くするために、ポリビニルアルコール、メチルセルロース、ゼラチンなどのバインダーや、ノニオン系、アニオン系、両性、非イオン系などの界面活性剤など各種の添加剤を用いてもよい。これら添加剤は有機物系で金属成分を含有しないものであれば、後の加熱焼成工程で分解、揮散するので望ましい。乾燥温度としては入り口温度を200〜450℃の範囲、出口温度を80〜120℃の範囲とするのが好ましい。 The spray dryer used for spray drying can be appropriately selected according to the properties and processing capacity of the slurry, such as a disk type, a pressure nozzle type, and a two-fluid nozzle type. The control of the secondary particle size is, for example, by adjusting the number of rotations of the disk in the case of the above-mentioned disk type, and adjusting the spray pressure and the nozzle diameter in the case of a pressure nozzle type or a two-fluid nozzle type, etc. This can be done by controlling. In order to make it easier to control the particle size, various additives such as binders such as polyvinyl alcohol, methylcellulose, and gelatin, and nonionic, anionic, amphoteric, and nonionic surfactants may be used. These additives are desirable if they are organic and do not contain a metal component, because they are decomposed and volatilized in a later heating and firing step. As the drying temperature, the inlet temperature is preferably in the range of 200 to 450 ° C, and the outlet temperature is preferably in the range of 80 to 120 ° C.
加熱焼成温度としては、焼成雰囲気などにより異なるが、本発明ではチタン酸リチウムを生成するためには概ね600℃以上でよく、二次粒子間の焼結を防ぐため、1000℃以下とするのが好ましい。より好ましい加熱焼成温度は650〜850℃であり、700〜800℃であればさらに好ましい。加熱焼成後、得られたチタン酸リチウム二次粒子同士が焼結、凝集していれば、必要に応じてフレーククラッシャ、ハンマミル、ピンミルなどを用いて粉砕してもよい。 The firing temperature varies depending on the firing atmosphere, but in the present invention, it may be approximately 600 ° C. or higher in order to produce lithium titanate, and 1000 ° C. or lower in order to prevent sintering between secondary particles. preferable. A more preferable heating and baking temperature is 650 to 850 ° C, and further preferably 700 to 800 ° C. If the obtained lithium titanate secondary particles are sintered and agglomerated after heating and firing, they may be pulverized using a flake crusher, a hammer mill, a pin mill or the like, if necessary.
本発明で得られるチタン酸リチウムは、二次粒子が1〜100μmの範囲の大きい粒子径(レーザー散乱法による50%メジアン径)を有するので、タップ密度が1.0〜2.5g/cm3の範囲、好ましくは1.2〜2.0g/cm3の範囲と大きく、充填性が優れている。本発明における二次粒子とは、一次粒子同士が強固に結合した状態にあり、ファンデルワース力等の粒子間の相互作用で凝集したり、機械的に圧密化されたものではなく、工業的に用いられる通常の機械的粉砕では容易に崩壊せず、ほとんどが二次粒子として残るものである。二次粒子の形状は球状、多面体状、不定形等特に制限は無いが、電池特性上できるだけ異方性の小さい形状が有利であり、球状がより好ましい。二次粒子を構成する個々の一次粒子の形状も、球状、多面体状、不定形状等特に制限は無い。一次粒子の組成は、一般式LixTiyO4で表され、チタン酸リチウムの単一相であれば好ましいが、本発明の効果を損なわない範囲で若干の酸化チタンが混合していてもよい。前記一般式中のx、yの値は、x/yの値で表して0.5〜2の範囲が好ましい。 Since the lithium titanate obtained in the present invention has a large particle diameter (50% median diameter by laser scattering method) in which secondary particles are in the range of 1 to 100 μm, the tap density is 1.0 to 2.5 g / cm 3. The range is preferably as large as 1.2 to 2.0 g / cm 3 , and the filling property is excellent. The secondary particles in the present invention are in a state in which the primary particles are firmly bonded to each other, and are not aggregated or mechanically consolidated by interaction between particles such as van der Waals force, In ordinary mechanical pulverization used in the above, it is not easily disintegrated and most of it remains as secondary particles. The shape of the secondary particles is not particularly limited, such as a spherical shape, a polyhedral shape, and an irregular shape, but a shape having as little anisotropy as possible is advantageous in terms of battery characteristics, and a spherical shape is more preferable. The shape of each primary particle constituting the secondary particle is not particularly limited, such as a spherical shape, a polyhedral shape, and an indefinite shape. The composition of the primary particles is represented by the general formula Li x Ti y O 4 and is preferably a single phase of lithium titanate, but even if some titanium oxide is mixed within a range not impairing the effects of the present invention. Good. The values of x and y in the general formula are preferably in the range of 0.5 to 2 in terms of x / y values.
次に、本発明はリチウム電池であって、前記方法で得られたチタン酸リチウムを電極活物質として用いることを特徴とする。リチウム電池用電極は、チタン酸リチウムにカーボンブラックなどの導電材とフッ素樹脂などのバインダを加え、適宜成形または塗布して得られる。リチウム電池は前記の電極、対極及び電解液とからなり、チタン酸リチウムを正極に用いる場合は、対極として金属リチウム、リチウム合金など、あるいはグラファイト、コークスなどの炭素系材料などが用いられる。また、チタン酸リチウムを負極として用いる場合の対極にはリチウム含有酸化マンガン、マンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウム、五酸化バナジウムなどが用いられる。電解液にはプロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタンなどの溶媒にLiPF6、LiClO4、LiCF3SO3、LiN(CF3SO2)2、LiBF4などのリチウム塩を溶解させたものなど常用の材料を用いることができる。 Next, the present invention is a lithium battery, wherein the lithium titanate obtained by the above method is used as an electrode active material. The electrode for a lithium battery is obtained by adding a conductive material such as carbon black and a binder such as a fluororesin to lithium titanate, and appropriately molding or applying it. The lithium battery is composed of the electrode, the counter electrode, and the electrolytic solution. When lithium titanate is used for the positive electrode, metal lithium, lithium alloy, or a carbon-based material such as graphite or coke is used as the counter electrode. In addition, lithium-containing manganese oxide, lithium manganate, lithium cobaltate, lithium nickelate, vanadium pentoxide, or the like is used as a counter electrode when lithium titanate is used as the negative electrode. In the electrolytic solution, lithium salts such as LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 were dissolved in a solvent such as propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane. Conventional materials such as those can be used.
以下に本発明の実施例を示すが、これらは本発明を限定するものではない。 Examples of the present invention are shown below, but these do not limit the present invention.
参考例1
(1)スラリーの調製
4.9モル/リットルの水酸化リチウム水溶液1151ミリリットルに結晶性酸化チタン(アナターゼ型とルチル型の回折ピークを有する)371gを添加し分散させた。このスラリー(a)を撹拌しながら、チタン酸化合物(オルトチタン酸)をTiO2に換算して155g/リットルの濃度になるように純水に分散させたスラリー(b)1195ミリリットルを添加し、リチウム化合物とチタン酸化合物、結晶性酸化チタン粉末を含むスラリー(c)を得た。スラリー(c)中のチタン成分の濃度の合計はTiO2換算で230g/リットルであった。
Reference example 1
(1) Preparation of slurry 371 g of crystalline titanium oxide (having anatase type and rutile type diffraction peaks) was added and dispersed in 1151 ml of a 4.9 mol / liter lithium hydroxide aqueous solution. While stirring this slurry (a), 1195 ml of slurry (b) in which titanic acid compound (ortho titanic acid) was dispersed in pure water so as to have a concentration of 155 g / liter in terms of TiO 2 was added, A slurry (c) containing a lithium compound, a titanic acid compound and crystalline titanium oxide powder was obtained. The total concentration of titanium components in the slurry (c) was 230 g / liter in terms of TiO 2 .
(2)乾燥造粒物の調製
スラリー(c)に純水500ミリリットルを加え、粘度750mPa・sに調整した。この時のチタン成分の濃度の合計はTiO2換算で190g/リットルであった。このスラリーをモービルマイナー型噴霧乾燥機(ニロ社製)を用いて、入口温度250℃、出口温度110℃の条件で噴霧乾燥を行い乾燥造粒物を得た。
(2) Preparation of dried granulated product 500 ml of pure water was added to the slurry (c) to adjust the viscosity to 750 mPa · s. The total concentration of titanium components at this time was 190 g / liter in terms of TiO 2 . This slurry was spray-dried under conditions of an inlet temperature of 250 ° C. and an outlet temperature of 110 ° C. using a mobile minor type spray dryer (manufactured by Niro Co., Ltd.) to obtain a dried granulated product.
(3)乾燥造粒物の加熱焼成
得られた乾燥造粒物を大気中750℃の温度で3時間加熱焼成を行い、参考例のチタン酸化リチウム(試料A)を得た。
(3) Heating and firing of dried granulated product The obtained dried granulated product was heated and fired in the atmosphere at a temperature of 750 ° C. for 3 hours to obtain a lithium oxide lithium oxide (sample A) as a reference example .
参考例2
スラリー(c)の調製において、結晶性酸化チタンの添加量を278g、チタン酸化合物の水性スラリー(b)の添加量を1794ミリリットル、噴霧乾燥前の純水添加量を1000ミリリットルとした以外は、参考例1と同様にしてチタン酸リチウム(試料B)を得た。噴霧乾燥前のチタン成分の濃度の合計はTiO2換算で139g/リットルで、スラリーの粘度は960mPa・sであった。
Reference example 2
In the preparation of the slurry (c), the amount of crystalline titanium oxide added was 278 g, the amount of titanic acid compound aqueous slurry (b) was 1794 ml, and the amount of pure water added before spray drying was 1000 ml. In the same manner as in Reference Example 1 , lithium titanate (Sample B) was obtained. The total concentration of titanium components before spray drying was 139 g / liter in terms of TiO 2 , and the viscosity of the slurry was 960 mPa · s.
参考例3
スラリー(c)の調製において、結晶性酸化チタンの添加量を445g、チタン酸化合物の水性スラリー(b)の添加量を718ミリリットル、噴霧乾燥前の純水添加量を550ミリリットルとした以外は、参考例1と同様にしてチタン酸リチウム(試料C)を得た。噴霧乾燥前のチタン成分の濃度の合計はTiO2換算で220g/リットルで、スラリー粘度は800mPa・sであった。
Reference example 3
In the preparation of the slurry (c), except that the amount of crystalline titanium oxide added was 445 g, the amount of titanic acid compound aqueous slurry (b) was 718 ml, and the amount of pure water added before spray drying was 550 ml, In the same manner as in Reference Example 1 , lithium titanate (Sample C) was obtained. The total concentration of the titanium component prior to spray drying at 220 g / l in terms of TiO 2, the slurry viscosity was 800 mPa · s.
実施例1
参考例1と同様にして調製したスラリー(c)を希釈せず、80℃の温度で加熱処理した後、室温まで冷却した以外は、参考例1と同様にしてチタン酸リチウム(試料D)を得た。室温まで冷却したスラリーの粘度は105mPa・sであった。
Example 1
The lithium titanate (sample D) was prepared in the same manner as in Reference Example 1 except that the slurry (c) prepared in the same manner as in Reference Example 1 was not diluted, heat-treated at a temperature of 80 ° C., and then cooled to room temperature. Obtained. The viscosity of the slurry cooled to room temperature was 105 mPa · s.
参考例4
(1)スラリーの調製
参考例1で用いた結晶性酸化チタン371gを1550ミリリットルの純水に分散させたスラリー(d)に、水酸化リチウム一水塩の粉末237gを添加した。このスラリーを撹拌し、参考例1で用いたチタン酸化合物のスラリー(b)1195ミリリットルを添加してスラリー(e)を得た。スラリー(e)中のチタン成分の合計の濃度はTiO2換算で196g/リットルであった。
Reference example 4
(1) Preparation of slurry
To a slurry (d) in which 371 g of crystalline titanium oxide used in Reference Example 1 was dispersed in 1550 ml of pure water, 237 g of lithium hydroxide monohydrate powder was added. The slurry was stirred, and 1195 ml of the titanate slurry (b) used in Reference Example 1 was added to obtain a slurry (e). The total concentration of the titanium components in the slurry (e) was 196 g / liter in terms of TiO 2 .
(2)乾燥造粒物の調製及びその加熱焼成
スラリー(e)に純水650ミリリットルを加え、粘度1050mPa・sに調整した。この時のチタン成分の濃度の合計はTiO2換算で160g/リットルであった。このスラリーを、参考例1と同様に乾燥造粒物を調製、加熱焼成してチタン酸リチウム(試料E)を得た。
(2) Preparation of dried granulated product and heating and firing thereof 650 ml of pure water was added to the slurry (e) to adjust the viscosity to 1050 mPa · s. The total concentration of titanium components at this time was 160 g / liter in terms of TiO 2 . A dry granulated product was prepared from this slurry in the same manner as in Reference Example 1, and heated and fired to obtain lithium titanate (Sample E).
参考例5
(1)スラリーの調製
参考例1で用いたチタン酸化合物をTiO2に換算して110g/リットルの濃度になるように純水に分散させたスラリー(f)1684ミリリットルに参考例1で用いた結晶性酸化チタン371gを添加し、チタン酸化合物と結晶性酸化チタンの混合スラリー(g)を調製した。4.9モル/リットルの水酸化リチウム水溶液1151ミリリットルを撹拌し、この中にスラリー(g)を添加し、スラリー(h)を得た。スラリー(h)中のチタン成分の合計の濃度はTiO2換算で190g/リットルであった。
Reference Example 5
(1) Preparation of slurry
371 g of the crystalline titanium oxide used in Reference Example 1 was added to 1684 ml of slurry (f) in which the titanate compound used in Reference Example 1 was dispersed in pure water so as to have a concentration of 110 g / liter in terms of TiO 2. This was added to prepare a mixed slurry (g) of titanic acid compound and crystalline titanium oxide. 1151 ml of a 4.9 mol / liter lithium hydroxide aqueous solution was stirred, and slurry (g) was added thereto to obtain slurry (h). The total concentration of titanium components in the slurry (h) was 190 g / liter in terms of TiO 2 .
(2)乾燥造粒物の調製及びその加熱焼成
スラリー(h)に純水300ミリリットルを加え、粘度880mPa・sに調整した。この時のチタン成分の濃度の合計はTiO2換算で172g/リットルであった。このスラリーを、参考例1と同様に乾燥造粒物を調製、加熱焼成してチタン酸リチウム(試料F)を得た。
(2) Preparation of dried granulated product and heating and firing thereof 300 ml of pure water was added to the slurry (h) to adjust the viscosity to 880 mPa · s. The total concentration of titanium components at this time was 172 g / liter in terms of TiO 2 . A dry granulated material was prepared from this slurry in the same manner as in Reference Example 1, and heated and fired to obtain lithium titanate (Sample F).
比較例1
2.46モル/リットルの水酸化リチウム水溶液1527ミリリットルを撹拌し、参考例1で用いた結晶性酸化チタン371gを添加した。この水酸化リチウムと結晶性酸化チタンとを含むスラリーを、希釈せずに、参考例1と同様に造粒、加熱焼成して、比較試料のチタン酸リチウム(試料G)を得た。スラリー中の結晶性酸化チタンの濃度はTiO2換算で230g/リットルで、スラリー粘度は530mPs・sであった。
Comparative Example 1
Stirring 1,527 ml of a 2.46 mol / liter lithium hydroxide aqueous solution, and adding 371 g of crystalline titanium oxide used in Reference Example 1 . The slurry containing lithium hydroxide and crystalline titanium oxide was granulated and heated and fired in the same manner as in Reference Example 1 without dilution to obtain a comparative sample lithium titanate (sample G). The concentration of crystalline titanium oxide in the slurry was 230 g / liter in terms of TiO 2 , and the slurry viscosity was 530 mPs · s.
比較例2
参考例1のスラリー(c)の調製において、結晶性酸化チタンを加えずに、チタン酸化合物のスラリー(b)を合計で3585ミリリットルを添加しようとしたところ、添加中にゲル化してスラリーが調製できなかった。
Comparative Example 2
In the preparation of the slurry (c) of Reference Example 1 , an attempt was made to add a total of 3585 milliliters of the slurry (b) of the titanate compound without adding crystalline titanium oxide. could not.
評価1:二次粒子径の測定
実施例1、参考例1〜5及び比較例1で得られたチタン酸リチウム(試料A〜G)の水性スラリーを十分に超音波分散し、レーザー光による透過率が85±1%になるように調製した後、レーザー回折/散乱式粒度分布測定装置(LA−910:堀場製作所製)を用い体積基準で平均粒子径をメジアン径として測定した。
Evaluation 1: Measurement of secondary particle diameter The aqueous slurry of lithium titanate (samples A to G) obtained in Example 1, Reference Examples 1 to 5 and Comparative Example 1 was sufficiently ultrasonically dispersed and transmitted by laser light. After adjusting the rate to 85 ± 1%, the average particle diameter was measured as the median diameter on a volume basis using a laser diffraction / scattering particle size distribution measuring device (LA-910: manufactured by Horiba, Ltd.).
評価2:タップ密度の測定
実施例1、参考例1〜5及び比較例1で得られたチタン酸リチウム(試料A〜G)をそれぞれ50gを100ミリリットルのメスシリンダーに入れ、100回タッピングしてタップ密度を測定した。
Evaluation 2: Measurement of tap density 50 g of the lithium titanate (samples A to G) obtained in Example 1 , Reference Examples 1 to 5 and Comparative Example 1 was put into a 100 ml measuring cylinder and tapped 100 times. The tap density was measured.
評価3:電池特性の測定
実施例1、参考例1〜5及び比較例1で得られたチタン酸リチウム(試料A〜G)を電極活物質とした場合のリチウム二次電池の充放電特性を評価した。電池の形態や測定条件について説明する。
Evaluation 3: Measurement of battery characteristics The charge / discharge characteristics of the lithium secondary battery in the case where the lithium titanate (samples A to G) obtained in Example 1 , Reference Examples 1 to 5 and Comparative Example 1 was used as an electrode active material. evaluated. The battery configuration and measurement conditions will be described.
上記各試料と、導電剤としてのグラファイト粉末、及び結着剤としてのポリ四フッ化エチレン樹脂を重量比で5:4:1で混合し、乳鉢で練り合わせ、直径10mmの円形に成型してペレット状とした。ペレットの重量は20mgであった。このペレットに直径10mmに切り出したアルミニウム製のメッシュを重ね合わせ、14.7MPaでプレスして作用極とした。 The above samples, graphite powder as a conductive agent, and polytetrafluoroethylene resin as a binder are mixed at a weight ratio of 5: 4: 1, kneaded in a mortar, molded into a 10 mm diameter circle, and pellets It was in the shape. The weight of the pellet was 20 mg. An aluminum mesh cut to a diameter of 10 mm was superimposed on this pellet and pressed at 14.7 MPa to obtain a working electrode.
この作用極を120℃4時間真空乾燥した後、露点−70℃以下のグローブボックス中で、密閉可能なコイン型評価用セルに組み込んだ。評価用セルには材質がステンレス製(SUS316)で外径20mm、高さ1.6mmのものを用いた。対極には厚み0.5mmの金属リチウムを直径14mmの円形に成形したものを用いた。非水電解液として1モル/リットルとなる濃度でLiPF6を溶解したエチレンカーボネートとジメチルカーボネートの混合溶液(体積比で1:2に混合)を用いた。 This working electrode was vacuum-dried at 120 ° C. for 4 hours, and then incorporated in a sealable coin-type evaluation cell in a glove box having a dew point of −70 ° C. or lower. The evaluation cell used was made of stainless steel (SUS316) and had an outer diameter of 20 mm and a height of 1.6 mm. As the counter electrode, a metal lithium having a thickness of 0.5 mm formed into a circle having a diameter of 14 mm was used. As the non-aqueous electrolyte, a mixed solution of ethylene carbonate and dimethyl carbonate (mixed in a volume ratio of 1: 2) in which LiPF 6 was dissolved at a concentration of 1 mol / liter was used.
作用極は評価用セルの下部缶に置き、その上にセパレーターとして多孔性ポリプロピレンフィルムを置き、その上から非水電解液をスポイドで7滴滴下した。さらにその上に負極をのせ、プロピレン製ガスケットのついた上部缶を被せて外周縁部をかしめて密封した。 The working electrode was placed in the lower can of the evaluation cell, a porous polypropylene film was placed thereon as a separator, and 7 drops of nonaqueous electrolyte were dropped from above with a dropoid. Further, a negative electrode was placed thereon, and an upper can with a propylene gasket was placed thereon, and the outer peripheral edge was caulked and sealed.
充放電容量の測定は、電圧範囲を1V〜2Vに、充放電電流を0.4mA(約3サイクル/日)に設定して、定電流で行った。 The charge / discharge capacity was measured at a constant current with the voltage range set to 1 V to 2 V and the charge / discharge current set to 0.4 mA (about 3 cycles / day).
評価4:比表面積の測定
実施例1、参考例1〜5及び比較例1で得られたチタン酸リチウム(試料A〜G)の比表面積を、比表面積測定装置(モノソーブ:ユアサアイオニクス製)を用いて、BET法により測定した。
Evaluation 4: Measurement of specific surface area Specific surface area of the lithium titanate (samples A to G) obtained in Example 1, Reference Examples 1 to 5 and Comparative Example 1 was measured using a specific surface area measuring device (Monosorb: manufactured by Yuasa Ionics ). Was measured by the BET method.
試料A〜Gの平均粒子径、タップ密度、放電容量及び比表面積を表1に示す。本発明のチタン酸リチウムは粒子径が大きく充填性が優れ、放電容量が高いことが分かる。また、本発明で得られたチタン酸リチウムは式:LixTiyO4において、x/yが約0.8の組成を有する。 Table 1 shows the average particle size, tap density, discharge capacity, and specific surface area of Samples A to G. It can be seen that the lithium titanate of the present invention has a large particle size, excellent filling properties, and high discharge capacity. Moreover, the lithium titanate obtained in the present invention has a composition in which x / y is about 0.8 in the formula: Li x Ti y O 4 .
本発明で得られたチタン酸リチウムは、高容量のリチウム電池に有用である。 The lithium titanate obtained in the present invention is useful for a high capacity lithium battery.
Claims (4)
In a method for producing lithium titanate by drying and granulating a slurry containing a titanium compound and a lithium compound, and then heating and firing to produce lithium titanate, crystalline titanium oxide and titanic acid compound are used as the titanium compound, and crystalline titanium oxide is converted to titanic acid. A compound containing 1 to 4 times the weight ratio in terms of TiO 2 with respect to the compound was used, and after the slurry was prepared at a temperature lower than 45 ° C, the slurry was wet at a temperature of at least 50 ° C. A method for producing lithium titanate, which is subjected to a heat treatment and then subjected to a dry granulation step without dilution at room temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010234224A JP5270634B2 (en) | 2010-10-19 | 2010-10-19 | Method for producing lithium titanate and method for producing lithium battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010234224A JP5270634B2 (en) | 2010-10-19 | 2010-10-19 | Method for producing lithium titanate and method for producing lithium battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004049473A Division JP4668539B2 (en) | 2004-02-25 | 2004-02-25 | Method for producing lithium titanate and method for producing lithium battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011051891A JP2011051891A (en) | 2011-03-17 |
JP5270634B2 true JP5270634B2 (en) | 2013-08-21 |
Family
ID=43941291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010234224A Expired - Fee Related JP5270634B2 (en) | 2010-10-19 | 2010-10-19 | Method for producing lithium titanate and method for producing lithium battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5270634B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5858687B2 (en) * | 2011-08-26 | 2016-02-10 | 株式会社東芝 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
EP2677571B1 (en) | 2011-02-18 | 2018-05-02 | Kabushiki Kaisha Toshiba | Non-aqueous electrolyte secondary battery and method for producing same |
JP5813336B2 (en) | 2011-02-18 | 2015-11-17 | 株式会社東芝 | Nonaqueous electrolyte secondary battery |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10310428A (en) * | 1997-05-08 | 1998-11-24 | Ishihara Sangyo Kaisha Ltd | Lithium titanate hydrate and production of lithium titanate |
JP4435926B2 (en) * | 2000-02-25 | 2010-03-24 | チタン工業株式会社 | High crystalline lithium titanate |
JP3894778B2 (en) * | 2000-11-20 | 2007-03-22 | 石原産業株式会社 | Lithium titanate and lithium battery using the same |
JP3721075B2 (en) * | 2000-12-27 | 2005-11-30 | 新日本製鐵株式会社 | Vibration prevention method for rolling roll drive system |
JP4949561B2 (en) * | 2001-03-27 | 2012-06-13 | 東邦チタニウム株式会社 | Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same |
-
2010
- 2010-10-19 JP JP2010234224A patent/JP5270634B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011051891A (en) | 2011-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101565177B1 (en) | Titanic acid compound, process for producing the titanic acid compound, electrode active material containing the titanic acid compound, and storage device using the electrode active material | |
JP3894778B2 (en) | Lithium titanate and lithium battery using the same | |
JP5612857B2 (en) | TITANATE COMPOUND, PROCESS FOR PRODUCING THE SAME, ELECTRODE ACTIVE MATERIAL CONTAINING THE TITANATE COMPOUND, ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL | |
JP5421644B2 (en) | Method for producing titanic acid compound or titanium oxide | |
JP4668539B2 (en) | Method for producing lithium titanate and method for producing lithium battery | |
US9966599B2 (en) | Process for manufacturing lithium titanium oxides | |
JP5701863B2 (en) | Novel lithium titanate and method for producing the same, electrode active material containing the lithium titanate, and power storage device using the electrode active material | |
TWI636960B (en) | Titanate compound, alkali metal titanate compound, method for producing the same, and electricity storage device using them as the active material | |
JP2007230784A (en) | Manufacturing process of lithium-iron complex oxide | |
WO2012002122A1 (en) | Method for producing porous lithium titanate, porous lithium titanate and lithium battery using same | |
JP5990512B2 (en) | Titanium raw material for producing lithium titanate and method for producing lithium titanate using such raw material | |
JP5594663B2 (en) | Alkali metal titanate compound, method for producing the same, electrode active material containing the alkali metal titanate compound, and electricity storage device using the electrode active material | |
JPWO2012147854A1 (en) | Method for producing lithium titanate | |
JP4597546B2 (en) | Method for producing lithium titanate and method for producing lithium battery | |
JP5270634B2 (en) | Method for producing lithium titanate and method for producing lithium battery | |
JP2012248333A (en) | Electrode active substance, manufacturing method thereof and power storage device employing electrode active substance | |
JP6013435B2 (en) | ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL | |
JP5927182B2 (en) | Method for producing lithium titanate precursor and method for producing lithium titanate | |
JP5830842B2 (en) | Method for producing lithium titanate particle powder and non-aqueous electrolyte secondary battery | |
JP5632794B2 (en) | Lithium titanate and method for producing the same, electrode active material containing the lithium titanate, and power storage device using the electrode active material | |
JP2017178688A (en) | Lithium titanate precursor powder and manufacturing method thereof, manufacturing method of lithium titanate therewith, and lithium titanate, and electrode and electricity storage device therewith | |
JP2016150868A (en) | Lithium titanate, production method thereof, and lithium secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130509 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5270634 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |