Nothing Special   »   [go: up one dir, main page]

JP5830842B2 - Method for producing lithium titanate particle powder and non-aqueous electrolyte secondary battery - Google Patents

Method for producing lithium titanate particle powder and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5830842B2
JP5830842B2 JP2010214368A JP2010214368A JP5830842B2 JP 5830842 B2 JP5830842 B2 JP 5830842B2 JP 2010214368 A JP2010214368 A JP 2010214368A JP 2010214368 A JP2010214368 A JP 2010214368A JP 5830842 B2 JP5830842 B2 JP 5830842B2
Authority
JP
Japan
Prior art keywords
lithium
lithium titanate
particle powder
secondary battery
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010214368A
Other languages
Japanese (ja)
Other versions
JP2012069432A (en
Inventor
山本 明典
明典 山本
沖田 朋子
朋子 沖田
山本 博司
博司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010214368A priority Critical patent/JP5830842B2/en
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to US13/819,068 priority patent/US9293235B2/en
Priority to CN201180041557.4A priority patent/CN103080010B/en
Priority to KR1020137004805A priority patent/KR20130097733A/en
Priority to PCT/JP2011/069407 priority patent/WO2012029697A1/en
Priority to EP11821713.2A priority patent/EP2612840A4/en
Priority to CA2809511A priority patent/CA2809511A1/en
Priority to TW100131298A priority patent/TW201226320A/en
Publication of JP2012069432A publication Critical patent/JP2012069432A/en
Application granted granted Critical
Publication of JP5830842B2 publication Critical patent/JP5830842B2/en
Priority to US15/019,322 priority patent/US9847526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池用活物質として、優れた初期放電容量を示し、かつ高率放電容量維持率が高いチタン酸リチウム粒子粉末の、安価かつ簡易な製造法を提供する。   The present invention provides an inexpensive and simple method for producing lithium titanate particles having an excellent initial discharge capacity and a high high rate discharge capacity retention rate as an active material for a non-aqueous electrolyte secondary battery.

近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having advantages such as a high charge / discharge voltage and a large charge / discharge capacity has attracted attention.

このリチウムイオン二次電池において、従来より、負極活物質としてチタン酸リチウムを使用することが知られている(特許文献1)。   Conventionally, in this lithium ion secondary battery, it is known to use lithium titanate as a negative electrode active material (Patent Document 1).

チタン酸リチウムLiTi12は、充放電によるリチウムイオン挿入・脱離反応における結晶構造変化が非常に小さいため、構造安定性が高く、信頼性の高い負極活物質として知られている。 Lithium titanate Li 4 Ti 5 O 12 is known as a highly reliable negative electrode active material having high structural stability because the crystal structure change in the lithium ion insertion / extraction reaction due to charge / discharge is very small.

従来から、チタン酸リチウムLiTi12を得るための製造法ついては、リチウム塩とチタン酸化物をLi/Ti=0.80となるように乾式または湿式混合した混合粉末(これらは、単なるリチウム塩とチタン酸化物の混合物である。)を加熱焼成してLiTi12を得る、いわゆる固相反応法が知られている。(特許文献1〜4) Conventionally, a manufacturing method for obtaining lithium titanate Li 4 Ti 5 O 12 is a mixed powder obtained by dry or wet mixing lithium salt and titanium oxide so that Li / Ti = 0.80. A so-called solid phase reaction method is known in which Li 4 Ti 5 O 12 is obtained by heating and baking a mixture of lithium salt and titanium oxide. (Patent Documents 1 to 4)

また、上記固相反応法に類似の方法として、チタン酸化物とチタン酸化合物(メタチタン酸、オルトチタン酸またはこれらの混合物)とリチウム塩を含むスラリーを乾燥造粒した後、加熱焼成する製造法も知られている。(特許文献5、6)   Further, as a method similar to the above solid-phase reaction method, a production method in which a slurry containing a titanium oxide, a titanic acid compound (metatitanic acid, orthotitanic acid or a mixture thereof) and a lithium salt is dried and granulated and then heated and fired. Is also known. (Patent Documents 5 and 6)

一方、チタン化合物とアンモニウム化合物とを水中で反応させてチタン酸化合物を得る工程、該チタン酸化合物とリチウム化合物を水中で反応させてチタン酸リチウム水和物を得る工程、該チタン酸リチウム水和物を加熱脱水する工程からなる、チタン酸リチウムLiTi12の製造方法が知られている。(特許文献7) On the other hand, a step of reacting a titanium compound and an ammonium compound in water to obtain a titanate compound, a step of reacting the titanate compound and a lithium compound in water to obtain a lithium titanate hydrate, the lithium titanate hydration A method for producing lithium titanate Li 4 Ti 5 O 12 comprising a step of heat-dehydrating an object is known. (Patent Document 7)

特開平6−275263号公報JP-A-6-275263 特開2001−192208号公報JP 2001-192208 A 特開2001−240498号公報Japanese Patent Laid-Open No. 2001-240498 特開2003−137547号公報JP 2003-137547 A 特開2005−239460号公報JP-A-2005-239460 特開2005−239461号公報JP 2005-239461 A 特開平9−309727号公報JP-A-9-309727

非水電解質二次電池用活物質として、優れた初期放電容量を示し、かつ高率放電容量維持率が高いチタン酸リチウム粒子粉末を得るための、安価かつ簡易な製造法は現在最も要求されているところであるが、未だ得られていない。   As an active material for a non-aqueous electrolyte secondary battery, an inexpensive and simple production method for obtaining lithium titanate particles having an excellent initial discharge capacity and a high high discharge capacity retention rate is currently most demanded. Although it is, it has not been obtained yet.

即ち、特許文献1〜4は、リチウム塩とチタン酸化物をLi/Ti=0.80となるように乾式または湿式混合した混合粉末(これらは、単なるリチウム塩とチタン酸化物の混合物である。)を加熱焼成してLiTi12を得る。これらは、固相反応法として一般に知られた製造法であるが、LiTi12型のスピネル型単相を得るためには、高温での焼成、あるいは2回以上の焼成・粉砕を繰り返すなどの方法が必要となることが多い。したがって、組成的に均一なスピネル型構造単相のチタン酸リチウムLiTi12微粒子を得ることが困難であり、これをリチウムイオン二次電池の負極活物質として使用した場合、優れた初期放電容量、および高率放電容量維持率が高いとは言い難いものである。 That is, Patent Documents 1 to 4 are mixed powders obtained by dry or wet mixing lithium salt and titanium oxide so that Li / Ti = 0.80 (these are simply a mixture of lithium salt and titanium oxide. ) To obtain Li 4 Ti 5 O 12 . These are production methods generally known as solid phase reaction methods, but in order to obtain a Li 4 Ti 5 O 12 type spinel type single phase, firing at a high temperature, or firing and pulverization at least twice. Often it is necessary to repeat the method. Therefore, it is difficult to obtain a compositionally uniform spinel type structure single phase lithium titanate Li 4 Ti 5 O 12 fine particles, and when this is used as a negative electrode active material of a lithium ion secondary battery, an excellent initial It is difficult to say that the discharge capacity and the high rate discharge capacity maintenance ratio are high.

また、特許文献5、6の製造法は、チタン化合物とリチウム化合物(リチウム塩)とを含むスラリーを乾燥造粒した後、加熱焼成してチタン酸リチウムを製造する方法において、100℃以下で予熱したリチウム塩溶液に少なくともチタン酸化合物(オルトチタン酸、メタチタン酸など)を含むチタン化合物を添加して、該スラリーとすることを特徴としている。本製造法は、乾燥造粒した前駆体を加熱焼成することで、タップ密度が高い大粒子のチタン酸リチウムを得ることを目的としている。タップ密度が高ければ、粒子充填性が向上し、電極密度が向上する効果が期待されるが、一方で、造粒した二次粒子内部での一次粒子間の導電性を確保することが困難であるため、特に高率放電容量維持率を高めることが非常に困難となる。したがって、本発明の目的である、優れた初期放電容量、かつ高率放電容量維持率の向上効果が十分な製造法とは言い難いものである。   In addition, in the production methods of Patent Documents 5 and 6, a slurry containing a titanium compound and a lithium compound (lithium salt) is dried and granulated, and then heated and fired to produce lithium titanate. A titanium compound containing at least a titanic acid compound (orthotitanic acid, metatitanic acid, etc.) is added to the lithium salt solution to form the slurry. The purpose of this production method is to obtain large particles of lithium titanate having a high tap density by heating and firing the dried and granulated precursor. If the tap density is high, the particle packing property is improved, and the effect of improving the electrode density is expected. On the other hand, it is difficult to ensure the conductivity between the primary particles inside the granulated secondary particles. Therefore, it is very difficult to increase the high rate discharge capacity maintenance rate. Therefore, it is difficult to say that the manufacturing method is sufficient for improving the initial discharge capacity and the high-rate discharge capacity retention rate, which are the objects of the present invention.

また、特許文献7では、チタン化合物とアンモニウム化合物とを水中で反応させてチタン酸化合物を得る工程、該チタン酸化合物とリチウム化合物を水中で反応させてチタン酸リチウム水和物を得る工程、該チタン酸リチウム水和物を加熱脱水する工程によって、薄片状あるいは板状のチタン酸リチウムLiTi12の微粒子を得ている。この合成法によって得られるチタン酸リチウム粒子は、極薄い板状形状かつ多孔質であることを特徴としている。
一方、リチウムイオン二次電池の電極作製時には、活物質であるチタン酸リチウム粒子を有機溶剤中で分散・塗料化して、シート状に塗布することが一般的である。上記の極薄い板状形状かつ多孔質であることを特徴とする微粒子は、塗料分散に対して著しく不利である。したがって、活物質本来の充放電性能を十分に発揮させることが困難であり好ましくない。
また、製造プロセスとしても、水中での反応工程を2回必要とするため、コスト・生産性両面を考慮しても、有利な製造法とは言い難いものである。
In Patent Document 7, a step of reacting a titanium compound and an ammonium compound in water to obtain a titanate compound, a step of reacting the titanate compound and a lithium compound in water to obtain a lithium titanate hydrate, In the step of heat dehydrating lithium titanate hydrate, fine particles of flaky or plate-like lithium titanate Li 4 Ti 5 O 12 are obtained. The lithium titanate particles obtained by this synthesis method are characterized by being extremely thin plate-shaped and porous.
On the other hand, when producing an electrode of a lithium ion secondary battery, it is common to disperse and paint a lithium titanate particle as an active material in an organic solvent and apply it in a sheet form. The fine particles characterized by the above-mentioned extremely thin plate-like shape and porosity are remarkably disadvantageous for coating dispersion. Therefore, it is difficult and not preferable to fully exhibit the original charge / discharge performance of the active material.
Moreover, since the reaction process in water is required twice as a manufacturing process, it is difficult to say that it is an advantageous manufacturing method even in consideration of both cost and productivity.

そこで、本発明は、非水電解質二次電池用活物質として、優れた初期放電容量を示し、かつ高率放電容量維持率が高いチタン酸リチウム粒子粉末を安価かつ簡易なプロセスを用いて得ることを技術的課題とする。   Therefore, the present invention provides a lithium titanate particle powder that exhibits an excellent initial discharge capacity and a high high rate discharge capacity maintenance rate as an active material for a non-aqueous electrolyte secondary battery by using an inexpensive and simple process. Is a technical issue.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

本発明は、BET比表面積値が40〜400m/g、一次粒子径が5〜50nmであるチタン酸化物の水性懸濁液に水溶性リチウム溶液を添加混合し、該混合懸濁液をオートクレーブを使用せずに50〜100℃(但し100℃を除く)で熟成反応させる工程、得られた反応生成物をろ過・乾燥・粉砕する工程、得られた乾燥粉末を550〜800℃で加熱焼成処理する工程からなることを特徴とするチタン酸リチウム粒子粉末の製造法である。(本発明1) In the present invention, a water-soluble lithium solution is added to and mixed with an aqueous suspension of titanium oxide having a BET specific surface area value of 40 to 400 m 2 / g and a primary particle size of 5 to 50 nm, and the mixed suspension is added to an autoclave. A step of aging reaction at 50 to 100 ° C. (excluding 100 ° C.) without using a solution, a step of filtering, drying and pulverizing the obtained reaction product, and heating and baking the obtained dry powder at 550 to 800 ° C. It is a manufacturing method of the lithium titanate particle powder characterized by including the process to process. (Invention 1)

また、本発明は、本発明1記載の製造法によって得られたチタン酸リチウム粒子粉末を活物質として含有させた電極を用いたことを特徴とする非水電解質二次電池である。(本発明2)   In addition, the present invention is a nonaqueous electrolyte secondary battery using an electrode containing, as an active material, lithium titanate particle powder obtained by the production method of the present invention 1. (Invention 2)

本発明に係る製造法によって得られたチタン酸リチウム粒子粉末を用いることで、二次電池として優れた初期放電容量を示し、かつ高率放電容量維持率が高い非水電解質二次電池を得ることができる。   By using the lithium titanate particle powder obtained by the production method according to the present invention, a nonaqueous electrolyte secondary battery exhibiting excellent initial discharge capacity as a secondary battery and having a high high-rate discharge capacity retention rate is obtained. Can do.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明に係るチタン酸リチウム粒子粉末の製造法について述べる。   A method for producing lithium titanate particles according to the present invention will be described.

本発明に係るチタン酸リチウム粒子粉末の製造法は、BET比表面積値が40〜400m/g、一次粒子径が5〜50nmであるチタン酸化物の水性懸濁液に水溶性リチウム溶液を所定量添加混合し、該混合懸濁液を50〜100℃で熟成反応させ、得られた反応生成物をろ過・乾燥・粉砕し、得られた乾燥粉末を550〜800℃で加熱焼成処理してチタン酸リチウム粒子粉末を得るものである。 In the method for producing lithium titanate particles according to the present invention, an aqueous lithium solution is placed in an aqueous suspension of titanium oxide having a BET specific surface area value of 40 to 400 m 2 / g and a primary particle size of 5 to 50 nm. A fixed amount was added and mixed, the mixed suspension was aged at 50 to 100 ° C., the obtained reaction product was filtered, dried and pulverized, and the obtained dry powder was heated and fired at 550 to 800 ° C. A lithium titanate particle powder is obtained.

チタン酸化物としては、例えば、酸化チタン(アナターゼ)、酸化チタン(ルチル)が挙げられるが、酸化チタン(アナターゼ)が好ましい。水溶性リチウムとしては、水酸化リチウム、炭酸リチウム、硫酸リチウム等が挙げられ、水酸化リチウムが好ましい。   Examples of the titanium oxide include titanium oxide (anatase) and titanium oxide (rutile), and titanium oxide (anatase) is preferable. Examples of the water-soluble lithium include lithium hydroxide, lithium carbonate, lithium sulfate and the like, and lithium hydroxide is preferable.

チタン酸化物のBET比表面積は、40〜400m/gである。より好ましいBET比表面積は50〜400m/gである。BET比表面積が40m/g未満では、水性懸濁液下での熟成反応において反応性に乏しく、チタン酸化物と水溶性リチウム溶液とが十分に反応しないため、得られた反応生成物をろ過・乾燥・粉砕・焼成しても、LiTi12型のスピネル構造の単相が得られないので好ましくない。400m/gを超える場合は、粉体としてハンドリングが困難であるほか、一般に原料として高価になるため、本発明の目的からは好ましくない。 The BET specific surface area of the titanium oxide is 40 to 400 m 2 / g. A more preferable BET specific surface area is 50 to 400 m 2 / g. When the BET specific surface area is less than 40 m 2 / g, the reactivity in the aging reaction under an aqueous suspension is poor, and the titanium oxide and the water-soluble lithium solution do not sufficiently react. -Even if it is dried, pulverized, and fired, a Li 4 Ti 5 O 12 type spinel structure single phase cannot be obtained, which is not preferable. If it exceeds 400 m 2 / g, it is difficult to handle as a powder, and generally it is expensive as a raw material, which is not preferable for the purpose of the present invention.

チタン酸化物の一次粒子径は、5〜50nmである。より好ましい一次粒子径は5〜45nmである。5nmを下回る粒子は、粉体としてハンドリングが困難であるほか、一般に原料として高価になるため、本発明の目的からは好ましくない。50nmを超える場合は、水性懸濁液下での熟成反応において反応性に乏しく、チタン酸化物と水溶性リチウム溶液とが十分に反応しないため、得られた反応生成物をろ過・乾燥・粉砕・焼成しても、LiTi12型のスピネル構造の単相が得られないので好ましくない。 The primary particle diameter of the titanium oxide is 5 to 50 nm. A more preferable primary particle diameter is 5 to 45 nm. Particles of less than 5 nm are not preferable from the object of the present invention because they are difficult to handle as powders and generally expensive as raw materials. If it exceeds 50 nm, the reactivity in the aging reaction under an aqueous suspension is poor, and the titanium oxide and the water-soluble lithium solution do not react sufficiently, so the obtained reaction product is filtered, dried, ground, Even if baked, a single phase of a spinel structure of Li 4 Ti 5 O 12 type cannot be obtained, which is not preferable.

リチウムの添加量はチタンに対して、Li/Ti(mol比)として、0.80〜2.0である。好ましくは0.85〜1.7である。リチウムの添加量がチタンに対して0.80未満では、LiTi12型のスピネル構造の単相が得られない。2.0を超える場合は、添加しても効果がなく、原料コストも上昇するため、過剰に添加する意味がない。 The addition amount of lithium is 0.80 to 2.0 as Li / Ti (mol ratio) with respect to titanium. Preferably it is 0.85-1.7. When the addition amount of lithium is less than 0.80 with respect to titanium, a single phase of a spinel structure of Li 4 Ti 5 O 12 type cannot be obtained. If it exceeds 2.0, there is no effect even if it is added, and the raw material cost also increases, so there is no point in adding excessively.

熟成反応の反応温度は、50〜100℃が好ましい。50℃未満の場合は、水性懸濁液下での熟成反応において、チタン酸化物と水溶性リチウム溶液とが十分に反応しないため、得られた反応生成物をろ過・乾燥・粉砕・焼成しても、LiTi12型のスピネル構造の単相が得られないので好ましくない。また、100℃を超える温度で熟成反応を行っても、実質的な効果は見られず、また、オートクレーブ等の高価な耐圧容器が必要となるため、好ましくない。より好ましくは、60〜100℃である。反応時間は4〜10時間行うことが好ましい。 The reaction temperature of the aging reaction is preferably 50 to 100 ° C. When the temperature is lower than 50 ° C., the titanium oxide and the water-soluble lithium solution do not sufficiently react in the aging reaction under an aqueous suspension, and thus the obtained reaction product is filtered, dried, pulverized, and calcined. However, it is not preferable because a single phase having a spinel structure of Li 4 Ti 5 O 12 type cannot be obtained. Further, even if the aging reaction is performed at a temperature exceeding 100 ° C., a substantial effect is not seen, and an expensive pressure vessel such as an autoclave is required, which is not preferable. More preferably, it is 60-100 degreeC. The reaction time is preferably 4 to 10 hours.

上記熟成反応生成物をろ過・乾燥した乾燥粉末は、少なくとも、酸化チタンと岩塩型構造のリチウムチタン複合酸化物とを含む混合物であることが好ましい。   The dry powder obtained by filtering and drying the aging reaction product is preferably a mixture containing at least titanium oxide and a lithium-titanium composite oxide having a rock salt structure.

加熱焼成処理温度は、550℃〜800℃であることが好ましい。550℃未満の場合にはLiTi12型のスピネル構造の単相が得られない。800℃を超える場合には、粒子間焼結が促進するため、電気化学特性(電池性能)が低下するので好ましくない。焼成処理の雰囲気は空気が好ましい。焼成処理時間は2〜10時間が好ましい。 The heat treatment temperature is preferably 550 ° C to 800 ° C. When the temperature is lower than 550 ° C., a single phase having a spinel structure of Li 4 Ti 5 O 12 type cannot be obtained. When the temperature exceeds 800 ° C., interparticle sintering is promoted, and electrochemical characteristics (battery performance) are deteriorated. Air is preferable as the atmosphere for the baking treatment. The firing time is preferably 2 to 10 hours.

本発明に係る製造法によって得られるチタン酸リチウム粒子粉末のBET比表面積値は5.0〜30m/gが好ましい。BET比表面積値が5m/g未満の場合には、高率放電容量維持率が低下し、30m/gを越える場合には、LiTi12型のスピネル構造の単相を得ることが困難であり、二次電池用活物質としての性能が著しく低下するため好ましくない。より好ましいBET比表面積値は5.0〜25m/gであり、更により好ましくは5.0〜20m/gである。 The BET specific surface area value of the lithium titanate particle powder obtained by the production method according to the present invention is preferably 5.0 to 30 m 2 / g. When the BET specific surface area value is less than 5 m 2 / g, the high rate discharge capacity retention rate decreases, and when it exceeds 30 m 2 / g, a single phase of a spinel structure of Li 4 Ti 5 O 12 type is obtained. This is not preferable because the performance as a secondary battery active material is significantly reduced. A more preferable BET specific surface area value is 5.0 to 25 m 2 / g, and even more preferably 5.0 to 20 m 2 / g.

本発明に係る製造法によって得られるチタン酸リチウム粒子粉末の結晶構造はスピネル型単相である。不純物相が存在する場合には、初期放電容量が低下するため好ましくない。   The crystal structure of the lithium titanate particle powder obtained by the production method according to the present invention is a spinel type single phase. The presence of an impurity phase is not preferable because the initial discharge capacity is reduced.

次に、本発明に係る非水電解質二次電池について述べる。   Next, the nonaqueous electrolyte secondary battery according to the present invention will be described.

本発明に係る非水電解質二次電池は、本発明1に記載の製造法によって得られたチタン酸リチウム粒子粉末を電極活物質として用いることを特徴とする。二次電池用電極は、チタン酸リチウム粒子粉末にカーボンブラックなどの導電材とフッ素樹脂などのバインダを加え、適宜成形または塗布して得られる。   The nonaqueous electrolyte secondary battery according to the present invention is characterized in that lithium titanate particle powder obtained by the production method described in the present invention 1 is used as an electrode active material. The electrode for a secondary battery is obtained by adding a conductive material such as carbon black and a binder such as a fluororesin to lithium titanate particle powder, and molding or applying the material appropriately.

非水電解質二次電池は、前記の電極、対極および電解質からなり、チタン酸リチウム粒子粉末を正極活物質として用いる場合は、対極(負極)には金属リチウム、リチウム合金等、あるいはグラファイト、コークスなどの炭素系材料が用いられる。また、チタン酸リチウム粒子粉末を負極活物質として用いる場合は、対極(正極)にはリチウム含有酸化マンガン、マンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム、五酸化バナジウム及びこれらの化合物の一部を他の元素で置換した化合物の一種又は二種以上が用いられる。電解液には、炭酸プロピレン、炭酸エチレン、炭酸ジエチル、1,2−ジメトキシエタンなどの溶媒にLiPF、LiClO、LiCFSO、LiN(CFSO、LiBFなどのリチウム塩を溶解させたものが用いられる。 The non-aqueous electrolyte secondary battery is composed of the above electrode, counter electrode and electrolyte, and when lithium titanate particle powder is used as the positive electrode active material, the counter electrode (negative electrode) is metal lithium, lithium alloy, graphite, coke, etc. These carbon-based materials are used. Moreover, when using lithium titanate particle powder as a negative electrode active material, lithium-containing manganese oxide, lithium manganate, lithium cobaltate, lithium nickelate, lithium iron phosphate, vanadium pentoxide, and these One kind or two or more kinds of compounds obtained by substituting a part of the compounds with other elements are used. The electrolyte includes a lithium salt such as LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 in a solvent such as propylene carbonate, ethylene carbonate, diethyl carbonate, 1,2-dimethoxyethane. What dissolved is used.

<作用>
本発明において最も重要な点は、本発明に係る製造法によって得られたチタン酸リチウム粒子粉末を用いることで、二次電池として優れた初期放電容量を示し、かつ高率放電容量維持率が高い非水電解質二次電池を得ることができるという点である。
<Action>
In the present invention, the most important point is that by using the lithium titanate particle powder obtained by the production method according to the present invention, an excellent initial discharge capacity as a secondary battery is exhibited, and a high rate discharge capacity maintenance rate is high. This is that a non-aqueous electrolyte secondary battery can be obtained.

本発明において、優れた初期放電容量が得られるのは、本発明に係る製造法によって得られたチタン酸リチウム粒子粉末の結晶構造がLiTi12型のスピネル構造単相であることによる。 In the present invention, the excellent initial discharge capacity is obtained because the crystal structure of the lithium titanate particle powder obtained by the production method according to the present invention is a single phase of spinel structure of Li 4 Ti 5 O 12 type. .

また、チタン酸化物の水性懸濁液に水溶性リチウム溶液を所定量添加混合し、該混合懸濁液を50〜100℃で熟成反応させ、ろ過・乾燥した乾燥粉末は、少なくとも、酸化チタンと岩塩型構造のリチウムチタン複合酸化物とを含む混合物である。すなわち、焼成前の乾燥粉末の段階で、酸化チタンの一部がリチウムと反応し岩塩型構造のリチウムチタン複合酸化物を形成しているため、比較的低温の焼成によってスピネル型構造単相微粒子が得られる。更には、前記100℃以下での熟成反応において、Li/Ti仕込み比を低い(LiTi12化学量論組成0.80からのLi余剰量が少ない)値に設定しているため、熟成反応生成物のろ過・乾燥時のLi偏析が抑制されており、得られた乾燥粉末を550〜800℃で焼成することによって、均一な組成のLiTi12微粒子粉末を得ることが可能である。 In addition, a predetermined amount of a water-soluble lithium solution is added to and mixed with an aqueous suspension of titanium oxide, the mixed suspension is aged at 50 to 100 ° C., and the dried and filtered powder is at least titanium oxide and It is a mixture containing a lithium-titanium composite oxide having a rock salt structure. That is, since a portion of titanium oxide reacts with lithium to form a lithium-titanium composite oxide having a rock salt structure at the stage of the dry powder before firing, the spinel structure single-phase fine particles are formed by firing at a relatively low temperature. can get. Furthermore, in the ripening reaction at 100 ° C. or lower, the Li / Ti feed ratio is set to a low value (less Li surplus from Li 4 Ti 5 O 12 stoichiometric composition 0.80), Li segregation during the ripening reaction product during filtration and drying is suppressed, and the obtained dry powder is fired at 550 to 800 ° C. to obtain a Li 4 Ti 5 O 12 fine particle powder having a uniform composition. Is possible.

すなわち、スピネル型構造単相かつ均一な組成のLiTi12微粒子粉末が生成する効果によって、非水電解質二次電池用の活物質として、優れた初期放電容量を示し、かつ高率放電容量維持率が高いチタン酸リチウム粒子粉末が得られるものと本発明者は推定している。 In other words, due to the effect of producing a spinel-type single-phase and uniform composition Li 4 Ti 5 O 12 fine particle powder, it exhibits excellent initial discharge capacity as an active material for a non-aqueous electrolyte secondary battery, and high rate discharge The present inventor estimates that a lithium titanate particle powder having a high capacity retention rate can be obtained.

また、本発明に係る製造法は、チタン酸化物の水性懸濁液に水溶性リチウム溶液を所定量添加混合し、該混合懸濁液を熟成反応させているが、その熟成温度は100℃以下であり、オートクレーブ等の高価な耐圧容器を必要としない。更に、前述したろ過・乾燥・粉砕までの諸工程を考慮すれば、安価かつ簡易な製造法であると言える。   In the production method according to the present invention, a predetermined amount of a water-soluble lithium solution is added to and mixed with an aqueous suspension of titanium oxide, and the mixed suspension is subjected to an aging reaction. The aging temperature is 100 ° C. or less. Therefore, an expensive pressure vessel such as an autoclave is not required. Furthermore, it can be said that it is an inexpensive and simple manufacturing method in consideration of the various processes up to the filtration, drying and pulverization described above.

本発明の代表的な実施の形態は、次の通りである。   A typical embodiment of the present invention is as follows.

チタン酸リチウム粒子粉末の同定は、粉末X線回折(RIGAKU RINT2500(管球:Cu、管電圧:40kV、管電流:300mA)を用いた。   For identification of lithium titanate particle powder, powder X-ray diffraction (RIGAKU RINT2500 (tube ball: Cu, tube voltage: 40 kV, tube current: 300 mA) was used.

チタン酸リチウム粒子粉末の電池特性は、下記製造法によって正極、負極及び電解液を調製し、コイン型の電池セルを作製して評価した。   The battery characteristics of the lithium titanate particle powder were evaluated by preparing a positive electrode, a negative electrode, and an electrolytic solution by the following production method to produce a coin-type battery cell.

<正極の作製>
チタン酸リチウム粒子粉末と導電剤であるアセチレンブラック及び結着剤のポリフッ化ビニリデンを重量比で90:5:5となるように精秤し、乳鉢で十分に混合してからN−メチル−2−ピロリドンに分散させて正極合剤スラリーを調整した。次に、このスラリーを集電体のアルミニウム箔に40μmの膜厚で塗布し、110℃で真空乾燥してからφ16mmの円板状に打ち抜き正極板とした。
<Preparation of positive electrode>
The lithium titanate particle powder, the conductive agent acetylene black and the binder polyvinylidene fluoride were precisely weighed so as to have a weight ratio of 90: 5: 5, and thoroughly mixed in a mortar, and then N-methyl-2 A positive electrode mixture slurry was prepared by dispersing in -pyrrolidone. Next, this slurry was applied to an aluminum foil as a current collector with a film thickness of 40 μm, vacuum-dried at 110 ° C., and then punched into a disk shape of φ16 mm to obtain a positive electrode plate.

<負極の作製>
金属リチウム箔をφ16mmの円板状に打ち抜いて負極を作製した。
<Production of negative electrode>
A metal lithium foil was punched into a disk shape of φ16 mm to produce a negative electrode.

<電解液の調製>
炭酸エチレンと炭酸ジエチルとの体積比50:50の混合溶液に電解質として六フッ化リン酸リチウム(LiPF)を1モル/リットル混合して電解液とした。
<Preparation of electrolyte>
An electrolyte solution was prepared by mixing 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 50:50.

<コイン型電池セルの組み立て>
アルゴン雰囲気のグローブボックス中でSUS316製のケースを用い、上記正極と負極の間にポリプロピレン製のセパレータを介し、さらに電解液を注入してCR2032型のコイン電池を作製した。
<Assembly of coin-type battery cells>
Using a case made of SUS316 in a glove box in an argon atmosphere, a CR2032-type coin battery was manufactured by injecting an electrolyte solution through a polypropylene separator between the positive electrode and the negative electrode.

<電池評価>
前記コイン型電池を用いて、二次電池の充放電試験を行った。測定条件としては、正極に対する電流密度を0.2mA/cmとし、カットオフ電圧が1.1Vから3.0Vの間で充放電を繰り返した。初期放電容量は、0.1C率での測定値を使用した。また、高率放電容量維持率は、初期放電容量値に対する5C率での放電容量値の割合(百分率)として表した。
<Battery evaluation>
A charge / discharge test of a secondary battery was performed using the coin-type battery. As measurement conditions, the current density with respect to the positive electrode was 0.2 mA / cm 2, and charge / discharge was repeated while the cut-off voltage was between 1.1 V and 3.0 V. The initial discharge capacity was measured at a rate of 0.1C. Moreover, the high rate discharge capacity maintenance rate was expressed as a ratio (percentage) of the discharge capacity value at a rate of 5 C to the initial discharge capacity value.

実施例1
<チタン酸リチウム粒子粉末の製造>
比表面積300m/g、一次粒子径6nmの酸化チタン(アナターゼ) 72.77gを500mlのイオン交換水に分散させた懸濁液を1500mlのステンレス容器に入れ、緩やかに撹拌しておく。これに、41.08gの水酸化リチウムを200mlのイオン交換水に溶解した水溶液を添加し、反応懸濁液の全量を800mlに調整する。このとき、Li/Ti(mol/mol)=1.075である。この混合懸濁液を速やかに95℃に加温し、6時間熟成反応を行う。熟成反応終了後、反応懸濁液を室温まで冷却し、ヌッチェろ過した後、ろ過ケーキを120℃で乾燥後、粉砕する。得られた乾燥粉末のX線回折の結果、少なくとも、酸化チタン(アナターゼ型構造酸化物)と岩塩型構造のリチウムチタン複合酸化物とを含む混合物であることが確認された。該乾燥粉末をアルミナるつぼに入れ、マッフル炉で、温度670℃で3時間、空気雰囲気中で焼成を行い、チタン酸リチウム粒子粉末を得た。
Example 1
<Manufacture of lithium titanate particle powder>
A suspension in which 72.77 g of titanium oxide (anatase) having a specific surface area of 300 m 2 / g and a primary particle diameter of 6 nm is dispersed in 500 ml of ion-exchanged water is placed in a 1500 ml stainless steel container and gently stirred. To this, an aqueous solution in which 41.08 g of lithium hydroxide is dissolved in 200 ml of ion exchange water is added to adjust the total amount of the reaction suspension to 800 ml. At this time, Li / Ti (mol / mol) = 1.075. This mixed suspension is immediately heated to 95 ° C. and subjected to aging reaction for 6 hours. After completion of the aging reaction, the reaction suspension is cooled to room temperature, filtered by Nutsche, and then the filter cake is dried at 120 ° C. and then pulverized. As a result of X-ray diffraction of the obtained dry powder, it was confirmed that it was a mixture containing at least titanium oxide (anatase type structure oxide) and lithium salt composite oxide having a rock salt type structure. The dry powder was put in an alumina crucible and baked in a muffle furnace at a temperature of 670 ° C. for 3 hours in an air atmosphere to obtain lithium titanate particle powder.

得られたチタン酸リチウム粒子粉末のX線回折の結果、LiTi12型のスピネル構造単相であり、不純物相は存在しなかった。また、BET比表面積値は7.5m/gであった。 As a result of X-ray diffraction of the obtained lithium titanate particle powder, it was a single phase of spinel structure of Li 4 Ti 5 O 12 type, and no impurity phase was present. Further, the BET specific surface area value was 7.5 m 2 / g.

前記チタン酸リチウム粒子粉末を正極活物質として用いて作製したコイン型電池は、初期放電容量が166mAh/g、高率放電容量維持率は76.7%であった。   The coin-type battery produced using the lithium titanate particle powder as the positive electrode active material had an initial discharge capacity of 166 mAh / g and a high rate discharge capacity retention rate of 76.7%.

実施例2〜5
酸化チタンの種類、熟成反応時のLi/Ti仕込み比率、熟成温度、加熱焼成処理温度等を種々変化させた以外は前記実施例1と同様にしてチタン酸リチウム粒子粉末を得た。
Examples 2-5
Lithium titanate particle powder was obtained in the same manner as in Example 1 except that the type of titanium oxide, the Li / Ti charging ratio during the aging reaction, the aging temperature, the heat treatment temperature, and the like were variously changed.

比較例1は、酸化チタン(アナターゼ)粉末、炭酸リチウム粉末および水酸化マグネシウム粉末をLi/Ti(mol/mol)=0.80となるような仕込み組成で配合し、乳鉢で十分に混合し、得られた混合粉末をアルミナるつぼに入れ、マッフル炉中、温度820℃で3時間、空気雰囲気中で焼成してチタン酸リチウム粒子粉末を得た。   In Comparative Example 1, titanium oxide (anatase) powder, lithium carbonate powder and magnesium hydroxide powder were blended in a charging composition such that Li / Ti (mol / mol) = 0.80, and thoroughly mixed in a mortar, The obtained mixed powder was put into an alumina crucible and fired in a muffle furnace at a temperature of 820 ° C. for 3 hours in an air atmosphere to obtain lithium titanate particle powder.

比較例2は、比表面積10m/g、一次粒子径180nmの酸化チタン(アナターゼ)粉末を用いたこと以外は、実施例1と全く同様にして、チタン酸リチウム粒子粉末を得た。ただし、得られたチタン酸リチウム粒子粉末のX線回折の結果、LiTi12型のスピネル構造以外に、酸化チタン(アナターゼ型)の不純物相が多量に含まれており、スピネル構造単相は生成されなかった。 In Comparative Example 2, lithium titanate particle powder was obtained in exactly the same manner as in Example 1 except that titanium oxide (anatase) powder having a specific surface area of 10 m 2 / g and a primary particle diameter of 180 nm was used. However, as a result of X-ray diffraction of the obtained lithium titanate particle powder, a large amount of impurity phase of titanium oxide (anatase type) is contained in addition to the Li 4 Ti 5 O 12 type spinel structure, and the spinel structure single unit No phase was produced.

比較例3,4
熟成反応の反応温度、加熱焼成処理温度を種々変化させた以外は前記実施例1と同様にしてチタン酸リチウム粒子粉末を得た。
Comparative Examples 3 and 4
Lithium titanate particle powder was obtained in the same manner as in Example 1 except that the reaction temperature of the ripening reaction and the heat treatment temperature were variously changed.

比較例3では、熟成温度を45℃としたこと以外は、実施例1と同様の条件で熟成反応を行い、熟成終了後、反応懸濁液を室温まで冷却し、ヌッチェろ過した後、ろ過ケーキを120℃で乾燥、粉砕して乾燥粉末を得た。得られた乾燥粉末のX線回折の結果、酸化チタン(アナターゼ型構造酸化物)の存在のみが確認され、岩塩型構造のリチウムチタン複合酸化物に帰属する回折ピークは観測されなかった。該乾燥粉末をアルミナるつぼに入れ、マッフル炉で、温度670℃で3時間、空気雰囲気中で焼成を行い、チタン酸リチウム粒子粉末を得た。得られたチタン酸リチウム粒子粉末のX線回折の結果、LiTi12型のスピネル構造がわずかに観測されたが、大部分は、酸化チタン(アナターゼ型構造酸化物)であった。 In Comparative Example 3, an aging reaction was performed under the same conditions as in Example 1 except that the aging temperature was 45 ° C. After completion of the aging, the reaction suspension was cooled to room temperature, filtered by Nutsche, and then filtered. Was dried and pulverized at 120 ° C. to obtain a dry powder. As a result of X-ray diffraction of the obtained dry powder, only the presence of titanium oxide (anatase type structure oxide) was confirmed, and no diffraction peak attributed to the lithium titanium composite oxide having a rock salt type structure was observed. The dry powder was put in an alumina crucible and baked in a muffle furnace at a temperature of 670 ° C. for 3 hours in an air atmosphere to obtain lithium titanate particle powder. As a result of X-ray diffraction of the obtained lithium titanate particle powder, a slight amount of spinel structure of Li 4 Ti 5 O 12 type was observed, but most was titanium oxide (anatase type structure oxide).

得られたチタン酸リチウム粒子粉末の製造条件・諸特性を表1に示す。   Table 1 shows the production conditions and characteristics of the obtained lithium titanate particles.

Figure 0005830842
Figure 0005830842

実施例に示すとおり、本発明に係るチタン酸リチウム粒子粉末は、初期放電容量が高く、しかも、高率での放電容量維持率が高いので、非水電解質二次電池用の活物質として好適である。   As shown in the examples, the lithium titanate particle powder according to the present invention has a high initial discharge capacity and a high discharge capacity maintenance rate, and is therefore suitable as an active material for a non-aqueous electrolyte secondary battery. is there.

なお、前記実施例においては、本発明に係るチタン酸リチウム粒子粉末を正極活物質として用いた例を示しているが、本発明に係るチタン酸リチウム粒子粉末を負極活物質として用いた場合にも、非水電解質二次電池の活物質として、優れた特性を発揮できるものである。   In addition, in the said Example, although the example which used the lithium titanate particle powder which concerns on this invention as a positive electrode active material is shown, also when the lithium titanate particle powder which concerns on this invention is used as a negative electrode active material, As an active material of a nonaqueous electrolyte secondary battery, it can exhibit excellent characteristics.

Claims (2)

BET比表面積値が40〜400m/g、一次粒子径が5〜50nmであるチタン酸化物の水性懸濁液に、水溶性リチウム溶液を添加混合し、該混合懸濁液をオートクレーブを使用せずに50〜100℃(但し100℃を除く)で熟成反応させる工程、得られた反応生成物をろ過・乾燥・粉砕する工程、得られた乾燥粉末を550〜800℃で加熱焼成処理する工程からなることを特徴とするチタン酸リチウム粒子粉末の製造法。 A water-soluble lithium solution is added to and mixed with an aqueous suspension of titanium oxide having a BET specific surface area value of 40 to 400 m 2 / g and a primary particle size of 5 to 50 nm, and the mixed suspension is used with an autoclave. Without aging reaction at 50 to 100 ° C. (excluding 100 ° C.) , step of filtering, drying and pulverizing the obtained reaction product, step of heating and baking the obtained dry powder at 550 to 800 ° C. A process for producing a lithium titanate particle powder comprising: 請求項1記載の製造法によって得られたチタン酸リチウム粒子粉末を活物質として含有させた電極を用いことを特徴とする非水電解質二次電池の製造法 Preparation of non-aqueous electrolyte secondary battery characterized in that Ru using the electrode which contains lithium titanate particles obtained by the claims 1 Process according as the active material.
JP2010214368A 2010-08-31 2010-09-24 Method for producing lithium titanate particle powder and non-aqueous electrolyte secondary battery Active JP5830842B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2010214368A JP5830842B2 (en) 2010-09-24 2010-09-24 Method for producing lithium titanate particle powder and non-aqueous electrolyte secondary battery
CN201180041557.4A CN103080010B (en) 2010-08-31 2011-08-29 Lithium titanate particle powder and manufacture method thereof, containing Mg lithium titanate particle powder and manufacture method, anode for nonaqueous electrolyte secondary battery active material particle powder and rechargeable nonaqueous electrolytic battery
KR1020137004805A KR20130097733A (en) 2010-08-31 2011-08-29 Lithium titanate particulate powder and production method for same, mg-containing lithium titanate particulate powder and production method for same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
PCT/JP2011/069407 WO2012029697A1 (en) 2010-08-31 2011-08-29 Lithium titanate particulate powder and production method for same, mg-containing lithium titanate particulate powder and production method for same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US13/819,068 US9293235B2 (en) 2010-08-31 2011-08-29 Lithium titanate particles and process for producing the lithium titanate particles, Mg-containing lithium titanate particles and process for producing the Mg-containing lithium titanate particles, negative electrode active substance particles for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
EP11821713.2A EP2612840A4 (en) 2010-08-31 2011-08-29 Lithium titanate particulate powder and production method for same, mg-containing lithium titanate particulate powder and production method for same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CA2809511A CA2809511A1 (en) 2010-08-31 2011-08-29 Lithium titanate particles and process for producing the lithium titanate particles, mg-containing lithium titanate particles and process for producing the mg-containing lithium titanate particles, negative electrode active substance particles for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
TW100131298A TW201226320A (en) 2010-08-31 2011-08-31 Lithium titanate particulate powder and production method for same, mg-containing lithium titanate particulate powder and production method for same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery
US15/019,322 US9847526B2 (en) 2010-08-31 2016-02-09 Lithium titanate particles and process for producing the lithium titanate particles, Mg-containing lithium titanate particles and process for producing the Mg-containing lithium titanate particles, negative electrode active substance particles for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010214368A JP5830842B2 (en) 2010-09-24 2010-09-24 Method for producing lithium titanate particle powder and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2012069432A JP2012069432A (en) 2012-04-05
JP5830842B2 true JP5830842B2 (en) 2015-12-09

Family

ID=46166437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214368A Active JP5830842B2 (en) 2010-08-31 2010-09-24 Method for producing lithium titanate particle powder and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5830842B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101795977B1 (en) * 2013-08-19 2017-11-08 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Method for producing titanium oxide using porous titanium compound impregnated with solution
JP6220365B2 (en) * 2015-06-30 2017-10-25 宇部興産株式会社 Lithium titanate powder and active material for electrode of power storage device, and electrode sheet and power storage device using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178111B2 (en) * 2007-09-26 2013-04-10 株式会社東芝 Non-aqueous electrolyte battery and pack battery
DE102008026580A1 (en) * 2008-06-03 2009-12-10 Süd-Chemie AG Process for producing lithium titanium spinel and its use
JP5434632B2 (en) * 2010-01-28 2014-03-05 株式会社Gsユアサ Non-aqueous electrolyte secondary battery active material and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2012069432A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
US9806339B2 (en) Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
TWI423504B (en) A positive electrode for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery
TWI584520B (en) Li-Ni composite oxide particles and nonaqueous electrolyte batteries
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
WO2012029697A1 (en) Lithium titanate particulate powder and production method for same, mg-containing lithium titanate particulate powder and production method for same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4833058B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
WO2013137380A1 (en) Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
KR101781764B1 (en) Alkali metal titanium oxide having anisotropic structure, titanium oxide, electrode active material containing said oxides, and electricity storage device
JPWO2009028530A1 (en) TITANATE COMPOUND, PROCESS FOR PRODUCING THE SAME, ELECTRODE ACTIVE MATERIAL CONTAINING THE TITANATE COMPOUND, AND ELECTRIC STORAGE DEVICE USING THIS
CN102009970A (en) Method for preparing high-density lithium ferric phosphate
WO2016148096A1 (en) Method for producing lithium metal complex oxide having layered structure
CN105307979A (en) Lithium titanate, production method for same, and electrical storage device employing same
WO2008013208A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP5369447B2 (en) Lithium titanium iron composite oxide, method for using the same, lithium ion secondary battery, and method for producing lithium titanium iron composite oxide
JP5810752B2 (en) Lithium titanate particle powder, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2012166966A (en) B type titanium oxide and method of manufacturing the same, and lithium ion battery using the same
JP5708939B2 (en) Lithium titanate particle powder and method for producing the same, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7217514B2 (en) Titanium oxide, method for producing titanium oxide, and lithium secondary battery using electrode active material containing titanium oxide
TW201803803A (en) Method for manufacturing vanadium lithium phosphate
JP5830842B2 (en) Method for producing lithium titanate particle powder and non-aqueous electrolyte secondary battery
JP5898373B2 (en) Positive electrode active material for lithium secondary battery
JP2012248333A (en) Electrode active substance, manufacturing method thereof and power storage device employing electrode active substance
JP5152456B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP6013435B2 (en) ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141029

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150818

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151012

R150 Certificate of patent or registration of utility model

Ref document number: 5830842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250