JP4949561B2 - Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same - Google Patents
Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same Download PDFInfo
- Publication number
- JP4949561B2 JP4949561B2 JP2001090753A JP2001090753A JP4949561B2 JP 4949561 B2 JP4949561 B2 JP 4949561B2 JP 2001090753 A JP2001090753 A JP 2001090753A JP 2001090753 A JP2001090753 A JP 2001090753A JP 4949561 B2 JP4949561 B2 JP 4949561B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- powder
- lithium titanate
- active material
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、腕時計等の携帯機器用電源やパソコン等のバックアップ用電源等に用いられるリチウムイオン二次電池の電極活物質として好適なチタン酸リチウムおよびその製造方法ならびにその原料としての二酸化チタンに関する。
【0002】
【従来の技術】
近年電子機器の小型軽量化が進み、そのような機器の駆動用またはバックアップ用の電源である二次電池にも、小型かつ軽量で、しかも、高エネルギー密度のものが切望されている。また、最近環境保護のため電気自動車用や家庭での夜間電力貯蔵用等、より大容量の蓄電システムの開発が急務となっている。そこで本出願人は、リチウム二次電池材料電極活物質として、Li4Ti5O12(ときにはLi4/3Ti5/3O4で表される)で表されるチタン酸リチウムに注目し、この材料の開発を継続中であって、特開2000−17090号公報に開示されているように、チタン酸リチウム材料の改良技術を開発している。
【0003】
【発明が解決しようとする課題】
従来公知のチタン酸リチウム材を電極活物質に採用した電池では、初期放電容量がある程度高くても、サイクル寿命が短い、あるいはサイクル寿命が長くても充放電容量が大きくない、クーロン効率が低い等、総合面で実用上十分とは言えなかった。
【0004】
本発明は上記課題を解決するためになされたものであって、本発明の目的は以下の通りである。
(1)充放電容量が一層高く、クーロン効率も高く、サイクル寿命に優れたチタン酸リチウムイオン二次電池電極(正極または負極)活物質の提供。
(2)同活物質の製造方法の提供。
(3)同活物質の製造原料の提供。
なお、以下の説明において「チタン酸リチウム」を「目的物質」と表現する場合がある。
【0005】
【課題を解決するための手段】
本発明者の研究によれば、チタン酸リチウムの製造原料としての二酸化チタン(以下TiO2で表すことがある)として、一次粒子径(BET径とも言う)が1.0μm以下、好ましくは0.1〜0.8μmであって、ルチル化率が15〜100%の二酸化チタン粉を用い、さらに、該二酸化チタン粉とリチウム化合物との混合物を焼成して得た一次粒子径が1.0μm以下、好ましくは0.1〜0.8μmのチタン酸リチウムの微粉をリチウムイオン電池電極の活物質として用いると、電池の充放電容量、クーロン効率、サイクル寿命が著しく高まることを発見し、本発明の完成に至った。
【0006】
本発明は上記知見に基づいてなされたものであり、本発明に係るリチウムイオン二次電池電極活物質としてのチタン酸リチウムの製造方法は、BET比表面積より求めた一次粒子径が0.8μm以下で、かつルチル化率が15〜100%の二酸化チタン粉とリチウム化合物との混合物を焼成し、一次粒子径が0.1〜0.8μmのチタン酸リチウムを採取することを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明についてより詳しく説明する。
本発明の目的物質であるチタン酸リチウムは、リチウムイオン二次電池電極の活物質として使用されるものであって、基本的には一般式LiXTiYO12で表わされ、Li/Ti原子比は0.68〜0.82、Xは3〜5、Yは4〜6の範囲にあり、具体的には、Li4Ti5O12(Li4/3Ti5/3O4あるいはLi[Li1 /3Ti5/3]O4で表される場合がある)で表されるスピネル型の結晶構造を有する単相のチタン酸リチウムを主成分とするもので、部分的にLi2TiO3やTiO2が混じっていても良く、単相化率で言えば90%以上のものである。
【0008】
(1)出発原料
本発明のチタン酸リチウムを製造する原料は、以下に述べるリチウム化合物と二酸化チタン粉(以下TiO2粉と表す)である。
原料であるリチウム化合物は、塩、酸化物、水酸化物のいずれでも良く、炭酸リチウム、水酸化リチウム、硝酸リチウム、酸化リチウム、蓚酸リチウム、酢酸リチウムが挙げられ、これらから選択される1種または2種以上が使用されるが、これらに限定されるものではない。該リチウム化合物は、後述するTiO2粉とともに焼成するために、TiO2粉との均一な接触が図られなければならない。該リチウム化合物とTiO2粉との乾式混合粉を焼成する場合、使用するリチウム化合物の平均粒径(レーザー光散乱法によるメジアン径)が100μm以下、好ましくは50μm以下の粉が好適である。とりわけ炭酸リチウム粉の場合、予め十分に粉砕して上記平均粒径にしておく。別の混合手段として、例えば水酸化リチウムを水溶液としておき、これをTiO2粉に含侵させておき、これを予備乾燥し、焼成すると好ましい目的物を得ることができる。全般に、使用するリチウム化合物は純度99.0重量%、好ましくは99.5重量%以上のものが良い。
【0009】
(2)二酸化チタン粉(TiO2粉)
一方の原料である本発明のTiO2粉は、その一次粒子径(BET法による)が1.0μm以下で、ルチル化率が15〜100%の粉である。該原料としてのTiO2粉の一次粒子径が、生成物であるチタン酸リチウムの電池特性に大きな影響をもたらす。具体的には1.0μmより小さい一次粒子径のTiO2粉を使用して製造したチタン酸リチウムは、初期放電容量およびサイクル充放電容量が非常に高く、かつクーロン効率も極めて高い性能を発揮する。とりわけ一次粒子径が0.1〜0.8μm、特には0.1〜0.6μmのTiO2粉を用いて製造したチタン酸リチウムはサイクル寿命が長い。
【0010】
本発明の目的物を製造するには、ルチル化率15%以上のTiO2粉が、リチウム化合物との均質混合、結果として一次粒子径が小さなチタン酸リチウムを合成する上で好ましい。とりわけ平均粒径が小さいTiO2粉では、リチウム化合物との混合時に、ルチル化率が高い方、具体的には30%以上、がリチウム化合物粉との焼成の際、一次粒子の成長が抑制され、微細な結晶粒が得られ電池特性に優れたチタン酸リチウムが得られる。
なお、本発明でのルチル化率は、X線回折分析により、2θ=27.5゜(ルチル型)と同25.4゜(アナターゼ型)における回折積分強度を検量線に基づき求め、その相対値をルチル化率と称する。
【0011】
(3)チタン酸リチウムの合成
チタン酸リチウム化合物の合成に当たっては、上記リチウム化合物とTiO2粉とを、チタン酸リチウムのLi/Ti比(原子比)の目標値、例えば0.68〜0.82の範囲から選択される値に合わせて、両原料を計量して混合する。両原料の混合には、振動ミル、ボールミル等が適宜使用される。該原料混合物は、バルク状のまま、あるいは0.5t/cm2程度の圧力で圧縮して成形体として焼成に供される。別の混合手段として、上記混合粉を水あるいは水系媒体10〜50重量%のスラリーにして十分撹拌した後、加熱あるいはスプレー噴霧によって乾燥させ、これを焼成に供しても良い。あるいは、水に溶解しやすいリチウム化合物を水溶液にしてこれをTiO2粉に含浸させ、乾燥後に焼成しても良い。
【0012】
焼成については、第1段階ではやや低い温度で仮焼し、次いで第2段階として温度を高めて焼成する方法(本焼成)、あるいは一定の温度に保持して連続焼成する方法のいずれかを採用すれば良い。仮焼条件としては、温度600〜700℃で、30分〜5時間程度加熱が好ましい。本焼成は700〜950℃、好ましくは720〜950℃に加熱するか、仮焼生成物を炉から取り出して成形体を破砕しながら再混合し、これを再度成形体にして上記本焼成の温度に加熱する。焼成温度は原料TiO2粉の粒子径に関係するようであって、概してTiO2粉の一次粒子径が0.1〜0.5μmの場合は、焼成温度は700〜850℃、一次粒子径が0.5〜1.0μmのTiO2粉の場合は、焼成温度は800〜950℃が、目的物であるチタン酸リチウムの一次粒子径、純度(単相化度と言う)、ひいては電池特性面から好ましい。
【0013】
焼成温度が950℃を超えると焼成過程で焼結が進行し、一次粒子径が大きくなりすぎる危険性がある。
【0014】
焼成の目安であるが、焼成温度と時間は、TiO2残留度に基づき選定すると好ましい。すなわち、焼成生成物のTiO2の粉末X線回折ピーク(27゜)での強度の、Li4Ti5O12の粉末X線回折ピーク(18゜)での強度に対する割合、すなわち相対強度比(以下「TiO2残留度」と言う)が0.1以下、好ましくは0.05以下になるように焼成するのが好ましい。単相化率[(1−TiO2残留度)×100]で表せば、90%以上、好ましくは95%である。焼成雰囲気は、酸素、空気、窒素、アルゴン等から適宜選択すれば良いが、とりわけ窒素あるいはアルゴンガスが、焼成して得たチタン酸リチウムのサイクル寿命が長く、電池特性に優れる観点から好ましい。
【0015】
(4)チタン酸リチウム
このようにして得られたチタン酸リチウムは、焼成炉から取り出し、冷却後、必要に応じ解砕し、さらに必要に応じて粉砕や分級等の手段により目的の一次粒子径のチタン酸リチウムを採取する。さて、本発明のリチウムイオン電池電極活物質の特徴は、上記TiO2粉を焼成して得た、一次粒子径が1.0μm以下、より好ましくは0.1〜0.8μmである。さらに好ましい態様は一次粒子径0.1〜0.6μmであるとともに、電極形成時での取り扱い容易性の面から平均粒径(二次粒子径)が1〜30μm、より好ましくは3〜20μmのものである。焼成品から目的とするチタン酸リチウム粉を得るには、焼成品を弱く解砕する程度で十分であるが、解砕した後に篩別して平均粒径を調節するか、あるいは粉砕等の適宜手段によれば良い。
【0016】
本発明のチタン酸リチウム粉の重要な点は、“特定のTiO2粉”を用いて得た“特定のチタン酸リチウム”であり、これを活物質に使用した場合、電池特性(容量とサイクル特性)が一段と向上するのである。
【0017】
以上の説明で明らかなように、本発明の好ましい実施態様は以下の通りである。
▲1▼チタン酸リチウム原料としてのTiO2粉が、一次粒子径が0.1〜0.8μm、平均粒径が1〜30μm、ルチル化率が15〜100%である。
▲2▼チタン酸リチウムとしては、一次粒子径が0.1〜0.8μm、平均粒径が1〜30μm、ルチル化率が15〜100%のTiO2粉をリチウム化合物とともに焼成して得たものであって、一次粒子径が0.1〜0.8μmである。
▲3▼上記チタン酸リチウムの一次粒子径が0.1〜0.6μmである。
▲4▼上記チタン酸リチウムを製造するに当たり、一次粒子径が0.1〜0.8μm、ルチル化率が15〜100%のTiO2粉をリチウム化合物とともに焼成し、一次粒子径が0.1〜0.8μm、平均粒径が1〜30μmのチタン酸リチウム粉を採取する。
【0018】
次に、本発明のチタン酸リチウムを用いた二次電池について説明する。
上記本発明のチタン酸リチウム粉に公知の導電剤やバインダーを混合し、正極または負極とする。導電材としては、例えば黒鉛、カ−ボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維粉等が用いられる。バインダーとしては、PTFE(ポリテトラフルオロエチレン)等のフッ素系高分子、ポリビニルアルコール、ポリビニルクロライド、ポリ弗化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレンラバー等を挙げることができる。
【0019】
該電池は、上記チタン酸リチウムを活物質として使用した負極または正極と、電解質とから構成される。電解質は溶媒とリチウム塩から構成され、溶媒としてプロピレンカ−ボネ−ト、エチレンカーボネ−ト、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、アセトニトリル、ニトロメタン等から適宜選択される。リチウム塩としては、LiPF6 、LiClO4、LiCF3SO3、LiN(CF3SO2)2、LiBF4等を挙げることができる。
【0020】
以上のように、本発明のTiO2粉によって本発明のチタン酸リチウム活物質が得られ、このチタン酸リチウムをリチウムイオン二次電池の正極材または負極材として使用することによって、放電容量が高く、充放電サイクル特性が極めて良好なリチウムイオン二次電池を得ることができる。
【0021】
【実施例】
以下、実施例に基づいて本発明をより詳しく説明する。
[実施例1]
原料として、表1に示す試料番号「TO−1」の二酸化チタン粉末(東邦チタニウム(株)製、純度99.9%)と、純度99.0%の炭酸リチウム粉末(和光純薬工業(株)製)とを、Li/Ti比0.80となるように秤量採取した。両粉末を水スラリー化(25重量%)してこれをボールミル中で2時間撹拌した後、120度で乾燥させた。乾燥した混合粉を焼成炉に挿入し、窒素気流中で750℃で4.5時間保持(仮焼)した後、850℃と950℃の2段階で合計4時間焼成(本焼成)した。次いで、焼成品を乳鉢で解砕し、これをボールミルで15時間粉砕し、表2に示す試料番号「LTO−1」のチタン酸リチウムを得た。また、X線回折によるLTO−1の格子定数は8.365Åであった。
【0022】
【表1】
【0023】
【表2】
【0024】
なお、表2の各物性は次のようにして求めた。
・BET比表面積(一次粒子の比表面積)
分析装置としてユアサアイオニクス社製:マルチソーブ16型を用い、窒素ガス吸着法により測定した。
・一次粒子径
BET比表面積値に基づき、粒子を球形とみなして算出した。
・平均粒径
分析装置として堀場製作所社製:LA700を用い、レーザー光散乱方式により体積基準による50%値(D50)を求め、これを平均粒径とした。
【0025】
[実施例2]
原料として、表1に示す試料番号「TO−2」の二酸化チタン粉末(東邦チタニウム(株)製、純度99.9%)を用いた以外は実施例1と同様にして、表2に示す試料番号「LTO−2」のチタン酸リチウムを得た。X線回折によるLTO−2の格子定数は8.364Åであった。
【0026】
[実施例3]
原料として、表1に示す試料番号「TO−3」の二酸化チタン粉末(東邦チタニウム(株)製、純度99.9%)を用い、本焼成を900℃で4時間の1段階とし、さらに焼成後のボールミルによる粉砕時間を5時間とした以外は、実施例1と同様にして、表2に示す試料番号「LTO−3」のチタン酸リチウムを得た。X線回折によるLTO−3の格子定数は8.363Åであった。
【0027】
[実施例4]
原料として、表1に示す試料番号「TO−4」の二酸化チタン粉末(東邦チタニウム(株)製、純度99.9%)を用いた以外は実施例1と同様にして、表2に示す試料番号「LTO−4」のチタン酸リチウムを得た。X線回折によるLTO−4の格子定数は8.364Åであった。
【0028】
[実施例5]
水酸化リチウムの15重量%水溶液に、表1の二酸化チタン粉末「TO−4」を加え、超音波により撹拌し、スラリーをスプレーにより190℃の熱風で噴霧し、造粒・乾燥した。次いで、窒素雰囲気下にて750℃で4時間焼成した。得られた焼成品を解砕して表2に示す試料番号「LTO−5」のチタン酸リチウムを得た。X線回折によるLTO−5の格子定数は8.363Åであった。
【0029】
[比較例1]
原料として、表1に示す試料番号「TO−5」の二酸化チタン粉末(東邦チタニウム(株)製、純度99.9%)と、純度99.0%の炭酸リチウム粉末(和光純薬工業(株)製)とを、Li/Ti比0.80となるように秤量採取した。両粉末を水スラリー化(25重量%)してこれをボールミル中で2時間混合した後、120度で乾燥させた。乾燥した混合粉を焼成炉に挿入し、窒素気流中で750℃で4.5時間保持(仮焼)した後、900℃で本焼成した。次いで、焼成品を乳鉢で解砕し、篩別して篩下を採取し、表2に示す試料番号「LTO−6」のチタン酸リチウムを得た。X線回折によるLTO−6の格子定数は8.369Åであった。
【0030】
[比較例2]
比較例1のLTO−5をボールミルで4時間粉砕し、表2に示す試料番号「LTO−7」のチタン酸リチウムを得た。X線回折によるLTO−7の格子定数は8.368Åであった。
【0031】
[比較例3]
比較例1のLTO−5をボールミルで20時間粉砕し、表2に示す試料番号「LTO−8」のチタン酸リチウムを得た。X線回折によるLTO−8の格子定数は8.367Åであった。
【0032】
−リチウムイオン電池特性の評価−
上記実施例1および2、上記比較例1〜3のチタン酸リチウム粉末について、以下の条件でリチウムイオン電池特性を評価した。
・試験極の作成
チタン酸リチウム粉末、アセチレンブラックおよびPTFE(ポリテトラフルオロエチレン)粉末を、重量比で8.5:1.1:0.4の割合で混練し、この混練物をチタン網上で加圧成形した後、減圧乾燥して試験極(負極)とした。
・評価用電池の作成
正極となる対極にリチウム−アルミニウム合金、参照極にリチウム箔を使用し、ポリエチレン製細孔膜からなるセパレータとともに三極セルを組み立てた。電解液には、PC(プロピレンカーボネート)、EC(エチレンカーボネート)およびDME(1,2−ジメトキシエタン)を体積比で1:1:1の割合で混合した溶媒に、電解質としてLiPF6を1モル/lの濃度に溶解して調整したものを用いた。
・充放電容量の測定
電流密度をチタン酸リチウムの1.0g当たり35mAとし、カットオフ電位を充電時2.5V、放電時1.2Vとして、30℃のアルゴン雰囲気下で行った。充放電操作を繰り返し行い、得られた充放電曲線から充電容量、放電容量および充電容量に対する放電容量の割合であるクーロン効率を求めた。その結果を表3および図1に示す。
【0033】
【表3】
【0034】
表3から明らかなように、比較例3(LTO−7)の一次粒子径は0.27μmであって実施例1〜4(LTO−1〜4)とほぼ同じであるが、初期放電容量、10〜20サイクル目での充放電容量は134〜135mAh/g以下であった。これに比べ、本発明のTiO2粉(表1のTO−1およびTO−2)を用いて製造した本発明のチタン酸リチウム粉(例えばLTO−1およびLTO−2)は、初期放電容量、10〜20サイクル目での充放電容量のいずれも150mAh/g以上の高い容量を示し、クーロン効率も100%近い性能を発揮した。
【0035】
図2に示すように、比較例1〜3(LTO−6〜8)は、初期放電容量は130〜140mAh/gであるが、5サイクル程度で急激に容量が低下した。一方、本発明のTiO2粉を用いて製造した本発明のチタン酸リチウム粉を用いた電池では、高い容量が維持されている。また、粉砕により平均粒径を小さくした比較例2および3(LTO−7,8)は、粉砕していない比較例1(LTO−6)に比べて、初期放電容量およびサイクル特性がともに優れている。しかしながら、反応生成物を粉砕することによる向上効果よりも、原料としてのTiO2粉の選択効果の方が大きい。
【0036】
このように、原料としてのTiO2粉の一次粒子径は、その反応生成物であるチタン酸リチウムの電池特性に予期しない影響を及ぼす。したがって、原料TiO2粉と反応生成物の選択により、生成物であるチタン酸リチウムの電池電極活物質としての性能が飛躍的に向上する。
【0037】
【発明の効果】
以上説明したように、本発明によれば、原料の二酸化チタン粉の一次粒子径およびルチル化率と、同原料を用いて生成したチタン酸リチウムの一次粒子径を適宜な範囲に限定したことにより、充放電容量が一層高く、クーロン効率も高く、サイクル寿命に優れたチタン酸リチウムイオン二次電池電極活物質を得ることができるといった効果を奏する。
【図面の簡単な説明】
【図1】 実施例で行った充放電容量の測定値を示す線図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to lithium titanate suitable as an electrode active material of a lithium ion secondary battery used for a power source for portable equipment such as a wrist watch or a backup power source for a personal computer, a manufacturing method thereof, and titanium dioxide as a raw material thereof.
[0002]
[Prior art]
In recent years, electronic devices have been reduced in size and weight, and a secondary battery that is a power source for driving or backing up such devices is also demanded to be small and light and have a high energy density. In recent years, there has been an urgent need to develop a large-capacity power storage system for electric vehicles and for nighttime power storage at home for environmental protection. Therefore, the present applicant pays attention to lithium titanate represented by Li 4 Ti 5 O 12 (sometimes represented by Li 4/3 Ti 5/3 O 4 ) as a lithium secondary battery material electrode active material, Development of this material is ongoing, and as disclosed in Japanese Patent Application Laid-Open No. 2000-17090, an improved technique for lithium titanate material is being developed.
[0003]
[Problems to be solved by the invention]
In a battery employing a conventionally known lithium titanate material as an electrode active material, even if the initial discharge capacity is high to some extent, the cycle life is short, the charge / discharge capacity is not large even if the cycle life is long, the Coulomb efficiency is low, etc. In general, it was not practical enough.
[0004]
The present invention has been made to solve the above problems, and the object of the present invention is as follows.
(1) Provision of a lithium titanate secondary battery electrode (positive electrode or negative electrode) active material having higher charge / discharge capacity, higher coulomb efficiency, and superior cycle life.
(2) Provision of a method for producing the active material.
(3) Provision of raw materials for producing the active material.
In the following description, “lithium titanate” may be expressed as “target substance”.
[0005]
[Means for Solving the Problems]
According to the research of the present inventor, the primary particle diameter (also referred to as BET diameter) is 1.0 μm or less, preferably 0.1 μm or less as titanium dioxide (hereinafter sometimes referred to as TiO 2 ) as a raw material for producing lithium titanate. The primary particle size obtained by firing a mixture of titanium dioxide powder and a lithium compound using titanium dioxide powder having a rutile ratio of 15 to 100% and 1 to 0.8 μm is 1.0 μm or less. In addition, it has been discovered that the use of fine powder of lithium titanate of 0.1 to 0.8 μm as the active material of the lithium ion battery electrode significantly increases the charge / discharge capacity, coulomb efficiency, and cycle life of the battery. Completed.
[0006]
The present invention has been made based on the above findings, and the method for producing lithium titanate as the lithium ion secondary battery electrode active material according to the present invention has a primary particle size of 0.8 μm or less determined from the BET specific surface area. In addition, a mixture of titanium dioxide powder having a rutile ratio of 15 to 100 % and a lithium compound is fired, and lithium titanate having a primary particle diameter of 0.1 to 0.8 μm is collected.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
Lithium titanate, which is a target substance of the present invention, is used as an active material of a lithium ion secondary battery electrode, and is basically represented by the general formula Li X Ti Y O 12 , and Li / Ti The atomic ratio is in the range of 0.68 to 0.82, X is in the range of 3 to 5, and Y is in the range of 4 to 6. Specifically, Li 4 Ti 5 O 12 (Li 4/3 Ti 5/3 O 4 or Li [Li 1/3 Ti 5/3 ] lithium titanate of single phase case having a spinel type crystal structure represented by is) represented by O 4 as a main component, partially Li 2 TiO 3 or TiO 2 may be mixed, and in terms of a single phase conversion rate, it is 90% or more.
[0008]
(1) Starting material The raw materials for producing the lithium titanate of the present invention are a lithium compound and titanium dioxide powder (hereinafter referred to as TiO 2 powder) described below.
The lithium compound as a raw material may be any of a salt, an oxide, and a hydroxide, and examples thereof include lithium carbonate, lithium hydroxide, lithium nitrate, lithium oxide, lithium oxalate, and lithium acetate. Although 2 or more types are used, it is not limited to these. Since the lithium compound is fired together with the TiO 2 powder described later, uniform contact with the TiO 2 powder must be achieved. When the dry mixed powder of the lithium compound and TiO 2 powder is fired, a powder having an average particle diameter (median diameter by a laser light scattering method) of the lithium compound to be used is 100 μm or less, preferably 50 μm or less. In particular, in the case of lithium carbonate powder, the average particle size is sufficiently pulverized in advance. As another mixing means, for example, lithium hydroxide is made into an aqueous solution, impregnated with TiO 2 powder, preliminarily dried, and fired to obtain a preferable object. In general, the lithium compound used should have a purity of 99.0% by weight, preferably 99.5% by weight or more.
[0009]
(2) Titanium dioxide powder (TiO 2 powder)
The TiO 2 powder of the present invention which is one raw material is a powder having a primary particle size (by the BET method) of 1.0 μm or less and a rutile ratio of 15 to 100%. The primary particle size of the TiO 2 powder as the raw material has a great influence on the battery characteristics of the product lithium titanate. Specifically, lithium titanate manufactured using TiO 2 powder having a primary particle size of less than 1.0 μm exhibits very high initial discharge capacity and cycle charge / discharge capacity, and extremely high Coulomb efficiency. . In particular, lithium titanate produced using TiO 2 powder having a primary particle size of 0.1 to 0.8 μm, particularly 0.1 to 0.6 μm, has a long cycle life.
[0010]
In order to produce the object of the present invention, TiO 2 powder having a rutile ratio of 15% or more is preferable for the purpose of synthesizing lithium titanate having a small primary particle size as a result of homogeneous mixing with a lithium compound. In particular, in the case of TiO 2 powder having a small average particle diameter, the growth of primary particles is suppressed when firing with the lithium compound powder, which has a higher rutile ratio, specifically 30% or more, when mixed with the lithium compound. As a result, fine crystal grains can be obtained, and lithium titanate excellent in battery characteristics can be obtained.
The rutile ratio in the present invention is determined by X-ray diffraction analysis based on a calibration curve for diffraction integral intensities at 2θ = 27.5 ° (rutile type) and 25.4 ° (anatase type). The value is referred to as the rutile ratio.
[0011]
(3) Synthesis of lithium titanate In synthesizing a lithium titanate compound, the lithium compound and TiO 2 powder are combined with a target value of Li / Ti ratio (atomic ratio) of lithium titanate, for example, 0.68 to 0.00. According to a value selected from the range of 82, both raw materials are weighed and mixed. For mixing the two raw materials, a vibration mill, a ball mill or the like is appropriately used. The raw material mixture is subjected to firing as a molded body in a bulk state or compressed at a pressure of about 0.5 t / cm 2 . As another mixing means, the mixed powder may be made into a slurry of 10 to 50% by weight of water or an aqueous medium and sufficiently stirred, and then dried by heating or spraying and may be subjected to firing. Alternatively, a lithium compound that is easily dissolved in water may be made into an aqueous solution, impregnated with TiO 2 powder, and fired after drying.
[0012]
For firing, either a method of calcining at a slightly lower temperature in the first stage and then a method of firing at a higher temperature as the second stage (main firing) or a method of continuous firing while maintaining a constant temperature is adopted. Just do it. As the calcination conditions, heating is preferably performed at a temperature of 600 to 700 ° C. for about 30 minutes to 5 hours. The main baking is performed at 700 to 950 ° C., preferably 720 to 950 ° C., or the calcined product is taken out of the furnace and remixed while crushing the molded body, and this is again formed into a molded body and the temperature of the main baking. Heat to. The firing temperature seems to be related to the particle diameter of the raw material TiO 2 powder. When the primary particle diameter of the TiO 2 powder is generally 0.1 to 0.5 μm, the firing temperature is 700 to 850 ° C. and the primary particle diameter is In the case of 0.5 to 1.0 μm TiO 2 powder, the firing temperature is 800 to 950 ° C., the primary particle diameter, purity (referred to as single phase degree) of the target lithium titanate, and the battery characteristics To preferred.
[0013]
When the firing temperature exceeds 950 ° C., sintering proceeds in the firing process, and there is a risk that the primary particle size becomes too large.
[0014]
As a guide for firing, it is preferable to select the firing temperature and time based on the TiO 2 residual degree. That is, the ratio of the intensity at the powder X-ray diffraction peak (27 °) of TiO 2 of the fired product to the intensity at the powder X-ray diffraction peak (18 °) of Li 4 Ti 5 O 12 , that is, the relative intensity ratio ( It is preferable to perform firing so that the “TiO 2 residual degree” is 0.1 or less, preferably 0.05 or less. When expressed as a single phase ratio [(1-TiO 2 residual degree) × 100], it is 90% or more, preferably 95%. The firing atmosphere may be appropriately selected from oxygen, air, nitrogen, argon and the like, but nitrogen or argon gas is particularly preferable from the viewpoint of long cycle life of lithium titanate obtained by firing and excellent battery characteristics.
[0015]
(4) Lithium titanate The lithium titanate thus obtained is taken out from the firing furnace, cooled, crushed as necessary, and further pulverized or classified as necessary to obtain the desired primary particle size. Collect the lithium titanate. The feature of the lithium ion battery electrode active material of the present invention is that the primary particle diameter obtained by firing the TiO 2 powder is 1.0 μm or less, more preferably 0.1 to 0.8 μm. Further preferred embodiments have a primary particle diameter of 0.1 to 0.6 μm, and an average particle diameter (secondary particle diameter) of 1 to 30 μm, more preferably 3 to 20 μm from the viewpoint of easy handling at the time of electrode formation. Is. In order to obtain the target lithium titanate powder from the fired product, it is sufficient to weakly pulverize the fired product, but after pulverization, the average particle size is adjusted by sieving or by appropriate means such as grinding. Good.
[0016]
The important point of the lithium titanate powder of the present invention is “specific lithium titanate” obtained by using “specific TiO 2 powder”. When this is used as an active material, battery characteristics (capacity and cycle) (Characteristics) is further improved.
[0017]
As is apparent from the above description, preferred embodiments of the present invention are as follows.
(1) TiO 2 powder as a lithium titanate raw material has a primary particle size of 0.1 to 0.8 μm, an average particle size of 1 to 30 μm, and a rutile ratio of 15 to 100%.
(2) Lithium titanate was obtained by firing TiO 2 powder having a primary particle size of 0.1 to 0.8 μm, an average particle size of 1 to 30 μm, and a rutile ratio of 15 to 100% together with a lithium compound. The primary particle diameter is 0.1 to 0.8 μm.
(3) The primary particle diameter of the lithium titanate is 0.1 to 0.6 μm.
(4) In producing the above lithium titanate, TiO 2 powder having a primary particle size of 0.1 to 0.8 μm and a rutile ratio of 15 to 100% was baked together with a lithium compound, and the primary particle size was 0.1 A lithium titanate powder having a diameter of ˜0.8 μm and an average particle diameter of 1 to 30 μm is collected.
[0018]
Next, a secondary battery using the lithium titanate of the present invention will be described.
The lithium titanate powder of the present invention is mixed with a known conductive agent or binder to form a positive electrode or a negative electrode. As the conductive material, for example, graphite, carbon black, acetylene black, ketjen black, carbon fiber powder or the like is used. Examples of the binder include fluorine polymers such as PTFE (polytetrafluoroethylene), polyvinyl alcohol, polyvinyl chloride, polyvinylidene fluoride, polyethylene, polypropylene, and ethylene-propylene rubber.
[0019]
The battery includes a negative electrode or a positive electrode using the lithium titanate as an active material, and an electrolyte. The electrolyte is composed of a solvent and a lithium salt, and propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, acetonitrile, It is appropriately selected from nitromethane and the like. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 and the like.
[0020]
As described above, the lithium titanate active material of the present invention is obtained by the TiO 2 powder of the present invention, and the discharge capacity is increased by using this lithium titanate as the positive electrode material or the negative electrode material of the lithium ion secondary battery. A lithium ion secondary battery with extremely good charge / discharge cycle characteristics can be obtained.
[0021]
【Example】
Hereinafter, the present invention will be described in more detail based on examples.
[Example 1]
As raw materials, titanium dioxide powder of sample number “TO-1” shown in Table 1 (manufactured by Toho Titanium Co., Ltd., purity 99.9%) and lithium carbonate powder of purity 99.0% (Wako Pure Chemical Industries, Ltd.) )) Was weighed out so that the Li / Ti ratio was 0.80. Both powders were slurried in water (25% by weight), stirred in a ball mill for 2 hours, and then dried at 120 degrees. The dried mixed powder was inserted into a firing furnace, held in a nitrogen stream at 750 ° C. for 4.5 hours (calcination), and then fired (main firing) in two stages of 850 ° C. and 950 ° C. for a total of 4 hours. Next, the fired product was pulverized with a mortar and pulverized with a ball mill for 15 hours to obtain a lithium titanate having a sample number “LTO-1” shown in Table 2. The lattice constant of LTO-1 by X-ray diffraction was 8.3658.
[0022]
[Table 1]
[0023]
[Table 2]
[0024]
In addition, each physical property of Table 2 was calculated | required as follows.
・ BET specific surface area (specific surface area of primary particles)
Measurement was performed by a nitrogen gas adsorption method using Multisorb 16 type manufactured by Yuasa Ionics Co., Ltd. as an analyzer.
-Based on the primary particle diameter BET specific surface area value, the particles were calculated as spherical.
-HORIBA, Ltd. product: LA700 was used as an average particle size analyzer, and a 50% value (D50) based on volume was determined by a laser light scattering method, and this was used as the average particle size.
[0025]
[Example 2]
Samples shown in Table 2 in the same manner as in Example 1 except that titanium dioxide powder having the sample number “TO-2” shown in Table 1 (Toho Titanium Co., Ltd., purity 99.9%) was used as the raw material. The lithium titanate with the number “LTO-2” was obtained. The lattice constant of LTO-2 by X-ray diffraction was 8.364Å.
[0026]
[Example 3]
As a raw material, titanium dioxide powder of sample number “TO-3” shown in Table 1 (manufactured by Toho Titanium Co., Ltd., purity 99.9%) is used, and the main baking is performed at 900 ° C. for one hour for 4 hours. The lithium titanate of sample number “LTO-3” shown in Table 2 was obtained in the same manner as in Example 1 except that the pulverization time by the subsequent ball mill was 5 hours. The lattice constant of LTO-3 by X-ray diffraction was 8.3638.
[0027]
[Example 4]
Samples shown in Table 2 in the same manner as in Example 1 except that titanium dioxide powder of sample number “TO-4” shown in Table 1 (manufactured by Toho Titanium Co., Ltd., purity 99.9%) was used as a raw material. The lithium titanate with the number “LTO-4” was obtained. The lattice constant of LTO-4 by X-ray diffraction was 8.3648.
[0028]
[Example 5]
Titanium dioxide powder “TO-4” shown in Table 1 was added to a 15 wt% aqueous solution of lithium hydroxide, stirred by ultrasonic waves, and the slurry was sprayed with hot air at 190 ° C. by spraying, and granulated and dried. Subsequently, it baked at 750 degreeC under nitrogen atmosphere for 4 hours. The obtained fired product was crushed to obtain a lithium titanate having a sample number “LTO-5” shown in Table 2. The lattice constant of LTO-5 by X-ray diffraction was 8.363Å.
[0029]
[Comparative Example 1]
As raw materials, titanium dioxide powder of sample number “TO-5” shown in Table 1 (manufactured by Toho Titanium Co., Ltd., purity 99.9%) and lithium carbonate powder of purity 99.0% (Wako Pure Chemical Industries, Ltd.) )) Was weighed out so that the Li / Ti ratio was 0.80. Both powders were slurried in water (25% by weight), mixed in a ball mill for 2 hours, and then dried at 120 degrees. The dried mixed powder was inserted into a firing furnace and held (calcined) at 750 ° C. for 4.5 hours in a nitrogen stream, followed by main firing at 900 ° C. Next, the fired product was pulverized in a mortar, sieved and collected under the sieve to obtain a lithium titanate having a sample number “LTO-6” shown in Table 2. The lattice constant of LTO-6 by X-ray diffraction was 8.3698.
[0030]
[Comparative Example 2]
LTO-5 of Comparative Example 1 was pulverized with a ball mill for 4 hours to obtain a lithium titanate having a sample number “LTO-7” shown in Table 2. The lattice constant of LTO-7 by X-ray diffraction was 8.3688.
[0031]
[Comparative Example 3]
LTO-5 of Comparative Example 1 was pulverized with a ball mill for 20 hours to obtain a lithium titanate having a sample number “LTO-8” shown in Table 2. The lattice constant of LTO-8 by X-ray diffraction was 8.3678.
[0032]
-Evaluation of lithium ion battery characteristics-
About the lithium titanate powder of the said Examples 1 and 2 and the said Comparative Examples 1-3, the lithium ion battery characteristic was evaluated on condition of the following.
-Preparation of test electrode Lithium titanate powder, acetylene black and PTFE (polytetrafluoroethylene) powder were kneaded at a weight ratio of 8.5: 1.1: 0.4, and this kneaded product was placed on a titanium mesh. After being pressure-molded with, dried under reduced pressure to obtain a test electrode (negative electrode).
-Preparation of battery for evaluation A lithium-aluminum alloy was used for the counter electrode serving as the positive electrode, a lithium foil was used for the reference electrode, and a three-electrode cell was assembled together with a separator made of a polyethylene porous membrane. In the electrolyte, 1 mol of LiPF 6 was used as an electrolyte in a solvent in which PC (propylene carbonate), EC (ethylene carbonate) and DME (1,2-dimethoxyethane) were mixed at a volume ratio of 1: 1: 1. A solution prepared by dissolving at a concentration of / l was used.
The measurement current density of charge / discharge capacity was 35 mA per 1.0 g of lithium titanate, the cut-off potential was 2.5 V during charging, and 1.2 V during discharging, and the measurement was performed in an argon atmosphere at 30 ° C. The charge / discharge operation was repeated, and the coulomb efficiency, which is the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity, was determined from the obtained charge / discharge curve. The results are shown in Table 3 and FIG.
[0033]
[Table 3]
[0034]
As is clear from Table 3, the primary particle diameter of Comparative Example 3 (LTO-7) is 0.27 μm, which is almost the same as Examples 1 to 4 (LTO-1 to 4), but the initial discharge capacity, The charge / discharge capacity in the 10th to 20th cycles was 134 to 135 mAh / g or less. In comparison, the lithium titanate powder of the present invention (for example, LTO-1 and LTO-2) manufactured using the TiO 2 powder of the present invention (TO-1 and TO-2 in Table 1) has an initial discharge capacity, All of the charge / discharge capacities in the 10th to 20th cycles showed a high capacity of 150 mAh / g or more, and the Coulomb efficiency also exhibited a performance of nearly 100%.
[0035]
As shown in FIG. 2, in Comparative Examples 1 to 3 (LTO-6 to 8), the initial discharge capacity is 130 to 140 mAh / g, but the capacity suddenly decreased in about 5 cycles. On the other hand, in the battery using the lithium titanate powder of the present invention manufactured using the TiO 2 powder of the present invention, a high capacity is maintained. Further, Comparative Examples 2 and 3 (LTO-7, 8) in which the average particle size was reduced by pulverization were excellent in both initial discharge capacity and cycle characteristics as compared with Comparative Example 1 (LTO-6) which was not pulverized. Yes. However, the effect of selecting TiO 2 powder as a raw material is greater than the effect of improving by pulverizing the reaction product.
[0036]
Thus, the primary particle diameter of the TiO 2 powder as a raw material has an unexpected influence on the battery characteristics of the reaction product lithium titanate. Therefore, by selecting the raw material TiO 2 powder and the reaction product, the performance of the product lithium titanate as a battery electrode active material is dramatically improved.
[0037]
【Effect of the invention】
As described above, according to the present invention, the primary particle diameter and rutile ratio of the raw material titanium dioxide powder and the primary particle diameter of lithium titanate produced using the raw material are limited to an appropriate range. The lithium titanate secondary battery electrode active material having higher charge / discharge capacity, higher coulomb efficiency, and excellent cycle life can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing measured values of charge / discharge capacity performed in Examples.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001090753A JP4949561B2 (en) | 2001-03-27 | 2001-03-27 | Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001090753A JP4949561B2 (en) | 2001-03-27 | 2001-03-27 | Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002289194A JP2002289194A (en) | 2002-10-04 |
JP4949561B2 true JP4949561B2 (en) | 2012-06-13 |
Family
ID=18945498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001090753A Expired - Fee Related JP4949561B2 (en) | 2001-03-27 | 2001-03-27 | Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4949561B2 (en) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1296391A4 (en) | 2001-03-22 | 2006-06-28 | Matsushita Electric Ind Co Ltd | Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same |
JP4510331B2 (en) | 2001-06-27 | 2010-07-21 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery |
JP3827545B2 (en) | 2001-09-13 | 2006-09-27 | 松下電器産業株式会社 | Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery |
US8658125B2 (en) | 2001-10-25 | 2014-02-25 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US8241790B2 (en) | 2002-08-05 | 2012-08-14 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
JP4554911B2 (en) * | 2003-11-07 | 2010-09-29 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery |
JP4668539B2 (en) * | 2004-02-25 | 2011-04-13 | 石原産業株式会社 | Method for producing lithium titanate and method for producing lithium battery |
FR2874603B1 (en) * | 2004-08-31 | 2006-11-17 | Commissariat Energie Atomique | MIXED TITANIUM AND DENSE LITHIUM MIXED OXIDE POWDER COMPOUND, PROCESS FOR PRODUCING THE SAME, AND ELECTRODE COMPRISING SUCH COMPOUND |
JP2007018883A (en) | 2005-07-07 | 2007-01-25 | Toshiba Corp | Negative electrode active material, nonaqueous electrolyte battery and battery pack |
JP4746392B2 (en) * | 2005-09-26 | 2011-08-10 | 株式会社東芝 | Nonaqueous electrolyte secondary battery and battery pack |
WO2008121660A2 (en) | 2007-03-30 | 2008-10-09 | Altairnano, Inc. | Method for preparing a lithium ion cell |
JP5228393B2 (en) * | 2007-07-31 | 2013-07-03 | 株式会社Gsユアサ | Lithium ion secondary battery |
WO2010082323A1 (en) * | 2009-01-14 | 2010-07-22 | トヨタ自動車株式会社 | Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery |
KR101093712B1 (en) | 2009-01-15 | 2011-12-19 | 삼성에스디아이 주식회사 | Negative active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same |
JP5417978B2 (en) * | 2009-05-14 | 2014-02-19 | 株式会社豊田中央研究所 | Negative electrode for lithium ion secondary battery and lithium ion secondary battery |
JP5763889B2 (en) * | 2010-03-16 | 2015-08-12 | パナソニック株式会社 | Non-aqueous electrolyte secondary battery charge / discharge method |
KR20120017991A (en) * | 2010-08-20 | 2012-02-29 | 삼성에스디아이 주식회사 | Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same |
JP5270634B2 (en) * | 2010-10-19 | 2013-08-21 | 石原産業株式会社 | Method for producing lithium titanate and method for producing lithium battery |
JP5671969B2 (en) * | 2010-11-24 | 2015-02-18 | 日立化成株式会社 | Lithium titanium compound particles and method for producing the same, electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
JP5174283B2 (en) * | 2010-12-24 | 2013-04-03 | 京セラ株式会社 | Lithium secondary battery |
CA2833712A1 (en) * | 2011-04-28 | 2012-11-01 | Ishihara Sangyo Kaisha, Ltd. | Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active material, and electricity storage device |
JP5990512B2 (en) * | 2011-04-28 | 2016-09-14 | 石原産業株式会社 | Titanium raw material for producing lithium titanate and method for producing lithium titanate using such raw material |
JP2013095646A (en) * | 2011-11-02 | 2013-05-20 | Taiyo Yuden Co Ltd | Lithium-titanium complex oxide, and battery electrode and lithium ion secondary battery using the same |
JP5439458B2 (en) * | 2011-11-02 | 2014-03-12 | 太陽誘電株式会社 | Lithium titanium composite oxide, battery electrode using the same, and lithium ion secondary battery |
WO2013081231A1 (en) * | 2011-11-30 | 2013-06-06 | 주식회사 휘닉스소재 | Method for preparing hetero-metal doped lithium titanium complex oxide and hetero-metal doped lithium titanium complex oxide prepared from same |
KR101914557B1 (en) | 2011-12-20 | 2018-11-05 | 삼성에스디아이 주식회사 | Methods of preparing lithium titanium oxide for providing lithium secondary batteries with enhanced properties and lithium secondary batteries containing the same |
JP5597662B2 (en) * | 2012-03-09 | 2014-10-01 | 株式会社東芝 | Negative electrode active material, non-aqueous electrolyte battery and battery pack |
JP5497094B2 (en) | 2012-03-29 | 2014-05-21 | 太陽誘電株式会社 | Lithium titanium composite oxide, battery electrode using the same, and lithium ion secondary battery |
JP6167491B2 (en) * | 2012-09-11 | 2017-07-26 | 堺化学工業株式会社 | Titanium dioxide composition and method for producing the same, and lithium titanate |
JP6076926B2 (en) | 2013-03-25 | 2017-02-08 | 株式会社東芝 | Battery active materials, non-aqueous electrolyte batteries, battery packs and automobiles |
EP2980022B1 (en) * | 2013-03-29 | 2016-09-14 | Kubota Corporation | Titanium oxide compound, and electrode and lithium ion secondary battery each manufactured using same |
KR101795977B1 (en) * | 2013-08-19 | 2017-11-08 | 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 | Method for producing titanium oxide using porous titanium compound impregnated with solution |
JP6223760B2 (en) | 2013-09-18 | 2017-11-01 | 株式会社東芝 | Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery, battery pack and vehicle |
JP2015125835A (en) * | 2013-12-26 | 2015-07-06 | 東邦チタニウム株式会社 | Powdery lithium titanate, production method therefor, and lithium ion battery using the same |
CN107437618B (en) * | 2016-05-27 | 2022-01-28 | 松下知识产权经营株式会社 | Electrochemical device |
JP6891886B2 (en) * | 2016-06-30 | 2021-06-18 | 宇部興産株式会社 | Lithium titanate powder and active material for electrodes of power storage devices, and electrode sheets and power storage devices using them. |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2715508B1 (en) * | 1994-01-21 | 1996-03-29 | Renata Ag | Primary or secondary electrochemical generator with nanoparticulate electrode. |
JP4540167B2 (en) * | 1999-02-16 | 2010-09-08 | 東邦チタニウム株式会社 | Method for producing lithium titanate |
-
2001
- 2001-03-27 JP JP2001090753A patent/JP4949561B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002289194A (en) | 2002-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4949561B2 (en) | Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same | |
JP4540167B2 (en) | Method for producing lithium titanate | |
KR101613862B1 (en) | Method for manufacturing over-lithiated layered lithium metal composite oxide | |
JP4768901B2 (en) | Lithium titanium composite oxide, method for producing the same, and use thereof | |
JP5172835B2 (en) | Lithium-containing composite oxide powder and method for producing the same | |
KR100995255B1 (en) | Positive electrode active material for lithium secondary battery and method for producing same | |
KR101787141B1 (en) | Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery | |
JP4216669B2 (en) | Lithium / nickel / manganese / cobalt composite oxide and lithium ion secondary battery using the same as positive electrode active material | |
JP4299065B2 (en) | Positive electrode material for lithium secondary battery and method for producing the same | |
JP4642960B2 (en) | Method for producing lithium titanate | |
JPH11273678A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material | |
JPWO2004082046A1 (en) | Positive electrode active material powder for lithium secondary battery | |
KR20050057566A (en) | Positive electrode material for lithium secondary battery and process for producing the same | |
JP2004220897A (en) | Positive electrode active substance powder for lithium secondary battery | |
JPH0950810A (en) | Electrode active material for non-aqueous electrolytic battery and manufacture thereof | |
JP4919147B2 (en) | Method for producing positive electrode active material for non-aqueous lithium secondary battery | |
JP2002060225A (en) | Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate | |
JP4268613B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JPH11292547A (en) | Lithium cobaltate, its production and lithium cell using that | |
JP4435926B2 (en) | High crystalline lithium titanate | |
JP2008156163A (en) | Spinel type lithium manganese oxide and method for manufacturing the same | |
JP4172024B2 (en) | Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery | |
JP2006318928A (en) | Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery | |
JP2002151078A (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing process | |
JP2001243949A (en) | Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120308 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150316 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150316 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |